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Abstract
The greater the persistence in a financial time series, the more predictable it becomes,
allowing for the development of more effective investment strategies. Desirable
attributes for financial portfolios include persistence, smoothness, long memory, and
higher auto-correlation. We argue that these properties can be achieved by adjusting
the composition weights of the portfolio. Considering the fractal nature of typical
financial time series, the fractal dimension emerges as a natural metric to gauge the
smoothness of the portfolio trajectory. Specifically, the Hurst exponent is designed for
measuring the persistence of time series. In this paper, we introduce an optimization
method inspired by the Hurst exponent and signal processing to mitigate the irregular-
ities in the portfolio trajectory. We illustrate the effectiveness of this approach using
real data from an S&P100 dataset.

Keywords Portfolio optimization · Hurst exponent · Signal-to-noise ratio · SOCP ·
QP · Geometric Brownian motion

Mathematics Subject Classification 60H30 · 62P05 · 90C90

Communicated by Miguel F. Anjos.

B Adam Zlatniczki
adam.zlatniczki@cs.bme.hu

Andras Telcs
telcs.andras@wigner.hu

1 Department of Computer Science and Information Theory, Budapest University of Technology
and Economics, Budapest, Hungary

2 Ericsson Hungary, Budapest, Hungary

3 Department for Computational Sciences, Wigner Research Centre for Physics, Budapest,
Hungary

4 Department of Quantitative Methods, University of Pannonia, Veszprem, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02426-1&domain=pdf
http://orcid.org/0000-0003-3088-441X


Journal of Optimization Theory and Applications

1 Introduction

Financial technology (FinTech) is the emerging collection of technological innovations
that focus on reducing costs and increasing efficiency to help firms have a competitive
advantage through improved financial operations [9]. This naturally includes invest-
ments, hence constructing portfolios in automated ways.

There can be several financial assets available to investors in a market, each asset
having a price that is continuously changing - these prices are thought of as signals
that are usually modeled by continuous stochastic processes (geometric Brownian
motion being one of the most well-accepted [17]). When an investor holds certain
amounts of these assets, it is called a portfolio—the value of the portfolio is simply
the superposition (linear combination) of the underlying signals, being a stochastic
process itself.

Portfolio choice is practically a control problem, where we intend to change the
composite of the portfolio in order to maximize profit or some other related objective
function. Such an optimization problem can be formulated and solved in the frame-
work of signal processing by tuning the gain of each signal (weights in the linear
combination). In finance, the most basic idea is to control the “risk” of the investment,
but this term is quite vague. Here we propose another control goal: to maximize the
predictability of the portfolio.

Portfolio choice in its modern form was first proposed by Harry Markowitz [12].
He argued that to minimize risk, one should minimize the variance of the superposed
signal’s increments (in financial terms, the returns of the portfolio), and formulated this
as a quadratic programming (QP) problem. This foundational work led to optimization
techniques aiming for other risk measures that work better under stressed market
conditions like value-at-risk, conditional value-at-risk, average and maximum draw-
down, and so on [7, 15]. Markowitz’s mean-variance framework is however the most
well-studied, with many proposed improvements. The optimization problem has been
improved for example by incorporatingmachine learning for estimating the covariance
matrix via neural networks [20], or to predict returns and apply optimization on top
of that [5, 16].

Other authors proposed to tackle the problem on different grounds, for example by
incorporating the occasional presence of rare events [11] or phrasing it as a sorting
problem [4]. Some even tried incorporating volatility as an additional asset [10]. Of
course, properties that are not visible from the time series themselves are also important
and can help optimization significantly if made available, for example, retail investor
attention [18].

Intuitively, if the superposed signal is predictable, has positive trend-reinforcing
capabilities, and shows long memory (i.e. its graph is smooth, its auto-correlation
function is positive and vanishes slowly), then it seems to be a good choice for invest-
ment. Typical financial time series/signals exhibit self-similarity, and as such the above
smoothness properties can be captured with the help of fractal metrics like the Hurst
exponent or the fractal dimension [1]. Hurst devised in particular the exponent named
after him to capture the persistence (trend-preserving) property of the historical records
of the Nile’s high water. Indeed, there are examples of trading strategies relying on
the Hurst exponent itself [3].
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The Hurst exponent (H ) takes on values in the range 0 ≤ H ≤ 1—the higher the
exponent the longer thememory, as its calculationmethods are related either directly or
indirectly to the “largeness” of auto-correlation (for a detailed comparison of different
approaches, see [6]). In the case of time series, fractal dimension (D) measures the
smoothness of the path of the underlying stochastic process, hence 1 ≤ D ≤ 2. For
a smooth curve, D = 1, as is expected from a line. However, as the curve gets more
zigzagged and loses its smoothness, the corresponding fractal dimension increases
as well, up to the extreme where the curve practically fills a 2D space. The fractal
dimension and the Hurst exponent are related as D = 2 − H , which also shows that
longer memory processes with higher H have lower fractal dimensions. It follows that
a higher H (or equivalently, a lower D) also indicates better predictability and positive
trend-reinforcing, as the corresponding curve is smoother.

Minimizing the variance of signal increments sounds like a legitimate way to
achieve a more deterministic signal that satisfies the smoothness properties we aim
for, although no work has been done to verify this—later on, we take on this task as
well and show that there is a better approach for improving predictability.

Fractal dimension captures the “raggedness” of a signal, and as such, it canbeused to
control risk [8]—smooth, stronglypositively auto-correlated signalswith longmemory
should lead to smaller fractal dimensions [1], therefore controlling for minimal fractal
dimension should achieve these nice properties.

Bianchi, Pantanella and Pianese [2] proposed a scheme where the Hurst exponent
is optimized, but they proposed to minimize it. This is quite different from our goals
becauseminimizing theHurst exponent achieves the opposite: a ragged, negative trend-
reinforcing, short-memory process (more closely related tomean reversion). In another
work, Pantanella and Pianese [14] argue that the Hurst exponent of the superposed
signal should bemaximized and the standard deviation of the signal changesminimized
in a multi-objective problem. However, exact details on the solution are not available,
but due to the non-convexity of Hurst exponent estimators, it is highly likely that at
best local optima are found. This is a general problem with both fractal dimension
and Hurst exponent, though: their estimators are not convex functions, therefore they
can’t be framed in terms of convex optimization problems, so practically only locally
optimal solutions can be expected.

