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Abstract
Wederive efficient algorithms to compute weakly Pareto optimal solutions for smooth,
convex and unconstrained multiobjective optimization problems in general Hilbert
spaces. To this end, we define a novel inertial gradient-like dynamical system in the
multiobjective setting, which trajectories converge weakly to Pareto optimal solutions.
Discretization of this system yields an inertial multiobjective algorithm which gener-
ates sequences that converge weakly to Pareto optimal solutions. We employ Nesterov
acceleration to define an algorithmwith an improved convergence rate compared to the
plain multiobjective steepest descent method (Algorithm 1). A further improvement
in terms of efficiency is achieved by avoiding the solution of a quadratic subprob-
lem to compute a common step direction for all objective functions, which is usually
required in first-ordermethods. Using a different discretization of our inertial gradient-
like dynamical system, we obtain an accelerated multiobjective gradient method that
does not require the solution of a subproblem in each step (Algorithm 2). While this
algorithm does not converge in general, it yields good results on test problems while
being faster than standard steepest descent.
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1 Introduction

Inmany applications in industry, economics, medicine or transport, optimizing several
criteria is of interest. In the latter, one wants to reach a destination as fast as possible
with minimal power consumption. Drug development aims for maximizing efficacy
while minimizing side effects. Even these elementary examples share an inherent fea-
ture. The different criteria one seeks to optimize are in general contradictory. There
is no design choice that is best for all criteria simultaneously. This insight shifts the
focus from finding a single optimal solution to a set of optimal compromises—the
Pareto set. Given the Pareto set, a decision maker can select an optimal compromise
according to their preferences. In this paper, we derive efficient gradient-based algo-
rithms to compute elements of the Pareto set. Formally, a problem involving multiple
criteria can be described as an unconstrained multiobjective optimization problem

min
x∈H

⎡
⎢⎣

f1(x)
...

fm(x)

⎤
⎥⎦ , (MOP)

where fi : H → R for i = 1, . . . ,m are the objective functions describing the
different criteria. Popular approaches to tackle this problem in the differentiable case
are first-order methods which exploit the smooth structure of the problem while not
being computationally demanding compared to higher-order methods involving exact
or approximated Hessians.

While in single-objective optimization, accelerated first-order methods are very
popular, these methods are not studied sufficiently from a theoretical point of view in
themultiobjective setting. A fruitful approach to analyze accelerated gradient methods
is to interpret them as discretizations of suitable gradient-like dynamical systems [31].
The analysis of the continuous dynamics is often easier and can later on be transferred
to the discrete setting. So far, this perspective is not fully taken advantage of in the
area of multiobjective optimization. In this paper, we utilize this approach to derive
accelerated gradient methods for multiobjective optimization. To this end, we define
and analyze the following novel dynamical gradient-like system

ẍ(t) + α ẋ(t) + proj
C(x(t))

(−ẍ(t)) = 0, (IMOG’)

with α > 0, C(x):= conv ({∇ fi (x) : i = 1, . . . ,m}), where conv(·) denotes the con-
vex hull and projC(x(t))(−ẍ(t)) is the projection of−ẍ(t) onto the convex setC(x(t)).
The system (IMOG’) is an inertial multiobjective gradient-like system. We choose the
designation (IMOG’) to emphasize its relation to the system

μẍ(t) + γ ẋ(t) + proj
C(x(t))

(0) = 0, (IMOG)

with μ, γ > 0, which was discussed in [7]. In the single-objective setting (m = 1),
both (IMOG’) and (IMOG) reduce to the heavy ball with friction system
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μẍ(t) + γ ẋ(t) + ∇ f (x(t)) = 0, (HBF)

which is well studied for different types of objective functions f , see, e.g., [1, 10, 27].
We discretize (IMOG’) to obtain an iterative scheme of the form

xk+1 = xk + a(xk − xk−1) − b
m∑
i=1

θki ∇ fi (x
k),

with appropriately chosen coefficients a, b > 0 and θk ∈ R
m . This scheme can be

interpreted as an inertial gradient method for (MOP). We show that it shares many
properties with its continuous counterpart and that iterates defined by this algorithm
converge weakly to Pareto critical points. To the best of our knowledge this is the
first multiobjective method involving a constant momentum term with guaranteed
convergence to Pareto critical solutions.

In a further step, we introduce time-dependent friction and informally define the
following multiobjective gradient-like system with asymptotically vanishing damping

ẍ(t) + α

t
ẋ(t) + proj

C(x(t))
(−ẍ(t)) = 0. (MAVD)

A discussion of the system (MAVD) can be found in [30], where it is shown that
trajectories of (MAVD) converge weakly to weakly Pareto optimal solutions with fast
convergence of the objective values to an optimal value along the trajectories. In the
single-objective setting, this system simplifies to the following inertial system with
asymptotically vanishing damping

ẍ(t) + α

t
ẋ(t) + ∇ f (x(t)) = 0. (AVD)

It is well-known that (AVD) is naturally linked with Nesterov’s accelerated gradient
method [4, 5, 11, 31]. Discretizing the dynamical system (MAVD), and using our
knowledge about (IMOG’), we derive an accelerated gradient method for multiobjec-
tive optimization that takes the form

xk+1 = xk + k − 1

k + 2
(xk − xk−1) − b

m∑
i=1

θki ∇ fi (x
k),

with appropriately chosen coefficients b > 0 and θk ∈ R
m . Tanabe, Fukuda and

Yamashita derive an accelerated proximal gradient method for multiobjective opti-
mization using the concept of merit functions [34]. We show that the method we
derive from the differential equation (MAVD) achieves the same convergence rate of
order O(k−2) for the function values, measured with a merit function.

The remainder of the paper is organized as follows. After introducing some basic
definitions and notations in Sect. 2, we prove that solutions to the system (IMOG’)
exist in finite-dimensional Hilbert spaces in Sect. 3, and show that they converge to
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Pareto critical points in Sect. 4. Based on that, we derive a discrete optimization algo-
rithm from an explicit discretization of (IMOG’) and show that the iterates defined
by this method converge weakly to Pareto critical points, in Sect. 5. Then, we intro-
duce Nesterov acceleration and prove an improved convergence result in Sect. 6. The
numerical efficiency of the new methods is discussed in Sect. 7. The two central algo-
rithms are summarized in Algorithms 1 and 2 in the respective sections. We compare
the methods on convex and nonconvex example problems in Sect. 8 and conclude our
findings and list future research directions in Sect. 9.

2 Background

2.1 Notation

Throughout this paper, H is a real Hilbert space with inner product 〈·, ·〉 and
induced norm ‖·‖. We denote the open ball with radius δ > 0 and center x by
Bδ(x):= {y ∈ H : ‖y − x‖ < δ}. The closed ball with radius δ > 0 and center x is
denoted by Bδ(x). The set Δm := {

α ∈ R
m : α ≥ 0, and

∑m
i=1 αi = 1

}
is the posi-

tive unit simplex. For a set of vectors {ξ1, . . . , ξm} ⊆ H we denote the convex hull of
these vectors by conv({ξ1, . . . , ξm}):= {∑m

i=1 αiξi : α ∈ Δm
}
. For a closed convex

setC ⊆ H the projection of a vector x ∈ H ontoC is projC (x):=argminy∈H‖y−x‖2.
For two vectors x, y ∈ R

m , we define the partial order x ≤ y :⇔ xi ≤ yi for all
i = 1, . . . ,m. We define ≥, <, > on R

m analogously. When we treat dynamical
systems, t ∈ R and x ∈ H are the time and state variable, respectively. We denote
trajectories in H with t �→ x(t) with first derivative ẋ(t) and second derivative ẍ(t).

2.2 Multiobjective Optimization

Consider the unconstrained multiobjective optimization problem

min
x∈H

⎡
⎢⎣

f1(x)
...

fm(x)

⎤
⎥⎦ , (MOP)

with continuously differentiable objective functions fi : H → R for i = 1, . . . ,m.
The definitions in this subsection are aligned with [23].

Definition 2.1 Consider the multiobjective optimization problem (MOP).

i) A point x∗ ∈ H is Pareto optimal if there does not exist another point x ∈ H such
that fi (x) ≤ fi (x∗) for all i = 1, . . . ,m, and f j (x) < f j (x∗) for at least one
index j . The set of all Pareto optimal points is the Pareto set, which we denote
by P .

ii) A point x∗ ∈ H is locally Pareto optimal if there exists δ > 0 such that x∗ is
Pareto optimal in Bδ(x∗).
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iii) A point x∗ ∈ H is weakly Pareto optimal if there does not exist another vector
x ∈ H such that fi (x) < fi (x∗) for all i = 1, . . . ,m.

iv) A point x∗ ∈ H is locally weakly Pareto optimal if there exists δ > 0 such that
x∗ is weakly Pareto optimal in Bδ(x∗).

In this paper, we treat convex MOPs, i.e., the objective functions fi are convex for
all i = 1, . . . ,m. In this setting, every locally (weakly) Pareto optimal point is
also (weakly) Pareto optimal. For unconstrained MOPs, the so-called Karush–Kuhn–
Tucker conditions can be written as follows.

Definition 2.2 A point x∗ ∈ H satisfies the Karush–Kuhn–Tucker conditions if there
exists α ∈ Δm such that

∑m
i=1 αi∇ fi (x∗) = 0. If x∗ satisfies the Karush–Kuhn–

Tucker conditions, we call it Pareto critical.

The condition 0 ∈ conv ({∇ fi (x∗) : i = 1, . . . ,m}) is equivalent to the Karush–
Kuhn–Tucker conditions. Analogously to the single-objective setting, criticality of a
point is a necessary condition for optimality. In the convex setting, the KKT conditions
are also sufficient conditions for weak Pareto optimality. We denote the Pareto set by
P , the weak Pareto set by Pw and the Pareto critical set by Pc. In the setting of smooth
and convex multiobjective optimization, we observe the relation

P ⊂ Pw = Pc.

2.3 AcceleratedMethods for Multiobjective Optimization

Accelerated methods for multiobjective optimization are not sufficiently discussed
from a theoretical point of view in the literature yet. In [18] El Moudden and El
Moutasimpropose an acceleratedmethod formultiobjective optimizationwhich incor-
porates the multiobjective descent direction by Fliege [19] and the same acceleration
scheme as in Nesterov’s accelerated method [25]. ElMoudden and ElMoutasim prove
a convergence rate of the function values with rate O(k−2). Their proof relies on the
restrictive assumption that the Lagrange multipliers of the quadratic subproblem, that
is used to compute the step direction in every iteration, remain fixed from a certain
point on.Under this assumption, themethod simplifies toNesterov’smethod for single-
objective optimization problems applied to a weighted sum of the objective functions
with fixed weights. Only recently, Tanabe, Fukuda and Yamashita derived an acceler-
ated proximal gradient method for multiobjective optimization problems in [34]. They
developed their method using the concept of merit functions (see Sect. 2.5) and show
that the function values converge with rateO(k−2) without additional assumptions on
the Lagrange multipliers.

