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Abstract
Population games are games with a finite set of available strategies and an infinite
number of players, in which the reward for choosing a given strategy is a function
of the distribution of players over strategies. The paper shows that, in a certain class
of maxmin optimization problems, it is possible to associate a population game to
a given maxmin problem in such a way that solutions to the optimization problem
are found from Nash equilibria of the associated game. Iterative solution methods
for maxmin optimization problems can then be derived from systems of differential
equations whose trajectories are known to converge to Nash equilibria. In particular,
we use a discrete-time version of the celebrated replicator equation of evolutionary
game theory, also known inmachine learning as the exponential multiplicativeweights
algorithm. The resulting algorithm can be viewed as a generalization of the Iteratively
Reweighted Least Squares (IRLS) method, which is well known in numerical analysis
as a useful technique for solving Chebyshev function approximation problems on a
finite grid. Examples are provided to show the use of the generalized IRLS method in
collective investment and in decision making under model uncertainty.
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1 Introduction

In amaxminproblem, the objective is tofind apoint in a given set atwhich theminimum
of a given collection of functions defined on that set is maximized. Problems of this
nature can be viewed from the perspective of social planning. The given set is then
interpreted as a space of possible decisions that may be taken by a social planner.
The given functions defined on this set represent the benefits that are experienced
by different members of a collective as a consequence of the planner’s decision. The
use of the maxmin criterion indicates that the planner follows the ethical guideline
of Rawls [52]: among all possible ways of organizing society, choose the one that
maximizes the happiness of those who are least advantaged.

Within the mindset of social planning, one can think also of using the weighted-
utilitarian guideline: maximize the weighted sum of the welfares of all members of
the collective. The optimization problem that arises from this rule may well be easier
to solve than the nonsmooth maxmin problem. One may then imagine the following
iterative scheme to solve the maxmin problem, using the assumption that the planner
has an effective way of parametrizing decisions in terms of weights. Starting with
an arbitrary set of weights, the planner computes the corresponding decision, and
subsequently notes which participants in the collective would be worst off if this
decision would be implemented. In the second round of the iteration, the weights of
those participants are increased, and the planner determines a new tentative decision
on the basis of the updated weights. In the next round, the weights of those who are
found to be worst off under this decision are increased, and so on. The iteration stops
when a set of weights is found that is concentrated on a group of participants who
are equally affected by the corresponding decision, while all others, even though they
have zero weights, are in fact better off, or at least not worse off. If the parametrization
of decisions in terms of weights satisfies certain conditions (see Definition 2.4 below),
we have arrived at a maxmin solution (Lemma 2.2).

The success of this iterative method depends crucially, of course, on the update rule
that is used for the weights. The innovative approach that we propose in this paper is
to make use of update rules that have been designed in the field of population games.
Population games are rooted in biology [42] and have been successfully applied to
traffic networks and to other fields of study; see for instance [58]. They have, however,
not been leveraged to solve maxmin problems before.

To specify a (single-)population game, one begins with a finite set of pure strategies
that may be chosen by agents. The number of agents is thought of as large enough to be
treated as infinite, and agents are only distinguished by the strategy that they choose.
The population state is defined as the vector whose i-th entry gives the population
fraction of agents who follow strategy i . The payoffs of strategies are given by reward
functions that depend on the population state. In a Nash equilibrium, all strategies that
are used by a positive fraction of agents have equal payoffs, whereas strategies that
are not used have worse payoffs, or at least not better payoffs. Such an equilibrium
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may be reached by gradual evolution in time, when agents adapt their strategies in
response to differences in payoffs. To a large extent, the literature on population games
revolves around different evolutionary dynamics (adaptation rules) that may lead to
Nash equilibrium.

In this paper, conditions are given under which the solution of a given maxmin
problem can be found from a Nash equilibrium in a corresponding population game.
From the perspective of maxmin problems, the connection gives access to a rich
array of potential iterative solution algorithms, obtained by discretization of the
continuous-time dynamical systems studied in the theory of population games. From
the perspective of game theory, these applications provide a motivation to study the
special properties of population games that arise frommaxmin problems; we call them
“tester games”, for reasons that will be explained later. While there is of course a tra-
ditional link between game theory and maxmin problems via two-person zero-sum
games, the connection established in this paper is of an entirely different nature.

Relations to the literature. The work that we have found to be most closely
related to the approach of this paper is concerned with approximation of a function
by a linear combination of preset basis functions in such a way that the maximal
error on a given finite set of grid points is minimized (approximation in �∞ norm,
also called Chebyshev approximation). More than sixty years ago, Charles L. Lawson
proposed in his PhD thesis1 [37] an iterative method based on adapting weights in a
weighted-sum problem using transformed objectives: he replaced the absolute values
of errors at grid points by their squares. Lawson called this the Iteratively Reweighted
Least Squares (IRLS) method. The IRLS method is still in use as a tool for function
approximation; see [44] for a modern implementation. The main generalizations of
Lawson’s method in the literature have been to function approximation in other than
the max (�∞) norm. In particular, the use of the �1 norm has attracted much interest,
in statistics because of its robustness properties and in signal processing because of
its sparsity features [20, 60, 61]. Approximation in �p norm with 2 < p < ∞ has
found application in the design of finite impulse response (FIR) filters [17].2 These
generalizations to approximations in alternative norms are achieved by appropriate
modifications of the multiplicative update rule for weights that was used by Lawson.
In this paper, we undertake a different generalization. We allow for more general
transformations of the individual objectives; in particular, different transformations
may be applied to different objectives. Going even further, we identify the crucial
properties of the parametrization in terms of weights, and allow any mapping that
satisfies these properties. Connections to population games were not noted by Lawson
or in the subsequent literature in numerical analysis.

1 The thesis is unpublished, but an account is given in [53].
2 The term IRLS is also used in statistics for techniques that depend upon iteratively solving a series of linear
regression problems. Such a technique may arise from the use of a quasi-Newton method for optimization;
it was used by Jeffreys [35] in seismological work, to solve a regression problem with non-quadratic loss
functions. Themethod comes up as well in the algorithm of [45] for the computation ofmaximum likelihood
estimates in generalized linear models; see [28] and [51] for further references. While in Lawson’s method
the successive instances of theweighted least-squares problem are the same except for the choice of weights,
this is not generally the case in IRLS methods in statistics.

123



Journal of Optimization Theory and Applications

The present paper also relates to the large body of literature on learning in games.
The notion that a Nash equilibrium inmixed strategies can be found from a differential
equation (or, in discrete time, by an iteration) goes back to the early days of game
theory [15, 16, 54]. Updating rules for strategies have ever since remained a topic of
interest; see for instance [25] for an extensive treatment, and [27, 39, 43] for a sample
of recent contributions. Among the many learning rules that have been proposed,
the Multiplicative Weights Algorithm (MWA) stands out as the one that is perhaps
most prominent. Generally speaking, multiplicative weights algorithms are iterations
defined on a simplex or on a finite product of simplices, in which in each step the
current point in the simplex or product of simplices is multiplied componentwise by
a vector whose entries typically represent rewards or costs, or by a componentwise
monotonic transformation of such a vector; themonotonic transformationmay contain
an adjustable parameter that is called the “step size” or the “learning rate”. The update
rule used in [37] is a multiplicative weights rule (without adjustable parameter). An
early reference in the literature on machine learning is the winnow algorithm of [40].
The term “multiplicative weights” as such may have been used first in [24]; they may
also have been the first to use the exponential form of the MWA that we employ in
this paper as well. A survey of the use of the MWA in game theory and machine
learning is given in [1]. The cited paper collects many examples of applications of
the MWA, with a focus on learning in games and machine learning. Lawson’s method
is not mentioned, however; it seems that the connection between learning in games
and maxmin problems as discussed in this paper has not been noticed in the literature
before. From another (engineering) perspective, the tester games that we consider in
this paper are evolutionary games designed to achieve a particular goal, and hence are
examples of evolutionary mechanism design; see, for instance, [49].

Contributions. The main contribution of the paper is the introduction of the notion
of “tester games” and the proof (see Theorem 3.1) that Nash equilibria in these games
provide solutions to certain types of maxmin problems. As a practical result, this leads
to the generalized IRLSmethod for solvingmaxminproblems (Algorithm5.1).Wealso
give necessary conditions for a population game to be a tester game (Proposition 3.1).

Outline. Following the present introduction, the class ofmaxmin problems towhich
the method of this paper applies is defined in Sect. 2. We then introduce tester games
in Sect. 3 and show how Nash equilibria of these games produce maxmin solutions.
Section4 considers the special case in which a tester game is constructed from the
given objective functions directly, without transformations; in this case, it turns out
that (under smoothness assumptions) the tester game is in fact a contractive potential
game. To derive a computational method, Sect. 5 brings in the exponential version
of the MWA. Applications to collective investment and to decision making under
model uncertainty are given in Sect. 6. Section7 concludes. An example illustrating a
theoretical point is worked out in the “Appendix”.

