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HOOK FORMULAS FOR SKEW SHAPES IV.
INCREASING TABLEAUX AND FACTORIAL
GROTHENDIECK POLYNOMIALS

A. H. Morales,* I. Pak,” and G. Panova' UDC 519.112

We present a new family of hook-length formulas for the number of standard increasing tableaux
which arise in the study of factorial Grothendieck polynomials. In the case of straight shapes, our
formulas generalize the classical hook-length formula and the Littlewood formula. For skew shapes,
our formulas generalize the Naruse hook-length formula and its qg-analogs, which were studied in
previous papers of the series. Bibliography: 65 titles.

1. INTRODUCTION

1.1. Foreword. There is more than one way to explain a miracle. First, one can show
how it is made, a step-by-step guide to perform it. This is the most common yet the least
satisfactory approach as it takes away the joy and gives you nothing in return. Second,
one can investigate away every consequence and implication, showing that what appears to
be miraculous is actually both reasonable and expected. This takes nothing away from the
miracle except for its shining power, and puts it in the natural order of things. Finally, there
is a way to place the apparent miracle as a part of the general scheme. Even, or especially,
if this scheme is technical and unglamorous, the underlying pattern emerges with the utmost
clarity.

The hook-length formula (HLF) is long thought to be a minor miracle, a product formula
for the number of certain planar combinatorial arrangements, which emerges where one would
expect only a determinant formula. Despite its numerous proofs and generalizations, including
some by the authors (see Sec. 7.1), it continues to mystify and enthrall. The goal of this
paper is to give new curious generalizations of the HLF by using Grothendieck polynomials.
The resulting formulas are convoluted enough to be unguessable yet retain the hook product
structure to be instantly recognizable.

1.2. Straight shapes. Recall some classical results in the area. Let A = (A,...,A\)) F n
be an integer partition of n with ¢ = ¢(\) parts, and let f* := |SYT())| be the number of
standard Young tableaux of shape . The hook-length formula by Frame—Robinson—Thrall [16]
states that

1
A =nl , (HLF)
g h(u)

where h(u) = A; —i+ A; —j + 1 is the hook-length of the square u = (4, j) € .
Similarly, let SSYT(A) denote the set of semistandard Young tableauz of shape A. For a
tableau T' € SSYT(A), let |T'| denote the sum of its entries. The Littlewood formula, a special
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case of the Stanley hook-content formula, states that

1
T — b)) -
Yoo =y H1_qh(u>’ (¢-HLF)
TESSYT(N) uEN
where
o)
bA) = > (i—1) = (i-1\;,
(i,5)EX i=1

see, e.g., [59, Sec. 7.21]. Note that (¢-HLF) implies (HLF) by taking the limit ¢ — 1 and using
a geometric argument, see [50, Sec. 2|, or the P-partition theory, see [59, Sec. 3.15]. We are
now ready to state the first two results of the paper, which generalize (HLF) and (¢-HLF),
respectively.

For a tableau T € SSYT(A), let T, = {u € X\ : T(u) = k} be the set of tableau entries
equal to k. Define T<y = {u € X : T'(u) <k}, Tsp, ={ue X : T(u) >k}, and Tep, = T<j41
similarly. Finally, let v(T}), v(T<y), and v(T>)) be the shapes of these tableaux.

We say that T is a standard increasing tableau if it is strictly increasing in rows and columns
and T} is nonempty for all 1 < k < m, where m = m(7T) is the maximal entry in 7. Note
that the (usual) standard Young tableaux are exactly the standard increasing tableaux T" with
m(T) = n. Denote by SIT()\) the set of standard increasing tableaux of shape A. By definition,
for T' € SIT(N), we have 0 < v;(T<x) < A, where v;(T<j) is the number of elements in T<j, in
the 7th row of .

Theorem 1.1. Fiz d > 1. In the notation above, for every A b n with £(\) < d, we have:
m . -1
> ﬁ) <[ﬁ 1+ B(vi(Tap) +d—i+1) _1>
| ko 1+8Ni+d—i+1)

TeSIT(A i=1
H 1

o (K-HLF)

1 ,
_ ST +B0+d—i+ )™
(- U (
Here “K” in (K-HLF) stands for K-theory, see below. Note that (K-HLF) implies (HLF)
by taking the limit 8 — 0, see Proposition 4.8.

To state the K-theory analog of (¢-HLF), we need some more notation. For a strictly
increasing tableau T € SIT()), denote by T the skew subtableau of integers > k, and let
a(T>g) = |v(T>k)| denote the number of such integers. This should not be confused with
|T> k|, which is the sum of such integers. Finally, denote

s(A) = Y (i+7—1) = bA)+bN)+][A.
(3,7)EX

Corollary 1.2. In the notation above, for every A\ Fn, we have:

m(T)
1 1
|7 — 450
Z q H 1— g0 — q H 1— ghld) (1.1)
TESIT(N) k=1 (i.7)Ex

The relationship between (K-HLF) and (1.1) is somewhat indirect, and both follow from a
more general equation (4.5) by taking limits.

Remark 1.3. Denote by RPP()) the set of reverse plane partitions, which are Young tableaux
with entries > 0 weakly increasing in rows and columns. Similarly, denote by IT(X) the set of
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increasing tableaux, which are Young tableaux with entries > 1 strictly increasing in rows and
columns. Thus:

SYT(A) C SIT(A) c IT(A) € SSYT(A) € RPP()). (1.2)
It is well known, and easily follows from (¢-HLF), that

1
T _ s(A T _ s(A\
DIVUECED SRFUEECE | (13)

TelIT(X) TeRPP(N) (4,5)EX

Note that both (1.1) and (1.3) have identical RHS, but the LHS of (1.1) has an extra product
term. In fact, there is a similar direct way to derive (1.1) from (¢-HLF) by subtracting a
constant from the entries in each anti-diagonal of the tableau. However, this approach does
not extend to skew shapes, see Theorem 1.5 below and Sec. 7.9.

1.3. Skew shapes. We start with the Naruse hook-length formula (NHLF), the subject of
the previous papers in this series [41-43]. Here we omit some definitions; precise statements
are given in Sec. 5.

Let A/ be a skew Young diagram (skew shape), and let

P = ISYT(\/ )
be the number of standard Young tableaux of shape A/u. Then

P =Nl Y H (NHLF)

DeE(N/ ) ue)\\D

where h(u) is the (usual) hook-length of the square u € A and £(\/u) denotes the set of excited
diagrams of shape A/u. Note that when p = &, there is a unique generalized excited diagram
D = @, and (NHLF) reduces to (HLF).

The g-analog of (NHLF) generalizing Littlewood’s formula (¢-HLF) to skew shapes was
given by the authors in [41]:

N.—i

S o= % I1 13;%’],), (¢-NHLF)

TeSSYT(M\/p) DeEN/u) (3,5)EN\D

In Remark 1.6, we discuss another notable g-analog as a summation over RPP(A/u). The
following results respectively generalize Theorem 1.1 and Corollary 1.2 to skew shapes, thus
giving advanced generalizations of (HLF).

Let p C X be two integer partitions. Define the set SIT(A/u) of standard increasing tableaux
of skew shape A/u again as the set of Young tableaux T which strictly increase in rows and
columns and have nonempty 7Ty for all 1 < k < m(T). In this case, the generalized excited
diagrams were introduced by Graham-Kreiman [18] and Ikeda—Naruse [25]. We denote the
set of such diagrams by D(A/u), and postpone their definition until the next section.

Theorem 1.4. Fiz d > 1. In the notation above, for every u C A with £(\) < d, we have:

s )

TeSIT(A\/p) k=1

_ Z (=)~ N H Bhi+d—i+1)+ 1

DED(/ 1) (i /)END hi, 5)

14+ B(vi(T<p) +d—i+1)
H 1+ BN +d—i+1)

1=

(K-NHLF)
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See Sec. 6.4 for a completely different generalization of (HLF) to skew shapes, which also
has a g-analog and K-theory analog (Theorem 6.8). Finally, Corollary 1.2 extends to skew
shapes as follows.

Theorem 1.5. In the notation above, for every p C X\, we have:

m(T) h(i.j)

Z g H (Tsk) Z H 1th(i,j)' (1.4)

TeSIT(M\ ) DeD(N /) (i,f)END

Again, equation (1.4) reduces to (1.1) by taking u = & and noting that

STohg) = D N—it1) + > (h—j) = s().