2.4 Dynamical Systems Linked toMultiobjective Optimization

In [29] Smale presents the idea of treating multiobjective optimization problems with
a continuous time perspective that is motivated from an economical point of view
using utility functions in a multi-agent framework. The simplest dynamical system for
multiobjective optimization problems is the multiobjective gradient system
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ẋ(t) + proj
C(x(t))

(0) = 0, (MOG)

where C(x(t)) = conv ({∇ fi (x(t)) : i = 1, . . . ,m}). This system is already treated
in [20] and in addition by Cornet in [16]. In [9, 24] the system (MOG) gets introduced
as a tool for multiobjective optimization. The system (MOG) can also be seen as
a continuous version of the multiobjective steepest descent method by Fliege [19].
In the single-objective setting (m = 1), the system (MOG) simplifies to the steepest
descent dynamical system ẋ(t)+∇ f (x(t)) = 0. Generalizations of (MOG) are treated
in [8, 9]. In [9] Attouch and Goudou discuss a dynamical system for constrained
minimization and in [8] Attouch, Garrigos and Goudou present a differential inclusion
for constrained nonsmooth optimization.
In [7], Attouch and Garrigos introduce inertia in the system (MOG) and define the
following inertial multiobjective gradient-like dynamical system

μẍ(t) + γ ẋ(t) + proj
C(x(t))

(0) = 0. (IMOG)

Trajectories of (IMOG) converge weakly to Pareto optimal solutions given γ 2 > μL ,
where L is a common Lipschitz constant of the gradients of the objective functions.

2.5 Merit Functions

A merit function associated with an optimization problem is a function that returns
zero at an optimal solution and which is strictly positive otherwise. An overview on
merit functions used in multiobjective optimization is given in [35]. In our proofs we
use the merit function

u0(x):= sup
z∈H

min
i=1,...,m

fi (x) − fi (z), (1)

which satisfies the following statement.

Theorem 2.3 It holds that u0(x) ≥ 0 for all x ∈ H. Moreover, x ∈ H is weakly Pareto
optimal for (MOP), if and only if u0(x) = 0.

Proof A proof of this result can be found in Theorem 3.1 in [35]. ��
Additionally, u0(x) is lower semicontinuous. Therefore, if (xk)k≥0 is a sequence with
u0(xk) → 0, every cluster point of (xk)k≥0 is weakly Pareto optimal. This motivates
the usageofu0(x) as ameasure of complexity formultiobjective optimizationmethods.
The function u0(x) is not the only merit function for multiobjective optimization
problems, see also [15, 21, 37] and further references in [35].

3 Global Existence in Finite Dimensions

In this section,we show that solutions exist for theCauchyproblem related to (IMOG’),
i.e,
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∣∣∣∣∣∣
ẍ(t) + α ẋ(t) + projC(x(t))(−ẍ(t)) = 0,

x(0) = x0, ẋ(0) = v0,

(CP)

with initial data x0, v0 ∈ H. To this end, we show that for this system solutions exist
if there exists a solution to a first-order differential inclusion

(u̇, v̇) ∈ F(u, v),

with a set-valued map F : H × H ⇒ H × H. Then, we use an existence theorem
for differential inclusions from [12]. Our argument works only in finite-dimensional
Hilbert spaces. Thus, we assume dim(H) < +∞ from here on. In our context, the
following set-valued map is of interest:

F : H × H ⇒ H × H, (u, v) �→ {v} ×
(( − argmin

z∈C(u)

〈z, v〉) − αv

)
. (2)

As stated above, C(u):= conv ({∇ fi (u) : i = 1, . . . ,m}). We can show that (CP) has
a solution if the differential inclusion

∣∣∣∣∣∣
(u̇(t), v̇(t)) ∈ F(u, v),

(u(0), v(0)) = (u0, v0),
(DI)

with appropriate initial data u0, v0 has a solution.

Remark 3.1 Themotivation for the choice of the differential equation (IMOG’) oppos-
ing to the choice (IMOG) in [7] is the energy estimate in Proposition 4.1. Solutions
x to the Cauchy problem (CP) naturally satisfy the following energy estimate, which
holds in the single-objective setting for the heavy ball with friction dynamical system.

d

dt

[
fi (x(t)) + 1

2
‖ẋ(t)‖2

]
≤ −α‖ẋ(t)‖2, for all i = 1, . . . ,m and t ≥ 0. (3)

In fact,wediscovered the system (IMOG’) by starting from relation (3) and interpreting
it as a variational inequality. Inequality (3) does in general not hold for the system
(IMOG) considered in [7].

3.1 Existence of Solutions to (DI)

To show that there exist solutions to (DI), we investigate the set-valued map (u, v) ⇒
F(u, v) defined in (2). The basic definitions for set-valuedmaps used in this subsection
can be found in [12].

Proposition 3.2 For all (u, v) ∈ H × H, F(u, v) ⊂ H × H is convex and compact.

Proof The statement follows directly from the definition. ��
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To use an existence theorem from [12], we need to show that (u, v) ⇒ F(u, v) is
upper semicontinuous. Showing this is elementary. We omit the full proof here but
sketch a possible way to prove this result.

Lemma 3.3 Let C(u):= conv({ci (u) : i = 1, . . . ,m}) with ci : H → H, u → ci (u)

continuous for i = 1, . . . ,m. Let (u0, v0) ∈ H × H be fixed.
Then, for all ε > 0 there exists a δ > 0 such that for all (u, v) ∈ H × H with
‖u − u0‖ < δ and ‖v − v0‖ < δ and for all z ∈ argminz∈C(u)〈z, v〉 there exists
z0 ∈ argminz0∈C(u0)〈z0, v0〉 with ‖z − z0‖ < ε.

Proof The proof follows by continuity arguments. ��
Proposition 3.4 The set-valued map (u, v) ⇒ F(u, v) is upper semicontinuous.

Proof Using Lemma 3.3 we can show in a straightforward manner

F((u0, v0) + Bδ(0)) ⊂ F(u0, v0) + Bε(0),

using only continuity arguments. Then, the statement follows by the fact that (u, v) ⇒
F(u, v) is locally compact. ��
Proposition 3.5 Let H have finite dimension. Then, the mapping

φ : H × H → H × H, (u, v) �→
(

v, proj
F(u,v)

(0)

)
,

is locally compact.

Proof If dim(H) < +∞ the proof follows easily since all images F(u, v) are compact
and depend on (u, v) in a well-behaved manner. On the other hand, from φ being
locally compact, we get that v �→ v is locally compact which is equivalent toH being
finite-dimensional. ��
The following existence theorem from [12] is applicable in our setting.

Theorem 3.6 Let X be a Hilbert space and let Ω ⊂ R × X be an open subset con-
taining (0, x0). Let G : Ω ⇒ X be an upper semicontinuous set-valued map such that
G(ω) is nonempty, convex and closed for allω ∈ Ω . We assume thatω �→ projG(ω)(0)
is locally compact on Ω . Then, there exists T > 0 and an absolutely continuous func-
tion x(·) defined on [0, T ] which is a solution to the differential inclusion

ẋ(t) ∈ G(t, x(t)), x(0) = x0.

Proof A proof of this theorem can be found in Theorem 3 in [12, p. 98]. ��
We are finally in the position to state an existence theorem for (DI).
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Theorem 3.7 Assume H is finite-dimensional and that the gradients of the objective
function ∇ fi are globally Lipschitz continuous. Then, for all (u0, v0) ∈ H ×H there
exists T > 0 and an absolutely continuous function (u(·), v(·)) defined on [0, T ]
which is a solution to the differential inclusion (DI).

Proof The proof follows immediately from Propositions 3.1 and 3.5 which show that
the set-valued map F given in (2) satisfies all conditions required for Theorem 3.6. ��
In the following, we show that under additional conditions on the objective functions
fi , there exist solutions defined on [0,+∞). The extension of solutions is achieved
following a standard argument. We show that the solutions to (DI) remain bounded.
Then, we use Zorn’s Lemma to retrieve a contradiction if there is a maximal solution
that is not defined on [0,+∞).

Theorem 3.8 Assume H is finite-dimensional and that the gradients of the objective
function ∇ fi are globally Lipschitz continuous. Then, for all (u0, v0) ∈ H ×H there
exists an absolutely continuous function (u(·), v(·)) defined on [0,+∞) which is a
solution to the differential inclusion (DI).

Proof Theorem 3.7 guarantees the existence of solutions defined on [0, T ) for some
T ≥ 0. Using the domain of definition, we can define a partial order on the set of
solutions to the problem (DI). Assuming there is no solution defined on [0,+∞),
Zorn’s Lemma guarantees the existence of a solution (u(·), v(·)) : [0, T ) → H × H
with T < +∞ which cannot be extended. We will show that (u(t), v(t)) does not
blow up in finite time and therefore can be extended which contradicts the claimed
maximality.
Define

h(t):= ‖(u(t), v(t)) − (u(0), v(0))‖H×H ,

where ‖(x, y)‖H×H = √‖x‖2 + ‖y‖2. We show that h(t) can be bounded by a real-
valued function. Using the Cauchy–Schwarz inequality, we get

d

dt

1

2
h2(t) = 〈(u̇(t), v̇(t)), (u(t), v(t)) − (u(0), v(0))〉H×H

≤ ‖(u̇(t), v̇(t))‖ h(t)

≤ max
ξ∈F(u(t),v(t))

‖ξ‖H×Hh(t).

(4)

We next derive a bound on maxξ∈F(u(t),v(t))‖ξ‖H×H. The basic inequalities between
the �1 and �2 norm applied to (‖x‖, ‖y‖) ∈ R

2 yield

‖(x, y)‖H×H ≤ ‖x‖ + ‖y‖ ≤ √
2‖(x, y)‖H×H.

Let (u, v) ∈ H×H. UsingC(u) = conv ({∇ fi (u) : i = 1, . . . ,m}) and the definition
of F(u, v) from (2), we have
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max
ξ∈F(u,v)

‖ξ‖H×H ≤ ‖v‖ + max
z∈C(u)

‖z − αv‖

≤ (1 + α)‖v‖ + max
θ∈Δm

∥∥∥∥∥
m∑
i=1

θi∇ fi (u)

∥∥∥∥∥

≤ (1 + α)‖v‖ + max
θ∈Δm

∥∥∥∥∥
m∑
i=1

θi (∇ fi (u) − ∇ fi (0))

∥∥∥∥∥ + max
θ∈Δm

∥∥∥∥∥
m∑
i=1

θi∇ fi (0)

∥∥∥∥∥
≤ (1 + α)‖v‖ + L‖u‖ + max

i=1,...,m
‖∇ fi (0)‖

≤ c(1 + ‖(u, v)‖H×H),

(5)

where we chose c = √
2max

{
1 + α, L,maxi=1,...,m‖∇ fi (0)‖

}
. Combining inequal-

ities (4) and (5), we can show

d

dt

1

2
h2(t) ≤ c̃(1 + h(t))h(t), for all t ∈ [0, T ),

with c̃ ≥ 0. Using a Gronwall-type argument (see Lemma A.4 and Lemma A.5 in
[14]) just as in Theorem 3.5 in [7], we know that there exists C ≥ 0 such that for an
arbitrary ε > 0

h(t) ≤ CT exp(CT ), for all t ∈ [0, T − ε].