Notation and conventions. We use R+ to denote the set of nonnegative real num-
bers, and R++ to denote the set of positive real numbers. When z is a function from a
set N to R (i.e., z is a vector in RN ) and K is a nonempty subset of N , the restriction
of z to K is denoted by zK . The vector zK belongs to R

K . Conversely, if a vector
z ∈ R

K is given, we can associate to it a vector in RN , still denoted by z, by defining
zi = 0 for i ∈ N \ K . This defines a natural embedding of RK into RN . Since we do
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not distinguish notationally between z ∈ R
K and its embedding into R

N , the symbol
R

K can refer to a linear space by itself, or to the subset ofRN of vectors whose entries
with indices outside K are 0. The unit simplex associated to a nonempty finite set N
is defined by

ΔN = {w ∈ R
N | wi ≥ 0 for all i ∈ N ,

∑

i∈N
wi = 1}.

In analogywith the conventions above, when K is a nonempty subset of N , the simplex
ΔK is identifiedwith the face of the simplex N consisting of vectorsw such thatwi = 0
for i ∈ N\K . When K is a singleton, say K = {k}, the corresponding face contains
only one point; this point is denoted by ek . The function from N to R that takes the
value 1 for all i ∈ N (the “all-one vector”) is denoted by 1N . The tangent space TΔN

of the simplex is the set {z ∈ R
N | 1�

N z = 0}. The set of vectors that can be written
as the product of a vector in ΔN and a positive scalar (i.e., “unnormalized weight
vectors”) is written as

Δ+
N = {w ∈ R

N | wi ≥ 0 for all i ∈ N ,
∑

i∈N
wi > 0} = R

N+ \ {0}.

A vector-valued function F defined on Δ+
N is said to be homogeneous of degree m if

F(aw) = amF(w) for all a > 0 and w ∈ Δ+
N .

Following [2], we use the term “Pareto optimal” for what in part of the literature is
called “weakly Pareto optimal”; see Definition 2.1.3 Correspondingly, we use “Pareto
improvement” for what is often called “strict Pareto improvement”.

2 Simplicial Social Decision Problems

Throughout the paper, our goal is to characterize and compute maxmin points for
a class of problems we call simplicial social decision problems. In this section, we
introduce this class of problems and collect some basic properties. Most results in this
section are elementary andhavebeen statedbefore, e.g., in the decision theory literature
or—with a different terminology—in the statistics literature. The main innovation is
the concept of a “Pareto map”, a certain smooth parametrization of the Pareto surface
which will play a key role in later sections.

Definition 2.1 A social decision problem is a triple (N ,X , V ) where N is a finite set
called the collective, X is a topological space called the decision space, and V : X →
R

N is a continuous mapping called the evaluation map. A point x ∈ X is said to be

– equalizing if Vi (x) = Vj (x) for all i, j ∈ N
– Pareto optimal if there does not exist x̃ ∈ X such that Vi (x̃) > Vi (x) for all i ∈ N
– strongly Pareto optimal if there does not exist x̃ ∈ X such that Vi (x̃) ≥ Vi (x) for
all i ∈ N and Vj (x̃) > Vj (x) for some j ∈ N

3 Below we use Pareto optimality often as an assumption, rather than as a conclusion; weak optimality then
leads to a stronger statement.
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– maxmin if there does not exist x̃ ∈ X such that mini∈N Vi (x̃) > mini∈N Vi (x), or,
equivalently, if mini∈N Vi (x) = maxx̃∈X mini∈N Vi (x̃).

The collective N can take different forms in different application areas; without
referring to a specific application, its members (i.e., the points in the set N ) are called
participants. The decision x affects all participants and is made on their behalf by a
social planner. The vector-valued function V generates for every participant i ∈ N the
agent’s utility (or evaluation) Vi (x) of decision x . The components of the vector-valued
function V : X → R

n are also referred to as individual objective functions.4

It is easily seen that every maxmin point is Pareto optimal.5 A maxmin point is
not necessarily equalizing, and an equalizing point is not necessarily Pareto optimal.
However, we do have the following.6

Lemma 2.1 Let a social decision problem (N ,X , V ) be given. If x ∈ X is both
equalizing and Pareto optimal, then x is a maxmin solution.

Proof Suppose that x ∈ X is both equalizing and Pareto optimal, but not a maxmin
solution. Then there exists x̃ ∈ X such that

min
j∈N Vj (x̃) > min

j∈N Vj (x). (1)

Because x is equalizing, we have min j∈N Vj (x) = Vi (x) for all i ∈ N . It then follows
from (1) that, for all i ∈ N ,

Vi (x̃) ≥ min
j∈N Vj (x̃) > Vi (x).

In other words, x̃ is a Pareto improvement of x , so that we have a contradiction. ��
The lemma as such is not always useful as a criterion to verify whether a proposed

decision is maxmin, because there are many maxmin problems in which one cannot
expect to be able to find an equalizing solution. Amore generally applicable result can
be formulated when Pareto efficiency with respect to subgroups is introduced. Gener-
ally speaking, given a social decision problem (N ,X , V ) and a nonempty subset K
of N , one can define the subproblem (K ,X , VK ), where VK : X → R

K is defined by
(VK )i (x) = Vi (x) for x ∈ X and i ∈ K . Any Pareto optimal point for (K ,X , VK )

is also Pareto optimal for (N ,X , V ), but the converse is not true in general. Con-
sequently, Pareto optimality with respect to a subgroup is a stronger property than
Pareto optimality with respect to the collective as a whole. We can therefore expect
that stronger statements can be made, as is indeed shown in the following lemma.

Lemma 2.2 (“verification lemma”) Let a social decision problem (N ,X , V ) be given,
and take x ∈ X . If there exists a nonempty subgroup K ⊂ N such that

4 The evaluationmap is known as the objective function vector inmulticriteria optimization (see for instance
[23]). In the setting of social welfare theory, we prefer to speak of evaluations.
5 Strong Pareto optimality can be concluded when the maxmin point is unique [38, Lemma 5.2.21].
6 See for instance [38, Lemma 5.2.19] for a similar statement in the context of minmax estimators in
statistics. An early reference is [63, Thm.4].
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(i) Vi (x) ≤ Vj (x) for all i ∈ K and j ∈ N, and
(ii) the decision x is Pareto optimal for the subproblem (K ,X , VK ),

then x is a maxmin point for the problem (N ,X , V ).

Proof Condition (i) implies that Vi (x) = Vj (x) for all i, j ∈ K ; in other words, x is
an equalizing solution for the subproblem (K ,X , V ). Using also (ii), it follows from
Lemma 2.1 that x is a maxmin solution for (K ,X , VK ). Suppose now that x is not a
maxmin solution for (N ,X , V ). Then there exists x̃ ∈ X such that mini∈N Vi (x̃) >

mini∈N Vi (x). But then

min
i∈K Vi (x̃) ≥ min

i∈N Vi (x̃) > min
i∈N Vi (x) = min

i∈K Vi (x),

where the equality in the final step follows from (i). Since x is a maxmin point for the
subproblem (K ,X , VK ), we arrive at a contradiction. ��

A standard way to arrive at Pareto optimal solutions is weighted-sum optimization
(see for instance [23, Ch.3] or [34, Section 11.2.1]): given w ∈ ΔN , solve

∑

i∈N
wi Vi (x) → max (x ∈ X ). (2)

If there is a maximizer x for this problem, then it easily follows that x is Pareto
optimal; indeed, if there would be a Pareto improvement x̃ , then we would have∑

i∈N wi Vi (x̃) >
∑

i∈N wi Vi (x), so that x would not be optimal. The weighted-sum
problem (2) can be cast as a parametric optimization problem, with the unit simplex
ΔN as its parameter space.

Definition 2.2 A solution map for the parametric optimization problem (2) is a map
ξ : ΔN → X such that

w�V (ξ(w)) = max
x∈X

w�V (x) for all w ∈ ΔN . (3)

If ξ : ΔN → X is a solution map for (2), then, for all w ∈ ΔN , ξ(w) is Pareto
optimal for the problem (N ,X , V ). In view of Lemma 2.2 above, it is important to note
that the same argument that was given for this fact can also be applied to subgroups.
To state this formally, we first introduce a term for the relevant property.