(3,7)EX (4,7)EX (3,7)EX

Remark 1.6. While the inclusions in (1.2) continue to hold for skew shapes, the natural
analog of (1.3) is no longer straightforward. In fact, for

TEIT(A/p) TERPP(\/p)

the theory of P-partitions gives:

Iyu(—q) = qNRA/H(l/q) for some N >0, see [59, Sec. 3.15]. (1.5)

On the other hand, the summation formula for R)/,(q) given in [41, Theorem 1.5] gives
yet another generalization of (NHLF), but is summing over a different, albeit related, set of
pleasant diagrams (see Sec. 5.2):

DRI SN | [ (1.6)

TERPP(\/ ) SEP(M p) (m)es

As we explain in Sec. 6, equation (K-NHLF) is really a generalization of (1.6) rather
than (¢-NHLF). A connection can also be seen through yet another summation formula
for R)/,(q) given in [41, Corollary 6.17] in terms of (ordinary) excited diagrams and subsets
m(A/p) of excited peaks (see the definition in Sec. 5.2):

. 1
4T = Y e ] L (1.7)

TERPP (A1) DEeE(N /1) (i,§)EX\D

where ¢(D) := Z(i, Der(\/u) h(i,j). Finally, let us mention that the corresponding summation
formula for I/,(¢), implied by (1.5) and (1.7), is obtained in (6.8) more directly.

1.4. Methodology. While all results in this paper can be understood as enumeration of
certain Young tableaux, both the motivation and the proofs are algebraic. This is routine in
algebraic combinatorics, of course, and goes back to the most basic and classical results in the
area.

For example, for the LHS of (HLF), we have f* = dimS*, the dimension of the correspond-
ing irreducible S,,-module, with standard Young tableaux giving a natural basis. On the other
hand, the LHS in (¢-HLF) is equal to the evaluation of the Schur function sy (1, ¢,4?,...), and
counts multiplicities of S in the natural action on the symmetric algebra C[z1, ..., z,] graded
by the degree. The connection between the two is then provided by the combination of the
Burnside and Chevalley theorems.

One can similarly define the standard Young tableaux of skew shapes, excited diagrams,
etc., even if the explanations become more technical and involved with each generalization. A
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tremendous amount of work by many authors went into developments of this theory, making a
proper overview for a paper of this scope impossible. Instead, we skip to the end of the story
and briefly describe the motivation behind our new enumerative results.

Before we proceed to the recent work, it is worth pausing and pondering on how the results
in the area come about. First, there are algebraic areas (representation theory, enumerative
algebraic geometry, etc.) which provide the source of key algebraic objects (characters, Schu-
bert cells, characteristic classes, etc.). Second, in order to build the theory of these objects and
be able to compute them, combinatorial objects are extracted which are able to characterize
the algebraic objects (Schur functions, Schubert polynomials, etc.).

Third, algebraic combinatorialists join the party and introduce the theory of these com-
binatorial objects without regard to their algebraic origin. Along the way they introduce
a plethora of new combinatorial tools (Young tableaux, reduced decompositions, RSK, etc.)
which substantially enhance and clarify the resulting combinatorial structures. This is still
the same theory, of course, but the self-contained presentation and rich yet to be understood
combinatorics allows an easy access to people not algebraically inclined.

All this leads to the fourth wave, by enumerative combinatorialists who are able to use tools
and ideas from algebraic combinatorics to study purely combinatorial problems. This is where
we find ourselves in this paper, staring with an amazement at new enumerative results we
obtain following this course that we would not be able to dream up otherwise, yet grasping
for understanding of what these results really mean in the grand scheme of things.

1.5. Motivation and background. The main result of this paper is an unusual S-defor-
mation of many known hook formulas. Notably, our S-deformation (K-HLF) of (HLF), see
Theorem 1.1, remains concise and multiplicative even if it is quite cumbersome at first glance.
By comparison, it is unlikely that g* := |SIT()\)| has a closed formula (cf. Sec. 7.10), so a
product formula for the weighted enumeration of SITs is both a minor miracle and testament
to the intricate nature of such tableaux.

The same pattern extends to other, more general, hook formulas, suggesting that (K-HLF)
is not an accident, that the S-deformation is a far-reaching generalization, on par with the
“g-analog,” “shifted analog,” etc. We expect further results in this direction in the future.

In the combinatorial context, standard increasing tableaux (without the restriction on the
values of the entries) appear as byproducts of the classical Edelman—Greene insertion
[11,22] aimed at understanding Stanley’s theorem on reduced factorizations of Grassman-
nian permutations (permutations with at most one descent, see, e.g., [36]). They also appear
in a more general setting of the Hecke insertion [6].

More recently, standard increasing tableaux have appeared in the context of the K-theoretic
version of the jeu de taquin of Thomas and Yong [62,64] and K -promotion in K -theoretic Schu-
bert calculus [53]. Closely related semistandard set-valued tableaur were defined by Buch [4],
and have also been studied in a number of papers.

In the algebraic context, the K-theoretic Schubert calculus of the Grassmannian was intro-
duced by Lascoux and Schiitzenberger [32]. There, they defined the Grothendieck polynomials
as representatives for K-theory classes determined by structure sheaves of Schubert varieties.
The theory has been rapidly developed in the past two decades. We refer to [3,5] for early
surveys of the subject, as reviewing the extensive recent literature is beyond the scope of this
paper.

In this paper, the key role is played by the factorial Grothendieck polynomials [28,37], which
generalize both the well-studied Grothendieck polynomials and factorial symmetric functions.
The latter were also first introduced by Lascoux and Schiitzenberger [31] in the guise of double
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Schubert polynomials for Grassmannian permutations, and have been systematically studied
by Macdonald [35], see also [7] for further background.

Finally, let us mention the excited diagrams, pleasant diagrams, and the generalized excited
diagrams, which all arise in the context of hook formulas of skew shapes, introduced by Ikeda—
Naruse [24], by us [41], and by Naruse-Okada [47], respectively. These diagrams provide a
combinatorial language needed to state our results.

1.6. Proof ideas. For us, the story starts with our proof in [41] of equations (NHLF)
and (¢-NHLF) using evaluations of factorial Schur functions and the Chevalley type formu-
las, see [39]. Naruse’s (unpublished) approach was likely similar, cf. [46]. After our paper,
Naruse-Okada [47] rederived and further generalized to d-complete posets our RPP(A\/p) gen-
eralization (1.7) of (NHLF) using the Billey-type and the Chevalley-type formulas from the
equivariant K -theory. Note that our own proof of the RPP(\/u) summation (1.6) given in [41]
is completely combinatorial, and based on a generalization of the Hillman—Grassl bijection.

Our proofs in this paper combine our earlier proof technique in [42] with that of Naruse-
Okada. Namely, we study evaluations of factorial Grothendieck polynomials in two different
ways. First, we use the Pieri rule for the factorial Grothendieck polynomials to obtain the LHS
of the equations in terms of increasing tableaux. In the skew case, we combine these with the
Chevalley type formulas. We also use the Naruse-Okada characterization of generalized excited
diagrams in terms of usual excited diagrams (see Proposition 5.1), to obtain equation (6.7)
and its generalizations. We also prove that these diagrams have a lattice path interpretation,
which we exploit in Sec. 5.3 to obtain an upper bound on their number.

Second, for the RHS of our hook formulas, we use the vanishing property of the evaluation
for the case of straight shapes. Finally, we use formulas in terms of excited diagrams of
Graham—Kreiman [18] for the case of skew shapes.

1.7. Paper structure. We begin with preliminary Sections 2 and 3, where we review basic
definitions and properties of permutation classes, Young tableaux, increasing tableaux, and
factorial Grothendieck polynomials. We then proceed to present proofs of all our hook formulas
via more general multivariate formulas.

Namely, in Sec. 4, we prove Theorem 4.2, the main result of the straight shape case, which
implies Theorem 1.1 and Corollary 1.2. In Sec. 5 we review the technology of excited diagrams,
which was unnecessary for the straight shape. We also relate our notation and results to further
clarify the combinatorics of the double Grothendieck polynomials of vexillary permutations for
devotees of the subject. Then, in Sec. 6, we prove Theorem 6.5, the main and most general
result of this paper, which similarly implies both Theorems 1.4 and 1.5.

Let us emphasize that this paper is not self-contained by any measure, as we are freely using
results from the area and from our previous papers in this series. We tried, however, to include
all necessary definitions and results, so the paper can be read by itself. This governed the style
of the paper: we covered the straight shape case first, as it requires less of a background and
can be understood by a wider audience. This also helped to set up the more general skew
shape case which followed. We conclude with final remarks and open problems in Sec. 7.

