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Abstract
A risk-aware decision-making problem can be formulated as a chance-constrained
linear program in probability measure space. Chance-constrained linear program in
probability measure space is intractable, and no numerical method exists to solve this
problem. This paper presents numerical methods to solve chance-constrained linear
programs in probability measure space for the first time. We propose two solvable
optimization problems as approximate problems of the original problem.We prove the
uniform convergence of each approximate problem.Moreover, numerical experiments
have been implemented to validate the proposed methods.
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1 Introduction

Let X ⊂ R
n be a compact set with the infinity norm defined by ‖x‖∞ =

maxi=1,...,n |xi |, x ∈ X . Denote D > 0 such that D := sup{‖x − x ′‖∞ : x, x ′ ∈ X }
for the diameter of X . In this paper, we assume that X can be specified as X = {x ∈
R
n : g(x) ≤ 0ng } where g : Rn → R

ng is a continuously differentiable constraint
function. We have the following assumption on g throughout the paper.
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Assumption 1 Cottle Constraint Qualification (CCQ) holds at any points in X .
Namely, for any x ∈ X , there is a d ∈ R

n such that

∇g(x)
d < 0ng (1)

holds.

Let B(X ) be Borel σ -algebra on metric space X . This paper uses B(·) to denote
the Borel σ -algebra on a metric space. Notice that (X ,B(X )) is a Borel space. Let μ
be a Borel probability measure onB(X ). Let M(X ) be the space of Borel probability
measures on metric space X . Let δ be a random vector with support Δ ⊆ R

s and P{·}
be the probability measurable defined on Borel σ -algebraB(Δ) onΔ. Let p(δ) be the
probability density function associated with P{·}. Given a scalar function J : X → R,
and a vector-valued function h : X × Δ → R

m , a chance-constrained linear program
in probability measure space is formulated as:

min
μ∈M(X )

∫
X

J (x)dμ

s.t.
∫
X

F(x)dμ ≥ 1 − α,

(Pα)

where α ∈ (0, 1) is a given probability level and F(x) is defined by

F(x) :=
∫

Δ

I{h(x, δ)}dP{δ} =
∫

Δ

I{h(x, δ)}p(δ)dδ. (2)

Here, I{y} presents the indicator function written as

I{y} =
{
1, if y ≤ 0,
0, if y > 0.

Note that F(x) is the probability of having h(x, δ) ≤ 0 for given x . Throughout the
paper, we assume the following conditions on J (x) and h(x, δ).

Assumption 2 For functions J (x) and h(x, δ), the followings are supposed to be held:

a. J (x) is continuously differentiable with respect to x ;
b. h(x, δ) is continuously differentiable with respect to x for any δ ∈ Δ;
c. For every x ∈ X , h(x, δ) is continuous with respect to δ;
d. The probability density function p(δ) is continuous with respect to δ;
e. Let h̄(x, δ) := maxi hi (x, δ), supp p := cl{δ ∈ Δ : p(δ) > 0} (cl{·} denotes the

closure), and for each x ∈ X ,

Δsupp(x) := {δ ∈ supp p : h̄(x, δ) = 0}.

For each x ∈ X , the following is assumed to be true:

P{Δsupp(x)} = 0.
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Besides, suppose that h(x, δ) has a continuous probability density function for
every x ∈ X ;

f. There exists L > 0 such that

‖h(x, δ) − h(x ′, δ)‖∞ ≤ L‖x − x ′‖∞, ∀x, x ′ ∈ X and ∀δ ∈ Δ,

and

|J (x) − J (x ′)| ≤ L‖x − x ′‖∞, ∀x, x ′ ∈ X .

In fact, according to the content of pp. 78–79 of [18], we can obtain the continuity of
F(x) from Assumption 2.

Denote the feasible region of Pα asMα(X ) := {μ ∈ M(X ) : ∫X F(x)dμ ≥ 1−α}.
The optimal objective function value of Pα is

J̄α := min
{∫

X
J (x)dμ : μ ∈ Mα(X )

}
. (3)

The optimal solution set of Pα is therefore written as

Aα :=
{
μ ∈ Mα(X ) :

∫
X

J (x)dμ = J̄α

}
, (4)

μ̄α ∈ Aα is called an optimal measure for Pα .

1.1 Motivation

Themotivation for addressing chance-constrained linear programs in probability mea-
sure space is from seeking an optimal stochastic policy for the optimal control problem
with chance constraints, which is vital for the deployment of reliable autonomous sys-
tems by control algorithms that are robust to model misspecifications and for external
disturbances [2, 10, 28]. The optimal control problem with chance constraints aims
at maximizing a reward function or minimizing a cost function with the constraints
that the system state should locate in the safe area with a required probability. The
deterministic policy has a fixed value in the decision domain at every time index. In
contrast, the stochastic policy provides a probability measure on the decision domain
at every time index. The deterministic policy can be regarded as a particular case
of the stochastic policy by concentrating the probability measure on a fixed value in
the decision domain. The existing techniques for addressing optimal control prob-
lems with chance constraints do not touch the essential parts of the problem and may
require application-specific assumptions. For example, [10, 17] enforces pointwise
chance constraints that ensure the independent satisfaction of each chance constraint
at each time step, which leads to a more conservative solution. In general, joint chance
constraints are desired, which requires all chance constraints to be satisfied jointly at
all times. However, it is challenging to tackle the joint chance-constrained optimal
control problem since the distribution of the state trajectory needs to be considered
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fully. It is possible to address the joint chance-constrained optimal control problem
by using Boole’s inequality [2, 24, 36] or performing robust optimization within the
boundedmodel parameters obtained by specifying a confident set [19]. However, these
twomethods are conservative. More investigations from the viewpoint of optimization
theory should be addressed to enhance new breakthroughs for optimal control with
chance constraints.

Obtaining open-loop stochastic optimal policies under chance constraints can be
essentiallywritten as a chance-constrained linear program inprobabilitymeasure space
[32]. Open-loop stochastic policies mean that the stochastic policies only depend on
the initial state. Unfortunately, there is still no research on solving chance-constrained
linear programs in probability measure space to our knowledge. Investigating the
chance-constrained linear programs in probability measure space is vital, which can
give more insights into optimal control with chance constraints.

1.2 RelatedWorks

Optimization with finite chance constraints in finite-dimensional vector space is
generally challenging due to the nonconvexity of the feasible set and intractable refor-
mulations [9, 27]. The existing research has two major streams: (1) give assumptions
that the constraint functions or the distribution of random variables has some spe-
cial structure, for example, linear or convex constraint functions [23], finite sample
space of random variables [21], elliptically symmetric Gaussian-similar distributions
[33], or (2) extract samples [5–7, 20, 25, 26, 29, 31] or use smooth functions [13]
to approximate the chance constraints. For sample-based methods, the most famous
approach in the control field is scenario approach [5–8, 28]. Scenario approach gener-
ates a deterministic optimization problem as the approximation of the original one by
extracting samples from the sample space of random variables. The probability of the
feasibility of the approximate solution rapidly increases to one as the sample number
increases. However, the convergence of the optimality of the approximate solution
is not discussed. In another sample-based method, the sample-average approach [13,
20, 26, 29], both feasibility and optimality of the approximate solution are presented.
However, neither scenario approach nor sample-average approach can be directly used
to solve chance-constrained linear programs in probability measure space since the
deduction of the convergence of either scenario approach or sample-average approach
assumes that the dimension of the decision variable must be finite.