Definition 2.3 A mapping ξ : ΔN → X is said to be subgroup efficient for the social
decision problem (N ,X , V ) if, for every nonempty subset K ⊂ N and everyw ∈ ΔK ,
the decision ξ(w) is Pareto optimal for the subproblem (K ,X , VK ).

Proposition 2.1 Every solution map for the weighted-sum parametric optimization
problem (2) is subgroup efficient.

The following definition introduces a concept that is central to this paper.

Definition 2.4 A Pareto map for the social decision problem (N ,X , V ) is a map
ξ : ΔN → X that is subgroup efficient and continuous. A social decision problem is
said to be simplicial if it admits a Pareto map.
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Remark 2.1 Not all social decision problems are simplicial. For instance, if the decision
space is discrete, the continuity requirement implies that a Pareto map must in fact be
constant. The requirement of subgroup efficiency then means that there is a decision
that is optimal from the points of view of all participants. Therefore, a Pareto map
typically does not exist when participants have different preferences and the decision
space is discrete. But also when the decision space is continuous, a Pareto map may
not exist; an example of such a case is worked out in the “Appendix”.

The following proposition is an immediate consequence of Proposition 2.1; we
state it for ease of reference. The proposition shows that every continuous solution
map is a Pareto map. However, Pareto maps do not necessarily need to be constructed
in this way.

Proposition 2.2 Let a social decision problem (N ,X , V ) be given. If the parametric
optimization problem (2) admits a continuous solution map ξ : ΔN → X , then the
problem (N ,X , V ) is simplicial, with Pareto map ξ .

A sufficient condition for existence of a continuous solution map for the parametric
optimization problem (2) is given in the following lemma, which, under a compactness
condition, shows that uniqueness implies continuity. The lemma can be viewed as a
special case of Thm.1 in [55], which in turn relies on results from [10]. For the
convenience of the reader, we provide a direct proof.

Lemma 2.3 Let (N ,X , V ) be a social decision problem. If, for each w ∈ ΔN , the
weighted-sum optimization problem (2) has a unique maximizer ξ(w), and the set
{ξ(w) | w ∈ ΔN } is contained within a compact subset Xc ⊂ X , then the solution
map ξ is continuous.

Proof Take w̄ ∈ ΔN , and let (w j ) j=1,2,... be a sequence of points in ΔN converging
to w̄. Since the set Xc is compact, the proof will be complete if we can show that
the set of accumulation points of the sequence (ξ(w j )) j=1,2,... has only one element,
namely ξ(w̄). Let x̄ be an accumulation point of the sequence ξ(w j ). By consider-
ing a subsequence and re-indexing if necessary, we can assume that the sequence
ξ(w j ) converges to x̄ . We claim that x̄ is a maximizer of the weighted-sum optimiza-
tion problem with weights w̄. Indeed, suppose it is not, and let x̃ ∈ X be such that∑

i∈N w̄i Vi (x̃) >
∑

i∈N w̄i Vi (x̄). From the relations

lim
j→∞

∑

i∈N
w

j
i Vi (x̃) =

∑

i∈N
w̄i Vi (x̃) >

∑

i∈N
w̄i Vi (x̄) = lim

j→∞
∑

i∈N
w

j
i Vi (ξ(w j ))

it then follows that
∑

i∈N w
j
i Vi (x̃) >

∑
i∈N w

j
i Vi (ξ(w j )) for all sufficiently large

j , contradicting the assumed optimality of ξ(w j ). By the assumed uniqueness of the
maximizer, it now follows that x̄ = ξ(w̄). ��

A typical case in which the uniqueness of the maximum can be guaranteed occurs
when the decision space X is convex and the evaluation functions Vi are strictly
concave. When the individual evaluation functions are unimodal but not strictly con-
cave, weighted-sum optimization may fail to produce a Pareto map, as shown in the
following example.
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Example 2.1 Let X = R, μ ∈ R
N , and Vi (x) = exp(−(x − μi )

2) for i ∈ N .
In this case, the weighted sum

∑
i∈N wi Vi (x) is basically a mixture of Gaussian

kernels which, depending on μ and w, can be multimodal and possess multiple global
maxima. Moreover, small changes in the weights can lead to discontinuous changes
in the solution of weighted-sum optimization. For a concrete example, let N = {1, 2},
μ = {−1, 1} and consider w in a neighborhood of ( 12 ,

1
2 ).

While direct weighted-sum optimization in the above example fails to produce a
Pareto map, we shall see that it is possible to find a Pareto map for the social decision
problem in the example, and hence the problem is simplicial. This is in contrast to the
problem in Example A.1, for which it can be shown that no Pareto map exists.

The following definition and lemma significantly extend the range of applications
of Lemma 2.3 and Proposition 2.2.

Definition 2.5 Two social decision problems (N ,X , V ) and (N ,X ,U ), with the same
set of agents and the same decision space, are said to bemonotonically related if there
exist strictly increasing functions gi : R → R (i ∈ N ) such that Vi (x) = gi (Ui (x))
for all x ∈ X and i ∈ N .

Lemma 2.4 (“modulation lemma”) A social decision problem that is monotonically
related to a simplicial social decision problem with Pareto map ξ is itself simplicial
with Pareto map ξ .

Proof Let ξ : ΔN → X be a Paretomap for the problem (N ,X ,U ), and let (N ,X , V )

be monotonically related to (N ,X ,U ). For i ∈ N , let gi be a strictly increasing
function such that Vi (x) = gi (Ui (x)) for all x ∈ X . To show that the mapping ξ is
a Pareto map for the problem (N ,X , V ), take a nonempty subset K of N , and take
w ∈ ΔK . Suppose that ξ(w) is not Pareto optimal for the subproblem (K ,X , VK );
then there exists a Pareto improvement, say x̃ . For each i ∈ K , we have gi (Ui (x̃)) =
Vi (x̃) > Vi (ξ(w)) = gi (Ui (ξ(w))), which implies that Ui (x̃) > Ui (ξ(w)) and hence
that x̃ is also a Pareto improvement of ξ(w) in the problem (K ,X ,UK ). By definition
of a Paretomap, this is not possible. It follows that ξ is subgroup efficient in (N ,X , V ),
and hence that ξ is a Pareto map for (N ,X , V ). ��

The technique of applying different monotonic transformations to evaluation func-
tions of different participants will be called modulation, whence the name of the
lemma. The idea of modulation is that, while construction of a Pareto map on the
basis of weighted-sum optimization directly with respect to the evaluation mapping V
may be computationally unattractive or even completely infeasible, there might be a
monotonically related evaluation map U that does support such a construction. In the
algorithmic implementation that will be discussed below (Sect. 5), this means that, to
solve the problem of maximizing mini∈N Vi (x), one solves a sequence of problems
of the form

∑

i∈N
wiUi (x) → max (x ∈ X ), (4)

where U is monotonically related to V . This may be much easier than using (2).
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Example 2.1 (continued). It is easy to verify existence of a unique solution to
weighted-sum optimization for the modulated problem Ui (x) = log(Vi (x)) =
−(x − μi )

2, since
∑

i∈N wiUi (x) is a strictly concave quadratic polynomial in x
for any w ∈ ΔN . By Lemma 2.4, the resulting Pareto map ξ(w) applies equally in the
modulated problem (N ,X ,U ) and in the original problem (N ,X , V ). Consequently,
both problems are simplicial.

More generally than in the example above, we allow for different transformations
to be applied to different individual objectives. In some applications, this is essential;
see for instance Sect. 6.1. While weighted-sum optimization with respect to possibly
modulated individual objective functions is a typical way to construct a Pareto map,
sometimes one can easily construct a Pareto map without invoking optimization at all.
For an instance of this, see Example 3.1 below.

3 Tester Games

In this section, we connect social decision problems to population games. Generally
speaking, a (single-)population game is a pair (N , F) where N is a finite set (usu-
ally interpreted as a set of pure strategies, rather than as a set of agents), and F is a
continuous mapping from the simplex ΔN to RN called the fitness function or reward
function. The entries of w ∈ ΔN are interpreted as the relative frequencies or prob-
abilities of occurrence of the strategies in N within a large population. The number
Fi (w) represents the reward of strategy i in a situation in which the strategies in N
occur with frequencies given by the vector w. For given y ∈ ΔN , one may also think
of the quantity y�F(w) within the framework of symmetric two-player games as the
expected reward for the playerwho chooses themixed strategy y, when the other player
chooses w. Within this setting, a symmetric Nash equilibrium is a vector w∗ ∈ ΔN

such that the condition

w∗�F(w∗) = max
w∈ΔN

w�F(w∗) (5)

holds, which expresses that “w∗ is a best reply to itself”. In the context of population
games, such a point is usually simply called aNash equilibrium, withoutmention of the
symmetry property. Equivalently, one can define a Nash equilibrium of the population
game (N , F) as any point w∗ ∈ ΔN such that Fi (w∗) ≥ Fj (w

∗) for all i, j ∈ N with
w∗
i > 0. A fundamental result is that every population game has at least one Nash

equilibrium (see for instance [58, Thm.2.1.1]).
We now propose to relate simplicial social decision problems to population games

in the following way.

