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Abstract
The use of approximate solution techniques for the Chemical Master Equation is
a common practice for the analysis of stochastic chemical systems. Despite their
widespread use, however, many such techniques rely on unverifiable assumptions and
only a few provide mechanisms to control the approximation error quantitatively.
Addressing this gap, Dowdy and Barton (J Chem Phys 149(7):074103, 2018) pro-
posed an optimization-based technique for the computation of guaranteed bounds on
the moment trajectories associated with stochastic chemical systems, thereby provid-
ing a general framework for rigorous uncertainty quantification. Here, we present an
extension of this method. The key contribution is a new hierarchy of convex nec-
essary moment conditions that build upon partitioning of the time domain. These
conditions reflect the temporal causality that is inherent to the moment trajectories
associated with stochastic processes described by the Chemical Master Equation and
can be strengthened by simple refinement of the time domain partition. Analogous to
the original method, these conditions generate a hierarchy of semidefinite programs
that furnishes monotonically improving bounds on the trajectories of the moments
and related statistics of stochastic chemical systems. Compared to its predecessor,
the presented hierarchy produces bounds that are at least as tight and features new
bound tightening mechanisms such as refinement of the time domain partition which
often enable the computation of dramatically tighter bounds with lower computational
cost. We analyze the properties of the presented hierarchy, discuss some aspects of its
practical implementation and demonstrate its merits with several examples.
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1 Introduction

The analysis of systems undergoing chemical reactions lies at the heart of many sci-
entific and engineering activities. While deterministic models have proved adequate
for the analysis of systems at the macroscopic scale, they often fall short for meso-
and microscopic systems, in particular for those that feature low molecular counts.
In this regime, the complex and chaotic motion of molecules reacting upon colli-
sion causes effectively stochastic fluctuations of the molecular counts that are large
compared to the mean and, as a consequence, can have a profound effect on the sys-
tem’s characteristics—a situation frequently encountered in cellular biology [7, 8, 24,
49]. In the context of the continuously growing capabilities of synthetic biology, this
fact motivates the use of stochastic models for the identification, design and control
of biochemical reaction networks. However, while in these applications stochastic
models provide the essential fidelity relative to their deterministic counterparts, their
analysis is generally more involved, often requiring heuristic approximations and
simplifications. In this article,we address this gap by presenting a convex optimization-
based framework for the rigorous quantification of uncertainty in stochastic reaction
networks.

Stochastic chemical systems are canonicallymodeled as jumpprocesses; the system
state, as encodedby themolecular counts of the individual chemical species, ismodeled
to changediscretely in response to reaction events as triggeredby the arrivals of Poisson
processes whose rates depend on the underlying reaction mechanism. The Chemical
Master Equation (CME) is an ordinary differential equation that describes how the
probability distribution of the state of such a process evolves over time. Specifically, a
solution of the CME tracks the probability to observe the system in any reachable state
over time. This introduces a major challenge for the analysis of stochastic reaction
networks in practice as such systems routinely feature millions or even infinitely many
reachable states, rendering a direct solution of the CME intractable. As a consequence,
sampling techniques such as Gillespie’s Stochastic Simulation Algorithm [27, 28]
have become the most prominent approach for the analysis of systems described by
the CME. And although sampling techniques perform remarkably well across a wide
range of problems, they are inadequate in certain settings. Most notably, they do
not scale well for stiff systems, generally do not provide hard error bounds and the
evaluation of sensitivity information is challenging [30]. In particular, the two latter
shortcomings limit their utility in the context of identification, design and control.
Approaches based on finite state projection [50] come with guaranteed error bounds
and straightforward sensitivity evaluation, however, generally suffer severely from a
large number of reachable states.

From a practical perspective, stochastic reaction networks are often sufficiently
characterized by only a few low-order moments of the distribution of the state, for
example through means and variances. In that case, tractability of the CME may be

123



106 Journal of Optimization Theory and Applications (2024) 200:104–149

recovered by solving for the moments of its solution directly. The dynamics of a
finite sequence of moments associated with the distribution described by the CME,
however, generally do not form a closed system of differential equations and hence
do not admit a solution by simple (numerical) integration. Numerous moment closure
approximations [5, 40, 52, 67] have been proposed to remedy this problem. A major
shortcoming of moment closure approximations, however, is that they generally rely
on unverifiable assumptions and therefore introduce an uncontrolled error. In fact, it
is well-known that their application can lead to unphysical results such as spurious
oscillations and negative mean molecular counts, especially when applied to systems
with low molecular counts [31, 63, 64].

In order to address the shortcomings of moment closure approximations while
preserving the advantages of the moment-based description, several authors have
recently proposed schemes for the computation of theoretically guaranteed bounds
for the moments (or related statistics) associated with stochastic reaction networks
involving low molecular counts; such bounding schemes have been proposed for sta-
tionary [21, 25, 43, 59, 62], transient [19, 22, 61] and exit time distributions [10] of
stochastic chemical systems and analogous techniques have been successfully applied
for the study of other types of stochastic processes [32, 33, 35, 39, 42, 48]. The key
insight underpinning all these bounding schemes is that the moment-sum-of-squares
hierarchy [45, 54] generates a rich set of convex conic conditions characterizing the
true moments associated with stochastic chemical systems in many practically rele-
vant settings. This insight enables the use of conic optimization to approximate the
true moment sequence by one that conforms with a finite subset of these “necessary
moment conditions” while maximizing (or minimizing) a moment of interest to bound
its true value. By imposing necessary moment conditions involving higher and higher-
order moments, a sequence of monotonically improving bounds of the true moment
of interest is generated.

The unique ability to rigorous quantify errors and uncertainty makes bounding
schemes particularly attractive for tasks such as robustness analysis and the verifica-
tion of approximation techniques like moment closure approximations. The utility of
moment bounds for such tasks, however, is directly tied to the bound quality. Andwhile
for stationary moments the existing bounding schemes are found to produce remark-
ably good bounds in a wide range of cases [21, 25, 43, 59, 60], bounds on transient
moments are often lacking in tightness, even for simple reaction networks [22, 61]. For
transient problems, necessary moment conditions involving moments of rather high
order need to be considered to obtain informative bounds. This imposes strong prac-
tical limitations as the bounding schemes suffer from the curse of dimensionality, i.e.,
the size of the bounding problems grows combinatorially with the order of moments
considered and the number of chemical species in the system. These limitations are
exacerbated by the notorious numerical ill-conditioning of moment problems [10, 20,
21]. In order to address this issue, we extend in this work the bounding scheme pro-
posed by Dowdy and Barton [22] for transient moments of the solutions of the CME.
Wedevise amoment bounding scheme involving a newhierarchy of necessarymoment
conditionswhich ismotivated by the characteristics of stochastic chemical systems and
not generally considered in the standard moment-sum-of-squares hierarchy. In broad
strokes, these conditions arise from a partitioning of the time domain in a way that
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is akin to discretization techniques commonly used for solving differential equations.
As such, they reflect the temporal causality that is inherent to solutions of the CME.
These conditions give rise to new bound tighteningmechanisms beyond increasing the
order of moments considered. For example, a simple refinement of the time domain
partition results in a strengthening of the conditions and thus acts as a bound tightening
mechanism. Critically, these bound tightening mechanisms avoid augmentation of the
order of moments considered and thus enjoy favorable scaling properties in addition
to alleviating numerical difficulties associated with the consideration of high-order
moments. While these mechanisms do not obviate increasing the moment truncation
order and so do not avoid the curse of dimensionality entirely, we find that they greatly
improve upon the practicality of Dowdy and Barton’s [22] proposal. Cibulka et al. [17]
recently studied a closely related spatio-temporal partitioning approach in the context
of overapproximating the region of attraction of deterministic control systems via sum-
of-squares techniques [36] and report similar improvements in terms of practicality.
While their approach is similar in spirit to ours, it takes a different (dual) perspec-
tive of approximating continuous functions by piecewise polynomials as opposed to
the moment-centered view presented here. Moreover, their approach is geared toward
deterministic control systems and does not apply without modification to bounding
the moment trajectories of stochastic chemical systems.