Since this upper bound is independent of t and ε, it follows that h ∈ L∞([0, T ],R).
Therefore, solutions to (DI) do not blow up in finite time and can be extended. This is
a contradiction to the maximality of the solution (u(t), v(t)). ��

3.2 Existence of Solutions to (CP)

Using the findings of the previous subsection, we can proceed with the discussion of
the Cauchy problem (CP). In this subsection, we show that solutions to the differential
inclusion (DI) immediately give solutions to the Cauchy problem (CP).

Theorem 3.9 Let x0, v0 ∈ H. Assume that (u(t), v(t)) for t ∈ [0,+∞) is a solution
to (DI) with (u(0), v(0)) = (x0, v0). Then, it follows that x(t):=u(t) satisfies the
differential equation

ẍ(t) + α ẋ(t) + proj
C(x(t))

(−ẍ(t)) = 0, for almost all t ∈ (0,+∞),

and x(0) = x0, ẋ(0) = v0, where C(x) = conv ({∇ fi (x) : i = 1, . . . ,m}).

Proof Since (u(t), v(t)) is a solution to (DI), it follows from the definition of set-valued
map F given in (2) that for almost all t ∈ (0,+∞)
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u̇(t) = v(t),

v̇(t) ∈ − argmin
z∈C(u(t))

〈z, v(t)〉 − αv(t),

holds. Using Lemma A.1, the second line gives −αv(t) = projC(u(t))+v̇(t)(0), which
is equivalent to

v̇(t) + αv(t) + proj
C(u(t))

(−v̇(t)) = 0.

Rewriting this system using x(t) = u(t), ẋ(t) = u̇(t) = v(t) and ẍ(t) = v̇(t) and
verifying the initial conditions x(0) = u(0) = x0 and ẋ(0) = v(0) = v0 yields the
desired result. ��
Finally, we can state the full existence theorem for the Cauchy problem (CP).

Theorem 3.10 AssumeH is finite-dimensional and that the gradients of the objective
function ∇ fi are globally Lipschitz continuous. Then, for all x0, v0 ∈ H, there exists
a continuously differentiable function x defined on [0,+∞) which is absolutely con-
tinuous with absolutely continuous first derivative ẋ , and which is a solution to the
Cauchy problem (CP) with initial values (x0, v0).

Proof The proof follows immediately combining Theorem 3.8 and Theorem 3.9. ��
Remark 3.11 Throughout this section, we have assumed that the gradients ∇ fi of the
objective functions are globally Lipschitz continuous. One can relax this condition
and only require the gradients to be Lipschitz continuous on bounded sets, if we can
guarantee that the solutions remain bounded. This holds for example if one of the
objective functions fi has bounded level sets.

Remark 3.12 The uniqueness of solutions to the differential inclusion (DI) and the
Cauchy problem (CP) remain an open problem even in finite dimensions. There are two
main problemswhich can be seen best by considering the implicit differential equation
in (CP). Firstly, the steepest descent vector field s : H → H, x �→ projC(x)(0) is in
general neither monotone nor Lipschitz continuous but merely 1

2 -Hölder continuous
(see [32]). There is a remedy for this problem requiring an extra assumption. If the
set {∇ fi (u) : i = 1, . . . ,m} of gradients in u is affinely independent, then there
exists a neighborhood Bρ(u) of u with ρ > 0 such that the steepest descent vector
field is Lipschitz continuous on Bρ(u) (see [8, Proposition 3.4]). With this result
the (local) uniqueness of solutions to the multiobjective steepest descent dynamical
system ẋ(t) + projC(x(t))(0) = 0 with x0 = u can be shown.
The implicit structure of the differential equation in (CP) is the second problem.
We are not only dealing with the steepest descent vector field but with the equation
ẍ(t)+α ẋ(t)+projC(x(t))(−ẍ(t)) = 0,where the second derivativewith respect to time
intervenes with the projection. Uniqueness could still be guaranteed under a one-sided
Lipschitz condition, i.e.,

〈ω1 − ω2, F1 − F2〉H×H ≤ C‖ω1 − ω2‖2H×H,

for all ω1, ω2 ∈ H × H, and F1 ∈ F(ω1), F2 ∈ F(ω2),
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with C > 0 (see, e.g., [17, Theorem 10.4]). Due to the implicit structure it is hard to
see whether this inequality can be derived. For this reason the uniqueness of solutions
to (CP) remains an open problem for now.

4 Asymptotic Analysis of Trajectories of (IMOG’)

In this section, we omit the assumption dim(H) < +∞. We show that trajectories
of the differential equation (IMOG’) converge weakly to Pareto critical points of the
optimization problem (MOP). This follows from a dissipative property of the system
and an argument that relies on Opial’s Lemma. We first define an energy function for
the system (IMOG’) that has Lyapunov-type properties.

Proposition 4.1 Let x : [0,+∞) → H be a solution to (CP). For i = 1, . . . ,m define
the global energy

Ei : [0, T ) → R, t �→ fi (x(t)) + 1

2
‖ẋ(t)‖2.

Then, for all t ∈ (0,+∞) it holds that d
dt Ei (t) ≤ −α‖ẋ(t)‖2.

Proof From the definition of the differential equation (IMOG’), it follows that
−α ẋ(t) = projC(x(t))+ẍ(t)(0), where C(x) = conv ({∇ fi (x) : i = 1, . . . ,m}), and
the addition C(x(t)) + ẍ(t) has to be understood elementwise. By the variational
characterization of the convex projection, we get for all i = 1, . . . ,m

〈α ẋ(t) + ∇ fi (x(t)) + ẍ(t), α ẋ(t)〉 ≤ 0,

which immediately gives

〈∇ fi (x(t)), ẋ(t)〉 + 〈ẋ(t), ẍ(t)〉 ≤ −α‖ẋ(t)‖2.

Applying the chain rule to d
dt Ei (t) yields the desired result. ��

Proposition 4.2 Let x : [0,+∞) → H be a bounded solution of (CP) and let further
∇ fi be Lipschitz continuous on bounded sets. Then, for all i = 1, . . . ,m it holds that

i) limt→+∞ Ei (t) = E∞
i > −∞.

ii) ẋ ∈ L2([0,+∞)) ∩ L∞([0,+∞)).
iii) ẍ ∈ L∞([0,+∞)), limt→+∞‖ẋ(t)‖ = 0 and limt→+∞ fi (x(t)) = E∞

i .
iv) There exists a monotonically increasing unbounded sequence (tk)k≥0 with

projC(x(tk ))(0) → 0 for k → +∞.

Proof i) From Proposition 4.1, we immediately get that Ei is monotonically decreas-
ing and therefore Ei (t) → E∞

i as t → +∞. We have to show that in fact E∞
i > −∞.

Since ∇ fi is bounded on bounded sets, we can conclude by the mean value theorem
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that fi is bounded on bounded sets. Since x(t) remains bounded by assumption, we
conclude that fi (x(t)) is bounded from below, and hence

E∞
i ≥ inf

t≥0
fi (x(t)) > −∞.

ii) We know that fi (x(t)) is bounded. Then, by the definition of Ei and the fact that
Ei is monotonically decreasing, we immediately get that ẋ is bounded for all t ≥ 0.
Since ẋ is continuous, it follows that ẋ ∈ L∞([0,+∞)). Using Proposition 4.1 it
follows that

α

∫ +∞

0
‖ẋ(t)‖2 dt ≤ −

∫ +∞

0

d

dt
Ei (s) ds

= Ei (0) − E∞
i < +∞,

and therefore ẋ ∈ L2([0,+∞)).
iii) Since ẋ(t) and ∇ fi (x(t)) remain bounded for all t ≥ 0 it follows that ẍ(t) =
−α ẋ(t) − projC(x(t))(−ẍ(t)) remains bounded for all t ≥ 0. By the fact that ẋ is
absolutely continuous (on bounded intervals), it follows that ẍ is measurable and
hence ẍ ∈ L∞([0,+∞)). Then, from ẋ ∈ L2([0,+∞)) together with the absolute
continuity of ẋ and ẍ ∈ L∞([0,+∞)) it follows that limt→+∞‖ẋ(t)‖ = 0. From
limt→+∞‖ẋ(t)‖ = 0 and part i) we can immediately conclude limt→+∞ fi (x(t)) =
E∞
i .

iv) Assume that the negation of statement iv) holds, namely that there exists M > 0
and T > 0 such that

∥∥∥∥∥ proj
C(x(t))

(0)

∥∥∥∥∥ ≥ 2M, for all t ≥ T . (6)

Fix an arbitrary δ > 0 independent of M and T . Since ẋ(t) → 0 and ∇ fi is Lipschitz
continuous on a set containing {x(t) : t ≥ 0} it follows that there exists Tδ > T such
that for all t > Tδ it holds that

‖∇ fi (x(s)) − ∇ fi (x(t))‖ <
M

2
and ‖α ẋ(s)‖ <

M

2
for all s ∈ [t, t + δ]. (7)

Fix an arbitrary t > Tδ . Define v:=projC(x(t))/‖projC(x(t))‖. From (6) it follows that

〈ξ, v〉 ≥ 2M for all ξ ∈ C(x(t)).

Combining the last statement with (7) and using the Cauchy–Schwarz inequality, we
get

〈ξ + α ẋ(s), v〉 ≥ M for all s ∈ [t, t + δ] and all ξ ∈ C(x(s)).
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And hence

〈−ẍ(s), v〉 ≥ M for almost all s ∈ [t, t + δ).

Using the Cauchy–Schwarz inequality again, we get

‖ẋ(t) − ẋ(t + δ)‖ ≥ 〈ẋ(t) − ẋ(t + δ), v〉 =

=
∫ t+δ

t
〈−ẍ(s), v〉 ds ≥

∫ t+δ

t
M ds = Mδ.

Since we can choose an arbitrary large δ independently from M , this contradicts
ẋ(t) → 0. ��
Wewill use part iv) of Proposition 4.2 to show that a weak limit point of the trajectory
x(t) is Pareto critical. To this end, we introduce the following lemma that states a
demiclosedness property of the set-valued map

C : H ⇒ H, x �→ C(x):= conv ({∇ fi (x) : i = 1, . . . ,m}) .

Lemma 4.3 Assume that the objective functions fi are continuously differentiable. Let
(xk)k≥0 be a sequence in H that converges weakly to x∞, and assume there exists a
sequence (gk)k≥0 with gk ∈ C(xk) that converges strongly to zero. Then, 0 ∈ C(x∞)

and hence x∞ is Pareto critical.

Proof A proof can be found in Lemma 2.4 in [11] and in Lemma 4.10 in [7]. ��
If we can show that the trajectories of (IMOG’) converge weakly, Proposition 4.2
together with Lemma 4.3 guarantees that the limit points are Pareto critical. To show
that the trajectories are in fact converging, we require Opial’s Lemma [26].

Lemma 4.4 (Opial’s Lemma) Let S ⊂ H be a nonempty subset of H and
x : [0,+∞) → H. Assume that x(t) satisfies the following conditions.

i) Every weak sequential cluster point of x(t) belongs to S.
ii) For every z ∈ S, limt→+∞‖x(t) − z‖ exists.

Then, x(t) converges weakly to an element x∞ ∈ S.

To use Opial’s Lemma, we need a suitable nonempty set S ⊂ H that we define in the
following proposition.