Optimization with chance/robust constraints in finite-dimensional vector space is
also intensively studied, in which the number of chance constraints is infinite [1, 11,
34, 35]. In [34], the generalized differentiation of the probability function of infi-
nite constraints is investigated. The optimality condition with an explicit formulation
of subdifferentials is given. In [35], the variational tools are applied to formulate
generalized differentiation of chance/robust constraints. The method of getting the
explicit outer estimations of subdifferentials from data is also established. An adaptive
grid refinement algorithm is developed to solve the optimization with chance/robust
constraints in [1]. However, the above research on optimization with chance/robust
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constraints in finite-dimensional vector space can prove convergence only when the
dimension of the decision variable is finite.

Recently, chance constraints in infinite dimensions have attracted a lot of attention.
In [12, 14, 15], some essential properties, such as convexity and semi-continuity, are
generalized into the chance constraints in infinite dimensions. However, the results in
[12] assume that the random variable should have a log-concave density to ensure the
semicontinuity. In [15], the continuity of the probability function as chance constraints
is proved under the assumption of continuous random distributions. The properties of
chance constraints in infinite dimensions are crucial to constructing the optimality
condition and implementing convergence analysis for optimization with chance con-
straints in infinite dimensions. In [14], chance-constrained optimization of elliptic
partial differential equation systems is addressed by inner–outer approximation. It
proves that the inner and outer approximation converges to the original problem and
can provide approximate solutions with ensured convergence. However, the proof of
the convergence requires the assumption that the state domain is convex. Besides, it
concerns the specific problem in partial differential equation systems.

1.3 Overview of ProposedMethod and Contributions

This paper extends the sample-based approximation method to solve chance-
constrained linear programs in probability measure space. We show the relationship
between chance-constrained optimization in finite-dimensional vector space and
chance-constrained linear program in probability measure space. By solving a chance-
constrained linear program in probability measure space, we can obtain a stochastic
policy to improve the expectation of the optimal value further. We also show that the
optimal objective values of the chance-constrained linear program in probability mea-
sure space and chance-constrained optimization in finite-dimensional vector space are
equal if the constraints involved with random variables are required to be satisfied
with probability 1. Namely, in this case, by concentrating the probability measure on
an optimal solution of chance-constrained optimization in finite-dimensional vector
space, we can obtain an optimal measure for the chance-constrained linear program
in probability measure space. Besides, a sample approximate problem and a Gaussian
mixture model approximate problem of problem Pα are proposed, by solving which
the approximate solution of Pα can be obtained. The convergences of both approxi-
mate problems are investigated. Numerical examples are implemented to validate the
proposed methods.

Chance-constrained linear program in probability measure space involves chance
constraints in infinite dimensions.Ourwork differs from the [12, 15] in that our purpose
is to provide numerical methods for solving chance-constrained linear programs in
probability measure space. The properties of chance constraints in infinite dimensions
are essential for convergence analysis.

The rest of this paper is organized as follows: Sect. 2 presents two approximate
problems of Pα and gives the main results on the convergence for each approximate
problem. The proofs of the main results are presented in Sect. 3. Section4 presents
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the results of two numerical examples, which show the effectiveness of our proposed
methods. Section5 concludes the whole paper.

2 Main Results

This section introduces two approximate problems of Pα . We also present the conver-
gence for each approximate problem. The proofs are presented in Sect. 3.

2.1 Chance-Constrained Optimization in Finite Space

Chance-constrained optimization Qα is an optimization problem with chance con-
straints in a finite-dimension vector space. The problem is written as

min
x∈X

J (x)

s.t. F(x) ≥ 1 − α,
(Qα)

where α ∈ (0, 1) is a given probability level.
Let Xα := {x ∈ X : F(x) ≥ 1 − α} be the feasible domain of Qα . Denote

J̄α := min{J (x) : x ∈ Xα} for the optimal objective value of Qα and Xα := {x ∈
Xα : J (x) = J̄α} for the optimal solution set ofQα .Wehave the following assumptions
over Qα throughout the paper.

Assumption 3 There exists a globally optimal solution x̄ of Qα such that for any ε > 0
there is x ∈ X such that 0 < ‖x − x̄‖ ≤ ε and F(x) > 1 − α.

The existence of chance constraints gives rise to several difficulties. First, the struc-
tural properties of h(x, δ) might not be passed to F(x) ≥ 1 − α. The feasible set Xα

can be equivalently obtained as

Xα =
⋃

Δs∈F

⋂
δ∈Δs

Xδ, (5)

where Xδ := {x ∈ X : h(x, δ) ≤ 0} and F := {Δs ∈ B(Δ) : P{Δs} ≥ 1 − α}.
Even if hi (x, δ), i = 1, . . . ,m are all linear in x for every δ ∈ Δ, the feasible set Xα

may not be convex due to the infinite union operations. Second, it is difficult to obtain
a tractable analytical function F(x) to describe the constraint or find a numerically
efficient way to compute it. Inmost applications, p(δ) is unknown, and only samples of
δ are available. We briefly review the sample-based approximation method presented
in [20, 25, 26]. Let DN = {δ(1), . . . , δ(N )} be a set of samples randomly extracted
fromΔwhere N ∈ N. Suppose the sample extraction is independently and identically
distributed. Then, DN can be regarded as a random variable from the augmented
sample space ΔN with probability measure P

N {·} defined on the Borel σ -algebra
B(ΔN ). Giving DN , ε ∈ [0, α), and γ > 0, a sample average approximate problem
of Qα , defined by Q̃ε,γ (DN ), is written as:
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min
x∈X

J (x)

s.t.
1

N

N∑
j=1

I{h(x, δ( j)) + γ } ≥ 1 − ε.
(Q̃ε,γ (DN ))

The feasible region of Q̃ε,γ (DN ) is defined by

X̃ε,γ (DN ) :=
⎧⎨
⎩x ∈ X : 1

N

N∑
j=1

I{h(x, δ( j)) + γ } ≥ 1 − ε

⎫⎬
⎭ .

Denote J̃ε,γ (DN ) := min{J (x) : x ∈ X̃ε,γ (DN )} for the optimal objective function
value of Q̃ε,γ (DN ) and X̃ε,γ (DN ) := {x ∈ X̃ε,γ (DN ) : J (x) = J̃ε,γ (DN )} for
the optimal solution set of Q̃ε,γ (DN ). We can regard J̃ε,γ (DN ) as a function J̃ε,γ :
ΔN → R for given ε and γ . Since DN is a random variable from ΔN , J̃ε,γ (DN )

is consequently a random variable. The sets X̃ε,γ (DN ) and X̃ε,γ (DN ) also depend
on DN and can be regarded as X̃ε,γ : ΔN → B(X ) and X̃ε,γ : ΔN → B(X ).
X̃ε,γ (DN ) and X̃ε,γ (DN ) are called random sets [22]. In [20, 26], the convergence
analysis on X̃ε,γ (DN ), X̃ε,γ (DN ), J̃ε,γ (DN ) is given. We summarize Theorem 10 of
[20] and Theorem 3.5 of [26] as Lemma 1.