The remainder of this article is organized as follows. In Sect. 2, we introduce defini-
tions and assumptions, formally define the problem of bounding the transient moments
of stochastic chemical systems and review essential preliminaries. Section3 is devoted
to the development and analysis of the proposed hierarchy of necessary moment con-
ditions. In Sect. 4, we discuss several aspects pertaining to the use of these conditions
for computation of moment bounds in practice. The utility of the resultant bounding
scheme is demonstrated with several examples in Sect. 5 before we conclude with
some open questions in Sect. 6.

2 Preliminaries

2.1 Notation

We denote scalars with lowercase symbols without emphasis, while vectors and matri-
ces are denoted by bold lower- and uppercase symbols, respectively. Throughout,
vectors are assumed to be column vectors. Generic sets are denoted by uppercase
symbols without emphasis. For special or commonly used sets, we use the standard
notation; for example, the (non-negative) n-dimensional reals and integers are denoted
by Rn (Rn+) and Zn (Zn+), respectively. Similarly, we refer to the set of symmetric and
symmetric positive semidefinite (psd) n-by-n matrices with S

n and S
n+, respectively,

and use the usual shorthand notation A � B for A−B ∈ S
n+. The set of n-dimensional

vector and symmetricmatrix polynomials with real coefficients (of degree atmost k) in
the variables x = [x1 . . . xN ]� will be denoted by Rn[x] (Rn

k [x]) and Sn[x] (Snk [x]),
respectively. In order to concisely denote multivariate monomials, we employ the
multi-index notation: for a monomial in n variables corresponding to the multi-index

123



108 Journal of Optimization Theory and Applications (2024) 200:104–149

j = [ j1 . . . jn]� ∈ Z
n+, we write x j = ∏n

i=1 x
ji
i . The indicator function of a set A is

denoted by 1A. Lastly, we denote the set of n times continuously differentiable func-
tions on an interval I ⊂ R by Cn(I ) while the set of absolutely continuous functions
is denoted by AC(I ). The remaining symbols will be defined as they are introduced.

2.2 Problem Statement, Definitions & Assumptions

We consider a reaction system featuring n chemical species S1, . . . , Sn undergoing
nR different reactions. The system state x is encoded by the molecular counts of the
individual species, i.e., x = [x1 . . . xn]� ∈ Z

n+. It changes in response to reaction
events according to a given stoichiometry:

ν−
1,r S1 + · · · + ν−

n,r SN → ν+
1,r S1 + · · · + ν+

n,r Sn, r = 1, . . . , nR .

In other words, the system state changes by νr = [ν+
1,r − ν−

1,r . . . ν+
n,r − ν−

n,r ]� ∈ Z
n

upon the event of reaction r . We will restrict ourselves to the framework of stochastic
chemical kinetics for modeling such systems.

The notion of stochastic chemical kinetics treats the position and velocities of
all molecules in the system as random variables; reactions are assumed to occur at
collisions with a prescribed probability. Consequently, the evolution of the system
state is a continuous-time jump process. Here, we will assume that this jump process
can be described by the Chemical Master Equation (CME).

Assumption 1 Let Pπ (x, t) be the probability to observe the system in state x at time
t given the distribution π of the initial state of the system. Then, Pπ (x, t) satisfies

∂Pπ

∂t
(x, t) =

nR∑

r=1

ar (x − νr )Pπ (x − νr , t) − ar (x)Pπ (x, t), Pπ (·, 0) = π,

(CME)

where ar denotes the propensity of reaction r , i.e., ar (x)dt quantifies the probability
that reaction r occurs in [0, dt) as dt → 0 given the initial system state is x.

Moreover, we will restrict our considerations to the case of polynomial reaction
propensities.

Assumption 2 The reaction propensities ar in (CME) are polynomials.

To ensure the moment trajectories remain well-defined at all times, we will further
assume that the stochastic process is well-behaved in the following sense.

Assumption 3 The number of reaction events occurring in the system within finite
time is finite with probability 1.

A consequence of Assumption 3 is that the continuous-time jump process associated
with (CME) is regular [57], i.e., it does not explode in finite time.Wewish to emphasize
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that Assumptions 1–3 are rather weak; Assumptions 1 and 2 are in line with widely
accepted microscopic models [29], while Assumption 3 should intuitively be satis-
fied for any practically relevant system for which the CME is a reasonable modeling
approach. Furthermore, Assumption 3 is formally necessary for (CME) to be valid on
an indefinite time horizon [57]. For a detailed, physically motivated derivation of the
CME alongside discussion of the underlying assumptions and potential relaxations
thereof, the interested reader is referred to Gillespie [29].

Instead of studying the probability distribution Pπ as a description of the system
behavior, in this paper we will focus on its moments defined as follows.

Definition 2.1 Let X be the reachable set of the system, i.e., X = {x ∈ Z
n+ | ∃t ≥ 0 :

Pπ (x, t) > 0}, and j ∈ Z
n+ be a multi-index. The j th moment of Pπ (·, t) is defined

as y j (t) = ∑
x∈X x j Pπ (x, t). y j is said to be of order | j | = ∑n

i=1 ji . The function
y j (·) is called the trajectory of the j th moment or the j th transient moment. If y j
further converges to a stationary value in the limit of long times, we refer to that value
as the corresponding stationary moment.

Additionally, it will prove useful to introduce the following notion of generalized
moments.

Definition 2.2 Let y j be as inDefinition 2.1 and tT > 0.Consider a uniformly bounded
Lebesgue integrable function g : [0, tT ] → R. The j th generalized moment of Pπ

with respect to g is defined by z j (g; t) = ∫ t
0 g(τ )y j (τ ) dτ for t ∈ [0, tT ]. We say g

is a test function and generates z j (g; t).
Under Assumptions 1 and 2, it is well-known that the dynamics of the j th moment

are described by a linear time-invariant ordinary differential equation (ODE) of the
form

dy j

dt
(t) =

∑

|k|≤| j |+q

ckyk(t) = c� y(t), (1)

where q = max1≤r≤nR deg(ar ) − 1. The coefficient vector c can be readily computed
from the reaction propensities and stoichiometry; see for example Gillespie [26] for
details. For q > 0, it is clear from Eq. (1) that the dynamics of moments of a certain
order in general depend on moments of a higher order. This issue is commonly termed
themoment closure problem. If we denote by yL the vector of “lower-order” moments
up to a specified order, say m, and by yH the vector of “higher-order” moments of
order m + 1 to m + q, it is clear from Eq. (1) that we obtain a linear time-invariant
ODE system of the form

d yL
dt

(t) = AL yL(t) + AH yH (t)

with AL ∈ R
nL×nL and AH ∈ R

nL×nH , where nL = (n+m
n

)
and nH = (n+m+q

n

)− nL
denote the number of lower- and higher-order moments, respectively. For the sake of
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a more concise notation, throughout we will often omit these subscripts and instead
write

K
d y
dt

(t) = Ay(t), (mCME)

where A = [AL AH ], K = [
InL×nL 0nL×nH

]
and y = [

y�
L y�

H

]�
.