Definition 3.1 The tester game associated to a social decision problem (N ,X , V )

with Pareto map ξ : ΔN → X is the population game (N , F) with reward mapping
F : ΔN → R

N defined by

F(w) = −V (ξ(w)) (6)

for w ∈ ΔN .
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Fig. 1 Coupling between Pareto map and tester game; see Definitions 2.1, 2.4, and 3.1

The minus sign in (6) implements the reversal of order that was already discussed
in the Introduction. By choosing the rewards in this way, testers are incentivized to
bring out the cases in which a proposed decision works out badly; the term “tester”
is derived by analogy with beta testers in software design. Continuity of the reward
function, as required in the definition of population games, follows from continuity of
the evaluation map V and the Pareto map ξ . The main theoretical result of this paper
is the following; it shows how the maxmin problem is connected to the tester game.

Theorem 3.1 Let a social decision problem (N ,X , V ) be given, and assume that
ξ : ΔN → X is a Pareto map for the problem. Let x∗ be given by x∗ = ξ(w∗),
where w∗ is a Nash equilibrium of the tester game (N , F) associated to the problem
(N ,X , V ) with Pareto map ξ . Then x∗ is a maxmin point for (N ,X , V ).

Proof Let the subset K ⊂ N be defined by

K = {i ∈ N | w∗
i > 0}. (7)

We then havew∗ ∈ ΔK . By definition of a Pareto map, the point x∗ = ξ(w∗) is Pareto
optimal for the subproblem (K ,X , VK ). By definition of a Nash equilibrium, we have

Fi (w
∗) ≥ Fj (w

∗) for all i ∈ K , j ∈ N .

In particular, Fi (w∗) = Fj (w
∗) for all i, j ∈ K . From (6), it therefore follows that

Vi (x
∗) ≤ Vj (x

∗) for all i ∈ K , j ∈ N (8)

and in particular Vi (x∗) = Vj (x∗) for all i, j ∈ K . Hence, Lemma 2.1 implies that
x∗ is a maxmin point for (K ,X , VK ). Now, suppose that x∗ is not a maxmin point
for (N ,X , V ). Under this assumption, there exists x̃ ∈ X such that min j∈N Vj (x̃) >

min j∈N Vj (x∗). We then have, using (8),

min
j∈K Vj (x̃) ≥ min

j∈N Vj (x̃) > min
j∈N Vj (x

∗) = min
j∈K Vj (x

∗).

This is a contradiction, since x∗ is a maxmin point for (K ,X , VK ). ��
The way in which the population game is related to the maxmin optimization problem
is illustrated graphically in Fig. 1.
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Remark 3.1 If continuity would be dropped from the definition of a Pareto map, the
theorem would be still valid but less useful, since the existence of a Nash equilibrium
is then not guaranteed. The fact that the proof does not require continuity may moti-
vate a study of population games in which the reward function is discontinuous or
multivalued.

Although tester games are not intended as models of biological or economic situ-
ations, there are cases in which a tester game can be readily interpreted as such. The
following is an example.

Example 3.1 Consider the problem of dividing one unit of an infinitely divisible good
(such as a cake) among n members of a collective, who evaluate the planner’s decision
simply by the size of the allotments they receive. Formally, this problem is given by
(N ,ΔN , I ) where N = {1, . . . , n} and I : Rn → R

n denotes the identity mapping.
Themapping I also serves as a Paretomap for this problem. The associated population
game is then given (N ,−I ). This game can be interpreted as a very simple congestion
game. The reward function in a congestion game is defined in general as a function
of resources that are used by a particular strategy (out of a given set of resources, for
instance links in a network) and the extent to which these resources are used by the
population as a whole. The game (N ,−I ) arises when each population member uses
exactly one of the resources in the set N , and the reward for each of these options is the
negative of the fraction of the population that choose the same option. From experience
in daily life, this congestion game can be described as Pick-a-Queue—the problem that
arises when you have to choose one from a number of parallel server queues, such as
checkout lanes in a (pre-self-checkout) supermarket. It is readily verified that there is
only oneNash equilibrium for the population game (N ,−I ), namelyw = ( 1

n , . . . , 1
n

)
.

The same vector is indeed also a maxmin vector for the Divide-the-Cake problem of
dividing one unit among n participants. Hence, we can say that (the maxmin version
of) Divide-the-Cake is solved by Pick-a-Queue.

Definition 3.1 describes tester games in terms of a particular construction. A natural
question is whether it is is possible to give a characterization of tester games as a
subclass of population games having certain properties. We leave this as an open
question. However, we can prove at least that not all population games are tester
games. We do this by introducing the following concepts. Take a population game
(N , F), and suppose it is in population state w ∈ ΔN . Imagine a new agent who
is joining the population and who is aware of the population state. If this incoming
agent is free to choose a strategy from the set of strategies N , then the agent is able
to secure the reward maxi∈N Fi (w). This might be called the incoming agent value of
the population state w. Let us say that a population state is least favorable when its
incoming agent value is minimal among all population states. We can then introduce
a class of population games as follows.

Definition 3.2 A population game (N , F) is adverse if each of its Nash equilibria is
least favorable.

The definition implies in particular that the incoming agent value of each Nash equi-
librium is the same. We can now state the following.
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Proposition 3.1 Tester games are adverse.

Proof Let (N ,X , V ) be a social decision problem with Pareto map ξ , let (N , F) be
the associated tester game, and let w∗ be a Nash equilibrium of (N , F). We have

min
i∈N Vi (ξ(w∗)) ≤ max

w∈ΔN
min
i∈N Vi (ξ(w)) ≤ max

x∈X
min
i∈N Vi (x) = min

i∈N Vi (ξ(w∗)),

where the second inequality follows since ξ(w) ∈ X for all w ∈ ΔN , and the equality
in the final step is implied by Theorem 3.1. It follows that equality holds in all steps.
Consequently,

max
i∈N Fi (w

∗) = −min
i∈N Vi (ξ(w∗)) = − max

w∈ΔN
min
i∈N Vi (ξ(w)) = min

w∈ΔN
max
i∈N Fi (w).

This shows the adversity of (N , F). ��
An example of a population game that is not adverse is the game (N , I ), in which

N can be any collective (of size larger than one), and the reward function is given
by Fi (w) = wi for all i ∈ N . This might be called the Meet-your-Friends game; the
set N then refers to a number of different places where people can go to hang out,
and the reward associated to choosing a given place is proportional to the number of
people who choose the same location.7 Every population state of the form (1/k)1K ,
where K is a nonempty subset of N and k is the number of elements of K , is a Nash
equilibrium. The incoming agent values of these equilibria are not the same, and hence
the Meet-your-Friends game is not adverse.

4 Special Case: Tester Potential Games

Theorem3.1 imposes no restrictions on theway inwhich the Paretomap is constructed.
Whenwe do introduce such restrictions, it may be expected thatmore can be said about
the associated tester game. In this section, we consider the situation inwhich the Pareto
map is constructed from direct weighted-sum optimization of the individual objective
functions, rather than viamodulation or by anothermethod, andmoreover the resulting
map satisfies additional smoothness conditions. It will be seen that, in this case, the
related tester game indeed acquires special properties. The definitions below describe
subclasses of population games that play a major role in the literature; see for instance
[58, Ch.3].

Definition 4.1 A population game (N , F), in which F is defined on Δ+
N , is a (full)

potential game if there exists a continuously differentiable function f : RN+ → R

such that F(w) = ∇ f (w) for allw ∈ Δ+
N . Any function f that satisfies this condition

is called a potential function for the game.

7 Games of this type, in which a strategy becomes more attractive when more agents are using it, are called
“coordination games” in [57]. For games in which the effect of increased use of a strategy is to make the
strategy less attractive, as in Example 3.1, the term “equilibration games” is used in the cited reference.
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In potential games, Nash equilibria can be found from an optimization problem as
stated in the following lemma.

Lemma 4.1 Let (N , F) be a full potential game, with potential function f . Then any
maximizer of f on ΔN is a Nash equilibrium of (N , F).

This follows because the Karush-Kuhn-Tucker (KKT) conditions for optimality imply
the conditions for a Nash equilibrium, andmoreover the KKT conditions are necessary
since the simplex satisfies the linear independence qualification constraint; see for
instance [58, Thm.3.1.3] or [59, Thm.13.5].