Proposition 4.5 Let x(t) be a bounded solution to (CP). Then, the set

S:= {
z ∈ H : fi (z) ≤ E∞

i for all i = 1, . . . ,m,
}
, (8)

is nonempty.

Proof Part iii) of Proposition 4.2 states that limt→+∞ fi (x(t)) = E∞
i for all i =

1, . . . ,m. Since x(t) is bounded, it possesses at least one weak sequential cluster
point x∞. The objective functions fi are convex and continuous and therefore weakly
lower semicontinuous. From this we conclude x∞ ∈ S. ��
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For the set S defined in (8) and a bounded solution x(t) of (CP), the first part of Opial’s
Lemma is easy to obtain. It follows analogously to the proof of Proposition 4.5 where
it is shown that S is nonempty. To show the second part of Opial’s Lemma, we verify
that hz(t):= 1

2‖x(t)− z‖2 satisfies a differential inequality. Then, the convergence can
be deduced from the following lemma.

Lemma 4.6 ([10] Lemma 4.2) Let h ∈ C1([0,+∞),R) be a positive function satis-
fying αḣ(t) + ḧ(t) ≤ g(t) for all t ≥ 0, with g ∈ L1([0,+∞),R) and α > 0. Then,
limt→+∞ h(t) exists.

With these ingredients, we can formulate themain convergence theoremof this section.

Theorem 4.7 Assume that the objective functions fi are convex with gradients ∇ fi
that are Lipschitz continuous on bounded sets. Then, every bounded solution x :
[0,+∞) → H of (CP) with arbitrary initial conditions x0, v0 ∈ H converges weakly
to a Pareto critical point of (MOP).

Proof For z ∈ S define

hz(t):=1

2
‖x(t) − z‖2.

Using the chain rule, we compute the first and the second derivative of hz(t) as

ḣz(t) = 〈x(t) − z, ẋ(t)〉 and ḧz(t) = 〈x(t) − z, ẍ(t)〉 + ‖ẋ(t)‖2.

For a fixed t ∈ (0,+∞), write

αḣz(t) + ḧz(t) = 〈ẍ(t) + α ẋ(t), x(t) − z〉 + ‖ẋ(t)‖2.

Using the definition of (IMOG’), we can write ẍ(t) + α ẋ(t) = −∑m
i=1 θi∇ fi (x(t))

for some weights θ ∈ Δm . Then, we write

αḣz(t) + ḧz(t) =
m∑
i=1

θi 〈∇ fi (x(t)), z − x(t)〉 + ‖ẋ(t)‖2. (9)

Proposition 4.1 gives for all i = 1, . . . ,m

Ei (t) = fi (x(t)) + 1

2
‖ẋ(t)‖2 ≥ E∞

i ≥ fi (z) ≥ fi (x(t)) + 〈∇ fi (x(t)), z − x(t)〉,

and therefore

m∑
i=1

θi 〈∇ fi (x(t)), z − x(t)〉 ≤ 1

2
‖ẋ(t)‖2. (10)
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Combining inequalities (9) and (10) we get

αḣz(t) + ḧz(t) ≤ 3

2
‖ẋ(t)‖2.

By Proposition 4.2, we know ‖ẋ(·)‖2 ∈ L1([0,+∞)). Then, Lemma 4.6 guarantees
that limt→+∞ hz(t) exists. In addition, we know that every weak sequential cluster
point of x(t) belongs to S by the weak lower semicontinuity of the objective functions
fi . Then, we can use Opial’s Lemma 5.5 to prove that x(t) converges weakly to an
element in S. Let x∞ be the weak limit of x(t). Then, by Proposition 4.2, there exists
a monotonically increasing unbounded sequence (tk)k≥0 with projC(x(tk ))(0) → 0
(strongly inH) as k → +∞. Since x(tk) converges weakly to x∞, Lemma 4.3 states
that x∞ is Pareto critical. ��

5 An Inertial Multiobjective Gradient Algorithm

In this section, we derive an inertial first-order method for multiobjective optimization
problems froman explicit discretization of the differential equation (IMOG’).Wewrite
the system (IMOG’) in the equivalent form

α ẋ(t) + proj
C(x(t))+ẍ(t)

(0) = 0,

with C(x) = conv ({∇ fi (x) : i = 1, . . . ,m}), and use the following discretization
of the differential equation

α
xk+1 − xk

h
+ proj

C(xk )+ xk+1−2xk+xk−1

h2

(0) = 0,

αh(xk+1 − xk) + proj
h2C(xk )+xk+1−2xk+xk−1

(0) = 0.

Lemma A.2 states that xk+1 is uniquely defined as

xk+1 = −
(

1

1 + αh
proj

h2C(xk )−2xk+xk−1
(−xk) − αh

1 + αh
xk

)

= −
(

1

1 + αh

[
−xk + proj

h2C(xk )−xk+xk−1
(0)

]
− αh

1 + αh
xk

)

= xk − 1

1 + αh
proj

h2C(xk )−xk+xk−1
(0).

(11)
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Therefore, xk+1 can be written as

xk+1 = xk + 1

1 + αh
(xk − xk−1) − h2

1 + αh

m∑
i=1

θki ∇ fi (x
k), (12)

where θk ∈ Δm is the solution to the quadratic optimization problem

min
θ∈Rm

∥∥∥∥∥h
2

(
m∑
i=1

θi∇ fi (x
k)

)
− (xk − xk−1)

∥∥∥∥∥
2

s. t. θ ≥ 0 and
m∑
i=1

θi = 1. (13)

The objective function of the problem in (13) can be rewritten into

∥∥∥∥∥
m∑
i=1

θi

(
h2∇ fi (x

k) − (xk − xk−1)
)∥∥∥∥∥

2

.

Therefore, solving problem (13) is as difficult as solving the optimization problem
required in the classical multiobjective steepest descent method [19]. The problem
is a quadratic optimization problem with linear constraints. The dimension m of the
problem is usually small since in most application we do not consider many objective
functions. In the following subsection, we analyze the asymptotic behavior of the
sequence (xk)k≥0 that is defined by equations (12) and (13).

5.1 Asymptotic Analysis

The asymptotic analysis of the sequence (xk)k≥0 defined by (12) and (13) works
surprisingly similar to the asymptotic analysis of the trajectories x(t) of the differential
equation (IMOG’).We start by proving that the sequence (xk)k≥0 satisfies a dissipative
property. To this end, we introduce the following preparatory lemma.

Lemma 5.1 Let (xk)k≥0 be defined by (12) and (13) with x0 = x1 ∈ H and α, h > 0.
Then, for all i = 1, . . . ,m it holds that

〈∇ fi (x
k), xk+1 − xk〉 ≤ −α

h
‖xk+1 − xk‖2 + 1

2h2

[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]
.

Proof Using the variational characterization of the convex projection in the identity
(11), we get for all i = 1, . . . ,m,

〈αh(xk+1 − xk) + h2∇ fi (x
k) + (xk+1 − xk) − (xk − xk−1), αh(xk+1 − xk)〉 ≤ 0,
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which can be rearranged into

〈∇ fi (x
k), xk+1 − xk〉

≤ −
(

1

h2
+ α

h

)
‖xk+1 − xk‖2 + 1

h2
〈xk+1 − xk, xk − xk−1〉

≤ −α

h
‖xk+1 − xk‖2 + 1

2h2

[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]
.

��
Using Lemma 5.1, we show that there exists an energy sequence which can be seen
as a discretization of the energy function defined in Proposition 4.2.

Proposition 5.2 Assume that the gradients ∇ fi of the objective functions are globally
L-Lipschitz continuous for all i = 1, . . . ,m and further assume Lh < 2α. Then

Ei,k := fi (x
k) + 1

2h2
‖xk − xk−1‖2,

is monotonically decreasing.

Proof We start with investigating the difference

Ei,k+1 − Ei,k = fi (x
k+1) − fi (x

k) + 1

2h2

[
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

]
.

Using that fi is convex with L-Lipschitz continuous gradient, we estimate the expres-
sion above by

≤ 〈∇ fi (x
k), xk+1 − xk〉 + L

2
‖xk+1 − xk‖2 + 1

2h2

[
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

]
.

Using Lemma 5.1, we estimate this term by

≤
(
L

2
− α

h

)
‖xk+1 − xk‖2 − 1

2h2
‖xk+1 − 2xk + xk−1‖2.

For hL < 2α it holds that
( L
2 − α

h

)
< 0 and we get

Ei,k+1 − Ei,k ≤
(
L

2
− α

h

)
‖xk+1 − xk‖2 − 1

2h2
‖xk+1 − 2xk + xk−1‖2, (14)

which completes the proof. ��
The following corollary is an immediate consequence of Proposition 5.2.

Corollary 5.3 Assume all conditions of Proposition 5.2 are met. Then, for all i =
1, . . . ,m and all k ≥ 1 it holds that fi (xk) ≤ fi (x0).
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Corollary 5.3 hints at a condition that guarantees that the sequence (xk)k≥0 remains
bounded. If the level set Li ( fi (x0)):={x ∈ H : fi (x) ≤ fi (x0)} of one objective
function fi is bounded, the sequence (xk)k≥0 remains bounded. In the following
proposition we collect some immediate consequences of Proposition 5.2.

Proposition 5.4 Assume the gradients ∇ fi of the objective functions are L-Lipschitz
continuous on a bounded set containing the sequence (xk)k≥0, that is defined by
equations (12) and (13). Assume Lh < 2α, then for all i = 1, . . . ,m the following
statements hold.

i) Ei,k → E∞
i > −∞ as k → +∞

ii)
∑∞

k=0‖xk+1 − xk‖2 < +∞
iii) fi (xk) → E∞

i as k → +∞
Proof i) Proposition 5.2 states that Ei,k is monotonically decreasing. Therefore,
Ei,k → E∞

i holds. We have to show that E∞
i > −∞. Since the objective functions fi

have Lipschitz continuous gradients on a bounded set containing (xk)k≥0, it follows
by the mean value theorem that fi is bounded on this sets and in particular on (xk)k≥0.
Therefore, we conclude

E∞
i = lim

k→+∞ fi (x
k) + 1

2h2
‖xk − xk−1‖2 ≥ lim inf

k→+∞ fi (x
k) > −∞.

ii) From inequality (14) we immediately follow

Ei,K+1 − Ei,1 =
K∑

k=1

(Ei,k+1 − Ei,k
)

≤
K∑

k=1

(
L

2
− α

h

)
‖xk+1 − xk‖2 − 1

h2

K∑
k=1

‖xk+1 − 2xk + xk−1‖2.

Since Lh < 2α, it holds that
(

α
h − L

2

)
> 0 and therefore we get for all K ≥ 1

(
α

h
− L

2

) K∑
k=1

‖xk+1 − xk‖2 ≤ Ei,1 − Ei,K+1.

From part i), we know that the right hand side converges which completes the proof
of ii).
iii) Since Ei,k → E∞

i and ‖xk+1 − xk‖2 → 0, it follows that fi (xk) → E∞
i . ��

We use the following discrete version of Opial’s Lemma to prove that (xk)k≥0 con-
verges weakly to a Pareto critical point of (MOP).

Lemma 5.5 (Opial’s Lemma) Let S ⊂ H be nonempty and let (xk)k≥0 be a sequence
inH that satisfies the following conditions.

i) For all z ∈ S limk→+∞‖xk − z‖ exists.
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ii) Every weak sequential cluster point of (xk)k≥0 belongs to S.