Based on Taguchi’s Quality Engineering principles, Nedeltcheva and Ragsdell [13]
show that Signal-to-noise (S/N) ratio can also beused as ameasure of portfolio stability.

The S/N ratio originates from signal processing, where it measures the power of a
signal compared to the power of background noise. The higher the S/N ratio is, the
stronger the signal is compared to the noise, indicating a more clear signal that’s less
corrupted or obscured by said noise. The S/N ratio is used in time series analysis as
well, in which case it is defined as the ratio of the mean and the standard deviation of
the process, S/N = μ

σ
. A high S/N ratio means that σ

μ
is low, which, interpreted from

a financial point of view, indicates that the risk of the portfolio is negligible relative
to its expected return. For this reason, the authors in [13] propose to maximize the
S/N ratio for portfolio choice, although they do not solve the resulting optimization
problem—instead, they rely on the generalized reduced gradient method to find some
possibly local solution.
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As pointed out in existing literature, financial assets/signals that achieve smooth-
ness, positive auto-correlation of increments, and long memory are good candidates
for investment. In this paper, we ask whether different financial assets can be com-
bined linearly into a portfolio in a way that the portfolio itself exhibits these desirable
properties. Such amethod, given it exists, could be used as part of amulti-stage trading
strategy: firstly, the portfolio could be constructed to obtain an artificial financial asset
that has better predictability, then secondly, traders could implement their (compati-
ble) trading strategies on top of this artificial asset with improved performance. This
way, contrary to usual applications of portfolio optimization, the technique would be
used as a kind of pre-processing step instead of as an investment strategy by itself. As
such, measuring its effectiveness should be done differently as well, because while
strategies are compared based on their effectiveness at generating returns and reducing
risk, the effectiveness of this portfolio should be measured by its ability to achieve
the aforementioned persistence. All these properties can be captured together by the
Hurst exponent on its own, making it a good candidate for statistical comparison.

To answer our previous question, we proceed as follows. By using stochastic calcu-
lus, we derive an analytic model of the stochastic dynamics of the superposed signal.
To make process increments more deterministic, we apply an L2 dominance argument
and arrive at an objective function for our control problem that turns out to be themaxi-
mization of the Signal-to-noise (S/N) ratio of the process increments. The assumptions
behind our analytical model are somewhat simplistic, therefore we discard the model
itself, but we keep its main intuitive insight: by maximizing the S/N ratio we make the
process increments more deterministic, likely leading to increased Hurst exponents
(more predictable time series). To show this empirically, we first identify an optimiza-
tion problem with the necessary constraints for constructing portfolios. Starting from
different principles, other authors arrived at similar optimization problems as well,
but to the best of our knowledge, we are the first to derive corresponding numerical
methods that solve for global optima, not just local ones. For our analysis, we consider
the stocks of companies that are listed in the S&P100 index, as this provides plenty
of options to optimize upon and also covers roughly 54% of US market capitalization
(as of December 27, 2023). We use their adjusted daily close prices, available from
Yahoo! Finance, between 2005-01-03 and 2022-12-30. We verify our hypothesis that
maximizing the S/N ratio is expected to yield an increased Hurst exponent, resulting
in a smoother signal, exhibiting stronger positive auto-correlation, and having longer
memory than an arbitrary choice would.

The paper is organized in the following way. Section2 describes the details of the
control problem: the derivation of the stochastic dynamics in Sect. 2.1, the portfolio
optimization problem in Sect. 2.2, and the means for its solution in Sect. 2.3. Section3
presents the results, starting with the experiment design in Sect. 3.1, followed by sta-
tistical analysis in Sect. 3.2. Implications and further research directions are discussed
in Sect. 4, followed by the conclusions in Sect. 5.
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2 The Control Problem

2.1 Stochastic Dynamics of Superposed Signals

For illustrative purposes, let us focus on a financialmarketwith two assets. Let the price
of each asset be represented by signals Xt and Yt , and let Vt denote the superposition
of these signals. In financial terms, Vt is the value of a portfolio. Let a and b be the
gain of the signals, which we would like to control (in finance, these indicate how
much an investor should buy from the corresponding assets). The superposed signal
is

Vt = aXt + bYt . (1)

Even if we keep the control variables constant, the relative weights of the assets in the
portfolio change as the signals change. The relative weights are

αt = aXt/Vt ,
βt = bYt/Vt .

(2)

If we take the usual assumption that the signals follow geometric Brownian motions,
we get the signal dynamics

dXt = μX Xt dt + σx Xt dBt ,

dYt = μY Yt dt + σY Yt d Zt ,
(3)

where Bt and Zt are two Brownian motions. In practice, the signals are likely not
independent, so let’s further assume thatCorr(Bt , Zt ) = ρ. IfWt is anotherBrownian
motion that is independent of Bt , then Zt can be decomposed as follows

dZt = ρdBt +
√
1 − ρ2dWt (4)

and also write

dYt = μY Yt dt + σY Yt
(
ρdBt +

√
1 − ρ2dWt

)
. (5)

Taking the assumption that Vt changes only as Xt and Yt changes (called self-financing
in the financial literature), we get

dVt = a dXt + b dYt = αt Vt
Xt

dXt + βt Vt
Yt

dYt . (6)

Finally, the infinitesimal percentage change in the superposed signal is

dVt
Vt

= αt (μXdt + σXdBt ) +

βt

(
μY dt + σY

(
ρdBt +

√
1 − ρ2dWt

))

= (αtμX + βtμY ) dt +
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[
(αtσX + βtρσY ) dBt + βtσY

√
1 − ρ2dWt

]
. (7)

Observe that the first term in the last stochastic differential equation (SDE) represents
the deterministic, and the second term is the stochastic part of the superposeddynamics.
We consider the relative change of signals instead of the absolute change because that’s
the commonpractice in financial engineering (it follows the idea of compound interests
better).