If the reward function F is continuously differentiable, then the game (N , F) is
a potential game if and only if the Jacobian J F of F is symmetric [58, Observation
3.1.1]. The class of population games in the definition below includes potential games
for which the Jacobian is negative semidefinite on the tangent space of the simplex,
i.e., the Jacobian satisfies z� J F(x)z ≤ 0 for x ∈ ΔN and z ∈ TΔN .

Definition 4.2 A population game (N , F) is a contractive game8 if

(w1 − w2)�(F(w1) − F(w2)) ≤ 0 (9)

for all w1, w2 ∈ ΔN .

Now, consider a social decision problem (N ,X , V ). We shall use the following
smoothness assumptions.

Assumption 4.1 The following conditions hold.

(i) The decision space X is an open subset of a finite-dimensional real linear space.
(ii) The evaluation functions Vi (i ∈ N ) are continuously differentiable.
(iii) The parametric optimization problem (2) admits a continuously differentiable

solution map.

By allowing unnormalizedweights rather than only normalized ones, the domain of the
solution map ξ can be extended toΔ+

N in a natural way; the extension is homogeneous
of degree 0. The function F defined in (6) then likewise becomes a function on Δ+

N
that is homogeneous of degree 0. The function f defined by f (w) = w�F(w) is
homogeneous of degree 1, and can be defined on all of RN+ by setting f (0) = 0. The
pair (N , F) with the extended version of F will be called the extended tester game
associated to the problem (N ,X , V ) with Pareto map ξ .

Proposition 4.1 Consider a social decision problem (N ,X , V ) that satisfies Assump-
tion 4.1, and let ξ : ΔN → X be a continuously differentiable solution map. The
extended tester game (N , F) associated to (N ,X , V ) with Pareto map ξ is a full
potential game with potential function given by f (w) = w�F(w).

Proof The gradient of the function f : w → w�F(w) can be calculated by means of
the chain rule:

∇ f (w) = F(w) −
[∂(w�V )

∂x
(ξ(w))

∂ξ

∂w
(w)

]� = F(w), (10)

8 This terminology follows [59]. In [31] and [58], the term “stable game” is used.
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Fig. 2 Classical case: coupling between social planner and potential game. See Definition 3.1 and Eqn. (3)

where the final equality holds because the gradient of the function x → w�V (x)
vanishes at x = ξ(w). This shows that f is a potential function for F . ��

In the special situation of this section, the tester game is not only a potential game,
but also a contractive game. The proof of this fact does not require smoothness assump-
tions apart from continuity of the solution map for the parametric problem (2).

Proposition 4.2 Let a social decision problem (N ,X , V ) be given. If ξ : ΔN → X is
a continuous solution map, then the tester game (N , F) associated to (N ,X , V ) with
Pareto map ξ is contractive.

Proof Take w1, w2 ∈ ΔN . Since ξ(w1) and ξ(w2) are maximizers of w1�V (x) and
w2�V (x) respectively, we have

w1�V (ξ(w1)) ≥ w1�V (ξ(w2)), w2�V (ξ(w2)) ≥ w2�V (ξ(w1))

and hence

(w1 − w2)�
(
V (ξ(w1)) − V (ξ(w2))

)

= w1�(
V (ξ(w1)) − V (ξ(w2))

) + w2�(
V (ξ(w2)) − V (ξ(w1))

) ≥ 0.

Since F(w) = −V (ξ(w)), the relation (9) holds. ��
The structure used in Propositions 4.1 and 4.2 is illustrated graphically in Fig. 2.

The term “classical” is used here because the social planner acts inwhatmight be called
a classical way [29],9 namely on the basis of optimization of a social welfare function
that is constructed as a weighted sum of individual utilities. In this situation, we can
compare Theorem 3.1 to arguments based on duality. It follows from Proposition 4.1
and Lemma 4.1 together with Theorem 3.1 that maximizers of the function f (w) =
w�F(w) give rise to maxmin points for the underlying social decision problem when
F is defined by (6), and the Pareto mapping ξ satisfies (3). The same conclusion can
also be reached without appealing to Theorem 3.1 if it is assumed that strong duality
holds, so that the minmax property

max
x∈X

min
w∈ΔN

w�V (x) = min
w∈ΔN

max
x∈X

w�V (x) (11)

9 Harsanyi’s position in [29], based on weighted-sum optimization, is often viewed as standing in contrast
to the maxmin criterion of Rawls [52]; see for instance [30]. Nevertheless, we see here that the two can be
reconciled.
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is satisfied. Indeed, let w∗ be a maximizer of the potential function w�F(w), so that
(see Lemma 4.1) it is a best reply to itself in the game (N , F). We can then write,
using the best reply property in the first step,

min
i∈N Vi (ξ(w∗)) = min

w∈ΔN
w�V (ξ(w∗)) = w∗�V (ξ(w∗)) = min

w∈ΔN
w�V (ξ(w))

= min
w∈ΔN

max
x∈X

w�V (x) = max
x∈X

min
w∈ΔN

w�V (x) = max
x∈X

min
i∈N Vi (x). (12)

Equation (12) shows directly that ξ(w∗) is a maximizer of mini∈N Vi (x). The use of
the minmax theorem in this argument is replaced in Theorem 3.1 by the assumption
of simpliciality. It should also be noted that the situation of Fig. 1 is significantly more
general than the situation of Fig. 2, since in the latter it is assumed that the weighted-
sum optimality property (3) is satisfied in terms of the given (unmodulated) objective
functions, whereas the former allows modulation or any other way of constructing a
Pareto map.

5 Iterative Algorithm

The design of dynamical systems whose stationary points are Nash equilibria has been
an active research topic since the early stages of game theory. Traditionally, these
dynamical systems are interpreted as representing a process of actual learning and
revision of behavior by agents, or in the biological setting as an evolutionary process.
The processmay lead to an equilibrium in the sense of dynamical systems that turns out
to be an equilibrium in the sense of game theory as well. Alternatively, the dynamics
can be viewed as representing computational processes, serving as numerical methods
to find game-theoretic equilibria. The latter point of view is taken here. Our interest
is therefore focused less on studying a range of alternative dynamics that can all be
viewed as plausible representations of learning or evolution, and more on finding
a particular process that leads quickly and reliably to game-theoretic equilibrium.
Moreover, since computation must take place in discrete steps, we consider dynamics
in discrete time.

We may take the IRLS algorithm developed in [37] as a starting point. The opti-
mization problem addressed by Lawson is

max
i

( ∣∣∣
n∑

j=1

α j f j (zi ) − ϕ(zi )
∣∣∣
)

→ min (α ∈ R
m), (13)

where ϕ and f j ( j = 1, . . . ,m) are given functions defined on an interval [a, b], and
a ≤ z1 < z2 < · · · < zn ≤ b. In other words, the problem is to find the best approxi-
mation of the function ϕ by a linear combination of the functions f j , in the sense that
the maximum of the absolute errors on given gridpoints zi is minimized. The problem
can be phrased in the terminology of this paper as follows. Define N = {1, . . . , n},
X = R

m , and Vi (α) = −| ∑n
j=1 α j f j (zi ) − ϕ(zi )|. The problem (13) is then to find

a maxmin point for the social decision problem (N ,X , V ). A monotonically related
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problem is obtained by defining Ui (α) = −Vi (α)2 for α ∈ X and i ∈ N . To a given
set of weights w ∈ ΔN , one can associate the uniquely defined solution ξ(w) of the
weighted least-squares problem

−
n∑

i=1

wiUi (α) =
n∑

i=1

wi

( n∑

j=1

α j f j (zi ) − ϕ(zi )
)2 → min. (14)

Themap ξ is a Pareto map for (N ,X ,U ) and hence also for (N ,X , V ) by Lemma 2.4.
The population game associated to (N ,X , V ) via the map ξ is (N , F), where
F : ΔN → R

N is defined by

Fi (w) = −Vi (ξ(w)) =
∣∣∣

n∑

j=1

ξ j (w) f j (zi ) − ϕ(zi )
∣∣∣.