2. PERMUTATIONS, DYCK PATHS, AND YOUNG TABLEAUX
2.1. Basic notation. Let N= {0,1,...} and [n] = {1,...,n}.
2.2. Permutations. We write permutations of [n] as w = wjws...w, € S,, where w; is

the image of i. The Rothe diagram of a permutation w is the subset of [n] x [n] given by
R(w) := {(i,w;) | i < j,w; > w;}. The essential set of a permutation w is the subset of

635



R(w) given by Ess(w) := {(4,7) € R(w) | (i + 1,7),(i,j + 1),(i + 1,7 + 1) & R(w)}, see,
e.g., [36, Sec. 2.1-2].

A permutation w € S, is called Grassmannian if it has a unique descent, say at position k.
Such a Grassmannian permutation corresponds to a partition g = p(w) with £(p) < k and p; <
n — k. Grassmannian permutations w can also be characterized as having Ess(w) contained
in one row, the last row of R(w), and u(w) can be read from the number of boxes of R(w) in
each row bottom to top.

A permutation w € S, is called wvexillary if it is 2143-avoiding. Vexillary permutations can
also be characterized as permutations w where R(w) is, up to permuting rows and columns,
the Young diagram of a partition p = p(w). Given a vexillary permutation w, let A = A(w) be
the smallest partition containing the diagram R(w). We call this partition the supershape of
w and note that p(w) C A(w). The Young diagram of A(w) can also be obtained by taking the
union over 7 x j rectangles with NW and SE corners (1,1) and (4, j) for each (¢,7) in Ess(w).
Note also that Grassmannian permutations are examples of vexillary permutations.

2.3. Lattice paths. A lattice path contained in a Young diagram \ is a path with steps
(1,0) and (0,1) along the square grid centered at the centers of the cells of A.

A Dyck path ~ of length 2n is a lattice path from (0,0) to (2n,0) with steps (1,0) and
(1,—1) that stays on or above the z-axis. The set of Dyck paths of length 2n is denoted by
Dyck(n). For a Dyck path v, a peak is a point (¢, d) such that (c—1,d—1) and (¢c+1,d —1)
are in v. A peak (c,d) is called a high peak if d > 1. The set of high peaks of a Dyck path -~ is
denoted by HP(v), and its size by hp(). Note that a Dyck path, upon rotation and rescaling,
is also a lattice path in the Young diagram of §,, = (n+ 1,n,...,1).

For general lattice paths v above a certain base path 7/, we can also define the set of high
peaks relative to ' as the set of points (¢, d) such that (¢,d —1),(c+1,d) € v and (¢,d) & «'.
We will also denote this set by HP (7).

2.4. Plane partitions and Young tableaux. We use the standard English notation for
drawing integer partitions, Young diagrams, and Young tableaux, see, e.g., [59, Sec. 7].

To simplify the notation, we use the same letter to denote both an integer partition and
the corresponding Young diagram X = (A1,..., ), where £ = £(\) is the number of parts
of A\. The skew shape (skew Young diagram) \/u is given by a pair of Young diagrams such
that u C A. Denote by |\/u| the size of the skew shape.

A reverse plane partition of skew shape A/u is an array A = (a;;) of nonnegative integers
of shape A/u that is weakly increasing in rows and columns. A semistandard Young tableau
(SSYT) of shape A/u is a reverse plane partition of shape \/u that is strictly increasing in
columns and has entries > 1. We denote these sets of tableaux by RPP(A/u) and SSYT(\/pu),
respectively.

A standard Young tableau of shape A/ is a reverse plane partition 7' of shape \/u which
contains entries 1,...,|\/u| exactly once. We denote this set by SYT(\/u), and let fAH =
|SYT(A/p)| be the number of standard Young tableaux of shape \/pu.

In less standard notation, for a tableau T' € RPP()\), we define tableaux T}, T<j, and T
as in the introduction. The (skew) shape of a tableau @ is denoted by v(Q). We are using
a(Q) := [v(Q)| to denote the size (the number of entries) in ). As in the introduction, we
write |T| to denote the sum of entries in the tableau 7.
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2.5. Increasing and set-valued Young tableaux. An increasing tableau of shape A\/pu is
a row strict semistandard Young tableau of shape \/u. A standard increasing tableau® is an
increasing tableau of shape A/u whose entries are exactly [m], for some m < |[A/pu|. As in the
introduction, we denote by m(T) := m the maximal entry in 7'

Denote by IT(A/u) the set of increasing tableaux, and by SIT(A/u) the set of standard in-
creasing tableaux of shape A/p. Let g™*# := | SIT(\/u)| be the number of standard increasing
tableauz of shape \/pu.

A tableau T € SIT(A/p) is called a barely standard Young tableau of shape \/u if m(T) =
|IA/u| — 1. In other words, these are the standard increasing tableaux with exactly one entry
appearing twice (cf. Sec. 7.4). We denote the set of these tableaux by BSYT(A/u). We also
denote by BSYTy(\/u) the set of tableaux in BSYT(A/u) with entry k appearing twice.

Finally, for a positive integer n, a semistandard set-valued tableau of shape A/p is an
assignment of nonempty subsets of [n] to the cells of \/u such that for the set T'(u) in a cell
u € \, we have:

o maxT(u) < minT(u’), where v’ is the cell to the right of w in the same row, and

o max7T(u) < minT(u'), where ' is the cell below u in the same column.
We use ne(T') to denote the number of entries of T, and SSVT,(A\/u) to denote the set of
such tableaux. When we draw set-valued tableaux, we place all integers in 7'(u) inside the
corresponding square w.

2.6. Examples. To illustrate the definitions, in the figure below we have A = 442, y = 21,
A € RPP(\/pn), B € SSYT(\ /), C € SYT(A/pn), D € SSVT5(\/pn), E € IT(\/u), F €
SIT(A/p) with m(F) =5, and G € BSYT3(A/u). Note that ne(D) = 9.

A = 0 1) B — 1 1) C = 257 D = 11,4
0 1 1 2 3 1 4 6 1 3 5
1 2 3 3 37 1,2 2
E = 1 F= 13 G =
12 4 1 2 4 1
2 7 2 5 3 6

In this case, we have |F| = 18, v(F<g) = p = 21, v(F<1) = 32, v(F<3) = 331, v(F<3) = 431,
v(F<y) =441, and v(F<s5) = A = 442. Similarly, v(F>2) = 442/32 and a(F>2) = 5.

Finally, in the notation of the introduction, b(A)=|N,| and s(\)=|M)| are the sum of the
entries of the minimal reverse plane partition Ny € RPP()) and the minimal strictly increasing
tableau M) € SIT()), with entries Ny(¢,7) = (¢ — 1) and M (¢,7) = (i + j — 1), respectively.
See an example in the figure below:

Nygo =

00 and M442 =
1 1

- W
[SARNEN

0 0
1 1
2 2

W N =
= W N

In this case, b(A) = |Ny2| = 8 and s(\) = |Myy2| = 31.

Un the literature, these tableaux are sometimes called (just) increasing tableauxz or packed increasing
tableauz [54].
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2.7. Special cases. To further clarify the definitions, let us give a quick calculation of the
number of increasing tableaux for the two row shape (n,n) and the hook shape (p,19).

Let s,, denote the nth little Schroder number [58, A001003A001003] that counts the lattice
paths (0,0) — (n,n) with steps (1,0), (0,1), and (1, 1) that never go below the main diagonal
x =y and have no (1,1) steps on the diagonal.

Proposition 2.1 ([53]). We have g™ = s,,.

Proof. We interpret the SITs as lattice paths on the square grid. In the case A = (n,n), let
T € SIT(\) correspond to the lattice path v : (0,0) — (n,n) given by a sequence of steps for
1=1,...,2n:

(1,0) if the entry i appears only in the first row of T,

(0,1) if the entry i appears only in the second row of 7', and

(1,1) if the entry i appears in both rows.
The increasing columns condition forces the paths v not to cross below the diagonal, with all
(1,1) steps strictly above the diagonal, as desired. O

Similarly, let D(m,n) denote the Delannoy number [58, A008288A008288] that counts the
lattice paths (0,0) — (m,n) with steps (0, 1), (1,0), and (1,1). We call these Delannoy steps.
Proposition 2.2 (cf. [56]). For the hook shape X\ = (p,1%), we have g®') = D(p —1,¢).

The proof follows verbatim the argument above, but the lattice paths with Delannoy steps
no longer have a diagonal constraint. We omit the details.

