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Abstract
In this paper, we consider the problem of computing a median of marked point process
data under an edit distance. We formulate this problem as a binary linear program, and
propose to solve it to optimality by software. We show results of numerical experi-
ments to demonstrate the effectiveness of the proposed method and its application in
earthquake prediction.
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Mathematics Subject Classification 90C10 · 90C90 · 37M10 · 60G55 · 86A15

1 Introduction

A time series of discrete events observed in continuous time is referred to as a point
process. In particular, if each event is associated with some values called marks, then it
is referred to as a marked point process (MPP). An example of the MPP is earthquake
data since earthquakes occur discretely in continuous time and their magnitudes and
epicenters, for example, naturally define their marks; see, e.g., [6, 15, 20, 24, 29] for
other examples.
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In analyzing MPPs, it is common to use time windows to generate a large number
of pieces, i.e., local patterns, of given data. This processing enables us to discuss
properties of given data in terms of relationships among the pieces generated. In this
setting, an edit distance, originated in [35] by Victor and Purpura, is often employed as
a metric; see [31] for its general definition, and also, e.g., [8, 11, 28] for data analysis
based on this distance.

In practice, distance is frequently inquired and hence its computation often forms
a bottleneck of the whole computation, affecting the quality of analysis results. For
this reason, algorithms for computing the Victor–Purpura-type edit distance (the VP
distance) have been studied in the literature; see [1, 12, 14, 35]. See also, e.g., [9, 18,
19] for the Earth mover’s distance and, e.g., [5, 34, 36] for the Wasserstein distance,
which are related concepts.

However, algorithms for analyzing MPPs under the VP distance are limited in the
existing literature [7, 16, 22, 27, 30]. In particular,median (or prototype) is usefulwhen
onewants to represent a set ofMPPsbya singleMPP that is typical and interpretable. Its
applications include neuronal spike behavior [7], earthquake aftershocks [30], wildfire
activity [27], and plant community [22]. Although algorithms for computing medians
of MPPs have been devised in [7, 30, 33], they are heuristic. Against this background,
in this paper, we devise a first exact method. It is based on integer programming,
which enables us to apply state-of-the-art powerful software. Although optimization
techniques have already been used in the literature by the nature of the VP distance,
less attention has been paid to integer programming in this context.

1.1 Our Contribution

In this paper, we study the median computation for MPPs under the VP distance. Our
contributions include:

– We first point out the existence of a well-structured median. We then use it to
give a binary linear programming formulation, offering a first exact method for
the median computation of MPPs.

– We conduct numerical experiments on random data, which show that the method
has a potential to solve instances with hundreds of MPPs with thousands of events
in total in a few minutes using software, Gurobi.

– We present an application of medians of MPPs in predicting earthquake behavior
and show its validity using a real-world data set.

We note that the key ingredient for our formulation, the notion of candidates in
Lemma 1, has already been pointed out in [32] (Theorem 4a) to develop a heuris-
tic method to compute medians. We also note that although generalized metrics and
barycenters are introduced in [10, 25], how to extend our current work to computing
the related barycenters for MPPs is an open question.

123



180 Journal of Optimization Theory and Applications (2024) 200:178–193

1.2 Organization

The remainder of this paper is organized as follows. We first introduce definitions in
Sect. 2.We then analyze themedian computation in Sect. 3, and formulate it as a binary
linear program in Sect. 4. Section5 is devoted to numerical experiments. Concluding
remarks are given in Sect. 6.

2 Preliminaries

2.1 Marked Point Process Data

Let R be the set of reals. An event is a point p in Rd where d is some positive integer.
The first component is called the time of occurrence of the event, and each remaining
d − 1 component vector is the mark of the event. For example, if event represents
earthquake data, we would typically have d = 5, with the components of the 4-
dimensional mark representing the magnitude, the depth, and latitude and longitude
of the epicenter. That is,

p =

⎡
⎢⎢⎢⎢⎣

time
magnitude
depth
latitude
longitude

⎤
⎥⎥⎥⎥⎦

, mark of p =

⎡
⎢⎢⎣
magnitude
depth
latitude
longitude

⎤
⎥⎥⎦ .

When d = 1, we are concerned only with occurrence times of some particular phe-
nomenon (e.g., neuron activity), and the events will have no marks. We denote p j to
represent the j th component of event p.