Lemma 1 Suppose that Assumptions 2 and 3 hold. Let ε ∈ [0, α), β ∈ (0, α − ε) and
γ > 0. Then,

P
N {X̃ε,γ (DN ) ⊆ Xα} ≥ 1 −

⌈
1

η

⌉⌈
2LD

γ

⌉n
exp{−2N (α − ε − β)2}.

Besides, X̃ε,γ (DN ) → Xα and J̃ε,γ (DN ) → J̄α with probability 1 when N → ∞,
ε → α, γ → 0.

According to Lemma 1, we can obtain the solution of Qα with probability 1 when
N → ∞, ε → α, γ → 0. A natural question arises: can we use the solution of Qα to
obtain an optimal probability measure for Pα? Let x̄α ∈ Xα be an optimal solution of
Qα . Notice that we have {x̄α} ∈ B(X ) and thus it is possible to define a probability
measure μx̄α which satisfies that μx̄α ({x̄α}) = μx̄α (X ) = 1. Then,

∫
X

J (x)dμx̄α =
∫

{x̄α}
J (x)dμx̄α = J̄α

and
∫
X

F(x)dμx̄α =
∫

{x̄α}
F(x)dμx̄α = F(x̄α) ≥ 1 − α.

Thus, μx̄α is a feasible solution for Pα with objective value as J̄x,α . However, μx̄α

is not sure to locate in Aα . Only when α = 0, we have μx̄α ∈ Aα . Notice that it
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is not ensured that the set Xα is a Borel measurable set. However, it is possible to
find a subset Xm

α ⊆ Xα that is Borel measurable. A particular example is to choose
Xm

α = {x̄α} where x̄α ∈ Xα is one element in the optimal solution set. In this paper,
without loss of generality, we assume that Xα is Borel measurable for all α ∈ [0, 1].
Besides, we also assume that X0 �= ∅. Then, Xα �= ∅ holds for all α ∈ [0, 1]. The
above content is formally summarized in Theorem 1.

Theorem 1 Suppose thatXα is measurable for all α ∈ [0, 1] andX0 �= ∅. The optimal
value of problem Pα satisfies J̄α ≤ J̄α . Besides, if α = 0, we have

J̄0 = J̄0

and

A0 = {μ ∈ M(X ) : μ(X ) = μ(X0) = 1} (6)

with probability 1.

The proof of Theorem 1 is given in Sect. 3.1.

Remark 1 Theorem 1 implies that deterministic policy is optimal for robust optimal
control where α = 0.

2.2 Sample-Based Approximation

Let X in be the set of all interior points of X . By using Hit-and-Run algorithm [30]
and Billiard Walk algorithm [16], uniform samples can be generated from X in. For
a positive integer S ∈ N, let CS := {x (1), . . . , x (S)} be a set of uniform samples
independently extracted from X in. The set CS is an element of the augmented space(X in

)S
. Since each element x (i), i = 1, . . . , S in CS is extracted independently, we

define a S-fold probability P
S
uni (= Puni × · · · × Puni, S times) in

(X in
)S
. Here, Puni

is the probability measure of uniform distribution on X in.
With CS and DN , we can obtain a sample approximate problem of Pα defined by

P̃α(CS,DN ):

min
μ∈US

S∑
i=1

J (x (i))μ(i)

s.t.
S∑

i=1

μ(i)
1

N

N∑
j=1

I{h(x (i), δ( j))} ≥ 1 − α,

(P̃α(CS,DN ))

where US := {μ ∈ R
S : ∑S

i=1 μ(i) = 1, μ(i) ≥ 0, ∀i = 1, . . . , S}. Define
Fα(CS,DN ) := {μ ∈ US : ∑S

i=1 μ(i) 1
N

∑N
j=1 I{h(x (i), δ( j))} ≥ 1 − α} as the

feasible set of P̃α(CS,DN ). Denote the optimal objective function value as
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J̃α(CS,DN ) := min

{
S∑

i=1

J (x (i))μ(i) : μ ∈ Fα(CS,DN )

}
.

Denote the optimal solution set for P̃α(CS,DN ) as

Ãα(CS,DN ) :=
{

μ ∈ Fα(CS,DN ) :
S∑

i=1

J (x (i))μ(i) = J̃α(CS,DN )

}
.

Let μ̃α ∈ Ãα(CS,DN ) be an optimalmeasure. The optimal value J̃α(CS,DN ) depends
on CS and DS , and thus it can be regarded as a function J̃α : X S × ΔN → R. Then,
J̃α(CS,DN ) is a random variable. Besides, Ãα(CS,DN ) is a random set.

The deduction of the convergences of J̃α(CS,DN ) and Ãα(CS,DN ) requires
another assumption on Pα . We state the assumption after a brief introduction of weak
convergence.

Define a space of continuous R-valued functions by

C (X ,R) := { f : X → R| f is continuous}. (7)

It is able to define a metric on C (X ,R) by

τ( f , f ′) := ‖ f − f ′‖∞, (8)

where ‖ f ‖∞ is defined as

‖ f ‖∞ := sup
x∈X

| f (x)|.

The metric τ(·, ·) turns C (X ,R) into a complete metric space.
The weak convergence of probability measures is defined as follows [4].

Definition 1 Let {μk}∞k=0 be a sequence in M(X ). We say that {μk}∞k=0 converges
weakly to μ if

lim
k→∞

∣∣∣∣
∫
X

f (x)dμk −
∫
X

f (x)dμ

∣∣∣∣ = 0, for all f ∈ C (X ,R). (9)

Since X is compact, M(X ) can be proved to be weakly compact by Riesz repre-
sentation theorem [4]. Therefore, giving any sequence of {μk}∞k=0 ⊂ M(X ), there is
a subsequence which converges weakly to some μ ∈ M(X ) in the sense of Defini-
tion 1. By Assumption 2, we have that J (x) and F(x) are continuous with respect to
x . Therefore, if {μk}∞k=0 converges weakly to μ, (9) also holds for J (x) or F(x). We
give the following assumption on Problem Pα .

Assumption 4 There exists a globally optimal solution μ∗ ∈ Aα of Problem Pα such
that for any δ > 0 there isμ ∈ M(X ) such that

∫
X F(x)dμ > 1−α andW(μ,μ∗) ≤

δ, where W(μ,μ∗) is defined by
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W(μ,μ∗) =
∣∣∣∣
∫
X

J (x)dμ −
∫
X

J (x)dμ∗
∣∣∣∣ . (10)

As S, N → ∞, the convergence analysis on J̃α(CS,DN ) and Ãα(CS,DN ) is sum-
marized in Theorem 2.

Theorem 2 Consider Problem Pα with α > 0. Suppose Assumptions 1, 2, 3, and 4
hold. As S, N → ∞, we have

lim inf
S,N→∞ J̃α(CS,DN ) = J̄α,

with probability 1. Besides, as S, N → ∞, we have Ãα(CS,DN ) ⊂ Mα(X ) := {μ ∈
M(X ) : ∫X F(x)dμ ≥ 1 − α} with probability 1.

The proof of Theorem 2 is given in Sect. 3.2.