2.2 Formal Statement of the Control Problem

If we take a look at SDE 7, we can see that the fractal dimension of Vt (which is
in the range [1, 2]) can only be 1 if the term in the brackets vanishes and only the
deterministic part remains. As long as the stochastic part remains, the raggedness of
Brownian motion will be inherited to some extent. In some sense, the lower the fractal
dimension is, the smoother Vt becomes, resulting in a more predictable portfolio.
We could also take a look at SDE 7 from a Hurst-exponent point of view. The more
dominant the deterministic part is, the higher the auto-correlationof process increments
becomes, which again implies a more predictable portfolio.

Processes that have Hurst-exponents that are larger than 0.5 are also called persis-
tent, or trend-reinforcing, which is a nice feature to have in a portfolio. Unfortunately,
the stochastic term cannot be made to vanish completely. When we apply some form
of practical control, we calculate α0 and β0, which directly translate to a specific value
for a and b. While a and b are kept constant (at least for some time before control is
applied again), αt and βt aren’t—as the signals change, so do the relative weights, as
is evident from Eq.2. The reason we are not looking for a continuous control signal is
that in practice, it is not possible to follow one - either due to technical limitations or
transaction costs piling up. Instead, control should be reapplied at specific times, but
that doesn’t affect the way we phrase the control problem.

Nevertheless, we would like to achieve increased Hurst exponents (or decreased
fractal dimensions). How do we do that? We practically want to make the relative
process increments (or, in financial terminology, investment returns) constant. One
immediately might jump to the conclusion that in order to achieve this we should
minimize the stochastic term, for example by minimizing its L2 norm, giving

argmin
α,β

L2(stoch) = argmin
α,β

L2
2(stoch)

= argmin
α,β

E

[(
(ασX + βρσY ) dBt + βσY

√
1 − ρ2dWt

)2]

= argmin
α,β

(
α2σ 2

X + β2σ 2
Y + αβσXσYρ

)
,

(8)
where we used that E[dB2

t ] = E[dW 2
t ] = dt , that Bt and Wt are independent,

therefore E[dBt dWt ] = 0, and omitted a dt multiplier (it does not affect the solution).
We can see that this is equivalent to finding the Minimum Variance Portfolio.

However, there’s an important observation that has to be made: since we generally
cannot decrease the variance to 0, we don’t necessarily make the process increments
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automatically “more constant” by simply following this strategy. Let’s consider two
distributions, N (10, 1) and N (1000, 2). We get the intuition that the latter is “more
constant-like”, even though it has a higher variance. Taking this idea back, we can say
that to have more deterministic increments, the optimization shouldn’t try to minimize
the stochastic part, but instead aim for a solutionwhere the deterministic part dominates
the stochastic part as much as possible. One way to formulate this is to maximize the
L2 norm of the deterministic part compared to the L2 norm of the stochastic part:

argmax
α,β

L2(det)

L2(stoch)
= argmax

α,β

|αμX + βμY |
√

α2σ 2
X + β2σ 2

Y + αβσXσYρ

, (9)

where we omitted a
√
dt multiplier (it does not affect the solution). We can see that

this is conceptually equivalent to maximizing the Signal-to-noise (S/N) ratio of the
superposed signal’s increments.

Equation9 gives us an objective function, but we still need to consider some con-
straints. The way α and β are defined (Eq.2), they have to sum to unity. If investors are
allowed to borrow assets (in financial literature, this is called taking short positions in
the assets), then there are no constraints left. However, if investors can only spend their
own money (in financial literature, this is called taking long positions in the assets),
then α and β have to be non-negative.

At this point, we should generalize the control problem from two to an arbitrary
number of signals (assets in the financial market). If we let w denote the vector of
relative weights of the signals in the superposition, μ denote the vector of the drift of
each signal’s increments and let Σ denote the covariance matrix of the diffusion part
of the signals’ increments, then the optimization task can be written as

w∗ = argmax
w

∣∣μTw
∣∣

√
wTΣw

,

1Tw = 1,
w ≥ 0,

(10)

where 1T is the transpose of a vector of ones. The last inequality is called the long-only
constraint, which can be neglected if shorting is allowed.

2.3 Solution of the Control Problem

The optimization problem in (10) can not be tackled in its current form, but after the
proper transformations, it becomes solvable. Let us focus on the long-short and the
long-only cases one by one.

2.3.1 Solving the Long-Short Case

Let us first consider the long-short optimization problem, where the w ≥ 0 constraint
can be removed from (10). We can find the following slightly different problems that
have the same solution:
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argmax
w

∣∣μTw
∣∣

√
wTΣw

= argmax
w

(
μTw

)2

wTΣw
= argmax

w

wT
(
μμT

)
w

wTΣw
, (11)

where the last form is simply a generalized Rayleigh quotient (with two positive semi-
definite matrices). As such, its solution is the largest eigenvector of the generalized
eigenvalue problem (

μμT
)

w = λΣw. (12)

If v is the largest eigenvector, then the optimal solution w∗ must be a scalar multiple
of v that satisfies 1Tw∗ = 1, which is simply

w∗ = v

1T v
. (13)

2.3.2 Solving the Long-Only Case

Dealing with the long-only constraint requires some extra effort because an analytic
solution to (10) does not exist. However, it is possible to transform it into a standard
convex optimization problem that can be solved numerically.

First, let Σ
1
2 denote the matrix square root of Σ . We can find another optimization

task with the same solution as

argmax
w

∣∣μTw
∣∣

√
wTΣw

= argmin
w

√
wTΣw
∣∣μTw

∣∣ = argmin
w

∥∥∥Σ
1
2 w

∥∥∥
2∣∣μTw

∣∣ , (14)

where ‖ · ‖2 is the L2 norm of a vector. Note that we can move
∣∣μTw

∣∣ inside the L2
norm just like a scalar multiplier, so with a change of variables we get

argmin
w

∥∥∥Σ
1
2 w

∥∥∥
2∣∣μTw

∣∣ = argmin
w

∥∥∥Σ
1
2 y

∥∥∥
2
,

y = w|μT w| .
(15)

Having an absolute value in an equality constraint is not something we can handle,
but if we knew the sign ofμTw, thenwe could transform it into a simple linear equality
constraint. This is fairly easy to achieve, we just have to split the optimization process
into two phases: one where we are looking for a solution in the subspace μTw ≥ 0,
and another where we are looking for a solution in the subspace μTw ≤ 0. Finally,
we simply keep the better solution.