Then, it follows that (xk)k≥0 converges weakly to an element in S.

We will use Opial’s Lemma on the set

S:= {
z ∈ H : fi (z) ≤ E∞

i for all i = 1, . . . ,m,
}
. (15)

Theorem 5.6 Assume the gradients ∇ fi of the objective functions are L-Lipschitz
continuous on a bounded set containing the sequence (xk)k≥0, defined by (12) and
(13) and further assume Lh < 2α. Then, (xk)k≥0 converges weakly to a Pareto critical
point of (MOP).

Proof We show that (xk)k≥0 satisfies Opial’s Lemma for the set S defined by (15). We
start by showing a quasi Fejér property of the sequence (xk)k≥0. For a fixed z ∈ S,
define the sequence

hk :=1

2
‖xk − z‖2.

It is easy to check that

hk+1 = hk + 〈xk+1 − xk, xk − z〉 + 1

2
‖xk+1 − xk‖2.

Proposition 5.4 guarantees the monotonicity of Ei,k . Since z ∈ S, from the convexity
of fi we can deduce for all i = 1, . . . ,m that

Ei,k = fi (x
k) + 1

2h2
‖xk − xk−1‖2 ≥ E∞

i ≥ fi (z) ≥ fi (x
k) + 〈∇ fi (x

k), z − xk〉,

and therefore
〈

m∑
i=1

θi∇ fi (x
k), z − xk

〉
≤ 1

2h2
‖xk − xk−1‖2.

Using this inequality we can show

h2

1 + αh

〈
m∑
i=1

θki ∇ fi (x
k), z − xk

〉
=

〈
xk − xk+1 − 1

1 + αh
(xk − xk−1), z − xk

〉

= 〈xk+1 − xk, xk − z〉 − 1

1 + αh
〈xk−1 − xk, xk − z〉 ≤ 1

2(1 + αh)
‖xk − xk−1‖2,

which leads to the inequality

〈xk+1 − xk, xk − z〉 ≤ 1

1 + αh
〈xk−1 − xk, xk − z〉 + 1

2(1 + αh)
‖xk − xk−1‖2.
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We use this inequality to show

hk+1 − hk = 〈xk+1 − xk, xk − z〉 + 1

2
‖xk+1 − xk‖2

≤ 1

1 + αh
〈xk−1 − xk, xk − z〉 + 1

2
‖xk+1 − xk‖2 + 1

2(1 + αh)
‖xk − xk−1‖2

= 1

1 + αh

[
hk − hk−1 + 1

2
‖xk − xk−1‖2

]
+ 1

2
‖xk+1 − xk‖2

+ 1

2(1 + αh)
‖xk − xk−1‖2

≤ 1

1 + αh
(hk − hk−1) + 1

2
‖xk+1 − xk‖2 + 1

1 + αh
‖xk − xk−1‖2.

Defining θk :=hk+1 − hk , δk := 1
1+αh ‖xk − xk−1‖2 + 1

2‖xk+1 − xk‖2 and a:= 1
1+αh ,

we can therefore conclude

θk+1 ≤ aθk + δk .

Proposition 5.4 states that
∑∞

k=1 δk < +∞. Therefore, we can use Theorem 2.1 in
[2] or Theorem 3.1 in [1] to show that hk converges. To use Opial’s Lemma, we also
have to show that all weak sequential cluster points of (xk)k≥0 belong to S. Since the
sequence (xk)k≥0 is bounded, it possesses at least one sequential cluster point that we
denote by x∞ and a subsequence (xkl )l≥0 that converges weakly to x∞. Since fi is
convex and continuous, it is also weakly lower semicontinuous and it follows that for
all i = 1, . . . ,m

fi (x
∞) ≤ lim inf

l→+∞ fi (x
kl ) = lim

k→+∞ fi (x
k) = E∞

i ,

where the equality follows from the fact that the limit exists. Therefore, x∞ ∈ S and
hence S is nonempty. Then, Opial’s Lemma 5.5 states that (xk)k≥0 converges weakly
to an element in S that we denote by x∞. We will show that each weak sequential
cluster point of (xk)k≥0 is Pareto critical. By the definition of the sequence (xk)k≥0 in
(12), it holds that

∞∑
k=1

∥∥∥∥∥
m∑
i=1

θki ∇ fi (x
k)

∥∥∥∥∥
2

=
∞∑
k=1

∥∥∥∥
1 + αh

h2
(xk+1 − xk) + 1

h2
(xk − xk−1)

∥∥∥∥
2

.

This sum is finite by part ii) of Proposition 5.4. Thus, we know that the sequence
gk :=∑m

i=1 θki ∇ fi (xk) ∈ conv(∇ fi (xk)) converges strongly to zero. Since xk con-
verges weakly to x∞, Lemma 4.3 states that 0 ∈ C(x∞) and hence x∞ is Pareto
critical. ��
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6 An AcceleratedMultiobjective Gradient Method

In this section, we define a multiobjective gradient method with Nesterov acceleration
based on the inertial method we discussed in the previous subsection.

6.1 The Single-objective Case

In this subsection we present Nesterov’s method in the single-objective setting and
point out its relation to an inertial gradient-like dynamical system with asymptotically
vanishing damping. Consider the problem

min
x∈H

f (x),

where f : H → R is convex and differentiable with L-Lipschitz continuous gradient
∇ f (x). For α ≥ 3, 0 < s ≤ 1

L and x0, x1 ∈ H, define the sequence (xk)k≥0 by

yk = xk + k−1
k+α−1 (x

k − xk−1),

xk+1 = yk − s∇ f (yk)

}
for k ≥ 1. (16)

If argmin f �= ∅, it can be shown that f (xk) − minx∈H f (x) = O(k−2) and that
‖xk+1 − xk‖ = O(k−1). For α > 3, it holds that f (xk) − minx∈H f (x) = o(k−2),
‖xk+1 − xk‖ = o(k−1) and that (xk)k≥0 converges weakly to an element in argmin f
[11].Nesterov’smethod is related to the following gradient systemwith asymptotically
vanishing damping

ẍ(t) + α

t
ẋ(t) + ∇ f (x(t)) = 0. (17)

The algorithm (16) can be derived as a discretization of (17). This relation is further
investigated in [6, 31].

6.2 Introducing Nesterov Acceleration in (IMOG’)

We formally define the following gradient-like system with asymptotically vanishing
damping for multiobjective optimization.

ẍ(t) + α

t
ẋ(t) + proj

C(x(t))
(−ẍ(t)) = 0, (18)

with α ≥ 3 and C(x) = conv ({∇ fi (x) : i = 1, . . . ,m}). We give a full discussion
of the system (18) in [30]. It can be shown that for α ≥ 3 the function values converge
with rateO(t−2) to an optimal value measured with the merit function (1). For α > 3
the trajectories convergeweakly toweakly Pareto optimal solutions. This is in linewith
the results for the single-objective system (17). We restrict the analysis of the discrete
method in this paper to the case α = 3. We show that an implicit discretization of
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this system leads to an accelerated multiobjective gradient method with an improved
convergence rate of the function values. We equivalently write (18) as

3

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0.

Using the same Ansatz as in Section 2 of [31], we show that we can derive the differ-
ential equation (18) from the scheme

3

k
(xk+1 − xk) + proj

sC(yk )+(xk+1−2xk+xk−1)

(0) = 0, (19)

with yk = xk + k−1
k+2 (x

k − xk−1). We divide (19) by
√
s to get

3

k

xk+1 − xk√
s

+ proj
√
sC(yk )+ xk+1−2xk+xk−1√

s

(0) = 0. (20)

We use the Ansatz xk ≈ x(k
√
s) for some smooth curve x(t) defined for all t ≥ 0.

Write k = t√
s
. When the step size s goes to zero X(t) ≈ x t√

s
= xk and X(t) ≈

x t+√
s√

s

= xk+1. Then, Taylor expansion gives

xk+1 − xk√
s

= ẋ(t) + 1

2
ẍ(t)

√
s + o(

√
s),

xk − xk−1

√
s

= ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s),

(21)

and hence

xk+1 − 2xk + xk−1

√
s

= ẍ(t)
√
s + o(

√
s). (22)

For all i = 1, . . . ,m, we have
√
s∇ fi (yk) = √

s∇ fi (x(t))+o(
√
s). Since the convex

projection depends in a well-behaved manner on the convex set we project onto, we
get

proj
√
sC(yk )+ xk+1−2xk+xk−1√

s

(0) = √
s proj
C(x(t))+ẍ(t)

(0) + o(
√
s). (23)

Combining (21), (22) and (23), we get from (20)

3
√
s

t

(
ẋ(t) + 1

2
ẍ(t)

√
s + o(

√
s)

)
+ √

s proj
C(x(t))+ẍ(t)

(0) + o(
√
s) = 0.

123



Journal of Optimization Theory and Applications

Comparing the coefficients of
√
s, we obtain

3

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0.

We have shown that the differential equation (18) can be derived from the scheme
(19). Using Lemma A.1 on (19), we get that xk+1 is uniquely defined as

xk+1 = −
(

k

k + 3
proj

sC(yk )−2xk+xk−1
(−xk) − 3

k + 3
xk

)

= xk − k

k + 3
proj

sC(yk )−(xk−xk−1)

(0).

The last term can be written as

xk + k

k + 3
(xk − xk−1) − sk

k + 3

m∑
i=1

θki ∇ fi (y
k),

where θk ∈ R
m is a solution to the quadratic optimization problem

min
θ∈Rm

∥∥∥∥∥s
(

m∑
i=1

θi∇ fi (y
k)

)
− (xk − xk−1)

∥∥∥∥∥
2

s. t. θ ≥ 0 and
m∑
i=1

θi = 1. (24)

We want to drop the factor k
k+3 in front of the term

∑m
i=1 θki ∇ fi (yk) to get a method

that more closely resembles (16). In addition, we perform a shift of the index k to
transform k

k+3 into k−1
k+2 . The final method we define in this subsection is given by the

following scheme. Let x0 = x1 ∈ H and s > 0. Define the scheme

yk = xk + k−1
k+2 (x

k − xk−1),

xk+1 = yk − s
∑m

i=1 θki ∇ fi (yk)

}
for k ≥ 1, (25)

where in each step θk ∈ R
m is a solution to the quadratic optimization problem

min
θ∈Rm

∥∥∥∥∥s
(

m∑
i=1

θi∇ fi (y
k)

)
− k − 1

k + 2
(xk − xk−1)

∥∥∥∥∥
2

s. t. θ ≥ 0 and
m∑
i=1

θi = 1.

(26)

Similar to problem (13), the objective function of problem (26) can be rewritten into

∥∥∥∥∥
m∑
i=1

θi

(
s∇ fi (x

k) − k − 1

k + 2
(xk − xk−1)

)∥∥∥∥∥
2

.
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Hence, computing the step direction using (26) is as difficult as computing the step
direction in the classical multiobjective steepest descent method [19]. In both cases
we have to solve a low-dimensional quadratic optimization problem with linear con-
straints. The fact that we have to transform the quadratic optimization problem from
(24) into (26) is an observation from the proof of Proposition 6.1. The presentedmethod
is still asymptotically equivalent to the scheme defined by (19). We summarize the
defined method in Algorithm 1 for later references.