A marked point process (MPP) P is defined as a finite multiset of events. Thus,
p = q can hold for two events p, q in a general MPP. Hereafter, we denote |P| to
represent the number of events in P , and also U to represent the set of all possible
MPPs for some fixed d. The analysis of MPPs is important [21] because they naturally
arise inmany phenomena, such as earthquakes [13, 30], foreign exchangemarkets [11,
31] and their interactions [26], and floods [2]. In such analyses, edit distance plays a
central role. We next define the edit distance of two MPPs.

2.2 Edit Distance for Marked Point Process Data

To define the Victor–Purpura-type edit distance (VP distance), we need first introduce
transformations from P into Q, bymeans of the following three elementary operations
on events: For X ∈ U ,
– the shift operation on event x of X is to replace it by an arbitrary event y inRd ,
which we call the shift destination of x ,

– the delete operation on an event of X is to remove it from X , and
– the insert operation on an event of Rd is to add it to X .
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Fig. 1 Example of two MPP data P, Q and a transformation from P into Q

Note that |X | is unchanged by the shift operation, while the delete and insert,
respectively, decrease and increase the value by one.

We can transform any given P ∈ U to any Q ∈ U by a finite sequence of the above
three operations. Indeed, a trivial transformation is to delete all events of P , then
insert all events of Q. We now define costs of elementary operations. The costs of
delete and insert are 1, i.e., a constant, while the cost of shift of event x to y
is given by

cost(x, y) =
d∑
j=1

λ j |x j − y j |,

where λ j is a positive parameter for j = 1, . . . , d. The cost of a transformation from
P into Q, i.e., a finite sequence of shift, delete, and insert of events whose
application to P yields Q, is defined as the sum of costs of the elementary operations.
We say that a transformation from P into Q, is optimal if its cost attains the minimum
cost among all such transformations.

For convenience, we write cost(T ) to represent the cost of a transformation T .
Also, we say that a transformation from P into Q is simple if

(C1) for each event of P , either delete or shift is applied exactly once,
(C2) for each event of Q, either insert is applied exactly once, or it is the shift

destination of exactly one event of P ,

and no other operations are involved in the transformation. Figure1a shows, for d = 2,
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two MPPs

P =
{[

0.2
1

]
,

[
0.5
3

]
,

[
1.0
2

]}
, Q =

{[
0.4
2

]
,

[
0.7
1

]}
,

where events are indicated by vertical bars. The values below the bars show the times
of occurrence, and those above the bars correspond to the value of the (1-dimensional)
mark. Figure1b shows a simple transformation from P into Q that involves one
shift, one insert, and two delete operations.

Proposition 1 For any two MPPs P and Q, there always exists an optimal simple
transformation from P into Q.

Proof It suffices to show that we need only consider transformations in which shift
is applied at most once to each event of P . To this end, suppose that shift is applied
twice to some event, first from p to q, then from q to r . The cost associated with these
two shift operations is

cost(p, q) + cost(q, r) =
d∑
j=1

λ j (|p j − q j | + |q j − r j |)

≥
d∑
j=1

λ j |p j − r j |

= cost(p, r),

thus unifying the two shift operations into one operation from p to r would incur
no increase in cost. This completes the proof of the proposition since any shift on
an inserted event and any delete on a shifted event can be replaced by one insert
and one delete, respectively, without increasing the cost. ��

We can now define the edit distance.

Definition 1 [31, 35] The VP distance d(P, Q) of two MPPs P, Q is the minimum
cost required for transforming P into Q using the three operations shift, delete,
and insert of events.

The value of d(P, Q) is well defined since it is always attained by the cost of a simple
transformation from P into Q from Proposition 1, and there are only finitely many
simple transformations for fixed P, Q. The following proposition follows immediately
from the definition of edit distance.

Proposition 2 The edit distance is a metric.

Proof For any three MPPs P, Q, R, one has

(i) d(P, Q) = 0 if and only if P = Q by the positivity of the parameters,
(ii) d(P, Q) = d(Q, P) by the symmetry of the costs, and
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(iii) d(P, R) ≤ d(P, Q) + d(Q, R) since concatenating any transformation from P
into Q and one from Q into R yields a transformation from P into R whose cost
is exactly the sum of those of the two.