The Case of�Tw ≥ 0

If we introduce μTw ≥ 0 as an inequality constraint, then y = 1|μT w|w = 1
μT w

w.

After this change of variables, we have to make sure that if we find the solution y∗ in
this new space, the corresponding w∗ satisfies 1Tw∗ = 1 and w∗ ≥ 0. The problem
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can be transformed both into a quadratic program (QP) or a second-order cone program
(SOCP) - depending on which one we choose, the objective function must be adapted
appropriately. Because we already have an L2 norm in our formulation, we go forward
with SOCP for the sake of continuity. It should be noted though that SOCP-s are
computationally more demanding, therefore for large problems the QP formulation
(provided in Appendix A) might be preferred.

Let us focus on the constraints that must be posed in the y-space to enforce the orig-
inal constraints in the w-space. First, we must make sure that the change of variables
y = 1

μT w
w is defined. This is easily enforced by the constraint

μT y = 1. (16)

We also have to force the search into the subspace μTw ≥ 0. Since w = (μTw)y
and 1Tw = 1, we have 1T y(μTw) = 1, or equivalently 1T y = 1

μT w
. Therefore, to

enforce μTw ≥ 0 we need to have

1T y ≥ 0. (17)

Finally, we need to make sure that w ≥ 0, which simply follows from

y ≥ 0, (18)

because we already have enforced μTw ≥ 0 via the previous constraints. SOCP-s
have L2 norms only in their constraints, so we need to introduce an artificial variable
s as well, resulting in the final formulation

s∗, y∗ = argmin
s,y

s,
∥∥∥Σ

1
2 y

∥∥∥
2

≤ s,

μT y = 1,
1T y ≥ 0,
y ≥ 0.

(19)

When the optimization problem is solved, 1/s∗ gives the maximal S/N ratio. We
can reconstruct w∗ by dividing y∗ by 1

μT w∗ , which happens to be equivalent to 1
T y∗,

leading to

w∗ = y∗

1T y∗ . (20)

The Case of�Tw ≤ 0

As discussed before, y = 1|μT w|w. In the μTw ≤ 0 subspace this is equivalent to

y = 1
−μT w

w. Following the ideas of the previous section, we have to make sure that
this change of variables is defined, which is achieved by changing Eq.16 to
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− μT y = 1. (21)

Incorporating that 1Tw = 1, we have 1T y = 1
−μT w

, so keeping Inequality 17 intact

achieves exactly this. Since now −μTw ≥ 0 is ensured, to enforce w ≥ 0 we don’t
need to alter Inequality 18 at all either. The final formulation therefore becomes

s∗, y∗ = argmin
s,y

s,

∥∥∥Σ
1
2 y

∥∥∥
2

≤ s,

−μT y = 1,
1T y ≥ 0,
y ≥ 0.

(22)

We can reconstruct w∗ the same way, as given by Eq.20.
Now that we have 1/s∗ available in both subspaces, we simply check which one

is higher and select the corresponding w∗ as the solution to the optimization problem
(10).

3 Empirical Analysis

By using stochastic calculus, we derived an analytic model of the stochastic dynamics
of the superposed signal/portfolio. Tomake process incrementsmore deterministic, we
applied an L2-dominance argument and arrived at an objective function for our control
problem that turned out to be the maximization of the Signal-to-noise (S/N) ratio of
the process increments. The assumptions behind our analytical model are somewhat
simplistic though, therefore at this point, we discard the model itself, but keep its main
intuitive insight: by maximizing the S/N ratio we make the process increments more
deterministic, likely leading to more predictable time series.

To show this empirically, we need to solve the optimization problem and construct
portfolios on real data, then test whether results, where the S/N ratio is maximized,
are significantly better than for other arbitrary portfolios. However, there are a few
difficulties that have to be addressed. Before we dive into the details in Sect. 3.1, we
give a high-level overview of the methodology.

Let’s recall the original research question: is there a portfolio strategy that is
expected to yield a smoother, more predictable time series? If so, what sort of evalua-
tion is necessary? As we pointed out in the introduction, such a strategy is not meant
to be used to generate returns directly. Instead, it should be used as a pre-processing
step that provides a more predictable artificial asset that serves as an input for some
other trading strategy that is going to generate the returns. Comparing the max-S/N to
other portfolios through the usual means like expected return, value at risk, expected
shortfall, and so on, is meaningless: these aremeant to compare strategies that generate
returns. Instead, the effectiveness of this portfolio should be measured by its ability
to achieve the aforementioned fractal properties. Since the Hurst exponent captures
them, it provides a good basis for comparison.
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Formally, we want to show that the control we derived has a higher expected Hurst
exponent than arbitrary portfolios do. If we letWR denote weights obtained randomly
and WS/N denote weights obtained by maximizing the S/N ratio (both being random
vectors at this point), and H(·) denote theHurst exponent corresponding to theweights
in its argument, then we have to show that

E [H (WR)] < E
[
H

(
WS/N

)]
. (23)

As we are going to prove later in Eq.26, this is equivalent to

0 < E
[
H

(
wS/N ,Ft

) − E [H (WR) | Ft ]
]
, (24)

where wS/N ,Ft is the optimal control vector that maximizes the S/N ratio if the infor-
mation available up to time t is Ft (denoting the filtration of the processes). Moving
from theory to practice, an expectation becomes an average, and a filtration becomes
a sample. Observe that in our case this means that we take the difference of depen-
dent measurements as both H

(
wS/N ,Ft

)
and E [H (WR) | Ft ] are calculated from

the same sub-sample Ft , indicating the necessity of a paired test for comparing aver-
ages across many Ft . Because we don’t know their distribution, we should rely on a
non-parametric test: Wilcoxon’s signed-rank test. However, not just H