3. FACTORIAL GROTHENDIECK POLYNOMIALS

Recall the following operators first introduced in [13,15]:
(z —y)
(1+p8y)’
and  [z]y]* = (@@ y) (@@ y2) - (D yr),

where y = (y1,v2, .- .)-

@y = x+y+ By, roy = oz =007,

Definition/Theorem 3.1 (McNamara [37]). The factorial Grothendieck polynomials are
defined by either of the following formulas:

Gu(mly <oy Xd | Y) = Z IBne(T)—\u\ H (xr D yr—i—c(u))

TeSSVT4(p) u€p, r€T (u)
. . Nd 1
—d t( |y td=i ) J—l)
et(mlypr sy )T 2
<i<j<d

The factorial Grothendieck polynomials are equal to the double Grothendieck polynomials
parameterized by a Grassmannian permutation associated to the partition pu, see [38]. These
in turn were defined earlier in [28], in the greater generality of all vexillary permutations, see
equation (3.2) below. We postpone their definition until Sec. 5.6 (see also Sec. 7.3).

Remark 3.2. As mentioned in [37, Remark 3.2], in the literature Grothendieck polynomials

sometimes appear only in the case 5 = —1. However, one can obtain the § case from the case
B = —1 by replacing x; with —x;/8 and y; with y;/5,
Gu(x|y) ey = (=B -Gu(—x/8|y/B). (3.1)

It is easy to see that Gy (x|y) = 1. We need the following technical result.
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Proposition 3.3 ([37,38]). The factorial Grothendieck polynomials Gz (X|y) satisfy:
(i) Gu(z1,...,2q|y) is symmetric in x1,22,...,%4 .

(ii) Doing the substitution y; < (—y;) and setting 8 = 0, we obtain the factorial Schur
function:

Gu(azl,...,md\ —y) ‘6=0 = su(z1,...,24|y)-
(iii) Setting y; = 0, we obtain the ordinary Grothendieck polynomials:

Gu(zi,...,zq|y) ‘yZ-:O = Gu(z1,...,2q).
(iv) They are equal to double Grothendieck polynomials of Grassmannian permutations:

®w(u)(X7Y) = GM(.Tl,...,{L‘d | y)a (32)

for d > £(p), where w(p) is the Grassmannian permutation with descent at position d
associated to p.

Proposition 3.4 (vanishing property of Grothendieck polynomials [37, Theorem 4.4]). When
evaluated at yx = (S Yxny+ds © Yrotd—1, - - - OYrg+1) with LX) < d,

0 if A,

) 3.3
H(m)ex(ydﬂ—,\; O Ynitd—i+1) fp=A (3.3)

Guyrly) = {

To simplify the notation, we write G for G(;). We use the notation v + p when the skew
shape v/u is nonempty and its boxes are in different rows and columns. Note that v # u in
this case. In this notation, every standard increasing tableau 7' € SIT(\/p) is viewed as a
chain

A= I/(Tgk) — V(Tgk—l) I G o I/(Tgl) — I/(TS()) = M. (34)
Lemma 3.5 (Pieri rule for Grothendieck polynomials [37, Proposition 4.8]).
Gu(x|y) (14 8Gi(x|y)) = (L+BGi(yuly)) Y B""aG,(x|y). (3.5)
Vi

We can rewrite this Pieri rule as follows.

Proposition 3.6. We have:

N Gi(x|y) = Gilyuly)\ _ W10 (x
619 (" i) = 2 8 Gutxln), 35)

Proof. We expand both sides of (3.5) and cancel the term G, (x|y) giving
Gu(x|y) - BGi(x|y) = B+ (1+BGilyuly)) > B"G,(x]y).

U
Now collect the terms with G, (x|y) on the LHS. Dividing by
1+ BGi(yuly) #0
and 3 gives the desired expression. O

Remark 3.7. When we set § = 0 in the Pieri rule above, it immediately reduces to the Pieri
rule for factorial Schur functions (see, e.g., [39, Sec. 3]).
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Note that
d d d
1+ B8Gi(x|y) = [](t+ 8@ 0y;) = [T+ B [T(0+ 8y
7j=1 =1 =1

Evaluating both sides at x =y, we get
d

1+ 8Gi(yaly) = []

i=1

1 + By

. 3.7
1+ Byri+d—i+1 (37)

4. HOOK FORMULA FOR STRAIGHT SHAPES

The goal of this section is to prove the multivariate Theorem 4.2 and derive its specializations
Theorem 1.1 and Corollary 1.2.

4.1. Multivariate formulas. First we evaluate x =y, in (3.6) and simplify to obtain the
following expression.

Proposition 4.1. We have:
Gulyaly) (we(A/p) —1) = > s a,(yaly), (4.1)
vl
where

d
L+ BYu;+d—i+1
t(A = I | Hi .
W ( //.L) Pty 1 + ﬁy)\i‘i‘d—i‘f‘l

Proof. We evaluate (3.6) at x =y, and multiply by 8. Note that

BGi(yrly) = BGi(yuly) _ 1+ BGi(yrly)
1+ BGi(yuly) 1+ BGi(yuly)
By (3.7), this equals wt(\/u) — 1, as desired. O

Theorem 4.2 (multivariate K-HLF). Fix d > 1. For every A Fn with {(\) < d, we have:

m(T) -1
Z 1(_[ ﬁ L+ ﬁyVi(T<k)+d—i+1 1
L+ BYyr+d—it1

TeSIT()) i=1

— 1.

) (4.2)

= ﬁln H (1+ 59Ai+d—i+l))\i H !

N — Yyag s
1 (i) EN Ya+i-N; = Yxi+d—it+1

Proof. We apply Proposition 4.1 repeatedly, by taking p < v(T<i_1) and v < v(T<y), and
noting that v — p by equation (3.4). Since this is a straight shape, we are starting with the
empty partition @ = v(Txp), until we eventually reach v(T<;) = A. Here we use that the
vanishing property Proposition 3.4 ensures that all shapes are contained in A\. We obtain:

m(T)—

>, I

TeSIT(\) k=0

ﬁa(T<k+l) —a(T<k) Gy (YA | y)
Wt)\/l/ ) 1 G@(Y)\b’)'

Since Gy = 1 and

Yd+ji—XN, — Yxi+d—i+1
Galy) = ]I ’
(e 1+ BYri+d—i+1

by Proposition 3.4, the desired statement follows. O
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Proposition 4.3. Fixz d > 1. For every A+ n with £(\) < d, we have:

1
i=1 (Z,]E)\

Proof. This follows directly from Proposition 3.4, since for y; = 4, ¢ > 4, we have:
j— )\;- —A+e1—1
(=, © onaint) = ) Bhi+d—i+1)

and h(i,j) = N, —i+ X\ —j+ 1. O

Proof of Theorem 1.1. This follows from Theorem 4.2 by substituting y; < ¢, for all ¢ > 1.
Indeed, notice that

Ya+j—X, — Yntd—it1 = —(hi—j + N —i+1) = —h(i,]),
which implies the result. O

Example 4.4. For A = (2,2) - 4, the hook lengths are 3,2,2,1 as in the tableau H below.
We have:

3-2-2-1
G22(Y22|Y)|y1:y2:1 = (1+383)2(1 4 48)*

There are three standard increasing tableaux: SIT()\) = {4, B,C}, as shown below:

H = A=

8y
I
Q
I

3 4 2 4 2

The terms on the RHS of (4.2) are

(1+38)3(1+4p)
66444 108)

(1+33)%(1 +48)°

u(d) =u(B) = 383(4+108)

u(C) = —

and indeed we have

2 4
B4 (u(A) + u(B) +u(C)) = 1T 36)1;1 +46)

4.2. An infinite version. Next we give an equivalent expression for Theorem 1.1 in terms
of increasing tableaux instead of standard increasing tableaux.

Theorem 4.5 (infinite multivariate K-HLF). Fiz d > 1. For every A - n with {(\) < d, we
have:

Z H H 1+ Byxn+d—i+1

TEIT(N) k=1 i=1 +ﬁy’/i(T<k)+d—i+l

1
(@)

(4.3)
1

d
[T +B0+d—i+1)™ :
Yatj—N; = Yxitd—it+1

i=1 (B,7)EN

In contrast with (4.2), the sum on the LHS of (4.3) is infinite. This is somewhat further
away from the original (HLF), but closer in spirit to (¢-HLF).
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Proof. Rewrite Proposition 4.1 as

G _ w/u Gv(Ya 1Y)
M(YA |Y) V'_Wzor:y . B Wt()\/,u)

Now, as in the proof of Theorem 4.2, iterate this relation until v(T<,,) = A, where m = m(T).
This implies the result. O

By analogy with the previous argument for SITs, we obtain the following infinite version
of (K-HLF).