In the presence of the moment closure problem, it is clear from the setup of Equa-
tion (mCME) that it does not provide sufficient information to determine uniquely the
moment trajectories associated with the solution of (CME). In the following, we there-
fore address the question of how to compute hard, theoretically guaranteed bounds on
the true moment trajectory y j (·) associated with the solution of (CME) in this setting.
To that end, we build on the work of Dowdy and Barton [22] who have recently pro-
posed an approach to answer this question. In broad strokes, they generate upper and
lower bounds by optimizing a moment sequence truncated at a given order subject to
a set of necessary moment conditions, i.e., conditions that the true moment trajecto-
ries are guaranteed to satisfy. By increasing the truncation order, the bounds can be
improved. Our contribution is an extension of Dowdy and Barton’s work in the form
of a hierarchy of new necessary moment conditions based upon partitioning of the
time domain of the problem. We show that these conditions provide additional, more
scalable bound tightening mechanisms beyond increasing the truncation order.

2.3 Necessary Moment Conditions

The bounding method proposed by Dowdy and Barton [22] hinges on necessary
moment conditions which restrict the set of potential solutions of Eq. (mCME) as
much as possible while remaining computationally tractable. Necessary moment con-
ditions in the form of affine constraints and linear matrix inequalities (LMI) have
proved to fit that bill [38, 46]. Conditions of this form are of particular practical value
as they allow for the computation of the desired bounds via semidefinite programming
(SDP). In fact, analogous conditions to those proposed byDowdy andBarton [22] have
been employed for a wide range of applications concerned with the moment-based
study of dynamical systems [38], for example for optimal control [37, 47], region of
attraction computation [17, 36], the analysis of PDEs [11, 41] or options pricing [48].
In general, affine moment conditions arise from the system dynamics, while the LMIs
reflect constraints on the support of the underlying probability distributions. In the fol-
lowing, we will sketch the derivation of these conditions and highlight key properties
which will be leveraged for the construction of new necessary moment conditions in
Sect. 3.

2.3.1 Linear Matrix Inequalities

The fact that the solution of the CME, Pπ (·, t), is a non-negative measure on R
n and

supported only on the reachable set X of the underlying reaction system implies that its
truncated moment sequences satisfy certain LMIs [21, 25, 43, 45, 59]. The following
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argument reveals this fact: Consider a polynomial f ∈ R[x] that is non-negative on
X ; further, let b be a vector polynomial obtained by arranging the elements of the
monomial basis of the polynomials up to degree d = 
m+q−deg( f )

2 � in a vector. The
following generalized inequality

E
[
f bb�] � Pπ (x̂, t) f (x̂)b(x̂)b(x̂)� � 0, ∀(x̂, t) ∈ R

n × R+,

where E denotes the expectation with respect to Pπ (·, t), follows immediately. It is
easy to verify that the above relation can be concisely written as an LMI involving the
moment trajectory of Pπ . Concretely, we can write

M f ( y(t)) � 0, (LMI)

where M f : RnL+nH → S(n+d
d ) is a linearmap. The precise structure of M f depends

on f and is immaterial for all arguments presented in this paper; however, the interested
reader is referred to Lasserre [46] or Dowdy and Barton [21] for a detailed and formal
description of the structure of M f . As clear from the above argument, the construction
of valid LMIs of form (LMI) relies merely on polynomials that are non-negative on X .
For stochastic chemical systems, natural choices of such polynomials, reflecting that
Pπ is non-negative and in particular not supported on states with negative molecular
counts, are f (x) = 1 and f (x) = xi for i = 1, . . . , n [21, 25, 43, 59]. More generally,
the support of Pπ (·, t) on any basic closed semialgebraic set can be reflected this
way, most importantly including the special cases of polyhedra and bounded integer
lattices. To account for this flexibility while simplifying notation, we will make use
of the following definition and shorthand notation.

Definition 2.3 Let f0, . . . , fn p be polynomials that are non-negative on the reachable
set X . The convex cone described by LMIs generated by these polynomials is denoted
by C(X), i.e., C(X) = { y ∈ R

nL+nH | M fi ( y) � 0, i = 0, . . . , n p}.
Lastly, we note that the validity of LMIs of form (LMI) carries over to the general-

ized moments that are generated by non-negative test functions. To see this, observe
that the linearity of M f implies that

M f (z(g; t)) =
∫ t

0
g(τ )M f ( y(τ )) dτ

holds. Now assuming g is non-negative onR+ and applying Jensen’s inequality to the
extended convex indicator function of the positive semidefinite cone, 1∞

S+ , yields that

0 ≤ 1∞
S+
(
M f (z(g; t))

) ≤
∫ t

0
g(τ )1∞

S+
(
M f ( y(τ ))

)
dτ = 0

and hence shows that M f (z(g; t)) � 0 must hold for any t ≥ 0 in analogy to Eq.
(LMI).
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2.3.2 Affine Constraints

The moment dynamics (mCME) give rise to affine constraints that the moments and
generalized moments must satisfy [11, 13, 37, 41, 47, 48, 61]. To see this, consider a
test function g ∈ AC([0, tT ]) and final time t f ≤ tT . Integrating

∫ t f
0 g(t) d yLdt (t) dt by

parts yields the following set of affine equations:

K
(
g(t f ) y(t f ) − g(0) y(0)

) = Az(g; t f ) + K z(g′; t f ). (2)

Wewish to emphasize here that the above constraints are vacuous if z(g; t) and z(g′; t)
are no further restricted. This observation motivates necessary restrictions on the test
function g to generate “useful” generalized moments. Recalling the discussion in
Sect. 2.3, one may be tempted to argue that g and g′ shall be non-negative (or non-
positive) on [0, t f ] so that the generated generalized moments satisfy LMIs of form
(LMI). In fact, Dowdy and Barton [22] as well as Sakurai and Hori [61] demonstrate
that this is indeed a reasonable strategy; they use exponential and monomial test
functions, respectively. However, in principle a wider range of test functions can be
used. We defer the discussion of this issue to Sect. 3.

3 Tighter Bounds

3.1 An Optimal Control Perspective

Some of the conservatism in the original method of Dowdy and Barton [22] stems
from the fact that moments are only constrained in an integral or weak sense; i.e.,
z(g; t f ) = ∫ t f

0 g(τ ) y(τ ) dτ is constrained as opposed to y(t) for all t ∈ [0, t f ].
This is potentially a strong relaxation as in fact the entire trajectory must satisfy the
necessary moment conditions. Moreover, by Assumption 3, the moment trajectories
remain bounded at all times, which, taken together with the fact that they satisfy
the ODE (mCME), implies that they are guaranteed to be smooth. Using these two
additional pieces of information, we argue that the following continuous-time optimal
control problem provides an elementary starting point for addressing the question of
how to bound the moment trajectories associated with a stochastic chemical system
evaluated at a given time point t f :

inf
y∈C∞(R+)

y j (t f ) (OCP)

s.t.
d yL
dt

(t) = AL yL(t) + AH yH (t), ∀t ∈ R+,

y(0) = y0,

y(t) ∈ C(X), ∀t ∈ R+.

Here, the lower-order moments yL act as the state variables, while the higher-order
moments yH can be viewed as control inputs. Although the infinite-dimensional nature
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ofProblem (OCP) leaves itwith little immediate practical relevance, this representation
is conceptually informative. It is not hard to verify that themethod proposed byDowdy
and Barton [22] provides a systematic way to construct tractable SDP relaxations of
(OCP). However, Dowdy and Barton’s method does in no way reflect the dependence
of y(t f ) on past values of y(t) other than y(0) nor the fact that y is smooth or even
continuous. As we will show in the following, ideas from the numerical analysis
of ODEs allow us to reflect these features in the form of new necessary moment
conditions constructed based on a discretization of the time domain of the problem.
These conditions in turn yield tighter SDP relaxations of Problem (OCP) than those
constructed by Dowdy and Barton’s method [22].