(
wS/N ,Ft

)

and E [H (WR) | Ft ] are dependent, but the sub-samples of our dataset are too:
the auto-correlation of time series is not zero, therefore any pair of neighboring,
non-overlapping time windows will still share some common information. To have
quasi-independent sub-samples, whenever we select a sub-sample (in the form of a
time window), we need to skip a few observations so that at least the auto-correlation
vanishes before the start of the next time window. There is another practical prob-
lem: estimating the Hurst-exponent. There are several estimators, each of them being
sensitive to different characteristics of the data, depending on what their underlying
statistical estimators (like re-scaled ranges, variances at different time lags, Fourier
or wavelet spectrum,... etc.) are sensitive to. We refer the reader to [6] for a detailed
description of such estimators and empirical evidence that shows that they can have
quite different outcomes due to relatively high bias and variance, so relying on a single
estimator is dangerous. To this end, we use 4 different Hurst-exponent estimators and
do statistical testing on the results of each estimator separately. However, this way
it becomes a multiple testing problem with dependent tests. In order to deal with it,
we use the harmonic mean of the p-values to get a final p-value while controlling the
strong-sense family-wise error rate [19]

For our analysis, we consider the stocks of companies that are listed in the S&P100
index, as this provides plenty of options to optimize upon and also covers roughly
54% of US market capitalization (as of December 27, 2023). We use their adjusted
daily close prices, available from Yahoo! Finance, between 2005-01-03 and 2022-
12-30. We drop 14 stocks (’ABBV’, ’AVGO’, ’BRK.B’, ’CHTR’, ’DOW’, ’GM’,
’KHC’, ’MA’, ’META’, ’PM’, ’PYPL’, ’TMUS’, ’TSLA’, ’V’) because they have
missing values in the given time range. This leaves us with 87 time series, each having
4531 observations. In accordance with Eq.7, we change from the actual prices to
their relative increments when estimating parameters of the optimization problem,
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namely the covariance matrix Σ and expected value vector μ. To have a normalized
representation of the prices, we transform the time series to their cumulative returns
(which practically means that we divide each element in a time series by its first
observation). Data, Python source codes, and the Jupyter Notebook we used are made
available on GitHub at https://github.com/adam-zlatniczki/max_snr_portfolio.

3.1 Experiment Design

Now that a high-level view of the analysis is given, we provide a more in-depth
description of our methodology. As already stated before, we aim to show that

E [H (WR)] < E
[
H

(
WS/N

)]
. (25)

In theory, if Ft is the filtration of the stochastic processes (signals), then this is equiv-
alent to

0 < E
[
H

(
WS/N

)] − E [H (WR)]
= E

[
H

(
WS/N

) − H (WR)
]

= E
[
E

[
H

(
WS/N

) − H (WR) | Ft
] ]

= E
[
E

[
H

(
WS/N

) | Ft
] − E [H (WR) | Ft ]

]

= E
[
H

(
wS/N ,Ft

) − E [H (WR) | Ft ]
]
,

(26)

where wS/N ,Ft is the optimal control vector that maximizes the S/N ratio if the infor-
mation available up to time t is Ft . The conditional expectation disappears because
WS/N is Ft measurable (i.e. the optimal weights are a deterministic function of the
available information).

This derivation outlines how hypothesis testing should be done on data. Moving
from theory to practice, an expectation becomes an average, and a filtration becomes
a sample. Let us interpret Inequality 26:

– Focusing on a specific realization of Ft is practically equivalent to considering a
specific sample.

– Given the sample, we can calculate Σ̂ and μ̂ of the relative increments (in accor-
dancewith Eq.7), solve the portfolio optimization problem thatmaximizes the S/N
ratio, thus obtain wS/N ,Ft . Given these weights, we can construct the portfolio’s
time series and calculate its Hurst exponent, H

(
wS/N ,Ft

)
.

– E [H (WR) | Ft ] is the expected Hurst exponent of arbitrary strategies given the
same sample. We can get this by generating many strategies (weights), calculating
the corresponding Hurst exponents, and taking their average.

– We ask whether the difference between these two quantities is expected to be
higher than zero, meaning that we take the average of the difference over many
samples Ft and test whether it’s significantly higher than 0.

While this process seems adequate, there are some further aspects we have to consider
when we wish to apply statistical hypothesis testing, as we pointed out earlier:

– For each sample Ft we consider, H
(
wS/N ,Ft

)
and E [H (WR) | Ft ] are depen-

dent, as they are calculated on the same sample. To this end, we need to use a
paired test.
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– We don’t know the distribution of H
(
wS/N ,Ft

)− E [H (WR) | Ft ], therefore we
need to use a non-parametric test.

– The previous two points narrow down our options for using Wilcoxon’s signed-
rank test for paired samples.

– We have only one sample at our disposal. When we split this up into several
sub-samples (or time windows), the neighboring ones are not independent. This
is because the processes are auto-correlated, and through this auto-correlation
information seeps from one window to the next. To satisfy the requirements of the
signed-rank test, we need to make the sub-samples at least quasi-independent, as
illustrated below.

– Finally, Hurst exponent estimation is not trivial. There are many estimators, each
being appropriate under somewhat different circumstances. We refer the reader
to [6] for a detailed description of such estimators and empirical evidence that
shows that they can have quite different outcomes due to relatively high bias and
variance. Relying on a single estimator can easily lead to a misinformed decision,
therefore multiple estimators should be used, and statistical testing needs to be
done accordingly, as we will illustrate below.

– We also note that both data collection and testing must be done for long-only and
long-short portfolios separately, these shouldn’t be mixed together.

To make subsequent sub-samples quasi-independent, we apply the following
scheme. First, we choose a sub-sample size n and select the first n observations as the
first sub-sample. Then we calculate the auto-correlation of the relative increments of
each time series in this sub-sample and select the largest significant lag l across them.
Next, we ignore the observations in the [n + 1, n + l] range, and select the observa-
tions in the range [n + l + 1, n + l + n] as the second sub-sample. We re-calculate l
and, again, skip this many sample points before selecting the third sub-sample. We
keep iterating this approach as many times as possible before running out of sample
points.