��
Proposition 3 The VP distance is a metric on U for fixed d.

Proof For any P, Q, R ∈ U ,
(i) d(P, Q) = 0 if and only if P = Q from positivity of the parameters,
(ii) d(P, Q) = d(Q, P) by symmetry of the costs, and
(iii) d(P, R) ≤ d(P, Q)+d(Q, R) because concatenating two transformations, one

from P into Q and the other from Q into R, yields a transformation from P into
R whose cost equals the sum of those of the two.

��

2.3 Bipartite-GraphModel for Computing Edit Distance

Wenowexplain how to compute the value of d(P, Q). This is accomplished by solving
an assignment problem on a bipartite graph [14]. This bipartite graph is defined as
follows:

– Let V i
P = {vip | p ∈ P} and V i

Q = {viq | q ∈ Q} for i = 0, 1. Then, set

VP = V 0
P ∪ V 1

Q and VQ = V 1
P ∪ V 0

Q .

Thus, |VP | = |VQ | = |P| + |Q|. We say that each vertex v1x is dummy.
– Let E = {{u, v} | u ∈ VP , v ∈ VQ}. Then, (VP ∪ VQ, E) is an undirected

complete bipartite graph, which we denote by GPQ . Each edge {vix , v j
y } has a

cost, denoted by cost({vix , v j
y }), defined as

⎧⎪⎪⎨
⎪⎪⎩

cost(x, y) if i = 0, j = 0 (shift),

1 if i = 1, j = 0, i.e., vix is dummy (insert),

1 if i = 0, j = 1, i.e., v
j
y is dummy (delete),

0 if i = 1, j = 1, i.e., vix and v
j
y are both dummy.

For F ⊆ E , we denote by cost(F) the sum of costs of the edges in F .

Figure 2a shows the graph GPQ for two MPPs P, Q depicted in Fig. 1a. Black
(white) circles correspond to non-dummy (dummy) vertices. We show costs corre-
sponding to the shift edges next to them assuming λ1 = λ2 = 10. The delete
and insert edges are indicated by dotted lines, and edges with 0 cost are omitted.

For a perfect matching M in GPQ let TM be a simple transformation from P into
Q in which

– for each p ∈ P , delete is applied if {v0p, u} ∈ M for some u ∈ V 1
Q and shift

from p to q is applied if {v0p, v0q} ∈ M for some q ∈ Q, and
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(a) The bipartite graph GPQ for two MPPs
P,Q depicted in Fig. 1(a)
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VQ

(b) The perfect matching induced by the
transformation depicted in Fig. 1(b)

Fig. 2 The bipartite-graph model of [14] for computing VP distance

– for each q ∈ Q, insert is applied if {u, v0q} ∈ M for some u ∈ V 1
P and shift

from p to q is applied if {v0p, v0q} ∈ M for some p ∈ P .

Then, cost(M) = cost(TM ) holds by the definitions of the edge costs. Conversely,
we observe that for any simple transformation T from P into Q, there is a perfect
matching M such that T = TM , which implies the following.

Proposition 4 [14] For any two MPPs P, Q ∈ U , let M∗ be a minimum-cost perfect
matching in GPQ. Then, cost(M∗) = d(P, Q).

The perfectmatching shown in Fig. 2b corresponds to the simple transformation shown
in Fig. 1b.

3 Medians of Marked Point Process Data Under Edit Distance

3.1 Problem Description and Toy Examples

The median computation is a problem of finding, for a given set {P1, . . . , Pk} ofMPPs
with Ph ∈ U for h = 1, . . . , k, a single MPP X in U that minimizes the sum of VP
distances from {P1, . . . , Pk}, i.e.,

f (X) ≡
k∑

h=1

d(X , Ph),

over U . Such an X is called a median. Hereafter, the given set of MPPs is referred to
as an instance.

Themedian computation has a simple structurewhen k = 2. To see this, let {P1, P2}
be any instance in this case. Then, both P1 and P2 are medians of {P1, P2} because
for any X in U , we have

f (X) = d(X , P1) + d(X , P2)

= d(P1, X) + d(X , P2)

≥ d(P1, P2),
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Fig. 3 An instance of the median
computation for d = 2 and
k = 3 with |P| = 6 and |C| = 9 0.1
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and f (P1) = f (P2) = d(P1, P2) since d is a metric. In general, any minimizer of f
among all MPPs in an instance is referred to as a medoid. Hence, in this example, P1
and P2 are medoids as well as medians.