3.2 A NewHierarchy of Necessary Moment Conditions

In this section, we present the key contribution of this article—a new hierarchy of
convex necessary moment conditions that reflect the temporal causality and regu-
larity conditions inherent to the moment trajectories associated with the distribution
described by the CME. To provide some intuition for these results, we will first discuss
special cases of the proposed conditions which admit a clear interpretation. To derive
these special cases, we specifically draw on two common ideas for the numerical
analysis and solution of ODEs: temporal discretization and the analysis of the Taylor
expansion of the moment trajectories [9, 16].

Recall that the moment trajectory y j (·) must be infinitely differentiable on R+
as all moment trajectories remain bounded by Assumption 3 and obey the linear
time-invariant dynamics (mCME). As a consequence, the Taylor polynomial

T l(y j ; t1, t2) =
l∑

k=0

(t2 − t1)k

k!
dk y j

dtk
(t1) (3)

and remainder

Rl(y j ; t1, t2) = 1

l!
∫ t2

t1
(t2 − t)l

dl+1y j

dtl+1 (t) dt (4)

are well-defined for any 0 ≤ t1 ≤ t2 < +∞ and order l ≥ 0. Now two things can be
observed. First, higher-order time derivatives of y j as in Eqs. (3) and (4) are simply
linear combinations of high-order moments due to the linear dynamics (mCME).
Second, the remainder term (4) then can be characterized as a linear combination of
generalized moments for the test function gl(t) = 1[t1,t2](t)(t2 − t)l . Thus, if | j | and l
are sufficiently small,1 then T l(y j ; t1, t2) and Rl(y j ; t1, t2) depend linearly on y(t1)
and z(gl; t2); formally,

T l(y j ; t1, t2) = cl, j (t1, t2)� y(t1),
Rl(y j ; t1, t2) = dl, j (t1, t2)�z(gl; t2), (5)

1 if | j | or l grows too large, the Taylor polynomial or remainder depends linearly on moments of higher
order than m + q
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for an appropriate choice of the coefficient vectors. Overall, this observation suggests
to employ conditions of the form

y j (t2) = T l(y j ; t1, t2) + Rl(y j ; t1, t2)

at different time points along the trajectory as necessary moment conditions. These
conditions achieve exactly what we set out to do: they establish a connection between
y j (t2) and the moments at any past time point t1 using the smoothness properties of
the moment trajectories y(t). In fact, for the same reason similar conditions are also
used to derive and analyze numerical integration routines for ODEs such as Runge–
Kutta or linear multistep methods [9, 16]. Further, it is straightforward to see that
analogous conditions are readily obtained for any generalized moment generated by a
sufficiently smooth test function. The above conditions hence appear to be a promising
starting point. From a practical perspective, however, they merely suggest a particular
choice of (local) polynomial test functions of the form gl(t) = 1[t1,t2](t)(t2 − t)l as
suggested by the integral form of the remainder in Eq. (4). This claim is formalized
in the following proposition.

Proposition 3.1 Let 0 ≤ t1 ≤ t2 < +∞ and nI ≤
⌊
m
q

⌋
. Further, consider test

functions of the form gl(t) = 1[t1,t2](t)(t2 − t)l . If yt1, yt2 ∈ R
nL+nH and zgl ,t2 ∈

R
nL+nH satisfy

K
(
gl(t2) yt2 − gl(t1) yt1

) = Azgl ,t2 − lK zgl−1,t2 (6)

for l = 0, . . . , nI , then yt1 , yt2 and zgl ,t2 also satisfy

y j ,t2 = cl, j (t1, t2)� yt1 + dl, j (t1, t2)�zgl ,t2 (7)

for l = 0, . . . , nI and j such that | j | ≤ m − lq, where cl, j and dl, j are defined as in
Eq. (5).

Proof The proof is deferred to Appendix A. ��
Remark 3.1 Note that Condition (6) is analogous to Condition (2) as obtained for the
test function gl with a shifted origin, hence it is a necessarymoment condition. Further,
we wish to emphasize that Condition (6) is in general more stringent than Condition
(7) as is made clear in the proof.

Beyond a specific choice of test functions, the above considerations motivate a broader
strategy to generate necessary moment conditions that reflect causality. This strategy
can be summarized as “discretize and constrain” and was previously shown to be
effective in other contexts [17]. Instead of imposing Condition (2) on the entire time
horizon [0, t f ] as proposed by Dowdy and Barton [22], the time horizon can be par-
titioned into nT subintervals [ti−1, ti ] with 0 = t0 < t1 < · · · < tnT = t f on which
analogous conditions obtained from integrating

∫ ti
ti−1

g(τ )K d y
dt (τ ) dτ by parts can be

imposed:
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K (g(ti ) y(ti ) − g(ti−1) y(ti−1)) =
A(z(g; ti ) − z(g; ti−1)) + K (z(g′; ti ) − z(g′; ti−1)). (8)

While by itself this does not provide any restriction over Condition (2), the fol-
lowing observation makes it worthwhile: the generalized moments generated by a
non-negative test function g form a monotonically increasing sequence with respect
to the convex cone C(X). This follows immediately from the definition of z(g; t) and
Jensen’s inequality as described in Sect. 2.3; formally,

z(g; ti ) − z(g; ti−1) ∈ C(X), i = 1, . . . , nT (9)

are necessary moment conditions. Conditions (8) & (9) are generally a non-trivial
restriction of Condition (2) & z(g; t f ) ∈ C(X) as employed by Dowdy and Barton
[22]. To see this, simply observe that we recover Eq. (2) by summing Eq. (8) over
i = 1, . . . , nT and likewise obtain

z(g; t f ) =
nT∑

i=1

z(g; ti ) − z(g; ti−1) ∈ C(X),

using that C(X) is a convex cone and z(g; 0) = 0 by definition.
The above-described strategies lend themselves to generalization in terms of a

hierarchy of necessary moment conditions. This generalization can be performed in
several equivalent ways. Next we will present one such generalization utilizing a
concept which we refer to as iterated generalized moments.

Definition 3.1 Let z j (g; t) be the j th generalized moment as per Definition 2.2. Then,
the iterated generalized moment of Level l ≥ 0 is defined by

zlj (g; t) =
{∫ t

0 z
l−1
j (g; τ) dτ, l ≥ 1

g(t)y j (t), l = 0
.

For the sake of simplified notation and analysis, it will further prove useful to introduce
the left and right integral operators IL , IR : C(R2) → C(R2) given by

(IL f )(t1, t2) =
∫ t2

t1
f (t1, t) dt and (IR f )(t1, t2) =

∫ t2

t1
f (t, t2) dt .

For vector-valued functions, IL and IR shall be understand as being applied
componentwise.

With these two notions in hand, a hierarchy of necessary moment conditions can
be constructed by repeatedly integrating Eqs. (8) and (9) over an increment of the
time domain partition. The resultant hierarchy of necessary moment conditions is
summarized in the following proposition.
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Proposition 3.2 Let tT > 0 and consider a non-negative test function g ∈ AC([0, tT ]).
Further, let y be the truncated sequence of moment trajectories associated with the
solution of Eq. (CME), and zl be the corresponding iterated generalized moments.
Then, the following conditions hold for any l ≥ 1:

(i) For any t ∈ [0, tT ] it holds that

Azl(g; t) + K zl(g′; t) = K
(

zl−1(g; t) − t l−1

(l − 1)!g(0) y(0)
)

.

(ii) Let f (x, y) = z1(g; y) − z1(g; x). Then, for any 0 ≤ t1 ≤ t2 ≤ tT and k ∈
{0, . . . , l − 1} it holds that (I l−1−k

L I kR f )(t1, t2) ∈ C(X).