To deal with the Hurst exponent estimation problem, we use 4 different estimators:
one based on rescaled range analysis (denote this by H1), one based on the variance
of lagged differences (denote this by H2), one based on a robust estimator for the
variance of lagged differences (denote this by H3), and one based on fractal dimension
calculation (denote this by H4). We do the statistical testing on the results of each
estimator separately. However, this way it becomes a multiple testing problem with
dependent tests. In order to deal with it, we use the harmonic mean of the p-values to
get a final p-value while controlling the strong-sense family-wise error rate [19].

Sincewementioned theminimumvariance portfolio inEq.8,we extendour analysis
with that as well. Data collection for the Wilcoxon signed-rank tests thus can be
summarized as follows:

1. Identify a set of assets; let’s focus on stocks of the S&P100 index, as proposed
before.

2. Collect the adjusted close prices of said stocks over a large timespan as our signals.
Drop those stocks that have missing values.

3. Choose a sub-sample size (or window size). We set it to 100, as it is neither too
short nor too long.
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4. Select the next 100 observations as a sub-sample.

(a) Transform the time series to their relative changes.
(b) Calculate the sample covariance matrix and sample means of relative changes.
(c) Solve the optimization problem for wS/N , form the cumulative returns of the

portfolio, and calculate the four different Hurst exponent estimators.
(d) Solve the optimization problem for wminvar , form the cumulative returns of

the portfolio, and calculate the four different Hurst exponent estimators.
(e) Generate 10,000 random portfolios; for each, form the cumulative returns of

the portfolio, calculate the four different Hurst exponent estimators; for each
of the four types of Hurst estimators, average the 10,000 values.

(f) Store the results: sub-sample index; H1, H2, H3, H4 of max-S/N portfolio;
H1, H2, H3, H4 of min-var portfolio; average H1, average H2, average H3,
average H4 of random portfolios.

(g) Calculate the auto-correlation function of each (relative-change) time series,
find the largest significant lag across them; and skip this many sample points.

5. Go back to Step 4; repeat this process as long as new sub-samples can be taken
from the sample.

3.2 Results

We ran the experiment proposed in Sect. 3.1. Following the sub-sample selection algo-
rithm, we obtained 37 quasi-independent sub-samples, each having 100 observations.
As proposed, we collected the results for the long-short and long-only cases separately.
The figures in this section were created with the Seaborn Python package.

Given shorting is allowed, Fig. 1 shows the distribution of the Hurst exponent, per
type of estimator (H1-H4) and portfolio strategy (maximized S/N ratio, minimized
variance, and random choice). We can see that the H1 and H3 estimators don’t seem
to be able to capture any differences. Even more, applying some kind of optimization
rather increases their dispersion. On the other hand, H2 and H4 seem to be able to
differentiate between the different strategies. Based on these two, maximizing the
S/N ratio seems to yield higher Hurst exponents, outperforming the other strategies.
Minimizing variance also shows an improvement compared to arbitrary portfolios, but
many times it leads to even worse Hurst exponents than arbitrary strategies would.

Given only long positions are allowed, Fig. 2 shows the distribution of the Hurst
exponent, per type of estimator and portfolio strategy. The results are harder to inter-
pret in this case, the distributions have high overlaps. However, we can observe the
ineffectiveness of H1 andH3 again, but unlike for long-short portfolios, the increase in
dispersion due to the application of optimization doesn’t seem to be present. Similarly
to the long-short case, H2 and H4 indicate that maximizing the S/N ratio achieves
higher Hurst exponents than the other strategies, but unlike in the long-short case,
minimizing the variance doesn’t seem to be able to achieve the same effect.

Based simply on the histograms, especially in the long-only case, determining
whether optimization increases the Hurst exponent is not possible, as the distributions
overlap toomuch, and different Hurst estimators have contradicting results. As pointed
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Fig. 1 Distribution of Hurst exponents of different estimators (H1–H4), across different portfolio strategies
(maximized S/N ratio, minimized variance, and random weights), given shorting is allowed. H1 and H3,
and H2 and H4 are quite similar in shape, but H1 also shows an upward bias of roughly 0.15 compared to
the rest of the estimators. H1 and H3 don’t seem to be able to differentiate between the different strategies.
Even more, they indicate that applying optimization only increases dispersion, while H2 and H4 indicate
that maximizing the S/N ratio of relative portfolio increments leads to much higher Hurst exponents—
a contradicting result. H2 and H4 also indicate that minimizing variance many times leads to smoother
functions, but unlike maximizing the S/N ratio, it can achieve even worse results than a random approach

out in the previous section, pairwise comparisons must be made to overcome this,
combined with handling the multiple-testing problem. Non-normality of distributions
is also evident. The latter points also support that Wilcoxon’s signed-rank test is a
good candidate for hypothesis testing and that the calculation of the harmonic mean
p-value is necessary.

The results of statistical hypothesis testing are summarized in Table 1 for the long-
short case, and in Table 2 for the long-only case. As it can be seen in the first two
horizontal blocks of both tables, the null hypothesis is rejected (based on hmp < 0.05),
meaning that maximizing the S/N ratio tends to yield a higher Hurst exponent than a
minimum variance or a random approach. However, comparing theminimum variance
and random strategies, the results are different: based on the third block, the null
hypothesis is rejected (based on hmp < 0.05) in the long-short case, but accepted
(based on hmp > 0.05) in the long-only case. This means that when shorting is
allowed, minimizing the variance tends to provide a portfolio with a higher Hurst
exponent than a random approach, but the same cannot be said when shorting isn’t
allowed. However, as we saw in Fig. 1, even if minimizing the variance can lead to
significantly higher Hurst exponents, it still has a high chance of providing worse-

123



Journal of Optimization Theory and Applications

Fig. 2 Distribution of Hurst exponents of different estimators (H1–H4), across different portfolio strategies
(maximized S/N ratio, minimized variance, and random weights), given shorting only long positions are
allowed.H1 andH3 are quite similar in shape, butH1 also shows an upward bias of roughly 0.15 compared to
the rest of the estimators. As in the long-short case (Fig. 1), H1 and H3 don’t seem to be able to differentiate
between the different strategies, but at least applying optimization doesn’t seem to increase their dispersion.
H2 and H4 indicate that maximizing the S/N ratio of relative portfolio increments leads to higher Hurst
exponents, but minimizing variance doesn’t. However, the increase in Hurst exponent seems less than in
the long-short case

than-random performance. Overall, we can state that maximizing the S/N ratio is the
better strategy if we want a portfolio with an increased Hurst exponent.