Algorithm 1 Accelerated multiobjective gradient method

Require: Choose x0 = x1 ∈ H, 0 < s ≤ 1
L and set k = 1.

1: Set yk = xk + k−1
k+2 (xk − xk−1).

2: Compute θk ∈ R
m by solving

min
θ∈Rm

∥∥∥∥∥∥
s

⎛
⎝

m∑
i=1

θi∇ fi (y
k )

⎞
⎠ − k − 1

k + 2
(xk − xk−1)

∥∥∥∥∥∥

2

s. t. θ ≥ 0 and
m∑
i=1

θi = 1.

3: Set xk+1 = yk − s
∑m

i=1 θki ∇ fi (y
k )

4: if stopping condition is true then
5: Stop.
6: else
7: Update k ← k + 1 and go to step 1.
8: end if

6.3 A Dissipative Property

We start our investigations of Algorithm 1 with an energy estimate analogous to
Proposition 5.2 for the inertial method.

Proposition 6.1 Assume that the gradients ∇ fi of the objective functions are globally
L-Lipschitz continuous for all i = 1, . . . ,m and further assume sL ≤ 1. Define for
all k ≥ 1 the energy sequence

Ei,k := fi (x
k) + 1

2s
‖xk − xk−1‖2.

For all k ≥ 1, it holds that

Ei,k+1 − Ei,k ≤ − 1

2s

3

k + 2
‖xk − xk−1‖2.

Proof From the definition of xk and yk in (25) we get

xk+1 − xk + proj
sC(yk )− k−1

k+2 (xk−xk−1)

(0) = 0.
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Hence, for all i = 1, . . . ,m it holds that

〈
xk+1 − xk + s∇ fi (y

k) − k − 1

k + 2
(xk − xk−1), xk+1 − xk

〉
≤ 0,

from which we follow

s〈∇ fi (y
k), xk+1 − xk〉 ≤ −‖xk+1 − xk‖2 + k − 1

k + 2
〈xk+1 − xk, xk − xk−1〉

= − 3

k + 2
‖xk+1 − xk‖ − 1

2

k − 1

k + 2
‖xk+1 − 2xk + xk−1‖2

+ 1

2

k − 1

k + 2

[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]
.

Writing out the definition of yk , one can easily verify that

‖xk+1 − yk‖2 ≤ k − 1

k + 2
‖xk+1 − 2xk + xk−1‖2 + 3

k + 2
‖xk+1 − xk‖2.

Combining the inequalities above and using sL ≤ 1 we get

s( fi (x
k+1) − fi (x

k)) ≤ s〈∇ fi (y
k), xk+1 − xk〉 + 1

2
‖xk+1 − yk‖2

≤ −1

2

3

k + 2
‖xk+1 − xk‖2 + 1

2

k − 1

k + 2

[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]

= 1

2

[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]
− 1

2

3

k + 2
‖xk − xk−1‖2,

which completes the proof. ��
Corollary 6.2 Let (xk)k≥0 be a sequence defined by (25). Then, it holds that for all
k ≥ 0 and all i = 1, . . . ,m

fi (x
k) ≤ fi (x

0).

6.4 Convergence of FunctionValues with RateO(k−2)

The proof in this section relies on the proof by Fukuda, Tanabe and Yamashita [34]
for their accelerated gradient method and the proof of Attouch and Peypouquet [11]
for the single-objective case. The following definition is aligned with [35] and the
concept of merit functions that gets introduced in [35] and further utilized in [33, 34].
For z ∈ H define

σk(z):= min
i=1,...,m

fi (x
k) − fi (z).
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Lemma 6.3 It holds that

σk+1(z) ≤ −1

s
〈xk+1 − yk, yk − z〉 − 1

2s
‖xk+1 − yk‖2.

Proof The objective functions fi are convex with L-Lipschitz continuous gradients.
Therefore, for all i = 1, . . . ,m it holds that

fi (x
k+1) − fi (z) ≤ fi (x

k+1) − fi (y
k) + fi (y

k) − fi (z)

≤ 〈∇ fi (y
k), xk+1 − yk〉 + L

2
‖xk+1 − yk‖2 + 〈∇ fi (y

k), yk − z〉. (27)

The definition of σk(z) gives

σk+1(z) = min
i=1,...,m

fi (x
k+1) − fi (z) ≤

m∑
i=1

θki

(
fi (x

k+1) − fi (z)
)

. (28)

Combining (27) and (28) and using
∑m

i=1 θki ∇ fi (yk) = 1
s (y

k − xk+1) we get the
desired inequality. ��
Wewant to find a similar inequality for the expression fi (xk+1)− fi (xk). To this end,
we introduce the following lemma.

Lemma 6.4 Define the optimization problem

min
(v,α)∈H×R

Φ(v, α):=1

2
‖sv + (yk − xk)‖2 + α

s. t. gi (v, α):=〈s∇ fi (y
k) − (yk − xk), sv + (yk − xk)〉 − α ≤ 0.

(29)

Then, it holds that the dual problem to this problem is the quadratic problem (26). An
optimal solution θ∗ to (26) satisfies

〈
s

m∑
i=1

θ∗
i ∇ fi (y

k), xk+1 − xk
〉

= max
i=1,...,m

〈s∇ fi (y
k), xk+1 − xk〉.

Proof Since H is potentially infinite-dimensional, we need duality statements for
infinite-dimensional constrained optimization problems. The statements we use in
this proof can be found in Sections 8.3 to 8.6 of [22]. Since the optimization prob-
lem (29) has a fairly simple structure, we will not write out every result we use. The
duality between (29) and (26) follows from a straightforward computation. Since the
objective function Φ(v, α) of (29) is convex and all constraints gi (v, α) are linear,
strong duality holds. Hence a KKT point ((v∗, α∗), θ∗) ∈ (H ×R) ×R

m of problem
(29) yields a solution to (26). From the KKT conditions for (29) we derive

v∗ = −s
m∑
i=1

θ∗
i ∇ fi (y

k).
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For all i = 1, . . . ,m it holds that gi (v, α) ≤ 0 and hence

〈s∇ fi (y
k) − (yk − xk), sv + (yk − xk)〉 ≤ α.

By the complementarity of θ∗
i and gi (v∗, α∗) we get

〈
s

m∑
i=1

θ∗
i ∇ fi (y

k) − (yk − xk), sv∗ + (yk − xk)

〉
= α∗

= max
i=1,...,m

〈s∇ fi (y
k) − (yk − xk), sv∗ + (yk − xk)〉.

The second equality above follows from the fact that θ∗
j > 0 holds for at least one

j ∈ {1, . . . ,m} as a consequence of the dual feasibility.
Using v∗ = −∑m

i=1 θ∗
i ∇ fi (yk), we get sv∗ = xk+1 − yk and therefore

〈
s

m∑
i=1

θ∗
i ∇ fi (y

k) − (yk − xk), xk+1 − xk
〉

= max
i=1,...,m

〈s∇ fi (y
k) − (yk − xk), xk+1 − xk)〉.

��
Lemma 6.5

σk+1(z) − σk(z) ≤ −1

s
〈xk+1 − yk, yk − xk〉 − 1

2s
‖xk+1 − yk‖2.

Proof For all a, b ∈ R
m it holds that

(
min

i=1,...,m
ai

)
−

(
min

i=1,...,m
bi

)
≤ max

i=1,...,m
(ai − bi )

and therefore for all z ∈ H

σk+1(z) − σk(z) ≤ max
i=1,...,m

(
fi (x

k+1) − fi (x
k)
)

.

Using that the objective functions fi are convexwith L-Lipschitz continuous gradients
and the fact that sL ≤ 1, we can bound this expression by

≤ max
i=1,...,m

(
〈∇ fi (y

k), xk+1 − xk〉 + 1

2s
‖xk+1 − yk‖2

)
.

Now we use Lemma 6.4 and get the equality

=
m∑
i=1

θki 〈∇ fi (y
k), xk+1 − xk〉 + 1

2s
‖xk+1 − yk‖2.
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From here, we continue by using the definitions of xk and yk from (25) to get

= 1

s
〈yk − xk+1, xk+1 − xk〉 + 1

2s
‖xk+1 − yk‖2

= −1

s
〈xk+1 − yk, yk − xk〉 − 1

2s
‖xk+1 − yk‖2.

��
Theorem 6.6 The sequence (xk)k≥0 defined by (25) satisfies

σk(z) ≤ 2
(‖x1 − z‖2 + ‖x2 − z‖2)

s(k + 1)2
.

Proof Lemma 6.3 and Lemma 6.5 state

σk+1(z) ≤ −1

s
〈xk+1 − yk, yk − z〉 − 1

2s
‖xk+1 − yk‖2 and

σk+1(z) − σk(z) ≤ −1

s
〈xk+1 − yk, yk − xk〉 − 1

2s
‖xk+1 − yk‖2.

Taking a convex combination of the last inequalities with weights 2
k+2 and k

k+2 yields

σk+1(z) − k

k + 2
σk(z)

≤ −1

s

〈
xk+1 − yk, yk − k

k + 2
xk − 2

k + 2
z

〉
− 1

2s
‖xk+1 − yk‖2

= 1

s

〈
xk+1 − yk,

k

k + 2
(xk − yk) + 2

k + 2
(z − yk)

〉
− 1

2s
‖xk+1 − yk‖2.

(30)

Define

zk :=k + 2

2
yk − k

2
xk = xk + k − 1

2
(xk − xk−1), (31)

and notice that

k

k + 2
(yk − xk) + 2

k + 2
(yk − z) = 2

k + 2
(zk − z). (32)

Using the identity (32) in (30) we get

σk+1(z) ≤ k

k + 2
σk(z) − 2

s(k + 2)
〈xk+1 − yk, zk − z〉 − 1

2s
‖xk+1 − yk‖2. (33)
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From the definition of zk in (31), one can see that

zk+1 = zk + k + 2

2
(xk+1 − yk).

Using this identity, we can simply compute the squared norm of ‖zk+1 − z‖2 as

‖zk+1 − z‖2 = ‖zk − z‖2 + (k + 2)〈zk − z, xk+1 − yk〉 +
(
k + 2

2

)2

‖xk+1 − yk‖2.

Rearranging this identity and multiplying with 2
s(k+2)2

yields

2

s(k + 2)2

(
‖zk − z‖2 − ‖zk+1 − z‖2

)

= − 2

s(k + 2)
〈zk − z, xk+1 − yk〉 − 1

2s
‖xk+1 − yk‖2.

(34)

Combining (33) and (34), in total we get

σk+1(z) ≤ k

k + 2
σk(z) + 4

2s(k + 2)2

(
‖zk − z‖2 − ‖zk+1 − z‖2

)
.

Multiplying both sides with (k + 2)2 then yields

(k + 2)2σk+1(z) ≤ k(k + 2)σk(z) + 2

s

(
‖zk − z‖2 − ‖zk+1 − z‖2

)
.

Using k(k + 2) ≤ (k + 1)2 we get

(k + 2)2σk+1(z) − (k + 1)2σk(z) ≤ 2

s

(
‖zk − z‖2 − ‖zk+1 − z‖2

)
.