Lawson proves (in a different but equivalent formulation) that the solution to (13) is
given by ξ(w∗), where w∗ ∈ ΔN is the limit of the sequence (wk)k=1,2,... obtained
recursively by taking (for instance) w0 = ( 1n , . . . , 1

n ) and defining

wk+1
i = wk

i Fi (w
k)

∑
j∈N wk

j Fj (wk)
(i ∈ N ; k = 0, 1, 2, . . .). (15)

The update rule (15) can be used only when the components Fi (w) of the rewards
function are guaranteed to be nonnegative, as is indeed the case in the application
investigated byLawson.Tomake the update rule applicable in situationswhere rewards
might be negative, a simple solution is to apply a transformation to the rewards that
renders them positive while maintaining the ordering; this does not affect the maxmin
solution.10 The natural candidate is the exponential transformation. When this is used,
the rule (15) is modified to

wk+1
i = wk

i exp(hFi (w
k))

∑
j∈N wk

j exp(hFj (wk))
(i ∈ N ; k = 0, 1, 2, . . .), (16)

where h > 0 is a parameter that can be used to tune the behavior of the iteration.
The iteration (16) is by no means new to the field of population games. In fact,

as detailed below in Remark 5.1, it can be viewed as a discrete-time version of the
famous replicator equation of evolutionary game theory [62], which is given by

dwi

dt
(t) = wi (t)

(
Fi (w(t)) −

∑

j∈N
w j (t)Fj (w(t))

)
, i ∈ N . (17)

10 Indeed, if g is an increasing function, then the points x ∈ X where mini (g(Vi (x))) is maximized are the
same as the points where mini (Vi (x)) is maximized, since mini (g(Vi (x))) = g(mini (Vi (x))). Here it is
crucial, of course, that the same transformation is applied to all of the rewards. If different transformations
are used for the rewards of different strategies, then the maxmin solution will in general not remain the
same.
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Many alternative dynamical systems have been proposed which likewise can be
thought of as representing actual evolutionary behavior of populations both in biolog-
ical and economic applications; see for instance [19, 32, 33], and [58]. These systems
include the replicator equation (17) as well as the projection, best response, logit,
Smith, and BNN (Brown/von Neumann/Nash) dynamics, all formulated in continu-
ous time [58, Ch.5]. The attention spent on the convergence analysis of discrete-time
counterparts appears relatively small in comparison, although there are for instance
the contributions of [56], [47], and [50]. Standard results for the continuous-time repli-
cator equation (see for instance [14, Thm.25, Thm.26], [58, Thm.8.1.1]) suggest that
dynamically stable fixed points of (17) are Nash equilibria, so that fixed points that
are found by iteration are expected to give rise to maxmin solutions via the Pareto
map. The observation that the discrete-time replicator equation (16) can be used to
solvemaxmin problems appears to be new. A detailed investigation of the convergence
behavior of (16) in tester games is undertaken in [4].

In the literature on machine learning and learning in games, the iteration (16) is
called the multiplicative weights algorithm (MWA). A survey of its use in these fields
is given in [1].11 Several versions exist, which are distinguished by the way in which
rewards (or costs) are transformed. An exponential transformation is used in (16), for
reasons already explained. The untransformed version, as in [37], is used in [8]. The
authors of [62], in the paper that introduces the continuous-time replicator equation,
employ 1 + Fi instead of Fi ; in [47], 1 + hFi is used, where h > 0 is a parameter.
In the derivation as shown in Remark 5.1, the parameter h appears naturally as a step
size. The same parameter h, or a rescaling of it, is also referred to in the machine
learning literature as a learning rate or as an intensity of choice.

Remark 5.1 To see the relation between (16) and (17),12 note that the trajectories
of (17) can be obtained by normalization from trajectories of the vector differential
equation

dzi
dt

(t) = zi (t)Fi (z(t)) i ∈ N , (18)

where the mapping F is extended to the set of unnormalized weight vectors Δ+
N in

the way already discussed above. Indeed it can be verified by direct computation
that, if z(·) satisfies (18), then the function w( · ) : [0,∞) → ΔN defined by w(t) =
z(t)/(1�z(t)) satisfies the replicator equation (17). In otherwords, the system (18) is an
“unnormalized” version of (17). By rewriting the equations (18) as (d/dt) log zi (t) =
Fi (z(t)) and applying a simpleEuler discretization scheme to this equation, one obtains
the recursion log zi (t+h) = log zi (t)+hFi (z(t)), where h is a chosen time step. This

11 The authors of this paper note that versions of the MWA have been rediscovered several times, without
referring however to the work of Lawson [37] or to numerical analysis in general. Rice and Usow [53] state,
without giving explicit references, that the update rule proposed by Lawson was suggested several times
before.
12 This relation is well known in the literature; we give a brief derivation for the reader’s convenience.
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in turn can be rewritten as zi (t + h) = exp(hFi (z(t)))zi (t), which, finally, produces
the recursion (16) after normalization.13

The generalized IRLS method for finding maxmin points of a given social decision
problem (N ,X , V ) can now be described as follows.

Algorithm 5.1 (GIRLS)14

1. Find, if possible, a Pareto map ξ for the problem (N ,X , V ).
2. Define F : ΔN → R

N by Fi (w) = −Vi (ξ(w)).
3. Choose an initial point w0 in the interior of the simplex (for instance w0 =

( 1n , · · · , 1
n )), choose a step size h, and run the iteration (16) until convergence

takes place. If convergence fails, reduce the step size.
4. Define x∗ = ξ(w∗), where w∗ is the limit obtained in step 3.
5. Verify that Vj (x∗) ≥ Vi (x∗) for i ∈ K := {i ∈ N | w∗

i > 0} and j ∈ N . If so,
conclude that x∗ is a maxmin point.

The success of the algorithm hinges on whether or not a Pareto map is available that
can be computed efficiently, since this mapping is used in every step of the iteration.
To obtain such a map, one possibility is to look for monotonic transformations of the
individual objective functions represented by the entries of the vector V (x) (possibly
different transformations for different entries) such that the weighted-sum problem
for the transformed objectives can be computed quickly. For example, in the linear
approximation problem of minimizing ‖Ax − b‖∞ where A ∈ R

n×m and b ∈ R
m

are given, with n > m, the “individual objectives” |(Ax − b)i | can be monotonically
transformed to (Ax − b)2i , which is successful since the weighted-sum problem in
terms of these objectives is just a weighted least-squares problem, for which an explicit
solution formula can be given. This is essentially the application in the original work of
[37]. Other applications are shown below in Sects. 6.1 and 6.2. For further situations
in which efficient Pareto maps can be constructed, one may think for instance of
collective investment under disagreement in probabilities [5], minmax estimation in
statistics ([38, Ch.5], [41]), and facility location problems [36].

As discussed above, there are alternative differential equations that may be used
instead of the replicator equation (17), and each of these could be discretized in various
ways. The resulting iterations could be used instead of (16) in step 3. The conclusion
in step 5 is justified by Lemma 2.2 and by the subgroup efficiency property of Pareto
maps. The inequalities that are to be checked in this step imply that Vi (x∗) = Vj (x∗)
for all i, j in the active set K . This property is already ensured when w∗ is a fixed
point of the iteration (16) (the same holds for alternatives), so that it suffices to verify
that Vj (x∗) ≥ Vi (x∗) for i ∈ K and j ∈ N\K . It can be shown [4] that the method
will be successful under mild conditions, for sufficiently small step size.

With respect to the original IRLS method, Algorithm 5.1 is a three-way gener-
alization: (i) the uniform quadratic transformation used by Lawson is replaced by a
transformation Ui (x) = gi (Vi (x)) where gi can be any increasing function, and can

13 Discretization can also be done in different ways, leading to alternative iterations; see for instance
eqn. (82) in [33].
14 The acronym GIRLS stands, obviously, for Generalized Iteratively Reweighted Least Squares.
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depend on i ; (ii) Paretomaps do not necessarily come fromweighted-sumparametriza-
tion; (iii) the iteration (15) is replaced by (16) (or an alternative) which includes a step
size / learning rate parameter that can bemanipulated to adjust the convergence behav-
ior. Applications in the following section illustrate the extension of the scope that is
reached with the GIRLS method.

6 Applications

In this section, we discuss two applications. The first concerns a collective investment
problem in which agents have different preferences. Certainty equivalents are used
to achieve a form of interpersonal comparability of evaluations. The setting can be
compared to the “random preferences”model of Desmettre and Steffensen [22]. In that
paper, however, the objective is an average of certainty equivalents with respect to a
prior on a one-dimensional parameter space, whereas we solve a maxmin problem and
allow for heterogeneity of preferences described by multiple parameters. Desmettre
and Steffensen focus mainly on time consistency issues; we do not discuss these here.
The second application is a simple example of a situation inwhich heterogeneity is due
to disagreement on model parameters. The use of the maxmin criterion in situations
of model uncertainty is quite standard; see for instance [9]. The problem discussed
below is convex by nature; the purpose of the subsection is just to show that, even in
this case, there is something to be said for the use of the GIRLS method.