Looking at Figs. 1 and 2, we also get the intuition that when shorting is allowed, we
can achieve higher Hurst exponents. Table 3 confirms this: the long-short option leads
to a significantly higher exponent, except for the case of random portfolios. These
results are also very intuitive, as in the long-short case we have a lower number of
constraints, leaving a larger space for finding better solutions.

4 Discussion

First, let us summarize our findings. Maximizing the S/N ratio of process incre-
ments yields a portfolio with increased Hurst exponent, thus better predictability,
hence proves to be a good pre-processing step before the application of some trad-
ing strategy. As a direct consequence, we conclude that the well-known maximum
Sharpe-ratio portfolio (coming from the classical mean-variance portfolio optimiza-
tion framework) also exhibits such beneficial properties, and so do portfolios obtained
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Table 1 Hypothesis test results in the long-short case

H1 H2 H3 H4 hmp

maxsnr Mean 0.6336 0.8502 0.4311 0.9175

minvar Mean 0.6136 0.6436 0.4180 0.7075

Wilcoxon T 422 703 387 686

p 0.1473 7.275 × 10−12 0.3008 1.506 × 10−9 0.0

maxsnr Mean 0.597 0.551 0.408 0.597

Random Mean 0.6072 0.4184 0.4039 0.4632

Wilcoxon T 460 703 448 703

p 0.0519 7.276 × 10−12 0.0745 7.2760 × 10−12 0.0

minvar Mean 0.6136 0.6436 0.4180 0.7075

Random Mean 0.6072 0.4184 0.4039 0.4632

Wilcoxon T 382 688 398 660

p 0.3273 9.9681 × 10−10 0.2461 9.4333 × 10−8 0.0

Each horizontal block represents the results of a paired one-tailed Wilcoxon signed rank test between the
two portfolio strategies indicated, comparing them along the different Hurst exponent estimators (H1–H4).
The last row in each block shows the p-values for each test and the hmp column shows the combined
p-value. In all three blocks, the null hypothesis is rejected (based on hmp < 0.05). The first block implies
that maximizing the S/N ratio tends to yield a higher Hurst exponent than if we were minimizing variance,
and the third block implies that minimizing the variance tends to yield a higher Hurst exponent than
arbitrary portfolios. The second block simply shows that there’s no contradiction. Observe that the results
are different from the long-only case (Table 2), as here minimizing the variance performs much better in
terms of increasing predictability

based on Taguchi’s Quality Engineering principles, as these are closely related to the
S/N ratio.

Minimizing variance can have a similar effect, but its effectiveness is significantly
lower, and can even become worse than a random choice’s. Shorting also proved to
significantly increase the effectiveness of achieving higher Hurst exponents.

Starting fromdifferent principles, other authors arrived at similar optimization prob-
lems as well, but to the best of our knowledge, we are the first to derive corresponding
numerical methods that solve for global optima, not just local ones.

Our findings might have implications for trader policies as well. The max-S/N
technique proved to be a good pre-processing step before the application of some
trading strategy, but it must match the existing policy. For example, if it’s based on
anti-persistency (the opposite of predictability), then applying the max-S/N technique
as a pre-processing step should be avoided. Also, as our results indicate, the use of
shorting significantly helps the effectiveness of the max-S/N technique—if possible,
it should be incorporated.

For time increments, we used a whole day, as this is the smallest frequency at which
stock priceswere available openly.We could go into higher frequency data, but thenwe
would face another problem: the current formulation considers only a 1-step increment.
However, the high auto-correlation we wish to achieve implies that multiple steps
need to be considered. By choosing daily increments, we indirectly do this, as a day
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Table 2 Hypothesis test results in the long-only case

H1 H2 H3 H4 hmp

maxsnr Mean 0.6044 0.6528 0.3798 0.7066

minvar Mean 0.6035 0.4463 0.3833 0.4989

Wilcoxon T 336 690 326 669

p 0.5943 6.4028 × 10−10 0.6509 2.7103 × 10−8 0.0

maxsnr Mean 0.6044 0.6528 0.3798 0.7066

Random Mean 0.6018 0.4340 0.3872 0.4821

Wilcoxon T 320 703 322 697

p 0.6835 7.2760 × 10−12 0.6727 1.0186 × 10−10 0.0

minvar Mean 0.6035 0.4463 0.3833 0.4989

Random Mean 0.6018 0.4340 0.3872 0.4821

Wilcoxon T 335 391 340 420

p 0.6000 0.2803 0.5710 0.1544 0.2971

Each horizontal block represents the results of a paired one-tailedWilcoxon signed rank test between the two
portfolio strategies indicated, comparing them along the different Hurst exponent estimators (H1–H4). The
last row in each block shows the p-values for each test and the hmp column shows the combined p-value.
In the first two blocks, the null hypothesis is rejected (based on hmp < 0.05), meaning that maximizing
the S/N ratio tends to yield a higher Hurst exponent than a minimum variance or a random approach. In
the third block, the null hypothesis is accepted (based on hmp > 0.05), meaning that neither the minimum
variance nor the random approach tends to yield higher Hurst exponents than the other

aggregatesmany "infinitesimal" increments, but aswe increase data frequency,we start
losing this property. However, moving to lower frequencies has a similar problem, but
vice versa: too large increments might exceed the memory of the process, introducing
irrelevant data, thereby decreasing the observable correlation between stocks, thus
pushing Σ towards being a diagonal matrix where interdependencies of time series
no longer can be utilized as much.