Summing this inequality from k = 1, . . . , K , we get for all z ∈ H

(K + 2)2σK+1(z) ≤ 2

s
‖x1 − z‖2 + 4σ1(z).

Similar computations to Lemma 6.3 yield

σ1(z) ≤ 1

2s
‖x2 − z‖2 − 1

2s
‖x2 − x1‖2.

Then, for all k ≥ 1, we obtain

σk(z) ≤ 2
(‖x1 − z‖2 + ‖x2 − z‖2)

s(k + 1)2
.

��
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The theorem above is not straightforward to interpret since we only get convergence
of orderO(k−2) for mini=1,...,m fi (xk)− fi (z). This on its own does not state that the
vector f (xk) = (

f1(xk), . . . , fm(xk)
)
converges to an element of the Pareto front.

However we can refine the statement of Theorem 6.6 in the following way to get a
stronger convergence statement under a weak additional assumption.

Theorem 6.7 Assume in addition to the assumption in Theorem 6.6 that for all x ∈
L( f (x0)) there exists an x∗ ∈ L∗:=Pw ∩ L( f (x0)) with f (x∗) ≤ f (x) and

sup
f ∗∈ f (L∗)

inf
x∈ f −1({ f ∗})

‖x − x0‖ < +∞. (35)

Then, there exists R ≥ 0 such that

sup
z∈H

σk(z) ≤ 4R

(k + 1)2
, for all k ≥ 0.

Proof Theorem 6.6 gives for all z ∈ H

σk(z) ≤ 2
(‖x1 − z‖2 + ‖x2 − z‖2)

s(k + 1)2
.

Taking a supremum over this inequality, we get

sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

σk(z) ≤ sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

2
(‖x1 − z‖2 + ‖x2 − z‖2)

s(k + 1)2
.

Since x1, x2 ∈ L( f (x0)) assumption (35) yields

sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

2
(‖x1 − z‖2 + ‖x2 − z‖2)

s(k + 1)2
≤ 4R

s(k + 1)2
,

with

R = max
j=1,2

{
sup

f ∗∈ f (L∗)
inf

z∈ f −1( f ∗)
‖x j − z‖2

}
.

It remains to show that

sup
z∈H

σk(z) = sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

σk(z).
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Writing out the definition of σk(z), we get

sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

σk(z) = sup
f ∗∈ f (L∗)

inf
z∈ f −1( f ∗)

min
i=1,...,m

(
fi (x

k) − fi (z)
)

= sup
f ∗∈ f (L∗)

min
i=1,...,m

(
fi (x

k) − f ∗
i

)
= sup

z∈L∗
min

i=1,...,m

(
fi (x

k) − fi (z)
)

= sup
z∈H

min
i=1,...,m

(
fi (x

k) − fi (z)
)

.

��
The function u0(x) = supz∈Hmini=1,...,m fi (x) − fi (z) attains the value zero if and
only if x is weakly Pareto optimal. Theorem 6.7 shows that u0(xk) = O(k−2).

6.5 Relation to Tanabe’s AcceleratedMultiobjective Gradient Method

In the recent preprint [34], Tanabe, Fukuda and Yamashita define an accelerated proxi-
mal gradient method forMOPswith objective functions that have a separable structure
of the form fi = gi + hi , where gi : Rn → R is convex, continuously differentiable
with L-Lipschitz continuous gradient and hi : Rn → R is convex, lower semicontin-
uous and proper for all i = 1, . . . ,m. Since we only treat the case of smooth objective
functions fi , we set from here on hi ≡ 0. Tanabe et al. discovered their method using
techniques different from the ones used throughout this paper, using the concept of
merit functions. We will not recite their method here but refer the reader to [34]. To
understand the similarity between their method and Algorithm 1, we investigate the
quadratic optimization problems that have to be solved in each iteration of the meth-
ods, respectively. In the method from [34], the step direction is computed by solving a
quadratic optimization problem with the following objective function Ψ : Rm → R,

Ψ (θ):= s

2

∥∥∥∥∥
m∑
i=1

θi∇ fi (y
k)

∥∥∥∥∥
2

+
m∑
i=1

θi

(
fi (x

k) − fi (y
k)
)

.

Using the first-order approximation fi (yk) − fi (xk) ≈ 〈∇ fi (yk), yk − xk〉, we get

Ψ (θ) ≈ s

2

∥∥∥∥∥
m∑
i=1

θi∇ fi (y
k)

∥∥∥∥∥
2

+
〈

m∑
i=1

θi∇ fi (y
k), xk − yk

〉
.

Minimizing Ψ (θ) is equivalent to minimizing the function Φ : Rm → R,

Φ(θ):= s2

2

∥∥∥∥∥
m∑
i=1

θi∇ fi (y
k)

∥∥∥∥∥
2

+
〈
s

m∑
i=1

θi∇ fi (y
k), xk − yk

〉
+ 1

2
‖xk − yk‖2

= 1

2

∥∥∥∥∥s
m∑
i=1

θi∇ fi (y
k) + (xk − yk)

∥∥∥∥∥
2

.
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Using xk − yk = − k−1
k+2 (x

k − xk−1) we note that Φ(θ) is in fact the objective function
of the quadratic optimization problem (26). After this observation, it is not surprising
that the method from [34] shows convergence behavior similar to Algorithm 1.

7 Improving the Numerical Efficiency

First-order methods for multiobjective optimization that are based on the steepest
descent method by Fliege and Svaiter [19] require the solution of a quadratic subprob-
lem in each iteration. Computing the solutions of these problems is computational
demanding. In the following subsection, we present a possible approach to overcome
this problem.

7.1 AMultiobjective Gradient MethodWithout Quadratic Subproblems

In this subsection, we define a method based on Algorithm 1 which does not require
the solution of a quadratic subproblem in each iteration. In Sect. 6.2, we derived
Algorithm 1 from the scheme

3

k
(xk+1 − xk) + proj

sC(yk )+(xk+1−2xk+xk−1)

(0) = 0,

which can be interpreted as a discretization of the differential equation

3

t
ẋ(t) + proj

C(x(t))+ẍ(t)
(0) = 0.

If, instead, we use the discretization

3

k
(xk − xk−1) + proj

sC(yk )+(xk+1−2xk+xk−1)

(0) = 0,

we obtain a different method. Lemma A.1 gives a formula to compute xk+1

xk+1 = −3

k
(xk − xk−1) − s

m∑
i=1

θki ∇ fi (x
k) + 2xk − xk−1,

= xk + k − 3

k
(xk − xk−1) − s

m∑
i=1

θki ∇ fi (x
k),

(36)

where θk ∈ R
m is a solution to the problem

min−
m∑
i=1

θi 〈∇ fi (x
k), xk − xk−1〉 s. t. θ ≥ 0 and

m∑
i=1

θi = 1.
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This can be solved efficiently by computing m inner products. After changing k−3
k

into k−1
k+2 in (36), we define Algorithm 2. There is no proof of convergence for the

method defined by Algorithm 2 but we discuss its numerical behavior in Sect. 8. Also,
convergence can be guaranteed by switching from the significantly faster Algorithm 2
to Algorithm 1 as soon as some heuristic criterion is met.

Algorithm 2 Accelerated multiobjective gradient method without quadratic subprob-
lems
Require: Choose x0 = x1 ∈ H, s > 0 and set k = 1.
1: Set yk = xk + k−1

k+2 (xk − xk−1).

2: Compute j = argmaxi=1,...,m 〈∇ fi (y
k ), xk − xk−1〉.

3: Set xk+1 = yk − s∇ f j (y
k )

4: if stopping condition is true then
5: Stop.
6: else
7: Update k ← k + 1 and go to step 1.
8: end if

7.2 Backtracking for Unknown Lipschitz Constants

In all presented algorithms, we can include backtracking if the Lipschitz constants of
the gradients ∇ fi of the objective functions are unknown. We can do this as stated in
[13, 34]. To include backtracking, we choose an initial step size s0 > 0 and a parameter
σ ∈ (0, 1). In all discussed algorithms there is a step xk+1 = wk − sdk , with dk ∈ H
andwk = xk orwk = yk . One can replace this stepwith xk+1 = wk−skdk , with a step
size sk that is determined using backtracking. We choose in every step sk = σ lk sk−1
where lk ≥ 0 is the smallest nonnegative integer satisfying for all i = 1, . . . ,m

fi (w
k − σ lk sk−1d

k) ≤ fi (w
k) − σ lk sk−1〈∇ fi (w

k), dk〉 + σ lk sk−1

2
‖dk‖2.

The sequence (sk)k≥0 is monotonically decreasing by definition. Under the condition
that the objective functions posses L-Lipschitz continuous gradients, it is guaranteed
that the sequence (sk)k≥0 is constant from same k on. This is true since sk can only
decrease as long as sk > 1

L . Therefore, sk can only decrease finitely many times until
it reaches a point where sk ≤ 1

L . Using this observation, we can include backtracking
in Algorithm 1 and still use the proofs of Theorem 6.6 and Theorem 6.7 to show that
the same convergence results can be achieved.

8 Numerical Examples

In this section, we present the typical behavior of our algorithms on two test problems.
We compareAlgorithms 1 and 2with the steepest descentmethod byFliege and Svaiter
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with constant step sizes [19]. Throughout this section we denote the steepest descent
method by SD, Algorithm 1 by AccG (accelerated gradient method) and Algorithm 2
by AccG w\o Q (accelerated gradient method without quadratic subproblems). We
implemented all codes using MATLAB R2021b and executed the algorithms on a
machine with a 2.80 GHz Intel Core i7 processor and 48 GB memory. We solved
the quadratic subproblems for SD and AccG using the built-in MATLAB function
quadprog.

8.1 Example 1: A ConvexMOPwith Three Objective Functions

In our first example, we choose a problem with input dimension n = 20 and three
objective functions (m = 3). We define the objective functions using the following

parameters. For p = 50 and i = 1, 2, 3 we generate matrices Ai =
(
ai1, . . . , a

i
p

)� ∈
R

p×n with aij ∈ R
n for j = 1, . . . , p and vectors bi ∈ R

p. Then, for i = 1, 2, 3, we
define the objective functions

fi : Rn → R, x �→ ln

⎛
⎝

p∑
j=1

exp
(
(aij )

�x − bij

)⎞⎠ .

For the first experiment we randomly generate matrices Ai ∈ R
p×n and vectors

bi ∈ R
p with entries uniformly sampled in [−1, 1] for i = 1, 2, 3. The starting vector

x0 is uniformly randomly drawn from [−15, 15]n . We use the step size s = 5e−2 and
execute maximally kmax = 1000 iterations. Figure1 contains plots of the sequences
(xk)k≥0 for the different algorithms. In Fig. 1a, it can be seen that the sequences
generated with AccG and AccG w\o Q advance much faster in the beginning, while
the velocity of the sequence generated with SD remains constant. The sequences
generated by AccG and AccG w\o Q give very similar trajectories in the beginning.
This result is intuitive given that the schemes in the algorithms are derived from
different discretizations of the same differential equation. However, this result is still
surprising keeping inmind that in Algorithm 2we do not solve a quadratic subproblem
in each iteration. Only in Fig. 1b, we see that the sequences differ more substantially
in the long run. It is also noteworthy that the sequence generated by AccG is smoother
compared to the trajectory generated by AccG w\o Q. This is due to the fact that in
AccG w\o Q we choose one of the gradients of the objective functions for the gradient
component of the step directionwhile inAccGwe choose an element of the convex hull
of the gradients. AccG and AccG w\o Q are superior to SD in terms of convergence of
the function values for all objective functions, as shown in Fig. 2. AccG and AccGw\o
Q experience fast convergence within the first 200 iterations. Comparing the different
objective functions in Fig. 2a–c, we see that AccG and AccG w\o Q yield outputs with
similar function values for all objective functions.