Corollary 4.6 (infinite K-HLF). Fiz d > 1. For every A+ n with ¢(\) <d, we have:

m(T) d
14+ B8N +d—i+1)
Z H H 1+ B(i(T<k) +d—i+1)

TelT(A) k=1 =1

(4.4)
d 1
nH L+ BN +d—i+ ) T 0
- A h(i, )
i=1 (3,7)EX
The proof follows verbatim the proof above and will be omitted.
4.3. The ¢g-analog. Let us now obtain the g-analog of (K-HLF).
Theorem 4.7 (¢-K-HLF). Fiz d > 1. For every A+ n with {(\) < d, we have:
Z “ﬁ ( H 1 4 Bgvi(T<k)+d—it1 : !
1+ Bglitd—itl o
TEeSIT(A (45)
W ﬁ(1+/3 Nibd=i+1y N 11 1
B ! AL 1—gha)
i=1 (4,7)EN

Proof. Substitute y; <— ¢* for all i > 1 in Theorems 1.1 and 4.5. Observe that

d+i—\. hiii
Ydt+j—N, = Ynt+d—it1 = g TN (1 — D) |

since h(i, j) = (N} — j) + (A\i — i) + 1. Following verbatim the argument above, this implies the
result. g
Proof of Corollary 1.2. Letting 8 — oo in (4.5), for each term on the LHS we have:

1 + qulll(T<k)+d—Z+1

vilT<k)=Xi — ,~vi(T>k)
1+ Bgri+d—itl s =49 ’

The product of the inverses of such terms over all 1 < i < d gives ¢**=#). Factoring out the
leading " terms on both sides and simplifying the formula, we obtain (1.1). O

4.4. Evaluations of coefficients. We can expand the LHS in (1.1) as a power series in /3
and compare the coefficients on both sides. First, as mentioned in the introduction, we recover
the original hook-length formula (HLF) by evaluating the constant terms.

Proposition 4.8 (=0 in K-HLF). The term at =" in equation (K-HLF) gives (HLF).
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Proof. Let A n. Extract the constant term in (K-HLF), after multiplying both sides by g".
In the RHS, we obtain the product of hooks [],.y1/h(u). In the LHS, since

14+ Bp > 1
=1+ —t) (=) 8,
L > -0(-0s
the constant term contains only the summands with m(7") = n, each with weight 1/n!. By
definition, these summands correspond to 7' € SYT()A). Thus (K-HLF) at g = 0 gives the

HLF in the form ) )
Z T H )
TESYT(N) v UEA h(u)

as desired. O

We conclude with a curious corollary relating standard Young tableaux and barely standard
Young tableaux (see Sec. 2.5). Here we are using

p2(x1,...,2q) = x%—l—...—l—xfl,

a symmetric power sum. Other notation are the staircase shape 64 == (d — 1,...,1,0) and

the harmonic number h,, =1+ % + ...+ }L .

Corollary 4.9 (coefficient of 3'=" in K-HLF). Fiz d > 1. For every A F n with £()\) < d, we

have:
n

S g P00 SN k9 [BSYTL()

VoA n— vl k=1 (4.6)

_ P ((hn “m gy + 0Tt 1”) |

The proof is a lengthy but straightforward calculation of the coefficient of 3' on both sides
of (K-HLF) normalized by 5", and will be omitted. See Sec. 7.4 for the background on BSYTs.

5. GENERALIZED EXCITED DIAGRAMS

5.1. Definitions. Given a set S C A, we say that a cell (i,j) € S is active if (i + 1,7),
(i,j+ 1), and (i + 1,57+ 1) are in A\ S. For an active cell u = (i,5) € S, define a,(S5) to
be the set obtained by replacing (i,7) by (i + 1,7 4+ 1) in S. Similarly, define b,(S) to be the
set obtained by adding (i + 1,5 + 1) to S. We call a,(S) a type I excited move and b,(S) a
type 11 excited move.

Let £(A/u) be the set of diagrams obtained from p after a sequence of type I excited moves
on active cells. These are called ezcited diagrams. These diagrams are used in both the Naruse
hook-length formula (NHLF) and its g-analog (¢-NHLF).

Let D(A/p) be the set of diagrams obtained from p after a sequence of both types of excited
moves on active cells. These are called generalized excited diagrams. For example, the skew
shape A/ = 43/2 has five generalized excited diagrams, three of which are the ordinary excited
diagrams. These are illustrated in Fig. 3 below.

5.2. Properties. To an excited diagram D € £(\/u) we associate a subset w(D) C A\ D

called the excited peaks, constructed inductively, see [41, Sec. 6.3]. For u € E(A\/u), let w(p) =

@. Let D € £(\/p) be an excited diagram with active cell u = (4,5), and let D' = a, (D) be

the result of the type I excited move D — D’. Then the excited peaks of D" are defined as
7(D') == m(D) — (5,5 +1) — (i+1,5) + (4,7),
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see Fig. 1. Tt is easy to see that the set 7w(D) of excited peaks is well defined and independent
of the order of the moves. Naruse-Okada gave in [47, Proposition 3.7] an explicit nonrecursive
description of (D), as well as the following characterization of generalized excited diagrams
in terms of excited diagrams and excited peaks.

Proposition 5.1 ([47, Proposition 3.13]). We have:
D\p = |J {pus: scx(D)},
De&g(N )

so, in particular,

DO/ = D 2"l (5.1)

DeE(N/p)

Remark 5.2. There is a certain duality between the set D(A/u) of generalized excited dia-
grams and the set P(A/u) of pleasant diagrams defined in [41] to give an RPP(\/u) version
of (¢-NHLF). In particular, the following result is a direct analog of Proposition 5.1.

Proposition 5.3 ([41, Sec. 6.2]). We have:

P = |J {=(D)us : SCA\D},
DeE(A/p)
so, in particular,
|p(>\/u)‘ — Z olA ul = |=(D)| (5.2)
De&(M/ )

Example 5.4. We have |£(332/21)|=5, see Fig. 1, giving |D(332/21)|=11 by (5.1). Similarly,
equation (5.2) gives |P(332/21)| = 88 pleasant diagrams in this case.

A N

N /

Fig. 1. Excited diagrams of shape \/u = 332/21, excited moves of type I, and
the corresponding excited peaks denoted by shaded triangles.

5.3. Lattice paths interpretation. Following the approach in [26,42], these generalized
excited diagrams are in bijection with certain collections of lattice paths by the following
construction.

Let us cut the skew diagram \/u into border strips greedily starting from p. Consider these
strips between the diagonal starting at (0,¢(x)) and the diagonal starting at (uq,0). Within
this region, let these border strips start at squares with midpoints A; and end at squares with
midpoints B;, see Fig. 2 (left).

Let (A, B) be the number of paths A — B inside A with endpoints at the centers of the
squares of the Young diagram and Delannoy steps. We call these Delannoy paths. The follow-
ing result interprets the generalized excited diagrams D(\/u) as collections of nonintersecting
Delannoy paths inside A/p.
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-+ — _
1T ] =T ] -
[ 1/B B:
Alo-—l o All | L]
A A --->
.AQ .Ag _J

Fig. 2. Paths corresponding to two generalized excited diagrams, the flips of
paths in type I and II excited moves, and the forbidden path configuration.

Proposition 5.5. The set D(A\/u) is in bijection with the Delannoy path collections
Vi + Ai— B;

such that no two such lattice paths v; and 7; intersect or have a configuration as in Fig. 2
(right). In particular, we have:
‘D(A/:u)‘ < det [77(142733)] ij

Proof. For the first part, take Delannoy paths in the complement as shown in Fig. 3. Observe
that for the initial configuration pu € D, the lowest such lattice paths traverse p inside A\/p. A
type I excited move transforms a path by flipping a corner from (1, 0), (0, 1) steps to (0,1), (1,0)
steps. A type II excited move transforms a path by changing a (1,0), (0,1) corner to a (1,1)
step, while the SE and NW cells of that step are empty. Further, a type I excited move
applied to a cell u with a diagonal step at its SE corner results in flipping this diagonal to
steps (0,1),(1,0) and transferring the diagonal step to the nearest SE path. A type II excited
move at a cell u with a diagonal step already present results in modifying the nearest SE path
as above. See Fig. 2 (middle).