2.3 GaussianMixture Model-Based Approximation

Another option of approximation is to constrain the choice of μ in Mθ (X ) ⊆ M(X ).
Here, Mθ (X ) is defined as

Mθ (X ) :=
{
μ ∈ M(X ) : μ(X) =

∫
X
pθ (x)dx, ∀X ⊆ X

}
,

where the probability density function pθ (x) is written as

pθ (x) =
L∑

i=1

ωiφ(x,mi ,Σi ). (11)

Here, ωi ∈ [0, 1],∀i = 1, . . . , L ,
∑L

i=1 ωi = 1, and φ(x,mi ,Σi ) is multivariate
Gaussian distribution written by

φ(x,mi ,Σi ) = 1

(2π)n/2|Σi |1/2 exp

(
−1

2
(x − mi )


Σ−1
i (x − mi )

)
.

The notation θ denotes the parameter vector, including all the unknown parameters in
ωi ,mi ,Σi ,∀i = 1, . . . , L . Denote the dimension of θ as nθ . The feasible domain of
θ is denoted by

Θ :=
{

θ ∈ R
nθ :

L∑
i=1

ωi = 1, ωi ≥ 0

}
.
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Then, given a data setDN and the number ofGaussian distributions L , we can obtain
a Gaussian mixture model-based approximate problem of Pα defined by P̂α(L,DN ):

min
θ∈Θ

∫
X

J (x)pθ (x)dx

s.t.
∫
X

N∑
j=1

1

N
I{h(x, δ( j))}pθ (x)dx ≥ 1 − α.

(P̂α(L,DN ))

Denote the feasible set of P̂α(L,DN ) as

Θα(L,DN ) :=
⎧⎨
⎩θ ∈ Θ :

∫
X

N∑
j=1

1

N
I{h(x, δ( j))}pθ (x)dx ≥ 1 − α

⎫⎬
⎭ ,

and the optimal objective value as

Ĵα(L,DN ) := min
{∫

X
J (x)pθ (x)dx : θ ∈ Θα(L,DN )

}
.

Besides, the optimal solution set is

Θ̂α(L,DN ) :=
{
θ ∈ Θα(L,DN ) :

∫
X

J (x)pθ (x)dx = Ĵα(L,DN )

}
.

The optimal objective value Ĵα(L,DN ) depends on the number of used Gaussian
models and the data set DN . Since data set DN is essentially random variable with
support ΔN , Ĵα(L,DN ) is also a random variable. The set Θ̂α(L,DN ) is a random
set.

As L, N → ∞, optimality and feasibility of using the optimal solution of
P̂α(L,DN ) are summarized in Theorem 3.

Theorem 3 Consider Problem Pα with α > 0. Suppose Assumptions 1, 2, 3, and 4
hold. As L, N → ∞, we have

lim inf
L,N→∞ Ĵα(L,DN ) = J̄α,

with probability 1. Besides, let θ̂ ∈ Θ̂α(L,DN ) be an optimal solution of P̂α(L,DN ).
The corresponding probability density function is p

θ̂
(x), and the obtained probability

measure is

μ
θ̂
(X) :=

∫
X
p
θ̂
(x)dx, ∀X ⊆ X .

We have μ
θ̂

∈ Mα(X ) := {μ ∈ M(X ) : ∫X F(x)dμ ≥ 1 − α} with probability 1 as
L, N → ∞.

The proof of Theorem 3 is given in Sect. 3.3.
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3 Proofs of Main Results

3.1 Proof of Theorem 1

Proof (Theorem 1)Define ameasure by μ̄α(·), which satisfies that μ̄α(Xα) = 1. Then,
we have

∫
Xα

J (x)dμ̄α =
∫
Xα

J (x)dμ̄α = J̄α.

Besides, for the constraint, we have

∫
X

F(x)dμ̄α(x) =
∫
Xα

F(x)dμ̄α(x) ≥ 1 − α.

Then, μ̄α(·) ∈ Mα(X ) holds. Thus, we have J̄α ≤ ∫X J (x)dμ̄α = J̄α .
When α = 0, let X c

0 = {x ∈ X : F(x) < 1} be the complement set of X0, namely,
X c
0

⋃X0 = X and X c
0

⋂X0 = ∅. Notice that X c
0 is Borel measurable since X0 is

Borel measurable. Suppose that there is μ̃(·) ∈ M0(X ) such that μ̃(X c
0 ) > 0. Then,

∫
X

F(x)dμ̃(x) =
∫
X0

F(x)dμ̃(x)+
∫
X c

0

F(x)dμ̃(x) < μ̃(X0)+ μ̃(X c
0 ) = 1, (12)

which conflicts with that μ̃ ∈ M0(X ). Therefore, we have μ(X c
0 ) = 0 for all μ ∈

M0(X ), which implies that
∫
X J (x)dμ = ∫X0

J (x)dμ for all μ ∈ M0(X ).
Notice that X0 is a Borel measurable set. Let μ∗

0(·) ∈ A0 be an optimal proba-
bility measure for P0 and suppose μ∗

0(X0) < 1 for deriving the contradiction. Thus,
μ∗
0(X \X0) > 0. The corresponding objective function is

∫
X

J (x)dμ∗
0 =

∫
X0

J (x)dμ∗
0

=
∫
X0

J (x)dμ∗
0 +

∫
X0\X0

J (x)dμ∗
0

=
∫
X0

J̄0dμ∗
0 +

∫
X0\X0

J (x)dμ∗
0 (∵)

(
J (x) = J̄0,∀x ∈ X0

)

= J̄0

∫
X0

dμ∗
0 +

∫
X0\X0

J (x)dμ∗
0

= μ∗
0(X0) · J̄0 +

∫
X0\X0

J (x)dμ∗
0. (13)

Denote a measure by μ̄0(·), which satisfies that μ̄0(X0) = 1. Then, we have

∫
X

J (x)dμ̄0 −
∫
X

J (x)dμ∗
0 =

∫
X0

J (x)dμ̄0 −
∫
X0

J (x)dμ∗
0
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= J̄0 − μ∗
0(X0) J̄0 −

∫
X0\X0

J (x)dμ∗
0

= (1 − μ∗
0(X0)) · J̄0 −

∫
X0\X0

J (x)dμ∗
0

=
∫
X0\X0

( J̄0 − J (x))dμ∗
0

<

∫
X0\X0

(J (x) − J (x))dμ∗
0 = 0. (14)

Thus, μ∗
0(·) is not the optimal measure. Therefore, (6) holds, which leads to J̄0 = J̄0.

��

3.2 Proof of Theorem 2

Lemma 2 Suppose that Assumption 1 holds. For any x ∈ X , denote a set as

Bε(x) := {y ∈ X : ‖x − y‖ ≤ ε}

where ε > 0 is radius. For any ε > 0, we have

lim
S→∞P

S
uni

{
CS
⋂

Bε(x) �= ∅
}

= 1. (15)

Lemma 2 First, we show that the interior point setX in is not emptywhenAssumption 1
holds. Let x̄ ∈ X and thus we have

g(x̄) ≤ 0ng . (16)

By Assumption 1, CCQ holds at x̄ . Thus, there exists d ∈ R
n such that

∇g(x̄)
d < 0ng . (17)

Notice that (16) and (17) directly give

g(x̄) + ∇g(x̄)
d < 0ng . (18)

Since g(·) is continuously differentiable, there exists a small enough ξ̄ > 0 such that
g(x̄ + ξd) < 0 holds for any ξ ∈ (0, ξ̄ ) and thus x̄ + ξd ∈ X in. It implies that X in is
not empty.