Proof It is easily verified that Condition (i) is obtained from integrating Eq. (2) l − 1
times. Validity of Condition (ii) follows by a similar inductive argument: Since y(t) ∈
C(X) for all t ∈ [0, tT ], it follows by non-negativity of g on [0, tT ] and Jensen’s
inequality that

z1(g; t2) − z1(g; t1) =
∫ t2

t1
g(t) y(t) dt ∈ C(X)

for any 0 ≤ t1 ≤ t2 ≤ tT . Now suppose Condition (ii) is satisfied for l − 1. Then, it
follows by Jensen’s inequality that for any 0 ≤ t1 ≤ t2 ≤ tT and k = 0, . . . , l − 2

(I l−1−k
L I kR f )(t1, t2) =

∫ t2

t1
(I l−2−k

L I kR f )(t1, t) dt ∈ C(X).

For k = l − 1, an analogous argument applies. ��
Before we proceed, a few remarks are in order to contextualize this result.

Remark 3.2 Choosing l = 1, t1 = 0, t2 = t f and exponential test functions of the form
g(t) = eρ(tT −t) reproduces the necessary moment conditions proposed by Dowdy and
Barton [22].

Remark 3.3 Regarding Condition (ii), one might be tempted to argue that any per-
mutation of the operator products IL and IR of length l − 1 applied to f (x, y) =
z1(g; y) − z1(g; x) gives rise to a new valid necessary moment condition. It can be
confirmed, however, that IL and IR commute such that Condition (ii) is invariant under
permutation of IL and IR (see Appendix B).

Remark 3.4 We wish to emphasize that Conditions (i) and (ii) depend affinely on
the iterated generalized moments up to Level l evaluated at t1 and t2, respectively.
Accordingly, they preserve the computational advantages of Dowdy and Barton’s
necessary moment conditions. To avoid notational clutter in the remainder of this
article we will disguise this fact and concisely denote the left-hand side of Condition
(ii) by
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Ωl,k

({
zi (g; t1)

}l

i=1
,
{
zi (g; t2)

}l

i=1
, t1, t2

)

.

An explicit algebraic expression for Ωl,k is provided in Appendix D.

Remark 3.5 For the 0-th-generalized moments, additional constraints arise from the
definition as

zl0(g; t) =
{∫ t

0 z
l−1
0 (g; τ) dτ, l ≥ 1

g(t), l = 0

can be evaluated explicitly.

It is crucial to emphasize that a careful choice of test functions is critical to endow
the conditions put forth in Proposition 3.2 with restrictive power. In particular, Con-
dition (i) in Proposition 3.1 is effectively unrestrictive unless zl(g′; t) can be further
constrained. Fortunately, one can draw from rich function classes including polyno-
mials [61], trigonometric functions [11, 44] and exponentials [22] to assemble a set of
test functions that render Condition (i) in Proposition 3.1 “self-contained.” For such
test function sets, zl(g′; t) reduces to linear combinations of the generalized moments
generated by the test function set itself. The following examples showcase how such
test function sets can be constructed in practice from exponential and monomial test
functions.

Example 3.1 Consider test functions of the form g(t) = eρt . Then, the associated
generalized moments satisfy zl(g′; t) = ρ zl(g; t) due to the linearity of zl in its first
argument. Condition (i) of Proposition 3.2 thus reduces to

(A + ρK ) zl(g; t) = K
(

zl−1(g; t) − t l−1

(l − 1)!g(0) y(0)
)

.

Example 3.2 Consider a set of test functions of the form gk(t) = tk for k = 0, . . . , n.
By linearity of zl in its first argument, the identity zl(g′

k; t) = k zl(gk−1; t) must hold.
Accordingly, Condition (i) in Proposition 3.2 reduces to

Azl(gk; t) + kK zl(gk−1; t) = K
(

zl−1(gk; t) − t l−1

(l − 1)!gk(0) y(0)
)

.

The preceding discussion and examples indicate that the span of an appropriate
test function set should be closed under differentiation. The following proposition
formalizes this guideline.

Proposition 3.3 Let F be a finite set of test functions such that span (F) is closed
under differentiation. Then, for any f ∈ F, there exists a linear map Γ f such that
Condition (i) in Proposition 3.2 is equivalent to

Γ f

({
zl(g; t)

}

g∈F

)

= K
(

zl−1( f ; t) − t l−1

(l − 1)! f (0) y(0)
)

.
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We omit the elementary proof of Proposition 3.3 and instead refer back to Examples
3.1 and 3.2 for how the linear map Γ f can be constructed in practice.

Another issue pertaining to the choice of test functions is the requirement of non-
negativity in Proposition 3.2. This problem can be alleviated by a simple reformulation
and shift of the time horizon in Proposition 3.2. For example, if a test function g is
non-negative on [0, t+] and non-positive on [t+, tT ], we can simply consider the two
test functions g+(t) = 1[0,t+](t)g(t) and g−(t) = −1[t+,tT ](t)g(t) in place of g and
impose the necessary moment conditions on the intervals [0, t+] and [t+, tT ], respec-
tively. This construction naturally extends to test functions with any finite number of
sign changes.

We conclude this section by establishing some compelling properties of the hierar-
chy of necessary moment conditions put forward in Proposition 3.2. On the one hand,
Conditions (i) and (ii) in Proposition 3.2 include the conditions considered in Propo-
sition 3.1 as special cases. So in particular, they enforce consistency with higher-order
Taylor expansions of the true moment trajectories as discussed in the beginning of this
section. The following corollary to Proposition 3.2 formalizes this claim.

Corollary 3.1 Let nI ∈ Z+ and tT > 0 be fixed. Further, suppose g ∈ AC([0, tT ]) is
non-negative, and let y and zl(·; ·) be arbitrary functions such that zl(·; ·) is linear
in the first argument and z0(g; t) = g(t) y(t) holds. Fix 0 ≤ t1 ≤ t2 ≤ tT and define
hl(t) = 1[t1,t2](t)(t2− t)l for l = 0, 1, . . . , nI . If Conditions (i) and (ii) of Proposition

3.2 are satisfied by
{
zl(g; ti )

}nI+1
l=0 for i = 1, 2, then there exist functions z(·; ·) that

are linear in the first argument, and satisfy

K (hl(t2)g(t2) y(t2) − hl(t1)g(t1) y(t1)) = Az(hlg; t2) + K z((hlg)′; t2) (10)

and

z(hlg; t2) ∈ C(X) (11)

for all l ∈ {0, . . . , nI }.
Proof The proof is deferred to Appendix C. ��
Remark 3.6 To see the connection between Condition (10) and Condition (6) in Propo-
sition 3.1, simply consider the case where g(t) = 1. Moreover, note that Corollary
3.1 also shows that necessary moment conditions of the form of (8) & (9) are
implied as they are recovered for l = 0 since we can simply identify z(h0g; t2)
with z1(g; t2) − z1(g; t1).

On the other hand, the proposed necessary moment conditions display benign scal-
ing behavior. Condition (ii) in Proposition 3.2 scales quadratically with respect to the
level l of the hierarchy, independent of the state space dimension.Moreover, a strength-
ening of the conditions is obtained by refining the partition of the time horizon. This
strengthening mechanism does not only provide a desirable degree of flexibility but
also enjoys linear scaling with respect to the number of intervals in the partition which
of course is independent of the state space dimension. In particular, Condition (ii) must
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only be imposed between the endpoints of each interval of the partition to ensure it
holds between any two endpoints. This claim is formalized in the following Corollary.

Corollary 3.2 Let 0 ≤ t1 ≤ t2 ≤ t3 < +∞ and nI be a fixed positive integer. Suppose
{zs}nIs=1 is a set of functions such that

Ωl,k

({
zs(ti )

}l
s=1 ,

{
zs(ti+1)

}l
s=1 , ti , ti+1

)
∈ C(X)

for all i ∈ {1, 2} and k, l ∈ Z+ such that k < l ≤ nI . Then,

Ωl,k

({
zs(t1)

}l
s=1 ,

{
zs(t3)

}l
s=1 , t1, t3

)
∈ C(X)

holds for all k, l ∈ Z+ such that k < l ≤ nI .