The final configuration can be drawn by a greedy traverse of the non-excited cells start-
ing from A; to B, see Fig. 3. Thus the paths pass exactly through the cells outside S,
the corresponding moves are reversible on paths as long as there is no intersection and no
forbidden configuration. For the second part, note that all nonintersecting Delannoy paths
are enumerated by the determinant using the Lindstrom—Gessel-Viennot (LGV) lemma (see,
e.g., [17, Sec. 5.4]), giving the desired determinant inequality. O

@ —_ %ﬂ e ﬁa — type I excited move
N N - - - » type II excited move

(2]
Fig. 3. The generalized excited diagrams of shape \/u = 43/2, their peaks,

and the corresponding flagged set tableaux (see Sec. 7.5). The complements of
diagrams in D(A/u) can be viewed as Delannoy paths inside A.

Example 5.6. For the skew shape \/u = 5442/21 as in Fig. 2, we have:

13 7
23 = |D(5442/21)| < det [1 3] = 32.
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5.4. Labeled lattice paths. Kreiman [26] (see also [42, Proposition 3.6]) showed that the
excited diagrams are in bijection with the complements of collections of nonintersecting lattice
paths consisting of (0,1) and (1,0) steps, contained in A, and with starting and ending points
A;, B; as above. Note that in [26,42], the starting and ending points were different, but the
geometry actually forces the corner portions of the paths to be always fixed and hence the
starting and ending points can vary.

Following the definition in Sec. 2.3, consider the high peaks of a collection of nonintersecting
lattice paths. Here the high peaks of a path are defined as the peaks which moved from the
corresponding base path cut out from the skew diagram A\/u. As an example, in Fig. 1, there
is one lattice path which corresponds to the white cells, and the inner corners which are high
peaks are labeled.

Remark 5.7. Note that the high peaks are a subset of the cells on which a type I excited
move was applied at some point and correspond exactly to the excited peaks.

Denote by II(A/p) the set of such collections of paths where each high peak has been labeled
0 or 1. Similarly, denote by A(A/u) the set of collections of Delannoy paths in the complement
of generalized excited diagrams in D(\/pu).

We can now explain Proposition 5.1 via lattice paths by the following bijection ¢ : II(\/u) —
A(N/ 1) between labeled lattice and Delannoy paths. Formally, for a collection T € II(A/u),
replace each high peak labeled 1 with a (1, 1) step; all other peaks and paths stay the same.

Proposition 5.8. For a skew shape \/u, the map ¢ : IL(\/p) — A(N/pn) defined above is a
bijection.
Proof. Tt is easy to see that for every T € II(A/u), the paths in ¢(Y) are exactly the Delannoy

paths for A(\/p). For the inverse map ¢!, replace every (1,1) step with (0,1),(1,0) steps
which would necessarily form a high peak and label it 1. This implies the result. O

5.5. The thick zigzag shape. Consider the thick zigzag shape 6,12k /0n. Recall that

|E (8o /0n)| = det[Crpivja]:

1,j=1
and

k . k
|P(6p12/0n)| = 2(2) det [3n+i+j—2]i7j:17
where 5, = 2"25,,. The first equality is proved in [42, Corollary 8.1], while the second one
was originally conjectured in [41, Conjecture 9.3] and proved in [23, Theorem 1.1]. We give a
similar determinant formula for the number of generalized excited diagrams of the thick zigzag
shape.

Theorem 5.9. We have: ‘D(5n+2/5n)‘ = s, and ‘D(5n+4/(5n)| = ;(Sn8n+2 — 3%) More
generally, we have:

k

2

|D@ngan/0n)| = 27 ) det[snopiyy]l _ forall k> 1. (5.3)

Proof. From [42, §3.3, §8.1], the complements of excited diagrams D € £(d,42x/0p) correspond
to k-tuples Y := (y1,...,7%) of nonintersecting Dyck paths 7; € Dyck(n + 2i — 2), for all
1 <i <k, whose set we denote by NDyck(n, k). Define HP(T) := Ule HP(vy;) and hp(T) :=
[HP(T)]-
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By Proposition 5.8, the diagrams D € D(d,12r/d,) correspond to the tuples (T,S) where
T € NDyck(n, k) and S C HP(Y) are the high peaks labeled with 1. We conclude:

D(Gngor/n)| = > 2", (5.4)
TeNDyck(n,k)

Let

L,(z) = Z 2" and Ly i(x) = Z 20
~vE€Dyck(n) TeNDyck(n,k)

Note that s, = L, (2), see, e.g., [61]. By (5.4), we have
Ln,k(2) = |D(5n+2k/5n)|

Finally, by [23, Theorem 5.9], the sum L,, 1(x) satisfies the following determinant formula:

k

gg(2) « Ly (x) = det [Ln+i+j—2($)]k

L (5.5)

Setting x = 2, we obtain the result. O

5.6. Double Grothendieck polynomials. Excited diagrams can be used to give a combina-
torial model of these polynomials in the special case we need. For a definition and combinatorial
models of double Grothendieck polynomials for all permutations, see [13,14,27].

In [28], Knutson—Miller—Yong gave the following formula for the Grothendieck polynomials
of vexillary permutations, originally stated in terms of flagged set tableaux and restated here
in terms of generalized excited diagrams. See also Sec. 7.7 for a discussion of another proof of
this result.

Theorem 5.10 ( [28, Theorem 5.8]). Let w be a vexillary permutation of shape p and su-
pershape A. Then the double Grothendieck polynomial parameterized by w can be computed as
follows:

Guxy)= S AP T @iy, (5.6)

DeD(\/p) (i.4)€D

Corollary 5.11. Let w be a vexillary permutation of shape p and supershape A. Then we

have:
Gu(xy) = . AP T 1+ B@ey) [[ (@oy).
DeE(N p) (i,j)€m(D) (i,j)€D
Proof. This follows immediately from Theorem 5.10 and Proposition 5.1. g

Example 5.12. For w = 1432 € Sy, we have p = 21, A = 332, and |D(332/21)| = 11, see
Example 5.4 and [13, Example 1]. By Corollary 5.11, for y; = 0 we have:

B1432(x,0) = 2229 + 2321 (1 + Bx1)
+ 2223 (14 Bas) + zrxoxs (1 + Bz1) (1 + Bag) + x2x3 (1 + Bxy)
= 2239 + 1321 + 2wy + T1T0T3 + TExz + Brizl + 2 Brixoxs
+ 2823125 + Batadas.
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5.7. The principal specialization. Let I',(3) := &,(1,0) be the principal specialization
of the Grothendieck polynomial. Substituting x; < 1 and y; < 0 in Corollary 5.11, we
immediately obtain the following.

Corollary 5.13. Let w be a vezillary permutation of shape i and supershape \. Then:
Ty(8) = Z BIPI=lul = Z BIPI=Irl (1 4 gyl (D) (5.7)

DeD(A/1) De&(\/n)

Using the lattice paths interpretation from Sec. 5.3, let 1g(A, B) be the weighted sum
of Delannoy paths A — B with 8 keeping track of the number of (1,1) steps. We have the
following inequality for the principal specialization of the Grothendieck polynomials considered
above.

Corollary 5.14. Let w be a vexillary permutation of shape p and supershape X\, and let 'y, ()
be the principal specialization of the Grothendieck polynomial. Then:

Fw(/B) < det[nﬁ(AuB])]Z’] 3
where < means coefficient-wise inequality for polynomials in (.

Proof. The result follows immediately from Corollary 5.13, the proof of Proposition 5.5, and the
proof of the LGV lemma which preserves the total number of (1, 1) steps under the involution.
O

Finally, we give a determinant formula for the principal specialization Fw(n,k)(1)7 where
wn, k)= (1,2,....k,n+kn+k—1,....k+1).

See [15] and [43, Corollary 5.8] for the analogous results on evaluations of Schubert polynomials
of w(n, k).

Corollary 5.15. For all n,k > 1, in the notation above we have:
_(* k
Loniy (1) = 2 (2) det [Sn_2+i+jj|i’j:1 for all k> 1.