We start from discussing P
S
uni{CS

⋂Bε(x) �= ∅} for x ∈ X in. Notice that X is
compact and CS is a set of uniform samples extracted fromX in. Thus, for any x ∈ X in,
the probability that a sample x (i) ∈ CS, i = 1, .., S locates in Bε(x) is

Puni{x (i) ∈ Bε(x)} > 0.

123



Journal of Optimization Theory and Applications (2024) 200:150–177 163

Then,

P
S
uni

{
CS
⋂

Bε(x) �= ∅
}

= 1 − P
S
uni

{
CS
⋂

Bε(x) = ∅
}

≥ 1 −
(
1 − Puni{x (i) ∈ Bε(x)}

)S
. (19)

If S → ∞, we have PS
uni{CS

⋂Bε(x) �= ∅} ≥ 1, which implies (15).
Then, we discuss PS

uni{CS
⋂Bε(x) �= ∅} for x ∈ ∂X , where ∂X defines the bound-

ary of X . Let x ∈ ∂X be a boundary point. Again, by Assumption 1, x satisfies the
CCQ. By replacing x̄ in (16) and (18) by x , we have that there exists a small enough
ξ̄ > 0 such that g(x + ξd) < 0 holds for any ξ ∈ (0, ξ̄ ) and thus x + ξd ∈ X in.
Let ε1 ∈ (0, ξ̄ ) and we can find x ′ := x + ξd ∈ Bε1(x)

⋂X in with a small enough
ξ . Besides, the probability that a sample x (i) ∈ CS, i = 1, . . . , S locates in Bε1(x

′)
satisfies that Puni{x (i) ∈ Bε1(x

′)} > 0. Thus, we have Puni{x (i) ∈ B2ε1(x)} > 0. Let
ε1 = ε/2, and we can obtain (19) for a boundary point of X , which completes the
proof. ��

With sample set CS = {x (1), . . . , x (S)}, a sample average approximate problem of
Pα , defined by P̆α(CS), is written as:

min
μ∈US

S∑
i=1

J (x (i))μ(i)

s.t.
S∑

i=1

μ(i)F(x (i)) ≥ 1 − α,

(P̆α(CS))

where US := {μ ∈ R
S : ∑S

i=1 μ(i) = 1, μ(i) ≥ 0, ∀i = 1, . . . , S}. Denote the
feasible region of problem P̆α(CS) as

F̆α(CS) :=
{

μ ∈ US :
S∑

i=1

μ(i)F(x (i)) ≥ 1 − α.

}
.

Then, the optimal objective function value of P̆α(CS) is defined by

J̆α(CS) := min

{
S∑

i=1

J (x (i))μ(i) : μ ∈ F̆α(CS)
}

.

The optimal solution set for P̆α(CS) is therefore defined by

Ăα(CS) :=
{

μ ∈ F̆α(CS) :
S∑

i=1

J (x (i))μ(i) = J̆α(CS)
}

.

A measure μ̆α ∈ Ăα(CS) is called an optimal measure for P̆α(CS).
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Theorem 4 For given sample sets CS and DN , define two functions of μ ∈ US as

Ğα(μ, CS) :=
S∑

i=1

μ(i)F(x (i)) =
S∑

i=1

μ(i)
∫

Δ

I{h(x (i), δ)}p(δ)dδ,

and

G̃α(μ, CS,DN ) :=
S∑

i=1

μ(i)
1

N

N∑
j=1

I{h(x (i), δ( j))}.

Then, G̃α(μ, CS,DN ) uniformly converges to Ğα(μ, CS) on US w.p. 1, i.e.,

sup
μ∈U

∣∣∣G̃α(μ, CS,DN ) − Ğα(μ, CS)
∣∣∣→ 0, w.p. 1 as N → ∞.

Proof (Theorem 4) For any given x (i), I{h(x (i), δ)} is a measurable function of δ.
According to the strong Law of Large Numbers (LLN) [3], we have

1

N

N∑
j=1

I{h(x (i), δ( j))} − E{I{h(x (i), δ)}} → 0, w.p. 1 as N → ∞,

where

E{I{h(x (i), δ)}} =
∫

Δ

I{h(x (i), δ)}p(δ)dδ.

Thus, for every μ ∈ US , we have

Ğα(μ,CS) − G̃α(μ,CS,DN ) =
S∑

i=1

μ(i)

⎛
⎝ 1

N

N∑
j=1

I{h(x (i), δ( j))} − E{I{h(x (i), δ)}}
⎞
⎠

→
S∑

i=1

μ(i) × 0 = 0. w.p. 1 as N → ∞.

Uniform convergence is ensured since the set US is compact. ��
Nextly,we show that J̃α(CS,DN ) and Ãα(CS,DN ) converge to J̆α(CS) and Ăα(CS),

respectively, with probability 1 as N → ∞.

Theorem 5 Consider Problem Pα withα > 0. Assume that there exists a x (i) ∈ CS that
satisfies F(x (i)) > 1 − α. As N → ∞, J̃α(CS,DN ) → J̆α(CS) and Ãα(CS,DN ) →
Ăα(CS) w.p. 1.
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Proof (Theorem5)The setUS is a compact set. Theobjective function
∑S

i=1 J (x (i))μ(i)
is a linear function of μ ∈ US . Besides, F(x (i)) is a constant value within [0, 1] for a
fixed x (i), whichmakes the constraint function Ğα(μ, CS) a linear function ofμ ∈ US .
Therefore, P̆α(CS) is a linear program.Due to the assumption that there exists x (i) ∈ CS
such that F(x (i)) > 1 − α, there is μ ∈ US such that Ğα(μ, CS) > 1 − α and thus
Ăα(CS) is nonempty. Since G̃α(μ, CS,DN ) converges to Ğα(μ, CS) w.p. 1 by The-
orem 4, there exists N0 large enough such that G̃α(μ, CS,DN0) ≥ 1 − α w.p. 1.
Because G̃α(μ, CS,DN0) is a linear function of μ and US is compact, the feasible set
of P̃α(CS,DN0) is compact as well, and hence Ãα(CS,DN0) is nonempty w.p. 1 for all
N ≥ N0.

Let {Nk}∞k=1 be a sequence such that Nk → ∞ and Nk ≥ N0 holds for every
k = 1, . . .. Let μ̃k ∈ Ãα(CS,DN0) such that G̃α(μ̃k, CS,DNk ) ≥ 1 − α, and∑S

i=1 J (x (i))μ̃k(i) = J̃α(CS,DNk ). Let μ̃ be any cluster point of {μ̃k}∞k=1. Let {μ̃t }∞t=1
be a subsequence converging to μ̃. By Theorem 4, we have

Ğα(μ̃, CS) = lim
t→∞ G̃α(μ̃t , CS,DNt ), w.p. 1.

Therefore, Ğα(μ̃, CS) ≥ 1 − α and μ̃ is feasible for problem P̆α(CS) which implies∑S
i=1 J (x (i))μ̃(i) ≥ J̆α(CS). Note that μ̃t → μ̃ w.p. 1, which implies that

lim
t→∞ J̃α(CS,DNt ) = lim

t→∞

S∑
i=1

J (x (i))μ̃t (i) =
S∑

i=1

J (x (i))μ̃(i) ≥ J̆α(CS), w.p. 1.