In a second experiment, we execute all algorithms for 50 starting values uniformly
sampled in [−5, 5]n with step size s = 5e−2. We use the stopping criterion ‖ f (xk)−
f (xk−1)‖∞ < 1e−4 to stop the algorithms if the function values do not change
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Fig. 1 Coordinates (x1, x2, x3) of the sequences (xk )k≥0 for SD, AccG and AccG w\o Q. Line plot for
1000 iterations with a filled circle every 50 iterations to compare the velocities

Fig. 2 Function values ( fi (x
k ))k≥0 of the iterates for the objective functions i = 1, 2, 3 for the different

algorithms

significantly. In Fig. 3a, we perform up to kmax = 50, in Fig. 3b up to kmax = 250 and
in Fig. 3c, d up to kmax = 1000 iterations. Similar to the results observed in Figs. 1
and 2, AccG and AccG w\o Q advance much faster in the beginning compared to
SD. Comparing Fig. 2b, c, we see that after 250 iterations the function values for the
acceleratedmethods are converging or the stopping conditions weremet. The different
behavior of the accelerated methods can be observed in Fig. 3d. While the solutions of
AccG are farther spread, it looks like the solutions of AccG w\o Q are drawn toward
the center of the Pareto front. Altogether, the accelerated methods perform better
for this problem in terms of convergence speed of the function values. In Table 1
the total number of iterations and computation times for the experiments are listed.
The accelerated methods require fewer iterations. Compared to SD, AccG requires
only approximately 25 % and AccG w\o Q only approximately 50 % iterations. For
the computation times the results are different. SD and AccG behave similar, with
AccG requiring approximately 25 % of the computation time that is required for SD.
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Fig. 3 Function values of the objective functions in the image space for the different algorithms and a
different maximum number of iterations kmax = 50, 250, 1000

Table 1 Total iterations and
computation times for algorithm
executions using parameters
s = 5e−2, kmax = 1000 and
stopping condition
‖ f (xk ) − f (xk−1)‖∞ < 1e−4
for 50 start values uniformly
sampled in [−15, 15]n

SD AccG AccG w\o Q

Total iterations 49924 12230 25906

Total time 436.54 s 100.94 s 1.61 s

However, AccGw\oQneeds less the 2%of the timewhich is consumed byAccG. This
improvement stems from the quadratic optimization problems that are not required in
AccG w\o Q.
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8.2 Example 2: A NonconvexMOPwith Two Objective Functions

For our second test problem, we choose an example from [36] with input dimension
n = 2 and the two objective functions

f1(x) = 1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 + x1 − x2

)
+ λ exp (−(x1 − x2)

2),

f2(x) = 1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 − x1 + x2

)
+ λ exp (−(x1 − x2)

2),

with λ = 0.6. For themultiobjective optimization problem (MOP)with these objective
functions it can easily be verified that the Pareto set is

P =
{
x ∈ R

2 : x1 + x2 = 0
}

.

In the first experiment, we execute Algorithms SD, AccG and AccG w\o Q with the
starting vector x0 = (1, 2)� and perform kmax = 1000 iterations. The step size is
set to s = 5e−3. The sequences and function values of the objective functions are
shown in Fig. 4. Similarly to the first experiment in Fig. 4a, the sequences (xk)k≥0 of
the accelerated methods advance faster in the beginning. While algorithms SD and
AccG converge to the same element in the Pareto set the algorithm AccG w\o Q
produces a trajectory that deviates from the trajectories of SD and AccG and moves
to a different part of the Pareto set. The values of the objective functions in Fig. 4b, c
indicate a similar behavior. For the accelerated methods we have faster decrease in the
beginning and we note that the function values for SD and AccG converge to similar
values. In Fig. 5 we use 100 random starting points uniformly sampled in [−2, 2]2. For
the experiments we use different maximal numbers of iterations kmax. In addition we
stop the algorithm if ‖ f (xk) − f (xk−1)‖∞ < 1e−4. Comparing Fig.5a–c, we note
that the objective function values of the accelerated methods decrease much faster in
the beginning. For kmax = 100 algorithms AccG and AccG w\o Q yield solutions that
are distributed along the Pareto front. In Table 2 we list the total number of iterations

Fig. 4 Sequences (xk )k≥0 and function values ( fi (x
k ))k≥0 of iterates for i = 1, 2. For the sequences we

use a line plot for 1000 iterations with a filled circle every 50 iterations to compare velocities
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Fig. 5 Values of the objective functions in the image space for different maximum numbers of iterations
kmax = 50, 100, 500 for the different algorithms SD, AccG and AccG w\o Q

Table 2 Total iterations and
computation times for algorithm
executions using parameters
h = 5e−3, kmax = 1000 and
stopping condition
‖ f (xk ) − f (xk−1)‖∞ < 1e−4
for 100 start values uniformly
sampled in [−2, 2]n

SD AccG AccG w\o Q

Total iterations 45543 6632 23034

Total time 431.75 s 62.90 s 0.31 s

Fig. 6 Values of the objective functions in the image space for different step sizes s = 5e−3, 1e−2, 5e−2
for the algorithm AccG w\o Q

and total computation times for executions with up to kmax = 1000 iterations with
stopping condition ‖ f (xk) − f (xk−1)‖∞ < 1e−4. Compared to SD, AccG needs
only approximately 15 % and AccG w\o Q only approximately 51 % iterations.

In another experiment we compare how the choice of the step size s affects the
solutions of AccG w\o Q. We use the step sizes s = 5e−3, 1e−2, 5e−2. For all
executions we perform kmax = 1000 iterations, with the stopping criterion ‖ f (xk) −
f (xk−1)‖∞ < 1e−4. Comparing Fig.6a–c we see that for the smallest step size
s = 5e−3 solutions are distributed on the whole Pareto front. For the biggest step
size s = 5e−2 Algorithm AccG w\o Q yields solutions that cluster at two points of
the Pareto front, which is not desirable in general. The two points where the solutions
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cluster correspond to the knee points in the Pareto front. This is not surprising since
these points correspond to solutions where the individual gradients are similar in
magnitude, which is why the solution is zig-zagging back and forth between the
objectives in these locations. However, this disadvantage is compensated by the fact
that we do not need to solve a quadratic subproblem in every step. We need potentially
more iterationswhen choosing smaller step sizes but every iteration is computationally
cheaper in comparison to SD and AccG. Moreover, a small adaptation to step 2 of
Algorithm 2, where we include a weighting parameter in the max problem, might
allow us to diversify solutions, similar to the weighted sum method.

9 Conclusion and Open Questions

We present the novel inertial gradient-like dynamical system (IMOG’) for Pareto
optimization. We show that trajectories of this system converge weakly to Pareto
critical points of (MOP). Based on this, we define a novel inertial gradient method
for multiobjective optimization and show weak convergence to Pareto critical points.
We derive an accelerated gradient method from the informally introduced inertial
gradient-like system (MAVD) which incorporates asymptotically vanishing damping.
Using the concept of merit functions, we show that our method possesses an improved
convergence rate. Using a different discretization of the system (MAVD), we define
an accelerated gradient method which does not require the solution to a quadratic
optimization problem in every iteration.A comparison on selected test problems shows
that the accelerated methods are in fact superior to the plain multiobjective steepest
descent method.

There are a lot of open questions arising from the presented work. The gradient
system (IMOG’) can be analyzed for different problem classes. In addition, we can
adapt our gradient systems and algorithms to treat problems with a separable smooth
and nonsmooth structure using proximal methods. Another research direction is the
adaption of the presented gradient systems and algorithms by the means of Hessian
driven damping (see, e.g., [3])which attenuates oscillations of the trajectories naturally
arising in inertial systems. This way it improves the behavior of inertial gradient
methods. It would be interesting to analyze Hessian driven damping in the context of
multiobjective optimization. It would also be interesting to investigate the behavior of
our algorithms for high-dimensional and nonconvex problems. In addition, one could
apply the presented algorithms in the area of machine learning, e.g., for multitask
learning problems [28].
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A Two Lemmas on Convex Projections

Lemma A.1 Let H be a real Hilbert space, C ⊂ H a convex and compact set and
η ∈ H a fixed vector. Then, ξ ∈ H is a solution to the problem

Find ξ ∈ H such that : η = proj
C+ξ

(0), (37)

if and only if it has the form ξ = η − μ, where μ is a solution to the constrained
optimization problem minμ∈C 〈μ, η〉.
Proof First, we show that an element of the form ξ = η − μ, with μ a solu-
tion to minμ∈C 〈μ, η〉 is a solution to problem (37). The set of minimizers of the
problem minμ∈C 〈μ, η〉 is nonempty, since C is compact. Fix an arbitrary solution
μ ∈ argminμ∈C 〈μ, η〉. Since C is convex, the first-order optimality condition for this
problem gives that for all x ∈ C it holds that 〈x − μ, η〉 ≥ 0 and hence

〈x + ξ − (μ + ξ), η〉 ≥ 0.

Since we have chosen ξ = η − μ the equation above reads as

〈x + ξ − η, η〉 ≥ 0,

which is equivalent to η = projC+ξ (0). The other direction works analogously. If the
vector ξ is a solution to problem (37) this guarantees that μ = ξ −η satisfies the first-
order optimality condition for problem minμ∈C 〈μ, η〉. Since problem minμ∈C 〈μ, η〉
is convex and defined over a convex set, this is equivalent to μ being an optimal
solution to minμ∈C 〈μ, η〉. ��
Lemma A.2 Let H be a real Hilbert space, C ⊂ H a convex and closed set and
a > 0, ν ∈ H fixed. Then, the problem

Find ξ ∈ H such that : − a(ξ + ν) = proj
C+ξ

(0), (38)

has the unique solution ξ = −
(

1
1+a projC (ν) + a

1+a ν
)
.

Proof First, we show that ξ = −
(

1
1+a projC (ν) + a

1+a ν
)
is a solution to (38). It is

easy to check that −a(ξ + ν) ∈ C + ξ . Define the projection p:=projC (ν). For all
x ∈ C it holds that 〈x − p, p − ν〉 ≥ 0 and hence for all x ∈ C we get

〈x + ξ + a(ξ + ν), a(ξ + ν)〉 ≤ 0,
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which is equivalent to

−a(ξ + ν) = proj
C+ξ

(0).

The uniqueness follows the same way. Assume we have a solution ξ̃ to (38). By the
same computations as above it holds that for all x ∈ C

〈x + (1 + a)ξ̃ + aν, ξ̃ + ν〉 ≤ 0.

This is equivalent to

−((1 + a)ξ̃ + aν) = proj
C

(ν),

from which follows that ξ = ξ̃ is the unique solution. ��
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