6.1 Investment Under Preference Heterogeneity

Here we consider an optimal investment problemwithin a discrete setting. The formu-
lation of the problem is standard, except for the fact that we consider the investment
decision to be taken on behalf of the members of a heterogeneous collective. The cri-
terion used by the decision maker (social planner, which could be a board of trustees)
is assumed to be of minmax regret form, where regret is defined as the ratio of individ-
ually optimal certainty equivalent with respect to the individual certainty equivalent
derived from the planner’s decision. In the example that we work out, heterogeneity
exists along multiple dimensions.

To describe the problem formally, let Ω = {ω1, . . . , ωm} be a finite sample space
representing possible future states. The probability of state ω j is p j . The price of the
Arrow-Debreu security that pays 1 if state ω j is realized and 0 otherwise is q j . It
is assumed that p j > 0 and q j > 0 for all j = 1, . . . ,m. Suppose that u(x) is an
increasing, differentiable, and strictly concave function defined on (0,∞), satisfying
the Inada conditions

lim
x↓0 u

′(x) = ∞, lim
x→∞ u′(x) = 0.

Let an initial capitalW0 > 0 be given. It is shown for instance in [21, Thm.3.1.3] that
the solution x∗ of the optimization problem
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maximize E[u(X)] =
m∑

j=1

p ju(x j ) s.t. x ∈ R
m++,

m∑

j=1

q j x j ≤ W0 (19)

is determined uniquely by the requirements

∃λ > 0 : u′(x∗
j ) = λ

q j

p j
( j = 1, . . . ,m),

m∑

j=1

q j x
∗
j = W0. (20)

Suppose now that there is a collective N consisting of individuals who agree on the
model parameters p j and q j ( j = 1, . . . ,m), but who rank portfolio decisions using
different utility functions ui , i ∈ N . Assume that all utility functions ui (x) satisfy the
same conditions as above. The expected utility of a portfolio decision x ∈ R

m++ to
participant i is given by

E[ui (x)] =
m∑

j=1

p jui (x j ).

The corresponding certainty equivalent is defined as the number CEi (x) that is
uniquely defined by

ui (CEi (x)) = E[ui (x)].

Let an initial capital W0 be fixed. It follows from the results mentioned above that,
corresponding to this initial capital, there is for each participant an optimal portfolio
decision x∗

i . Since certainty equivalents are always positive, the regret of participant
i ∈ N resulting from decision x ∈ R

m can be defined as the ratio

Rgri (x) = CEi (x∗
i )

CEi (x)
. (21)

The quantity so obtained is dimensionless, and is always at least equal to 1. To rephrase
the problem in a maxmin framework, define satisfaction by

Sati (x) = 1/Rgri (x) = CEi (x)

CEi (x∗
i )

∈ (0, 1].

A social decision problem (N ,X , V ) is then specified by

X = {
x ∈ R

m++
∣∣

m∑

j=1

q j x j ≤ W0
}
, Vi (x) = Sati (x) (x ∈ X , i ∈ N ). (22)

It is readily verified that the mapping V : X → R
N is indeed continuous with respect

to the usual topology ofX as a subset ofRm . Themaxmin problem associated to (22) is

maximize min
i∈N Sati (x) subject to x ∈ R

m++,

m∑

j=1

q j x j ≤ W0. (23)
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A direct attack on this nonsmooth problem does not seem promising. However, satis-
faction is for each individual participant monotonically related to expected utility. Let
ξ(w) denote the solution of the weighted-sum expected utility optimization problem
with weights w. Continuity of the mapping ξ can be shown following the argument
in the proof of Lemma 2.3, by extending the decision space to X := {x ∈ R

m+ |∑m
j=1 q j x j ≤ W0}, and allowing the evaluation mapping to take the value −∞ in

case limx↓0 u(x) = −∞. The Inada condition at 0 guarantees that solutions x ∈ R
m+

with x j = 0 for some j ∈ {1, . . . ,m} are not optimal for any set of weights. Using
also Proposition 2.1, we conclude that ξ is a Pareto map. From the modulation lemma
(Lemma 2.4), it follows that themaxmin satisfaction problem is of simplicial type with
Pareto map ξ . Hence, the algorithm of Sect. 5 can be applied. For the practical feasi-
bility of the algorithm, a key factor is that the Pareto map can be computed efficiently.
Indeed, a weighted sum of the utility functions ui (x) satisfies the same qualitative
conditions as the functions ui themselves, so that, for any given set of weights, it is
a simple numerical exercise to solve the weighted-sum expected utility optimization
problem. Here, we make essential use of Lemma 2.4, since it would not be as easy to
optimize a weighted sum of satisfactions.

To show the results of the algorithm in a specific case, we take a collective consisting
of 20 participantswhose preferences are given by power utilitywith saturation.15 Their
utility functions are

ui (x) = (min(x, αi erT W0))
1−γi

1 − γi
,

where αi is the ratio of the saturation level relative to the level that would be obtained
by investing all capital in riskless assets. The coefficients of risk aversion γi and
the saturation levels αi are jointly drawn randomly in the ranges 2 ≤ γ ≤ 5 and
1 ≤ α ≤ 1.5. A stochastic model is constructed in a 1201-point sample space to
represent a discretizedBlack-Scholes economywith the following parameters: interest
rate 2%, expected return of risky asset 8%, volatility of risky asset 20%, investment
horizon 5 years. The left panel of Fig. 3 shows the convergence of theMWA iteration to
a point on a six-dimensional face of the simplex. The preferences of the corresponding
group members, parametrized by coefficient of risk aversion γ and saturation level α,
are shown as squares in the right panel of Fig. 3 and are given in tabular form below.

weight 46.6% 29.5% 14.8% 3.72% 3.68% 1.70%
γ 3.04 2.28 2.08 3.26 2.00 2.42
α 1.02 1.45 1.35 1.05 1.16 1.01

15 We choose these utility functions, which do not satisfy all of the assumptions made above, because they
allow us to include two easily interpreted preference parameters in a simple model. To extend the theory so
that kinks and saturation are covered, adaptations can be made as for instance is done in [7, 11–13, 18].
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Fig. 3 The left panel shows convergence of the algorithm to a point on a six-dimensional face of the simplex.
The preferences of the corresponding six group members are indicated as squares in the right panel; the
boxed squares correspond to members with weights exceeding 10%. Other members (represented by dots)
have zero weights

These members all attain the same level of satisfaction, namely 97.85%.16 It is easily
verified that the levels of satisfaction of other group members are higher, and hence
the solution found is a maxmin point by the verification lemma (Lemma 2.2).

The maxmin solution itself is shown in Fig. 4. For ease of interpretation, the wealth
at time T is indicated not as a nonincreasing function of the pricing kernel q j/p j

but rather as a nondecreasing function of its reciprocal, which is the return on the
growth optimal portfolio [3].17 This return has been annualized for use as a readily
interpretable scale on the horizontal axis. In addition to the maxmin solution, the
individually optimal policies of the six critical members are shown as well in Fig. 4.
Computation of these results in Matlab is completed in a few seconds on a standard
laptop computer.

To interpret the graphs in terms of a portfolio strategy within the Black-Scholes
model, one should take into account that replication by the delta hedge calls for a
position in risky assets that is higher when the payoff graph at the current point is
steeper, and that the payoff graph at times before the terminal time is a diffused and
somewhat shifted version of the payoff graph at the terminal time; see for instance
[48, Ch.7]. The plateaus that are seen in Fig. 4 therefore correspond to situations in
which little risk is taken. The impact of the saturation levels of the critical members
on the maxmin decision can be seen clearly.

16 In other words, the worst-off members are faced with a loss of 2.15% in certainty equivalent terms on
the five-year investment horizon, with respect to strategies that would be completely tuned to their own
preferences. If this is considered too much, the collective might be split into two or more subgroups that
follow different investment strategies. We do not discuss here how such clustering might be done; compare
[6] for a situation in which the differences in preferences between participants are described by a single
parameter.
17 In the Black-Scholes model, the optimal growth portfolio is the fixed-mix portfolio whose volatility is
equal to the market price of risk. Under the parameter values we have assumed, the market price of risk
is (0.08 − 0.02)/0.2 = 0.3, so that the optimal growth portfolio is 150% long in the risky asset and 50%
short in the riskless asset; it is therefore quite a risky portfolio. The end points of the horizontal scale in
Fig. 4 correspond to levels of the annualized return that are exceeded with probabilities 99.75% and 0.25%
respectively.
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Fig. 4 The bold curve represents the minmax regret decision for the group with preferences indicated in the
right panel of Fig. 3. Portfolio value at time T is shown as a function of the annualized return on the optimal
growth portfolio (the fixed-mix portfolio that is optimal under log utility). The individual preferences of
group members with nonzero weights are indicated as grey lines; dark grey lines correspond to group
members with weights exceeding 10%. The dashed line indicates the level erT W0, which is the final wealth
that is achieved by the strategy of investing all capital into riskless assets

6.2 Disagreement onModels

Even when members of a collective have identical preferences, they may still disagree
on actions to be taken in a given situation because they hold different views on the
dynamics of the process they are facing and the impact that actionswill have. As is well
known for instance in climate policy research, different models of climate dynamics
may lead to radically different conclusions, even when the objective function is fixed.
In an alternative interpretation, finding a compromise decision in the face of different
opinions on models can be viewed as a way of addressing model uncertainty.