Since this is true for an arbitrary point of {μ̃k}∞k=1 in the compact set US , we have

lim
k→∞ J̃α(CS,DNk ) = lim

k→∞

S∑
i=1

J (x (i))μ̃k(i) ≥ J̆α(CS), w.p. 1. (20)

Besides, we know that there exists a globally optimal solution of P̆α(CS), μ∗, such
that for any ε > 0 there isμ ∈ U such that 0 < ‖μ−μ∗‖ ≤ ε and Ğα(μ, CS) > 1−α.
Namely, there exists a sequence {μ̃t }∞t=1 ⊆ U that converges to an optimal solutionμ∗
such that Ğα(μ̃t , CS) > 1 − α for all t ∈ N. Notice that G̃α(μ̃t , CS,DNk ) converges
to Ğα(μ̃t , CS)w.p. 1. Then, for any fixed t , ∃K (t) such that G̃α(μ̃t , CS,DNk ) ≥ 1−α

for every k ≥ K (t) w.p. 1. We can assume K (t) < K (t +1) for every t and define the
sequence {μ̃k}∞k=K (1) by setting μ̃k = μ̃t for all k and t with K (t) ≤ k < K (t + 1).

Then, G̃α(μ̂k, CS,DNk ) ≥ 1 − α, which implies J̃α(CS,DNk ) ≤ ∑S
i=1 J (x (i))μ̃k(i)

for all k ≥ K (1). Thus, we have that

lim
k→∞ J̃α(CS,DNk ) ≤

S∑
i=1

J (x (i))μ∗(i) = J̆α(CS), w.p. 1. (21)

With (20) and (21), we conclude that J̃α(CS,DN ) → J̆α(CS) w.p. 1 as N → ∞.
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The proof of Ãα(CS,DN ) → Ăα(CS) can be referred to Theorem 5.3 of [27]. ��
Nextly, we show that J̆α(CS) converges to J̄α with probability 1 as S increases.

Theorem 6 Suppose Assumption 2 and 4 hold. As S → ∞, with probability 1, we
have

lim inf
S→∞ J̆α(CS) = J̄α. (22)

Proof (Theorem 6) The outline of the proof of Theorem 6 is summarized as follows:

A. Prove that the limit of lower bound of J̆α(CS) is larger than J̄α by (23);
B. Prove that the limit of upper bound of J̆α(CS) is smaller than J̄α by (38);

B1. Find a sequence {μk}∞k=1 converges weakly to an optimal solution μ∗ of Pα;
B2. Show that

∫
X F(x)dμk(x) and

∫
X J (x)dμk(x) can be approximated by using

discrete probability measure on CS , which refers to (34) and (35);
B3. Show that optimal discrete probability measure on CS for P̆α(CS) has a smaller

objective value than the discrete probability measure for approximating any
μk in B2. Then, we obtain (38).

Then, we give the details of the proof.
For any discrete probability measure μS ∈ F̆α(CS), we have

∫
X

F(x)dμS(x) =
S∑

i=1

μS({x (i)})F(x (i)) ≥ 1 − α.

Thus, μS ∈ Mα(x). Then, it holds that

S∑
i=1

J (x (i))μS({x (i)}) =
∫
X

J (x)dμS(x) ≥ J̄α, ∀μS ∈ F̆α(CS).

Furthermore, with probability 1, we have

lim inf
S→∞ J̆α(CS) ≥ J̄α. (23)

Assumption 4 implies that there exists a sequence {μk}∞k=1 ⊆ M(X ) that converges
weakly to an optimal solution μ∗ such that

∫
X

F(x)dμk(x) > 1 − α (24)

for all k ∈ N. Since {μk}∞k=1 converges weakly to μ∗, we have

lim
k→∞

∫
X

J (x)dμk(x) −
∫
X

J (x)dμ∗(x) = lim
k→∞W(μk, μ

∗) = 0. (25)
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Notice that J̄α = ∫X J (x)dμ∗(x) by (3).
For any given εJ > 0, ∃K (εJ ), if k ≥ K (εJ ),

∫
X

J (x)dμk(x) − J̄α ≤ εJ .

Let C̃k
S̃

:= {x̃ (1)
k , . . . , x̃ (S̃)

k } be a sample set obtained by sampling fromX according
to probability measure μk . By Law of Large Numbers (p. 457 of [27]), for any f ∈
C (X ,R), as S̃ → ∞, with probability 1, we have

1

S̃

S̃∑
i=1

f (x̃ (i)
k ) → Ex∼μk { f (x)} =

∫
X

f (x)dμk(x). (26)

Since J (·) and F(·) are also elements in C (X ,R), (26) also holds by replacing f (·)
by either J (·) or F(·). Namely, for any ε̃1, there exists S̃l(ε̃J ) such that, if S̃ ≥ S̃l(ε̃J ),
with probability 1, the followings hold:

∣∣∣∣∣∣
1

S̃

S̃∑
i=1

F(x̃ (i)
k ) −

∫
X

F(x)dμk(x)

∣∣∣∣∣∣ ≤ ε̃1, (27)

∣∣∣∣∣∣
1

S̃

S̃∑
i=1

J (x̃ (i)
k ) −

∫
X

J (x)dμk(x)

∣∣∣∣∣∣ ≤ ε̃1. (28)

On the other hand, according to Lemma 2, as S → ∞, for any s̃ ∈ {1, . . . , S̃} and
ε̃r > 0, with probability 1, there exists a sample x (is̃ ) ∈ CS := {x (1), . . . , x (S)} such
that

x (is̃ ) ∈ Bε̃r (x̃
s̃
k ). (29)

With a little abuse of notation, let x (is̃ ) be the closest sample to x̃ (s̃)
k , namely, x (is̃ ) ∈

argmin{‖x (i) − x̃ (s̃)
k ‖ : x (i) ∈ CS}. Define a set IS̃ := {i1, . . . , i S̃} as the set of index

corresponding to x (is̃ ). Without loss of generality, we assume that x (is̃ ) �= x ( js̃ ) if
is̃ �= js̃, is̃, js̃ ∈ IS̃ . The intuitive explanation of the relationship between CS and C̃k

S̃
is illustrated in Fig. 1.

Define a discrete probability measure μS
k ∈ R

S such that

μS
k (i) = 1

S̃
, ∀i ∈ IS̃, (30)

μS
k (i) = 0, ∀i /∈ IS̃ . (31)

For any given positive integer S̃ and positive number ε̃2, due to the continuity of
J (·) and F(·), there exists S̄l(S̃, ε̃2) such that, if S > Sl(S̃, ε̃2), with probability 1, the
followings hold:
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∣∣∣∣∣∣
S∑

i=1

μS
k (i)F(x (i)) − 1

S̃

S̃∑
i=1

F(x̃ (i)
k )

∣∣∣∣∣∣ ≤ ε̃2, (32)

∣∣∣∣∣∣
S∑

i=1

μS
k (i)J (x (i)) − 1

S̃

S̃∑
i=1

J (x̃ (i)
k )

∣∣∣∣∣∣ ≤ ε̃2. (33)

By combining (27) with (32) and combining (28) with (33), then, for given ε̃1, ε̃2, there
exist S̃l(ε̃1) and Sl(S̃, ε̃2) such that, if S̃ > S̃l(ε̃1) and S > Sl(S̃, ε̃2), with probability
1, the following holds:

∣∣∣∣∣
S∑

i=1

μS
k (i)F(x (i)) −

∫
X

F(x)dμk(x)

∣∣∣∣∣ ≤ ε̃1 + ε̃2, (34)

∣∣∣∣∣
S∑

i=1

μS
k (i)J (x (i)) −

∫
X

J (x)dμk(x)

∣∣∣∣∣ ≤ ε̃1 + ε̃2. (35)

According to (24) and (34), we can find S̃l(ε̃1) and Sl(S̃, ε̃2) such that, if S̃ > S̃l(ε̃1)
and S > Sl(S̃, ε̃2), with probability 1, the following holds

S∑
i=1

μS
k (i)F(x (i)) ≥ 1 − α. (36)

Thus, μS
k is a feasible solution of Problem P̃α(CS) and thus

S∑
i=1

μS
k (i)J (x (i)) ≥ J̆α(CS). (37)

Since
∫
X J (x)dμk(x) converges to J̄α w.p. 1 as k → ∞, thus, considering (35) and

(37), we have

lim sup
S→∞

J̆α(CS) ≤ J̄α. (38)

With (23) and (38), we have (22). ��
The proof of Theorem 2 can be obtained immediately by using the results of The-

orems 5 and 6, which is omitted here.

3.3 Proof of Theorem 3

Main results of [37] are summarized as:
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Sample            in

Sample           in

Fig. 1 The intuitive explanation of the relationship between CS and C̃k
S̃

Lemma 3 LetX+ be a compact set. Let p : Rn → R be a probability density function
on the domain Rn. If there exists a positive number ρ′ > 0 such that p ∈ {p : p(x) ≥
ρ′,∀x ∈ X+}, then there exists pθ (x) defined by (11) such that

lim
L→∞

∫
X+

(p(x) − pθ (x))
2 dx = 0,

where the positive integer L is the number of Gaussian kernels in (11).

Proof (Theorem 3) For given CS, DN and L , we have problems P̃α(CS,DN ) and
P̂α(L,DN ). Let Xp,i , i = 1, . . . , S be the partitions of X , which satisfy

(a) x (i) ∈ Xp,i ;
(b)

⋃S
i=1 Xp,i = X ;

(c) Xp,i
⋂Xp,i ′ = ∅ with probability 1 if i �= i ′.

For any μS ∈ U , we can correspondingly define a Dirac measure on X as

μS
d(x) = μS(x (i)) if x ∈ Xp,i .

Define a set of index as I+ = {i : μS(x (i)) > 0}. Then, we can define a compact set

X+ =
⋃
i∈I+

Xp,i .

According to Lemma 3, there exists a sequence {pθ (x)}L such that

lim
L→∞

∫
X+

(
μS
d(x) − pθ (x)

)2
dx = 0.
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Thus, we have

lim
L→∞

∫
X

J (x)dpθ (x) =
∫
X

J (x)dμS
d(x)

and

lim
L→∞

∫
X

1

N

N∑
j=1

I{h(x, δ( j)) ≤ 0}pθ (x)dx =
∫
X

1

N

N∑
j=1

I{h(x, δ( j)) ≤ 0}μS
d(x)dx .

For any S and N , by applying Lemma 3, we can find a sequence
{
p∗
θ (x)

}
L such that

lim
L→∞

∫
X

J (x)dp∗
θ (x) = J̃α(CS,DN ) (39)

and

lim
L→∞

∫
X

N∑
j=1

1

N
I{h(x, δ( j))}p∗

θ (x)dx =
S∑

i=1

μS(x (i))

N∑
j=1

1

N
I{h(x (i), δ( j))} ≥ 1−α.

(40)
There exists the limit of P̂α(L,DN ) that converges to P̃α(CS,DN ) as L → ∞.

Theorem 3 can be obtained by using Theorem 2. One point should be clarified here.
In Theorem 2, the convergence holds for S → ∞. In Theorem 3, L → ∞ is used
instead since we have (39) and (40) for any S increasing to infinite. ��

4 Numerical Examples

This section provides the results of two numerical examples to validate our proposed
methods. All computations were executed on Windows 10 with 32GB RAM and
an Intel(R) Core(TM) i7-1065G7 CPU running at 1.30GHz. The algorithm and all
computations were implemented in MATLAB R2021b. We check the performance of
the following methods:

1. Dirac-Delta: solving sample average approximate problem Q̃ε,γ (DN ) of Qα;
2. Sample: solving sample-based approximate problem P̃α(CS,DN ) of Pα;
3. GMM: GMM-based approximate problem P̂α(L,DN ).

We use the terminologyDirac-Delta for themethod of solving sample average approx-
imate problem Q̃ε,γ (DN ) of Qα since it equivalently gives the measure constrained
to be a Dirac-delta, namely, the measure is concentrated on one fixed solution.

4.1 One-Dimension Example

In the first numerical, we use an extremely simple example to demonstrate the concepts
of Theorems 1, 2, and 3. The compact setX is defined byX = {x ∈ R : x ∈ [−1, 1]}.
Moreover, the cost function J (x) is
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(a)

(b)

(c)

Fig. 2 Results of the numerical example 1: a profile of J (x) and optimal solution obtained byDirac-Delta;
b optimal measure by Sample; c optimal probability density function obtained by GMM

J (x) = −(x + 0.6)2 + 2. (41)

The constraint function h(x, δ) is

h(x, δ) = x2 + δ − 2 (42)

where δ ∼ N (mδ,Σδ),mδ = 0, and Σδ = 1. The probability level α is 0.05. The
optimal solution from method Dirac-Delta is x∗

α = 0.595 and the optimal objective
value is 0.572,which is plotted in Fig. 2a. InDirac-Delta, we set ε = α, N = 2000, and
γ = 0.01. Besides, Fig. 2b, c shows the discrete measure obtained by Sample and the
probability density function obtained by GMM, respectively. For Sample, we choose
samples −1,−0.98,−0.96, . . . , 0.96, 0.98, 1 from X (S = 201) and 2000 randomly
extracted samples from Δ (N = 2000). For GMM, we extracted 2000 samples from
Δ randomly. Besides, we choose L = 6. The solutions of Sample and GMM satisfy
the chance constraints. For the objective function, Sample achieves 0.5601 and GMM
achieves 0.5615, which are better than the optimal objective value achieved byDirac-
Delta.

A more comprehensive analysis of CPU time and sample numbers is summarized
in Table 1. The CPU time increases as the sample size increases for each method.
Unsurprisingly, Sample has a very fast computation time since it only needs to solve a
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Table 1 Statistics of CPU time for one-dimension example

Dirac-Delta

Size N 1000 2000 5000 10000

Avg. (s) 0.0105 0.0136 0.0154 0.0169

Max. (s) 0.0281 0.0337 0.002 0.0583

Sample

Size N 2000 5000 10000

Size S 50 100 200 50 100 200 50 100 200

Avg. (s) 0.0113 0.0123 0.0140 0.0119 0.0145 0.0185 0.0143 0.0162 0.0229

Max. (s) 0.0263 0.0349 0.0415 0.0238 0.0341 0.0445 0.0343 0.0409 0.0530

GMM

Size N 2000 5000 10000

Size L 2 4 6 2 4 6 2 4 6

Avg. (s) 0.0325 0.0431 0.0991 0.0472 0.0783 0.1671 0.0773 0.1429 0.2134

Max. (s) 0.0721 0.0784 0.1562 0.0793 0.1318 0.2011 0.1267 0.1892 0.2690

linear program. In this example, since it is one dimension, the required sample number
for obtaining good samples in Sample or approximating probability integration in
GMM is few. It can achieve acceptable accuracy with only 50 samples. However, if
the dimension of x increases, the “Curse of Dimensionality” will emerge. We will
show it in the second example.