An instance where medoids and medians have no intersection is depicted in Fig. 3.
Assuming that λ1 and λ2 are sufficiently small, any median consists of exactly two
events, and neither insert nor delete is used since their costs are high. Thismeans
that X shown in the bottom is the unique median. Observe, for example, that event x
of X is such that x1 is the one-dimensional median of {ph1 }h=1,2,3, i.e., {0.1, 0.2, 0.3}
while x2 is that of {ph2 }h=1,2,3, i.e., {1, 2, 3} so that the total cost of shift isminimized
for x .

3.2 Well-StructuredMedians

Motivated by the above observation, we here point out that there always exists a
median with a simple structure. Let P denote the set of events in a given instance
{P1, . . . , Pk}, i.e., P = P1 ∪ · · · ∪ Pk . Then, we call c in R

d a candidate if for each
j = 1, . . . , d, there is p in P with c j = p j , and denote by C the set of candidates.
In other words, letting A j be the set of values for the j th component of the events in
the instance, i.e., {p j | p ∈ P}, C can be written as C = A1 × · · · × Ad . Note that
P ⊆ C and C is finite since each Ph is finite for h = 1, . . . , k. For the instance shown
in Fig. 3, we have |P| = 6 while |C| = 18 because A1 = {0.1, 0.2, 0.3, 0.7, 0.8, 0.9}
and A2 = {1, 2, 3}. Note that the two events of X belong to C but not to P . The
following lemma claims that one can construct a median for any instance by selecting
events from C (allowing duplication).

Lemma 1 Let {P1, . . . , Pk} be any instance. Then, there exists a median such that all
of its events belong to C. We call such a median well-structured.

Proof Take any median X and fix a simple transformation from X into Ph with cost
d(X , Ph) for each h = 1, . . . , k. Let x be any event of X and Hx be the set of itsshift
destinations. Note that Hx is nonempty; otherwise, removing x from X decreases the
value of f , a contradiction. The set X remains a minimizer of f even if x is replaced
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by y as long as y minimizes

g(y) ≡
∑
p∈Hx

cost(y, p) =
∑
p∈Hx

d∑
j=1

λ j |y j − p j |

=
d∑
j=1

λ j

⎡
⎣ ∑

p∈Hx

|y j − p j |
⎤
⎦

over Rd . We see that y minimizes g if each y j minimizes the term in the square
bracket, which can be accomplished by setting y j to p j for some p ∈ Hx , i.e., a
one-dimensional median. This implies that there exists a minimizer of g that belongs
to C, and hence completes the proof. ��

4 A Binary Linear ProgrammingModel

The binary linear programming model for the median computation proposed in this
paper is a direct consequence of Lemma 1. We create, for each c ∈ C, an integer
variable mc to represent the number of events in a solution that are identical to c, i.e.,
the multiplicity of c. We also create, for each c ∈ C and p ∈ P , a binary variable scp
which takes one if p is the shift destination of c. Finally, we create, for each p ∈ P ,
a binary variable ιp (σp) which takes one if p is inserted (p is the shift destination
of some event). Then, the median computation can be formulated as

(P) min.
∑
p∈P

ιp +
k∑

h=1

∑
c∈C

⎡
⎣mc −

∑
p∈Ph

scp

⎤
⎦ +

∑
c∈C, p∈P

cost(c, p)scp (1)

s. t. ιp + σp = 1 (p ∈ P) (2)∑
x∈C

scp = σp (p ∈ P) (3)

∑
p∈Ph

scp ≤ mc (c ∈ C, h = 1, . . . , k) (4)

mc ∈ N (c ∈ C)

scp ∈ {0, 1} (c ∈ C, p ∈ P)

ιp ∈ {0, 1} (p ∈ P)

σp ∈ {0, 1} (p ∈ P)

where ccp represents c(c, p) for each c ∈ C and p ∈ P , and N denotes the set of
nonnegative integers.