For a very simple example, suppose that member i ∈ N believes that the state x1
that will be reached at time 1 from an initial state x0 under the action v0 is given by

x1 = ai x0 + biv0. (24)

Also, assume that all members aim to minimize the quantity given by

J (x1, v0) = x21 + v20 . (25)

In the interpretation of a two-period climate model, all members therefore agree that
the ideal state of climate corresponds to the situation in which the state variable takes
the value 0. They disagree, however, when it comes to the question how the situation
will evolve if nothing is done (as captured by ai ) and the question how large the effect
of action will be per unit expense (as captured by bi ).

We take the action relative to the current state as the decision variable, so that the
decision space is R. The cost of decision k ∈ R from the perspective of participant i
is
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Ci (k) = (ai x0 + bi kx0)
2 + (kx0)

2 = (
(ai + bi k)

2 + k2
)
x20 .

The decision that would be preferred by participant i is obtained by minimizing the
expression above, which leads to

k∗
i = − aibi

1 + b2i
. (26)

As an evaluation function of social decisions, we may use the regret of participant i
(which we define here additively rather than multiplicatively) given by

Rgri (k) = Ci (k) − Ci (k
∗
i ) ∈ (−∞, 0].

The social decision problem that is obtained in this way is specified by

X = R, Vi (k) = −Rgri (k) (k ∈ X , i ∈ N ). (27)

The continuity of themapping V : X → R
N is trivially verified. Themaxmin problem

associated to (27) is a convex optimization problem, since the functions Vi are concave,
and the pointwise minimum of a set of a concave functions is again concave. While
therefore in this case the maxmin problem could be solved by standard (gradient
ascent) methods, still it can be said that the weighted-sum problem is simpler, because
it can be solved analytically. Indeed, the parametric optimization problem

minimize
∑

i∈N
wiRgri (k) subject to k ∈ R

with parameter w ∈ ΔN is solved by k = κ(w), where κ : ΔN → R is defined by

κ(w) =
∑

i∈N wi ai bi
1 + ∑

i∈N wi b2i
. (28)

As is readily verified, the mapping κ defined by (28) is a Pareto map for the social
decision problem (27). In this case, the Pareto map is constructed by optimization of a
weighted sum of the evaluation functions themselves, and so we are in the “classical”
case of Fig. 2.

The result of applying the generalized IRLS method in a particular case is shown
in Fig. 5. A collective consisting of 50 members was formed with beliefs described
by parameters ai and bi , drawn randomly from the intervals [0.7, 1.2] and [0.1, 0.3]
respectively. The compromise decision according to the minmax regret rule is found
to be determined by two group members. One of these attaches a high value to both
coefficients a and b, which means that this participant believes that the state will move
dangerously far from the optimal value 0 when no action is taken, and also thinks
that action will have a big impact on the state. The other participant holds opposite
views: the state will return to 0 even if no action is undertaken, and moreover action
is not very cost-effective. The optimal choice of action for the first participant is given
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Fig. 5 The left panel shows convergence of the algorithm to a point on a two-dimensional face of the
simplex. The preferences of the corresponding two group members are indicated as boxed squares in the
right panel. Other members (represented by dots) have zero weights

by k = −0.31, whereas for the second participant it is given by k = −0.08. The
compromise under the minmax regret rule is k = −0.20.

7 Conclusions

Maxmin or minmax problems arise in many different fields, from operations research
to statistics and from numerical analysis to finance. When phrased in the language of
welfare theory aswe have chosen to do in this paper, these problems can be described in
terms of a social planner who takes a decision on behalf of a heterogeneous collective,
and who wants to do this in such a way that the minimum utility across the members
of the collective is maximized. We have proposed a solution method that is a gener-
alization of the iteratively reweighted least-squares (IRLS) method originally devised
by [37] in the context of function approximation. We have also shown that there is a
close connection between social decision problems on the one hand and associated
population games on the other hand. The connection involves a change of sign, as well
as a re-interpretation of decision weights as population fractions. Nash equilibria of
the associated population game (the tester game) give rise to maxmin points of the
original social decision problem. The connection is of interest both from a concep-
tual perspective and from an algorithmic point of view. Conceptually, it is remarkable
that social decision problems, which are optimization problems with a single decision
maker (the social planner), are related under certain conditions to population games,
which involve many decision makers who just pursue their own interests. From the
algorithmic perspective, the theorem invites the application of algorithms that have
been developed for finding Nash equilibria in population games to computational
methods for solving social decision problems.

With the idea of relating maxmin problems to population games in place, many
followup questions can be asked. We mention just a few. In several applications, for
instance in statistics, it is natural to work with continuous collectives, i.e., collectives
that are modeled as a continuum, rather than as a finite set. It would be of interest
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to extend the computational method of this paper to cover such cases, perhaps using
as inspiration the Remez algorithm (see for instance [46]) that is used for the same
purpose in the specialized context of Chebyshev approximation. Instead of the MWA
iteration on which we have focused in this paper, one might also use discretized
versions of alternative dynamical systems that have been proposed as descriptions of
evolutionary dynamics of population games. This would lead to alternative numerical
schemes which could be compared in terms of efficiency, scalability and so on. We
have only discussed single-stage problems. It would be natural to consider multi-stage
problems as well, and to investigate how the connection between maxmin problems
and population games interacts with the methods of dynamic programming. While
the solution of maxmin problems using methods taken from evolutionary games is
important in applications, one may also reverse the perspective and ask what new
insights about population games can be obtained. For instance, it would be of interest
to extend Proposition 3.1 to a full characterization of tester games.
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Appendix

We demonstrate here a social decision problem with a continuous decision space that
is not simplicial, which means that there exists no continuous map from the simplex
to the decision space that is subgroup efficient.

Example A.1 Take a group consisting of three members who live at points A, B, and C
along a circular road, at equal distances from each other. The planner needs to place a
facility at some point x along the road. The decision space X is therefore a circle. All
members of the group evaluate the decision by a function Vi (x) that is the negative of
the length of the arc from the location i to x . With respect to the group as a whole, all
points on the circle are Pareto optimal. For the subgroup consisting of members A and
B, the set of Pareto optimal points is the arc fromA to B, and so on. It is not possible to
construct a Pareto map via weighted-sum optimization, even when nonuniqueness of
the weighted-sum optimal solution would be resolved by a tiebreak rule. The reason
is that, as is easily verified, only the three points A, B, and C can arise as solutions
of a weighted-sum optimization problem when all weights are nonzero. A continuous
map from the interior of the simplex to the discrete set {A,B,C} has to be constant,
and hence such a map cannot coincide with the weighted-sum solution.
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The fact that weighted-sum optimization fails to provide a Pareto map does not by
itself imply that a Pareto map could not be constructed in some other way. However,
we now show that this is not possible. For a proof by contradiction, suppose there
exists a Pareto map ξ for the given problem. For t ∈ [0, 1] and η ∈ [0, 1], define the
parametrized set of curves t → w(t; η) by

w(t; η) = (1 − η, η(1 − t), ηt).

(weights on A, B, and C respectively). The decision space can be described as the
interval [−π, π ] where the two end points are identified, and where the locations of
the points A, B, and C are given by 0, − 2

3π , and
2
3π respectively. For η = 0, we

have ξ(w(t; 0)) = 0 for all t . As η increases from 0 to 1, the point ξ(w(0; η)) moves
continuously from 0 to − 2

3π , in such a way that ξ(w(0; η)) ∈ [− 2
3π, 0] for all η.

Likewise, the point ξ(w(1; η)) moves continuously from 0 to 2
3π , in such a way that

ξ(w(1; η)) ∈ [0, 2
3π ] for all η. Consequently, for all η ∈ [0, 1], there exists t ∈ [0, 1]

such that ξ(w(t; η)) = 0. In particular, this holds for η = 1. We have a contradiction,
since the point 0, which corresponds to location A, is not efficient for the subgroup
consisting of participants B and C.

For an alternative proof, one may use the fact that there is no continuous mapping
from the unit disk to the unit circle that leaves the circle invariant; see for instance
[26, Prop. 4.3].
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