Proof. The permutation w(n, k) is dominant (132-avoiding), and hence vexillary. Denote by
/0y, the skew shape associated to w(n, k), see [43, Fig. 6(a)]. Then Corollary 5.13 at 5 =1
gives:

From the definition of generalized excited diagrams, or from their correspondence with flagged
set-valued tableaux (see Sec. 7.5), it is easy to see that |D(>\/5n)| = ‘D(5n+2k/5n)|. The result
then follows by Theorem 5.9. O

6. HOOK FORMULA FOR SKEW SHAPES

6.1. The setup. Recall the vanishing property (Proposition 3.4) of the factorial Grothendieck
polynomials:

0 i g A,

G,u(Y)\ | Y) = H (yd—l-j—)\;- © y)\i—i-d—i—i-l) if p=A.

(i.3) €A
Following the approach of Tkeda—Naruse [24] and Kreiman [26] for the factorial Schur func-
tions s,(yx|y), we present a combinatorial model for the Andersen-Jentzen-Soergel [1] and
Billey [2] expressions for evaluations of the factorial Grothendieck polynomials G, (y | y) when
u <A
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Fix two Grassmannian permutations w < v in Sy with associated partitions g C A with
l(A) < dand \; < N —d, see, e.g., [36, Sec. 2.1]. Let cf‘” and Kﬁ‘T be the structure con-
stants for the Schubert classes in the equivariant cohomology and equivariant K-theory of the
Grassmannian, respectively, see, e.g., [18,24,26].

Theorem 6.1 (Ikeda—Naruse [24], Kreiman [26]). Fiz d > 1. For all p C X with {(\) < d, we

have:
Cﬁx = E H (yd+j—A; - y)\i-i-d-i-l—i)-
DeE(Mp) (i,j)eD

Theorem 6.2 (Graham—Kreiman [18, Theorem 4.5]). Fix d > 1. For all u C X with £(\) < d,

we have:
K = Z (—1)/DI-Iu H Yarj—N, = Ynitd+1—i
" I — Ynitdpi—i
DeD(A/ ) (i,j)eD iFd+1—i

Remark 6.3. To translate from the result in [18, Theorem 4.5] to the one stated here, one
needs to do the substitution y; < (1 — e%), as discussed in [18, §4.3.1, §5.4].

6.2. Multivariate formulas. The following technical lemma gives an evaluation of the fac-
torial Grothendieck polynomials, and provides a bridge to our enumerative problem.

Lemma 6.4. Fiz d > 1. For all p C A with £(\) < d, we have:
Gulyrly) = > pP T (Ya+j—x, © Yn+d—i+1)- (6.1)
DeD(\/p) (i.5)eD

Proof. We show that both sides of (6.1) satisfy the same identity. First, the factorial Grothen-
dieck polynomials satisfy the Chevalley formula (3.6). Thus, for the LHS of (6.1) we have:

Giyaly) — Gilyuly)\ _ v/~
Gu(YA|Y)< 1+/8G1(yu\y§ > = V%;ﬁ' MG (yaly) .-

By Theorem 6.2, the RHS of (6.1) at 8 = —1 equals K/i‘)\. On the other hand, Lenart—
Postnikov [33, Corollary 8.2] (see also the proof of Proposition 3.1 in [55]) give the following
equivariant K-theory Chevalley formula:

KN —1+wt'(u o/l
o (M W) = S o,

wt'(p) =
where )
i1
wt'(p) = H 1 _;i .
i+j

(i.4)en
Observe that we have cancellations in the formula for wt'(u), and for each row i of p only the
term (1 —v;)/(1 — Yu;+d—i+1) survives in the product. Thus:

-y
Wt/ n) = = 1 — Gl vuly o,
. 11;11 1= Yptd—it1 ( ol ) lp=—1
where the second equality follows by (3.7). Therefore, we have:

A
o <K1)\—G1(Yu|Y) |,8=—1> = Y (M),

A
K 1-G4 (yu ly) |ﬁ=—1 sy
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This shows that
Guyaly) lp=—1= K.
We conclude:

Yatj—N; = Yxitd+1—i
Guyaly) lp=—m1= > (-1 1Pk 11 1 : (6.2)
DEDO/p) (G )ED Y\i+d+1—i

It remains to show that by substituting y; < (—y;3) in (6.2) we get the desired result.
Denote the LHS of (6.2) by F(y1,...,yn). We easily verify that

(=B8) M F(=yiB, .o —yB) = Y BT (Yatj—x; © Ynitd—it1) -

DeD(\/n) (4.5)€D
Finally, for the RHS by (3.1) we have that
Gu(IAlY) Iy (cum= (=B Gulyrly), (6.3)
as desired. O

Theorem 6.5 (multivariate K-NHLF). Fixz d > 1. For all p C X with £(\) < d, we have:

m(T) -1
Z 1(_[ ﬁ L+ ﬁyVi(T<k)+d—i+1 1
L+ BYrni+d—it1

i=1

TeSIT(\/p) k=1 (6.4)
R L | Byr+a—ie1 +1
DeD(r/ . Yd+j—N. — Yxi+d+1—i
1) (i,4)EX\D i
Proof. By Lemma 6.4 and the vanishing property (3.3) of G,(y,.|y), we have:
Gulyaly) _ e | 1 ' (6.5)

Ga(yrly) Ya+j—x, © Ynitd—i+1

DeD(A/p) (i,5)EXND
Alternatively, by iterating (4.1) we obtain:
Gy(yaly) O Burageain| )
1 — gl Z H <[H Vill<k)Tame ] - 1) ) (6.6)
Ga(yaly) resiToy boi \ Lo 1 1 P¥ra-its
Equating (6.5) and (6.6), we get the result. O
Proof of Theorem 1.4. This follows from Theorem 6.5 by substituting y; < i for all 1 < i < d,
and noticing that Ydrj—N, = Yhitd—itl = —h(i,j). O
6.3. The g-analog. By analogy with the straight shape (Sec. 4.3), we obtain a g-analog using
the substitution y; < ¢* for all 4 > 1.
Theorem 6.6 (¢-K-NHLF). Fiz d > 1. For all u C A with ¢(\) < d, we have:
Z ”ﬁ ([H 1 + BgviT<r)td— z+1] 1)
i+d—i+1 o
resttO/w k=1 \lim1 1T Ba

i +d—i+1
Y geenoqp e
I (1 — ghlid))

DeD(\/p) @enn 4

-1

(6.7)

We omit the proof as the calculations follow verbatim those in the proof of Theorem 4.7.

650



Proof of Theorem 1.5. Following the proof of Corollary 1.2, let 5 — oo in (6.7). We have:

1 + qulll(T<k)+d—Z+1

4 “Aitvi(T<k) — q—Vi(Tzk)_
1 + Bgritd—i+l

- q

Taking the inverse of the product of these terms over all 1 < i < d, we get ¢*?). The S terms
on the RHS of (6.7) all have exponents zero, which implies the result. O

Finally, as discussed in the introduction (see Remark 1.6), we can now rewrite the RHS
of (6.7) in terms of (ordinary) excited diagrams.

Corollary 6.7. For every u C A, we have:

m(T)

> I

T
TESIT(M ) 1— g1

1 - (6.8)
s
= 2 11 1 — gh(id) 11 1 — ghlig)

De&(N/u) (4,5)en(D) (3,7)EAN\D

Proof. This follows from Theorem 1.5 and the characterization of generalized excited diagrams
given in Proposition 5.1. g

6.4. Back to set-valued tableaux. The following Okounkov—Olshanski formula (OOF)
given in [49] is yet another nonnegative formula for f»*. Fix d > 1. For u C A with ¢(\) < d,

we have:
. 1
TeSSYTy (k) (i,5)€A (4,5)EX +J

where SSYT (1) denotes the set of SSYT's of shape p with entries < d. Note that (OOF) is also
proved via evaluations of factorial Schur functions, preceding (NHLF) in this approach. The
corresponding g-analogs are given in [8, Theorem 1.2] and [45, Sec. 1.4], for the summations
over SSYT(A\/u) and RPP(A/u), respectively.

Here we follow a simple proof in [45, Sec. 3.1] via evaluations of factorial Schur functions,
to give a (K-OOF) generalization of (OOF) for SIT(\/u) analogous to Theorem 1.4.