In order to obtain themedian X corresponding to a solution of (P), pick each element
c with multiplicity mc. The transformation from X to each Ph is obtained as follows:
For each p ∈ Ph ,
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(i) if ιp = 0 and σp = 1, then take any event x of X that is identical to a candidate c
with scp = 1 and shift it to p (where the unique existence of such c is guaranteed
from (3) and the existence of such x from (4)),

(ii) if ιp = 1 and σp = 0, then p is inserted (in this case, there is no c with scp = 1
from (3)),

and the events in X that have no shift destination after the above procedure are
deleted. Thus, the resulting transformation is simple.

The number of events that are deleted in the transformation from X into Ph
constructed above is given by

∑
c∈C

⎡
⎣mc −

∑
p∈Ph

scp

⎤
⎦ ,

thus the second term in the objective function coincides with the total cost concerning
delete. The first and third terms in the objective function coincidewith the total costs
concerning insert and shift, respectively. Therefore, the value of the objective
function (when minimized) coincides with f (X) for any X that is represented by the
m variables.

Theorem 1 The binary linear programming problem (P) correctly formulates the
median computation.

Proof Straightforward from the discussion so far. ��
Remark 1 One can replace the constraint of mc ∈ N by mc ∈ R because mc is
minimized in the objective function and the value of mc is bounded from below by an
integer from Eq. (4).

5 Numerical Experiments

In this section, we report numerical results. We used Python to implement the for-
mulation and ran it on the Intel Core i7-1165G7@ 2.80 GHz with 16.0 GB using
optimization software, Gurobi ver. 10.0.0.

We consider two settings. The first setting evaluates the computation time required
for the formulation to solve instances to optimality where randomly generated data are
employed. The second setting demonstrates the effective use of median in predicting
the behavior of earthquakes where medoids are used as a benchmark.

5.1 Computation Time for Randomly Generated Data

Table 1 shows the results. Here, we consider 18 cases by changing the values for
the dimension of the events, d, and the number of MPPs in an instance, k, which
correspond to the rows. For d = 1, events have no marks while for d = 3, each event
has a two-dimensional vector as its mark. For each case, ten instances are generated
in the following way:
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Table 1 Computation time
required for randomly generated
instances

d k Computation time (s) |P| |P| · |C|
Min Avg Max Avg Max

1 5 < 0.1 < 0.1 < 0.1 57 5000

10 < 0.1 0.1 0.1 97 10,000

20 0.1 0.2 0.2 223 20,000

40 0.3 0.4 0.5 426 40,000

80 0.8 0.9 1.1 872 80,000

160 2.0 2.1 2.3 1728 160,000

2 5 0.1 0.1 0.2 54 25,000

10 0.2 0.3 0.3 93 50,000

20 0.6 1.2 2.5 195 100,000

40 9.2 16.8 40.9 424 200,000

80 7.4 294.1 814.5 807 400,000

160 25.5 593.4 2060.5 1757 800,000

3 5 0.5 1.2 3.9 52 125,000

10 1.0 5.3 11.4 101 250,000

20 8.0 70.5 411.8 215 500,000

40 300.4 NA > 3600.0 415 1,000,000

80 – – – – –

160 – – – – –

– The first component, i.e., time of occurrence, of every event is selected from
{0, 1, . . . , 49} uniformly at random,

– If d ≥ 2, then the j th component for j ≥ 2, i.e., a mark, of every event is selected
from {1, . . . , 5} at uniformly random, meaning that there are 5 (25) possibilities
for the mark vectors if d = 2 (d = 3), and

– The number of events in each MPP is selected from {1, . . . , 20} uniformly at
random, meaning that it is 10.5 on average and hence the total number of events
in the input, i.e., |P| is 10.5k on average and at most 20k.

Each component of the events is normalized to be contained in [0, 1] and λ1 and λ2
are set to one. The minimum, average, and maximum of the computation time for the
ten instances are shown for each case.

We see from Table 1 that for each fixed d, the computation time grows as |P|
increases. However, for d = 1, 2, instances with more than a thousand events are
solved within 10 min on average. On the other hand, for d = 3, we often failed
to solve an instance within an hour even for k = 40, and hence the results for larger
instances are omitted. One reason is the fact that the number of the s variables is |C|·|P|
and hence can be 50 · 5d−1 · 20k for the instances we tested, which is 1,000,000 for
d = 3 and k = 40 as shown in the rightmost column. Here, note, in particular, that
even when each component of the events is binary, we have |C| = O(2d).