Proof The proof is deferred to Appendix D. ��

3.3 An Augmented Semidefinite Program

In this section, we construct an SDP based on the hierarchy of necessary moment
conditions put forth in Proposition 3.2. The optimal value of this SDP furnishes bounds
on the moment solutions of Eq. (CME) at a given time point t f ∈ [0, tT ]. To that end,
we consider the moment truncation orderm to be fixed and the following user choices
as known:

(i) T = {
t1, . . . , tnT

}
—A finite, ordered set of time points framing the partition of

the time horizon. For notational simplicity, we assume that 0 < t1 < t2 < · · · <

tnT ≤ tT and t f ∈ T.
(ii) F = {

g1, . . . , gnF
}
—A finite set of test functions that satisfies the hypotheses of

Propositions 3.2 and 3.3.
(iii) nI—A non-negative integer controlling the hierarchy level in Proposition 3.2.

These quantities parametrize a spectrahedron S(F, T, nI ) described by the necessary
moment conditions of Proposition 3.2 as imposed for all test functions in F, at all time
points in T and for all hierarchy levels up to nI . In the formulation of S(F, T, nI ),
however, we use a slightly different but equivalent formulation of Condition (i) of
Proposition 3.2. The reason for this modification is that it results in weakly coupled
conditions that allow the resultant SDPs to be decomposed in line with the temporally
causal structure of the constraints as we will discuss in Sect. 4.1. Details on this refor-
mulation can be found in Appendix E. S(F, T, nI ) is explicitly stated below; for the
sake of concise notation we introduced the shorthand n(t) for the left adjacent time
point of t ∈ T, i.e., n(ti ) = ti−1 for i = 2, . . . , nT and n(t1) = 0.
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S(F, T, nI )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ yt }, {zlg,t }

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z0g,t = g(t) yt , ∀(g, t) ∈ F × T,

yt ∈ C(X), ∀t ∈ T,

Γg

(
{zlf ,t } f ∈F

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K
(
zl−1
g,t − tl−1

(l−1)! g(0) y0
)

, if t = t1
(

t
n(t)

)l−1
Γg

(
{zlf ,n(t)} f ∈F

)

+K
(

zl−1
g,t −

(
t

n(t)

)l−1
zl−1
g,n(t)

)

, if t �= t1

,

∀(g, t, l) ∈ F × T × {1, . . . , nI } ,

Ωl,k

(
{zsg,n(t)}ls=1, {zsg,t }ls=1, n(t), t

)
∈ C(X),

∀(g, t) ∈ F × T and ∀k, l ∈ Z+ such that k < l ≤ nI

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

By construction, the set S(F, T, nI ) contains the sequences { y(t) : t ∈ T} and
{zl(g; t) : (g, t, l) ∈ F × T × {0, . . . , nI }} as generated by the true moment tra-
jectories associated with the solution of Eq. (CME). Another piece of information that
can be used to further restrict the set of candidates for the true moment solutions to
Eq. (CME) is information about the moments of the initial distribution. We know for
example from the definition that any iterated generalized moment zl(g; t) for l ≥ 1
must vanish at t = 0. Moreover, one usually has specific information about the initial
distribution of the system state, hence also about y(0). Here, we assume that the initial
moments and iterated generalizedmoments are confined to a spectrahedral set denoted
by S0(F, nI ). In the common setting in which the moments of the initial distribution
are known exactly, S0(F, nI ) would be given by

S0(F, nI ) =
{

y0, {zlg,0}
∣
∣
∣
∣
y0 = y(0),
zlg,0 = 0, ∀(g, l) ∈ F × {1, . . . , nI }

}

.

Albeit adding the corresponding constraints to the description of S(T, F, nI ) appears
natural, we deliberately choose to reflect this piece of information separately. Our
motivation for this distinction is twofold: On the one hand, we want to emphasize
that the presented approach naturally extends to the setting of uncertain or imperfect
knowledge of the moments of the initial distribution of the system. Specifically, if
the moments of the initial distribution are not known exactly, however, known to
be confined to a spectrahedral set, the proposed bounding procedure applies without
modification. On the other hand, wewill argue in Sect. 4.1 that the arising optimization
problems lend themselves to be decomposed according to the temporal structure of the
constraints. The distinction in notation made here will simplify our exposition there.

The following theoremsfinally summarize the key feature of our proposed bounding
approach—the ability to generate a sequence of monotonically improving, practically
computable bounds on the moment trajectories associated with the solution of Eq.
(CME). Theorem 3.1 shows that these bounds can be obtained by way of solving an
SDP.

Theorem 3.1 Let y denote the transient moments as described in Definition 2.1.
Further, for any time point t f ∈ T and multi-index |i | ≤ m, define
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y∗
i,t f = inf

{ yt },{zlg,t }
yi,t f (SDP)

s.t. ({ yt }, {zlg,t }) ∈ S(F, T, nI ),

( y0, {zlg,0}) ∈ S0(F, nI ).

Then, y∗
i,t f

≤ yi (t f ).

Proof Set yt = y(t) for all t ∈ T and zlg,t = zl(g; t) for all (g, t, l) ∈ F × T ×
{0, . . . , nI } with zl(g; t) as in Definition 3.1. By Proposition 3.2 ({ yt }, {zlg,t }) ∈
S(F, T, nI ), and the result follows. ��
Remark 3.7 For equal truncation orders and choice of C(X), Remark 3.2 implies that
the bounds obtained from (SDP) are at least as tight as those obtained by the approach
of Dowdy and Barton [22].

Remark 3.8 The lower bound y∗
i,t f

can be evaluated using off-the-shelf solvers for
SDPs such as MOSEK [6], SeDuMi [68] or SDPT3 [69].

Remark 3.9 Similar problems as (SDP) can be formulated to bound properties that
can be described in terms of moments of non-negative measures on the reachable set;
examples include variances [21], the volume of a confidence ellipsoids [60] and the
mass that the probability measure assigns to a semialgebraic set [21].

The formulation of (SDP) provides several mechanisms to improve the bounds by
adjusting the parameters T, F and nI . Theorem 3.2 shows that appropriate adjustments
lead to a sequence of monotonically improving bounds.

Theorem 3.2 Let y∗
i,t f

be defined as in Theorem 3.1. Let t̃ ∈ [0, tT ] and define T̃ =
T ∪ {t̃}. Further, let g̃ be an absolutely continuous function that is non-negative on

[0, tT ] and define F̃ = F ∪ {g̃}. Then,

y∗
i,t f ≤ inf

{ yt },{zlg,t }
yi,t f

s.t. ({ yt }, {zlg,t }) ∈ S(F̃, T̃, nI ),

( y0, {zlg,0}) ∈ S0(F̃, nI ). (12)

Likewise,

y∗
i,t f ≤ inf

{ yt },{zlg,t }
yi,t f

s.t. ({ yt }, {zlg,t }) ∈ S(F, T, nI + 1),

( y0, {zlg,0}) ∈ S0(F, nI + 1). (13)

Proof Inequality (12) is clearly true if t̃ ∈ T and g̃ ∈ F. If t̃ /∈ T and/or g̃ /∈ F, any
feasible point of the right-hand side of (12) can be used to construct a feasible point
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Table 1 Scaling of (SDP)

#variables #affine constraints #LMI LMI size

F O (|F|) O (|F|) O (|F|) O (1)

T O (|T|) O (|T|) O (|T|) O (1)

nI O (nI ) O (nI ) O
(
n2I

)
O (1)

m O
((m+q+n

n
))

O
((m+q+n

n
))

O (1) O
((
(m+q)/2�+n

n
))

of (SDP); simply remove the decision variables that correspond to time point t̃ and/or
test function g̃. Similarly, removing the iterated generalized moments of Level nI + 1
of the right-hand side of (13) yields a feasible point for (SDP). ��
Remark 3.10 Increasing the truncation order also gives rise to monotonically improv-
ing bounds. For the sake of brevity, we omit a formal statement and proof here as
many easily adapted results of this type exist; see for example Corollary 6 in Kuntz et
al. [43].