4.2 Quadrotor System Control

The second example considers a quadrotor system control problem in turbulent con-
ditions. The control problem is expressed as follows:

min
μ∈M(UT )

E{�x (x) + �u(u)}

s.t. xt+1 = Axt + B(m)ut + d(xt , ϕ) + ωt , u ∼ M(UT ),

t = 0, 1, . . . , T − 1,

Pr{(xt /∈ O,∀t = 1, . . . , T − 1) , (xT ∈ Xgoal)} ≥ 1 − α,

(PQSC)

where A, B(m), d(xt , ϕ) are written by

A =

⎡
⎢⎢⎣
1 Δt 0 0
0 1 0 0
0 0 1 Δ

0 0 0 1

⎤
⎥⎥⎦ , B(m) = 1

m

⎡
⎢⎢⎣

Δt2
2 0

Δt 0

0 Δt2
2

0 Δ

⎤
⎥⎥⎦ , d(xt , ϕ) = −ϕ

⎡
⎢⎢⎢⎣

Δt2|vx |vx
2

Δt |vx |vx
Δt2|vy |vy

2
Δt |vy |vy

⎤
⎥⎥⎥⎦ ,
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and Δt is the sampling time, the state of the system is denoted as xt =
[px,t , vx,t , py,t , vy,t ] ∈ R

4, the control input of the system is ut = {ux,t , uy,t } within
U := {ut ∈ R

2 : −10 ≤ ux,t ≤ 10,−10 ≤ uyt ≤ 10}, and the state and control
trajectories are denoted as x = (xt )Tt=1 and u = (ut )

T−1
t=1 . The system starts from an

initial point x0 = [−0.5, 0,−0.5, 0]. The system is expected to reach the destination
set Xgoal = {x ∈ R

4|‖(px − 10, py − 10)‖ ≤ 2} at time T = 10 while avoiding two
polytopic obstacles O shown in Fig. 3. O is defined by the following constraints:

px,t ≤ 6.35, py,t ≥ 3.35, px,t − 0.2 − py,t ≥ 0,

px,t ≥ 3.35, py,t ≤ 6.35, px,t + 0.2 − py,t ≤ 0.

The dynamics are parametrized by uncertain parameter vector δt = [m, ϕ]
, where
m > 0 represents the system’s mass and ϕ > 0 is an uncertain drag coefficient.
The parameter vector δ of the system is uncorrelated random variables such that
(m − 0.75)/0.5 ∼ Beta(2, 2) and (ϕ − 0.4)/0.2 ∼ Beta(2, 5), where Beta(a, b)
denotes a Beta distribution with shape parameters (a, b). ωt ∈ R

4 is the uncertain
disturbance at time step t , which obeys multivariate normal distribution with zero
means and covariance matrix

Σ =

⎡
⎢⎢⎣
0.01 0 0 0
0 0.75 0 0
0 0 0.01 0
0 0 0 0.75

⎤
⎥⎥⎦ .

For the cost function, we adopt

�x (x) = 1

T

T−1∑
t=0

(
(px,t+1 − px,t )

2 + (py,t+1 − py,t )
2
)

,

�u(u) = 0.1

T

T−1∑
t=0

(
u21,t + u22,t

)
.

Results are shown in Fig. 3 for different methods by setting α as 15%. Figure3
shows 5000 Monte Carlo (MC) simulations of the quadrotor system using the open-
loop policy computed using Dirac-Delta (ε = α, γ = 0.01, N = 2000), Sample
(S = 5.1×106, N = 2000), andGMM (L = 6, N = 2000).When usingDirac-Delta,
the algorithm gives a deterministic control policy that satisfies the desired success
probability 1 − α. When using Sample, or GMM, the algorithm gives a stochastic
control policy that satisfies the desired success probability 1 − α. The control inputs
that generate trajectories passing through the riskier middle corridor between the
obstacles are selected randomly for the stochastic control policies. The costs by using
Sample and GMM are reduced by 8.2 and 7.9% compared to using Dirac-Delta. This
shows that our approach can compute a better policy that solves the problem than a
deterministic policy.
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= 15%

MC= 11.6%

= 15%

MC= 12.8%

= 15%

MC= 11.2%

Fig. 3 Solutions from different methods for the tolerable failure probability threshold α = 15%. Blue
trajectories from Monte Carlo (MC) simulations denote feasible trajectories that reach the goal set Xgoal
and avoid obstacles O. Red trajectories violate constraints: a Dirac-Delta (MC = 11.6% represents that
the violation probability is 11.6% in the MC simulations); b Sample (MC = 12.8% represents that the
violation probability is 12.8% in the MC simulations); c GMM (MC = 11.2% represents that the violation
probability is 11.2% in the MC simulations)
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Fig. 4 The statistics of the control performance: a reduction of cost; b required samples; c computation
time
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A more comprehensive comparison between the GMM-based and sample-based
approximations is plotted in Fig. 4. Five cases are considered with different sample
numbers for extracting the control input. Figure4a shows that the two algorithms
similarly reduce the optimal objective function value. Figure4b shows each case’s used
sample number S of decisionvariables.By comparingFig. 4a, b,we can see that enough
samples are required to ensure the performance of the approximations. As shown in
Fig. 4c, the computation time increases dramatically as the sample number increases.
In this comparison, for GMM, we choose L = 6, and the probability integration is
approximated by using the same samples of Sample. The computation time of GMM
is even longer than Sample. One way to decrease the computation time of GMM is to
develop fast algorithms for probability integration. We leave this for future work. In
this example, the dimension of the decision variable is 20. If the dimension increases,
the required sample number will increase, and the computation time will consequently
increase for Sample and GMM. We leave the issue of the “Curse of Dimensionality”
for future work.

5 Conclusions

In conclusion, the chance-constrained linear program in probability measure space has
been addressed using sample approximation or function approximation. We establish
optimization problems in finite vector space as approximate problems of chance-
constrained linear programs in probability measure space. By solving the approximate
problems, we can obtain the approximate solution of the chance-constrained linear
program in probability measure space. Numerical examples have been implemented
to validate the performance of the proposed method. Future work will be focused on
the following points:

– To implement sample approximation method P̃α(CS,DN ), samples of decision
variable are required. As the dimension of the decision variable increases, the
required sample number for a good approximation will also increase, bringing
the issue of the “Curse of dimensionality.” To overcome the issue of the “Curse
of Dimensionality,” it is important to develop efficient sampling algorithms to get
“good but small samples” to ensure good approximation performance andmitigate
the computation burden;

– ForGaussianmixturemodel-based approximationmethod P̂α(L,DN ), the remain-
ing issue is how to approximate the probability integration by fast algorithmswhen
the problem iswith complex cost function and constrained functions in high dimen-
sion space.
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