Theorem 6.8 (K-OOF). Fizd > 1. For all p C X\ with {(\) < d, we have:
-1
> H( 1)
TeSIT(A/p) k=1
Adtl—r +1—7 1
z:1 TESSVTq(n) (i,§)EpreT(i.5) + B (Aarrr +7) (ipjex

Proof. We evaluate G,(yx|y)/Gx(yx|Y) |y in two different ways. First, the LHS is
obtained by the substitution y; <— i in (6.6). For the RHS we evaluate the numerator and
denominator directly. For the denominator we use Proposition 4.3. For the numerator, since

H1+B (vi(Te) +d—i+1)
L+ BANi+d—i+1)

=1

Gu(z1,...,2q|y) is symmetric in z1,...,24 by Proposition 3.3 (i), we have:
GueoM +d), ..., 0MN\-1+2), 06N+ 1)]1,2,3,...)
= Gu(eMa+1),8A\a-1+2), ..., 6\ +d)]1,2,3,...).
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Next, by Definition 3.1 of factorial Grothendieck polynomials, the RHS of the equation above
is equal to

—(Aga1—r .
S gl 11 { (Adt1 +T)<®&+J—O
. L1 BAdsr—r + 1)
TeSSVTy () (4,9)€p, r€T (3,5)
The result then follows by simplifying the power of 5 and doing the calculation

_()‘d—i-l—r + T) _)‘d-l-l—r - Z+,7
L+ B(Aap1—r +7) 1+ B(Aap1—r +7)

‘We omit the details. O

®(r+j—1) =

Remark 6.9. Note that the set SSYT4(p) in (OOF) is finite and plays a role of the set
E(N/p) of excited diagrams in (NHLF'). This connection is clarified in [45], with reformulations
of (OOF) in terms of puzzles and reverse excited diagrams. Finally, the set SSVT4(p) plays
a role of generalized excited diagrams D(A/u). It would be interesting to reformulate the
theorem similarly, in terms of puzzles.

7. FINAL REMARKS AND OPEN PROBLEMS

7.1. The hook-length formula (HLF) has numerous proofs, starting with the original pa-
per [16]. The Littlewood formula (¢-HLF) was first given in [34, p. 124]. We refer to [9, Sec. 6.2]
for an overview of other proofs and generalizations. The Naruse hook-length formula (NHLF)
was originally given by Naruse in his talk slides [46]. In our first two papers of this series [41,42],
we give about four proofs of this result, which include both the SSYT and RPP generalizations,
see (¢-NHLF) and (1.6).

7.2. In [43], we give various enumerative and asymptotic applications of (NHLF). Further
applications and comparisons with other tools for estimating f*# = | SYT(\/u)| are surveyed
in [51]. It would be interesting to find similar applications of the S-deformations presented
in this paper. Let us single out Theorem 3.10 in [43] which established a key symmetry via
factorial Schur functions, used to obtain a host of product formulas. Note that two elementary
proofs of this result are given in [52]; we are especially curious to find its generalization
motivated by the factorial Grothendieck polynomials.

7.3. The notation used for the factorial Grothendieck polynomials goes back to the formal
group law of connective K -theory, and in the context of algebraic combinatorics is explained
in [13] as follows.

Let A5 be the algebra with generators ui,...,u, 1 satisfying u? = Bu;, the exchange and
braid relations. Observe that A? is the NilCozeter algebra and A is the degenerate Hecke
algebra. Then the functions h;(t) = e’ satisfy the Yang-Bazter equation:

hi(@)hit1(t + s)hi(s) = hiy1(s)hi(t + $)hiy1(t).
For h;(t) = e = 1+ zu;, we have z = (et — 1)/8. We can now write this as = = [t]3 and

note that [t]g @ [s]g = [t + s]s.

7.4. Our notion of barely standard Young tableauxr BSYT comes from a similar notion of barely
set-valued tableauz recently introduced in [57], and is probably the closest relative of SYT that
we have. Note that (4.6) can be rewritten as computing the expectation of the repeated entry,
similar to [57] (see also [12]), although the resulting formula is more cumbersome.
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7.5. The excited diagrams are in bijection with certain flagged tableauz:

[EN/ )| = [Flag(A/p)],

where Flag(A/pu) € SSYT(u), see [41, Sec. 3.3]. This connection was used in [42, Sec. 3.3]
to obtain a determinant formula for |£(A/p)|. Similarly, the generalized excited diagrams in
D(M\/p) are in bijection with certain flagged set-valued tableauz of shape pu, see an example
in Fig. 3. These bijections were obtained by Kreiman [26, Sec. 6] and by Knutson—Miller—
Yong [28, Sec. 5] in the context of Schubert calculus.

7.6. In Theorem 5.9, we gave a determinant formula for the number of generalized excited
diagrams of the skew shape d,,19x/0, using the connection between D(\/u) and P(A\/u), see
Proposition 5.1. A similar determinant formula for P (9,1 9x/d,) is proved in [23]. In fact, [23,
Corollary 6.4] gives determinant formulas for pleasant diagrams of more general classes of skew
shapes called good that also include thick reverse hooks (b+c¢)*t¢/b%. Using [23, Theorem 6.3],
which is an analog of (5.5), one can obtain a determinant formula for generalized excited
diagrams of such good skew shapes.

7.7. In [65, Corollary 1.5, Theorem 1.1}, Weigandt gave two formulas for double Grothendieck
polynomials &,,(x,y) in terms of the bumpless pipe dreams of w defined by Lam-Lee—Shimo-
zono [30]. When w is vexillary, these formulas reduce to Theorem 5.10 and Corollary 5.11,
respectively. Indeed, a bijection between marked bumpless pipe dreams of vexillary w and
D(AMw)/p(w)) via the corresponding flagged set-valued tableaux is given in [65, Theorem 1.6].
Similarly, a bijection between vexillary bumpless pipe dreams and ordinary excited diagrams
is given in [65, Sec. 7.3].

We should mention that bumpless pipe dreams of w behave like (generalized) excited di-
agrams of shape A/p, since the former are connected by certain moves called (K-theoretic)
droop moves [30,65]. It would be interesting to further explore this connection.

7.8. There is a large literature on enumeration of increasing tableaux in many special cases
based on a trick of adding M), implicitly used in (1.3). Notably, for a rectangular shape,
the tableaux in SIT(ab) are in bijection with certain plane partitions of the same shape, see,
e.g., [10, Sec. 4] and [20]. This approach fails to give a bijection for general skew shapes \/p,
except when p = dy is a staircase. The latter are characterized by all minimal elements in
M)/, having the same entries.

7.9. While all our proofs are algebraic, some of our results seem well-positioned to have a
direct combinatorial proof. We are especially curious if (K-HLF) has such a proof. Similarly,
it would be interesting to use Konvalinka’s recursive approach [29] to find a combinatorial
proof of our Theorem 1.4.

7.10. The complexity of counting standard increasing tableaux is yet to be understood. In [63,
Sec. 1.3], the authors give examples of large primes appearing as values, and suggest that
the exact formula might not exist. They ask if there are “efficient (possibly randomized or
approximate) counting algorithms” for g* = | SIT()\)| and its refinements.

We conjecture that computing ¢* is #P-complete. This would partly explain why our hook
formulas involve nontrivial S-weights. For the related notion of set-valued tableaux, see a
discussion in [40] and the #P-completeness conjecture in [21, Sec. 5.7].
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7.11. The LHS of (K-HLF) is equal to the LHS of equation (K-OOF) given in Theorem 6.8.
It then follows from the proof of Theorem 6.8 that both can be computed efficiently for a given
skew shape A/u and 8 € Q. It would be interesting to see if these have a determinant formula
generalizing the Aitken—Feit determinant formula for f# (see, e.g., [59, Corollary 7.16.3]
and [51]).

Note that the Lascouz—Pragacz identity gives yet another determinant formula for f*,
which we used in [42] to give a combinatorial proof of (NHLF). Finally, let us mention that
E(M/p) has a determinant formula (see Sec. 7.5 above), while Proposition 5.5 is not an equality
but gives only a determinant upper bound for D(\/pu).

7.12. Following the approach of Stanley [60], we conjecture that for all 5 > 0, there is a limit

. logQ U(ﬁ, n) o

nh_)rr;o 2 , where u(p,n) = max Lw(B).
Using the Cauchy identity for Grothendieck polynomials [13, Corollary 5.4], we obtain the
following bounds:
1 o logyu(Bin) _ o logyu(Bin) _ 1
4 1082(2+ 8) < liminf T2 T < lim sup P S g2+ 5).
In [44], we computed the limit above for 8 = 0, when the maximum is restricted to layered
(231- and 312-avoiding) permutations. It would be interesting to see if our analysis can be
extended to the case of general g > 0.

7.13. Dividing both sides of (K-HLF) by (—1)" and taking § > 0 gives positive weights in
the summation on the LHS over the SITs. Can one efficiently sample from this distribution?
Perhaps, there is a deformation of the NPS algorithm or the GNW hook walk, see [19,48]?
A positive answer to either of these would be remarkable.
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