Theorems 3.1 and 3.2 establish that the proposed necessary moment conditions
provide a practical way to compute hard bounds on the transient moments associated
with stochastic chemical systems alongside several mechanisms to tighten the bounds.
A natural question in this context is whether these bounds converge to the true transient
moments as the bound tighteningmechanisms are taken to the limit.While we find that
the bounds often become tight enough to be of practical value, we cannot claim conver-
gence. This contrasts with many applications of the standard moment-sum-of-squares
hierarchy, such as polynomial optimization [45], solving nonlinear PDEs [41], option
pricing [48] and deterministic optimal control [37, 47], where convergence guaran-
tees can be established under regularity conditions. The main obstacle obstructing the
extension of these results to bounding schemes for stochastic chemical systems is the
discrete nature of the state space of such systems. On the one hand, the state space of
open systems is an unbounded integer lattice and hence not basic closed semialgebraic.
This violates a key assumption underpinning existing convergence guarantees. On the
other hand, even though the state space of closed systems is a bounded integer lattice
and thus also a basic closed semialgebraic set, it typically features an exceedingly
large number of elements, rendering the reflection of all individual elements of this set
through LMIs intractable. To the best of our knowledge, the only moment bounding
scheme for stochastic chemical systems that defies these complications and provides
convergence guarantees is that of Kuntz et al. [43]. However, their construction relies
on enumerating the discrete states through growing, finite truncations of the state
space, complemented by moment bounds accounting for the truncated states. As such,
their bounding scheme forfeits the perks of a purely moment-based description and is
therefore more limited in practice.

We conclude this section with a brief discussion of the scalability of (SDP). Table
1 summarizes how the number of variables, affine constraints and LMIs as well as
their dimension scales with F, T, nI and the truncation order m. The results demon-
strate the value of the proposed formulation if the number of species n in the system
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under investigation is large. In that case, the bound tightening mechanisms offered by
adjusting F, T and nI scale muchmoremoderately than increasing the truncation order.
Furthermore, it should be emphasized that the invariance of LMI size with respect to F,
T and nI is a particularly desirable property to achieve scalability of SDP hierarchies
in practice [1, 3]. Lastly, it is worth noting that moment-based SDPs are notorious
for becoming numerically ill-conditioned as the truncation order increases. Thus, the
presented hierarchy provides a mechanism to circumvent this issue to an extent.

4 Practical Considerations

4.1 Leveraging Causality for Decomposition

Techniques for the efficient numerical integration of ODEs hinge fundamentally on
the causality that is inherent to the solution of ODEs. It enables the original problem,
namely integration over a long time horizon, to be decomposed into a sequence of
simpler, more tractable subproblems, each corresponding to integration over only a
small fraction of the time horizon. In this section, we discuss how the structure of
the presented optimization problems can be exploited in a similar spirit. Additionally,
we show that such exploitation of structure gives rise to a mechanism for trading off
tractability and bound quality.

Suppose we are interested in computing moment bounds at the end of a long time
horizon [0, t f ]. In light of the arguments made in Sect. 3.2, it is reasonable to expect
that the set T should ideally be populated with a large number of time points in this
setting.Accordingly, solving the resultant optimization problem in one gomay become
prohibitively costly, even despite the benign scaling of the SDP size with respect to
|T|. As alluded to in the beginning of this section, this limitation may be circumvented
by decomposing the problem into a sequence of simpler subproblems each of which
cover only a fraction of the time horizon. To that end, suppose that T = {

t1, . . . , tnT
}

is ordered with tnT = t f , and let t0 = 0. Further consider the subsets T1, . . . , TnT of T
such that Tk = {tk}. We now define

Sk =

⎧
⎪⎨

⎪⎩

S0(F, nI ), if k = 0,{

ytk , {zlg,tk }
∣
∣
∣
∣
∣

∃( ytk−1
, {zlg,tk−1

}) ∈ Sk−1 such that

({ ytk−1
, ytk }, {zlg,tk−1

, zlg,tk }) ∈ S(F, Tk, nI )

}

, if k ≥ 1.

At this point, it is worth emphasizing the meaning of each Sk and how its construc-
tion directly exploits the way we formulated the necessary moment conditions in
S(F, T, nI ). To that end, note that each condition in S(F, T, nI ) only links variables
corresponding to adjacent time points. As a consequence, the set S(F, Tk, nI ) con-
strains only the variables ({ ytk−1

, ytk }, {zlg,tk−1
, zlg,tk }). By construction of Sk , we

project out the variables ( ytk−1
, {zlg,tk−1

}) while imposing their membership in Sk−1.

It follows by induction that Sk precisely describes the projection of S(F,∪k
i=1Ti , nI )

onto the variables ( ytk , {zlg,tk }) under the condition that ( y0, {zg,0}) ∈ S0(F, nI ). By
this argument, it follows that the original problem (SDP) is equivalent to the following
reduced space formulation:
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inf
yt f ,{zlg,t f }

yi,t f

s.t. ( yt f , {zlg,t f }) ∈ SnT ,

where all decision variables that correspond to time points before t f have been
projected out. It should be clear that the above optimization problem provides a com-
putational advantage over the original problem only if the set SnT can be represented, or
at least tightly approximated, in a “simple”way. To that end,we suggest to successively
compute conic outer approximations of the projections Sk according to Algorithm 1.

Algorithm 1 Successive Overapproximation
1: procedure sO(S0, S1, . . . , SnT )
2: Set S̃0 = S0
3: for k = 1, . . . , nT do
4: Compute conic overapproximation

S̃k ⊃

⎧
⎪⎪⎨

⎪⎪⎩
ytk , {zlg,tk }

∣
∣
∣
∣
∣
∣
∣
∣

∃( ytk−1
, {zlg,tk−1

}) ∈ S̃k−1 such that
⎛

⎝

{
ytk−1

, ytk

}

{
zlg,tk−1

, zlg,tk

}

⎞

⎠ ∈ Sk

⎫
⎪⎪⎬

⎪⎪⎭

5: end for
6: return S̃nT
7: end procedure

Note that Algorithm 1 parallels the decomposition approach taken in classical
numerical integration of ODEs: the task of finding moment bounds at the end of
the time horizon [0, t f ] is decomposed into a sequence of smaller subproblems cor-
responding to finding moment bounds over smaller subintervals of the horizon, and
each subproblem requires the solution of the previous subproblem as input data. In
otherwords, Algorithm 1 propagates themoment bounds forward in time, successively
subinterval by subinterval, in the sameway as a numerical integrator propagates values
of the state of a dynamical system forward in time.

We conclude this sectionwith some final remarks. First, wewould like to emphasize
that the specific choices of the subdomains Tk made in this section are made purely
for clarity of exposition. The partition can be chosen as coarse as desired, i.e., each Tk
can comprise multiple time points, only requiring minimal adjustments of Algorithm
1. Second, computing and representing the conic overapproximations in Algorithm 1
may be expensive, in particular if many moments are considered. For example, com-
puting a polyhedral outer approximation of the positive semidefinite cone is known
to converge exponentially slowly in the worst-case [15]. Second-order cone approx-
imations perform better empirically [1, 4] and theoretically [12], however, are more
expensive to compute and represent. On the other hand, it may not be necessary to find
overapproximations that are globally tight but only near the optimal solution of the
original problem. Finally, with decisions on accuracy of the overapproximation and the
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coarseness of the partition of T required in Algorithm 1, one is left with mechanisms
to trade off accuracy and computational cost.