Nevertheless, we confirmed that the gap between upper and lower bounds in each
computation tends to get small at early stages, which may suggest that the proposed
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Table 2 Comparison with the naive sampling approach for ten instances for d = 2 and k = 10 where n
denotes the number of samples

No Objective value Computation time (s)

Ours Naive Ours Naive

n = 10 n = 100 n = 10 n = 100

1 53.96 57.94 (7.4%) 56.68 (5.0%) 0.43 0.23 2.12

2 63.10 64.42 (2.1%) 63.88 (1.2%) 0.24 0.21 1.90

3 41.40 42.78 (3.3%) 42.10 (1.7%) 0.21 0.20 1.73

4 56.98 59.60 (4.6%) 58.86 (3.3%) 0.26 0.19 1.89

5 45.80 47.22 (3.1%) 46.46 (1.4%) 0.16 0.17 1.65

6 44.84 46.34 (3.3%) 45.62 (1.7%) 0.20 0.19 1.79

7 63.04 64.28 (2.0%) 63.72 (1.1%) 0.27 0.20 1.96

8 59.96 60.90 (1.6%) 60.36 (0.7%) 0.43 0.20 1.86

9 40.74 41.68 (2.3%) 41.68 (2.3%) 0.18 0.18 1.73

10 43.88 45.62 (4.0%) 45.62 (4.0%) 0.18 0.17 1.63

Avg (3.7%) (2.2%) 0.26 0.19 1.83

formulation can be used in heuristic approaches. For example for an instance with
d = 3 and k = 40, a solution with a guaranteed gap 1.50% is found within a minute.
The average number of events involved in a median was approximately 10.5.

Remark 2 It is possible to impose bounds on the number of events if interested in a
median with as few events as possible, or use P instead of C, which substantially
reduces the number of the s variables, if interested in approximating the median with
events in a given input (although in both cases, we cannot guarantee that results are
medians in the exact sense).

Finally, we look at a brute-force algorithmmentioned in [32]; see Sect. 3.2.2 of that
paper for a heuristic method. This algorithm investigates all the

(|C|
M

)
possibilities for

a fixed M , and hence its computation time is much longer than that of ours in general
although it is an exact method if ran for several promising values of M . Note that even
for an instance with |C| = 43, there are approximately 1.9 × 109 possibilities when
M = 10 for example.

A naive approach for overcoming this drawback would be to sample, say, n, solu-
tions from all the possibilities, and choose one that minimizes f among them. The
comparison results for the ten instances for d = 2 and k = 10 are summarized in
Table 2 where we set M to 10, the expected number of events in an MPP. The objec-
tive values are the values of f . In the brackets, we show relative errors. When n = 10,
the naive one runs a little bit faster than ours but the relative error can be 7.4% in the
worst case and when n = 100, the naive one is much slower than ours and there is no
significant improvement on the worst-case relative error as well as the average relative
error.
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5.2 Application in Earthquake Prediction

Weapply ourmethod to analyzeMPPswith one-dimensionalmarks adapted from real-
world earthquake data. The task is to predict the days and magnitudes of earthquake
occurrences of magnitude 5.0 or more. The datasets generated and/or analyzed during
the current study are available from Japan Meteorological Agency.1

We focused on the earthquakes occurring in the period from January 1, 2000 to
December 31, 2017, within the region of longitude 140◦E–149◦E and latitude 36◦N–
42◦N, the area in the vicinity of the Tohoku Oki Earthquake of 2011, covering the
points where the Pacific Plate and the North American Plate overlap. The time unit
of events was set to 1 day. For each day, we have an event for each earthquake whose
magnitude is 5.0 or greater in our preprocessed dataset. For each such event, we
associate its magnitude as the one-dimensional mark. As in the previous experiment,
each component of the events is normalized to be contained in [0, 1].

From this data, we created 216 MPPs by splitting the 18 year time period into time
windows of 1 month each. Thus, each MPP corresponds to 1 month, and the number
of events in each MPP is at most 31. We also allowed processes with zero events, as
they stand for months in which no earthquakes occurred.