We also touched upon the somewhat higher computational complexity of solv-
ing SOCP-s, for which reason we present a QP formulation in Appendix A, as QP-s
have a wider range of high-performance, concurrent solvers available either commer-
cially (like CPLEX, GUROBI, MOSEK) or open-source (like HiGHS). With some
modification, even real-time application of the max-S/N technique is possible: using
exponentially weighted moving averages, both μ and Σ can be updated in an online
fashion whenever new observations arrive while still controlling the effect of past
observations. The existing weights can be used to warm-start the new optimization
problem and find a new solution much faster, as small perturbations to the problem
(especially in the more constrained long-only case) shouldn’t result in a very different
solution. It should be emphasized though that if the smoothing factor is low (giving
high weight to new observations), then the distance between two consecutive esti-
mates of the parameters might be large, possibly leading to solutions that are far from
each other as well, in which case warm starting has reduced benefits. This must be
validated, especially in the presence of high volatility. Due to the efficiency of QP
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solvers (see the performance of alglib 1 for example), this is only of interest in the
case of high-frequency or near-real-time trading though.

To test the sensitivity and robustness of our approach, we applied the method
throughout a large time frame where many market conditions were present and col-
lected the distribution of Hurst exponents in Figs. 1 and 2. We don’t delve deeper
into sensitivity analysis, as it is evident from the optimization problem: the condition
number of the covariance matrix is the most important factor, as it determines how
well-conditioned the problems become, hence how sensitive they are to small pertur-
bations. To mitigate problems of robustness, one could use robust estimators for the
optimization model’s parameters: median, trimmed or winsorized mean for μ, and
minimum covariance determinant for Σ . Quite naturally, the effectiveness of parame-
ter estimation has some effect on the outcome, but this heavily depends onwhat trading
strategy would be implemented on top of the artificial asset formed by the portfolio,
the market conditions, and possibly other elements of the scenario it is going to be
applied in. While our method likely has limitations in some of these scenarios, it is not
possible to give a detailed analysis as a practically infinite space of problems would
have to be spanned. Practitioners in the field routinely validate the applicability of any
method they wish to use - following their well-established best practices should more
than suffice as guidance to validate the applicability of our method as well.

When we derived the optimization problem, we used stationary parameters in the
stochastic differential equations.While this leads to a limited model, it does not neces-
sarily limit the applicability of the optimization technique itself thatmuch (as indicated
by the empirical analysis). Stationarity is usually assumed over some time window
anyway, otherwise, statistical approaches have no sound basis. Also, as we indicated
before, the theoretical model was only used to derive the intuition for the optimization
problem—in the end, it was dropped, and the technique’s effectiveness was demon-
strated empirically. However, it should be noted that over large time frames, things tend
to change, and assuming stationarity is no longer acceptable. The size of the time win-
dows and the frequency of portfolio recalibration should be chosen accordingly. Since
these are heavily influenced by the exact context in which our method is considered to
be applied, they should be evaluated with care—just as for any other technique, practi-
tioners should refer to existing best practices. Another approach would be to introduce
non-stationary parameters and jumps into the stochastic differential equations, and to
derive a possibly more refined optimization problem, but this goes beyond the scope
of this paper, we leave it as an interesting direction for future research.

5 Conclusions

In this paper, we set out to find a control mechanism that can find a linear superpo-
sition of financial signals (a portfolio) that is smooth, has positive auto-correlation,
and has long memory. Such a technique could be used as a sort of pre-processing
step that generates a predictable portfolio that could be used as an artificial asset in
another trading strategy.We found thatmaximizing the Signal-to-noise ratio of relative

1 https://www.alglib.net/optimization/quadraticprogramming.php.
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portfolio increments achieves this goal. We also found that minimizing the variance
instead can have a similar effect, but its effectiveness is significantly lower, and can
even become worse than random choice. As a direct consequence, we concluded that
the well-known maximum Sharpe-ratio portfolio (coming from the classical mean-
variance portfolio optimization framework) also exhibits such beneficial properties,
and so do portfolios obtained based on Taguchi’s Quality Engineering principles, as
these are closely related to the S/N ratio. As expected, shorting also proved to sig-
nificantly increase the effectiveness of achieving more predictable portfolios. Starting
from different principles, other authors arrived at similar optimization problems as
well, but to the best of our knowledge, we are the first to derive corresponding numer-
ical methods that solve for global optima, not just local ones. When we derived the
optimization problem, we assumed stationary processes. While this is not necessarily
a limiting factor, it should be noted that over large time frames, things tend to change,
assuming stationarity is no longer acceptable. The size of the time windows and the
frequency of portfolio recalibration should be chosen accordingly with care.

Introducing non-stationary parameters, as well as jumping into the stochastic dif-
ferential equations and deriving a more refined optimization problem is an interesting
direction for future research.
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A Quadratic Programming Formulation

In Sect. 2.3.2 we transformed the original problem to a SOCP form, which guarantees
that global optima can be found via standard solvers for SOCP-s. However, SOCP
solvers are computationally more demanding, therefore we show how the original
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problem can be formulated as a quadratic program, which is easier to solve and has a
wider range of high-performance solvers available.

First, we find the following alternative objective functions with the same solution:

argmax
w

∣∣μTw
∣∣

√
wTΣw

= argmin
w

√
wTΣw
∣∣μTw

∣∣ = argmin
w

wTΣw
(
μTw

)2 . (27)

Introducing the change of variable y = w
μT w

, we can rewrite the problem as

argmin
y

yTΣy,

y = w

μTw
.

(28)

Similarly, as before, we need to pose constraints in the y space that make sure that
the corresponding w satisfy 1Tw = 1 and w ≥ 0. To make the change of variables
well-defined, we have to introduceμT y = 1. Unfortunately, y ≥ 0 doesn’t necessarily
imply w ≥ 0, unless we enforce μTw ≥ 0. Incorporating 1Tw = 1 indirectly, we
get 1T y = 1

μT w
, hence we can enforce μTw ≥ 0 by introducing the constraint

1T y ≥ 0. Now we can safely say that y ≥ 0 will also imply w ≥ 0. Summarized, the
optimization problem can be written as

y∗ = argmin
y

yTΣy,

μT y = 1,
1T y ≥ 0,
y ≥ 0,

(29)

where we obtain w∗ = y∗
1T y∗ .

If we are looking for a solution in the μTw ≤ 0 half-space, then we need to
introduce 1T y ≤ 0 and y ≤ 0 instead, resulting in

y∗ = argmin
y

yTΣy,

μT y = 1,
1T y ≤ 0,
y ≤ 0,

(30)

where we similarly obtain w∗ = y∗
1T y∗ .
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