5.2.1 Problem Setting

First, we divided the set of MPPs obtained above into two parts. The data of 2000/1/1–
2011/12/31 was treated as training data, and that of 2012/1/1–2017/12/31 as test data.
For each MPP in the test data, we predict the pattern of earthquakes occurring in the
following month by a procedure described below where k is a fixed parameter:

Procedure(k):

Step 1. For a given MPP, choose the k closest MPPs (with respect to the VP distance)
from the training data.

Step 2. Extract the set of MPPs corresponding to the following month of the k MPPs
chosen in Step 1, and compute their median. This median serves as the
prediction for the following month.

Step 3. Compute VP distance between theMPP of the following month in the test data
and its prediction computed in Step 2.

For example, suppose that we are to use the MPP of January 2012 to predict that of
February 2012 when k = 3. In Step 1, we compute VP distance between the MPP
of January 2012 and all MPPs in the training data, and choose the 3 MPPs having
the smallest distances. Suppose that they are of June 2003, November 2008, and May
2001. Then, in Step 2 we extract the MPPs of July 2003, December 2008 and June
2001, and compute their median. Finally in Step 3, we compute VP distance between
this median, and the MPP of February 2012.

1 https://www.jma.go.jp/jma/en/menu.html.
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Table 3 Prediction accuracy and the total computation time of Procedure (k) for k = 2, . . . , 10

k Prediction accuracy Computation time (s)

λ = 0.5 λ = 1.0 λ = 2.0 λ = 0.5 λ = 1.0 λ = 2.0

1 1.000 1.000 1.000 128 116 126

2 0.635 0.587 0.718 129 114 126

3 0.565 0.539 0.645 130 115 127

4 0.503 0.512 0.591 131 115 127

5 0.478 0.488 0.590 132 116 128

6 0.526 0.506 0.574 132 117 130

7 0.518 0.504 0.571 133 118 131

8 0.517 0.497 0.567 136 120 133

9 0.514 0.498 0.575 137 131 135

10 0.526 0.500 0.573 139 124 136

5.2.2 Results

We evaluate the prediction accuracy of Procedure (k) in terms of the total sum of
VP distances computed in Step 3, i.e., the gap between the actual MPPs in the test data
and those predicted by the procedure. The benchmark is Procedure (1) because it
corresponds to the method proposed in [13] (see also [11] for a similar method used
for exchange forecasts). For this reason, we look at, for k ≥ 2, its (relative) prediction
accuracy defined as

The prediction accuracy of Procedure(k)

The prediction accuracy of Procedure(1)
.

For example, if this value is 0.5, then it means that the proposed procedure brings 50%
improvement over the alternative one proposed in [13].

The results are summarized in Table 3 where we applied the procedure to all MPPs
from January 2012 to November 2017. December 2017 which has no data for the
following month was excluded from the analysis, thus the number of data used in
prediction was 71. The computation time shown in the table is the total computation
time required for dealing with all these 71 instances. We varied the value of k as
k = 1, 2, . . . , 10 and that of parameters for the cost of shift λ1 and λ2 as λ1 =
λ2 = 0.5, 1.0, 2.0.

We see fromTable 3 that large values of k donot necessarily lead to goodpredictions.
This is because if k is unnecessarily large, then the set considered in Step 2 can include
MPPs with large VP distances, which can drag down the precision of the computed
median. The best prediction accuracy for cases with λ = 0.5, 1.0, 2.0is attained at
k = 5, 5, 8, respectively, which are indicated by underlines. We also observe that the
computation time is not so sensitive to the changes in k as well as λ. We note that
the sizes of the instances we solved here are at most those of the instances tested for
d = 2 and k = 10 in the previous section, and hence the computation here was very
quick.
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6 Concluding Remarks

In this paper, we considered the problem of computing a median of marked point
processes data under the edit distance, originated by Victor and Purpura in 1997. Our
main result is the binary linear programming formulation for this problem. Numerical
results showed that through our formulation, medians of thousands of events can be
computed in reasonable time by making use of the software Gurobi. This study may
shed light on the value of optimization approaches in analyzing marked point process
data; see, e.g., [3, 4, 17, 23] for such attempts for other data analyses. In contrast to the
current study, developing efficient heuristic algorithms is also an important challenge.
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