4.2 Quantifying Approximation Quality

A natural question that arises from the formulation of Problem (SDP) is how to choose
the parameters required for its construction, i.e., the sets F and T, and the level nI of
the proposed constraint hierarchy. We will show that an approximation of Problem
(OCP) can provide useful guidance for these choices. Specifically, we show that an
approximation of (OCP) provides rigorous information on the best attainable bounds
given the truncation order m is fixed. To that end, recall that (OCP) requires opti-
mization over an infinite-dimensional vector space, namely C∞(R+). To overcome
this challenge, we will make two restrictions. On the one hand, we will restrict our
considerations to a compact interval [0, tT ] and, on the other hand, we will restrict the
search space to the set of univariate polynomials up to a fixed but arbitrary maximum
degree d ∈ Z+. Note that the latter restriction is in some sense arbitrarily weak as
R[t] is dense in C∞([0, tT ]) [58].

The above-discussed restrictions enable the construction of a tractable approxima-
tion of (OCP) using the following result which can be traced back to the work of
Nesterov [53] as well as Powers and Reznick [56].

Proposition 4.1 Let m, d be positive integers. If d is odd, let r = k = d+1
2 m.

Otherwise, let k = ( d
2 + 1

)
m, and r = dm

2 . Then, there exist two linear maps
α : Sk → S

m[t] and β : Sr → S
m[t] such that the matrix polynomial X ∈ S

m[t]
satisfies X(t) � 0 on [0, 1] if and only if there exist two matrices Qα ∈ S

k+ and
Qβ ∈ S

r+ such that X = α(Qα) + β(Qβ).

The maps α and β in Proposition 4.1 are remarkably simple and freely available soft-
ware tools for sum-of-squares programming allow for simple, concise implementation.
The interested reader is referred to Ahmadi and El Khadir [2, Proposition 2] for an
explicit description of α and β alongside a simple proof of Proposition 4.1.

Proposition 4.1 allows to construct a tractable restriction of (OCP) on a compact
horizon. The following theorem which may be regarded as a special case of the results
of Ahmadi and El Khadir [2] formalizes this claim.

Theorem 4.1 Let d ∈ Z+. Then, the following semi-infinite optimization problem

inf
y∈RnL+nH

d [t]
y j (t f ) (pOCP)

s.t.
d yL
dt

(t) = AL yL(t) + AH yH (t), ∀t ∈ [0, tT ],
y(0) = y0,

y(t) ∈ C(X), ∀t ∈ [0, tT ].

is equivalent to a finite SDP.
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Proof First, note that all equality constraints in the above optimization problem require
equality of polynomials of fixed maximum degree. Accordingly, equality can be
enforced by matching the coefficients of the polynomials when expressed in a com-
mon basis which in turn can be done via finitely many affine equality constraints.
Additionally, recall that C(X) is described in terms of finitely many LMIs. Thus, the
constraint y(t) ∈ C(X), ∀t ∈ [0, tT ] is as well by Proposition 4.1. ��

Unfortunately, (pOCP)may be a strong restriction and often even infeasible. However,
the formulation of (pOCP) can be further relaxed without giving up too much relevant
information. Specifically, we propose to restrict the solution space to piecewise poly-
nomial functions in analogy to the collocation approach to optimal control [18]. The
following corollary to Theorem 4.1 formalizes this approach.

Corollary 4.1 Let d, nT ∈ Z+ and consider nT + 1 time points t0, . . . , tnT such that
0 = t0 < t1 < · · · < tnT ≤ tT . Further suppose that t f ∈ [tk, tk−1] for some k. Then,
the following semi-infinite optimization problem

inf
yi∈RnL+nH

d [t]
ykj (t f ) (pwpOCP)

s.t.
d yiL
dt

(t) = AL yiL(t) + AH yiH (t), ∀t ∈ [ti−1, ti ], ∀i ∈ {1, . . . , nT} ,

yi (ti ) = yi+1(ti ), ∀i ∈ {1, . . . , nT − 1} ,

y1(0) = y0,

yi (t) ∈ C(X), ∀t ∈ [ti−1, ti ], ∀i ∈ {1, . . . , nT}

is equivalent to a finite SDP. Further, (pwpOCP) is a valid restriction of (SDP).

Proof That (pwpOCP) is equivalent to a finite SDP follows immediately fromTheorem
4.1. Further, let

{
yi
}
be feasible for (pwpOCP) and consider the piecewise polynomial

obtained by parsing the yi together like

ỹ(t) = yi (t), ∀t ∈ (ti−1, ti ] and ∀i ∈ {1, . . . , nT} .

By construction ỹ satisfies Eq. (mCME) and ỹ(t) ∈ C(X), ∀t ∈ [0, t f ]. Accordingly,
the iterated generalized moments obtained from ỹ satisfy Conditions (i) and (ii) in
Proposition 3.2. Thus, it is straightforward to generate a feasible point for (SDP) from
ỹ. ��

Since (pwpOCP) is fully independent of the choice of F, T and nI , it provides a way to
check rigorously the approximation quality of (SDP) against the baseline of (OCP).
This can guide the user choice of the truncation order m and the parameters F, T and
nI . Specifically, the difference of optimal values of (pwpOCP) and (SDP) quantifies
the potential for improvements by adding elements to F and T versus moving to a
higher level in the proposed hierarchy.
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5 Examples

In this section, we present several case studies that demonstrate the effectiveness of
the proposed bounding hierarchy. We put special emphasis on showcasing that the
proposed method enables the computation of substantially tighter bounds than can be
obtained by the method of Dowdy and Barton [22]. Throughout, we use the subscripts
DB to indicate any results obtained with Dowdy and Barton’s method [22] and the
subscript HB for those generated with the method presented in this paper.

5.1 Preliminaries

5.1.1 Reaction Kinetics

All considered reaction networks are modeled via the CME and are assumed to obey
mass action kinetics such that Assumptions 1 and 2 are naturally satisfied.

5.1.2 State Space & LMIs

Following Dowdy and Barton [22], we reduce the state space of every reaction
network explicitly to the minimum number of independent species by eliminating
reaction invariants. Further, we employ the same set of LMI generating polynomi-
als as suggested by Dowdy and Barton [22]. The resultant LMIs of the form (LMI)
reflect non-negativity of the probability measure as well as its support on states with
non-negative molecular counts.

5.1.3 Hierarchy Parameters

Applying the proposed bounding scheme requires the user to specify a range of param-
eters, namely the truncation orderm, the hierarchy level nI , the test function set F and
the set of time points T used to discretize the time horizon. While all these hierarchy
parameters can in principle be chosen arbitrarily (assuming the test functions satisfy
the hypotheses of Propositions 3.2 and 3.3) and independently, a careful choice is
essential to achieve a good trade-off between bound quality and computational cost.
At present we are not aware of a systematic way of choosing the hierarchy parameters
optimally in that sense; however, our findings indicate that the following set of simple
heuristics lead to good performance in practice.

– The set of time points T is chosen by equidistantly discretizing the entire time
horizon [0, t f ], where t f denotes the time point at which the bounds are to be
evaluated, into nT intervals.

– In line with Dowdy and Barton’s original work [22], we employ exponential test
functions of the form g(t) = eρ(tT −t). As argued in Example 3.1, any set of
test functions of this form satisfies the hypotheses of Propositions 3.2 and 3.3.
Throughout, we choose tT to coincide with the end of the time horizon on which
the bounds are to be evaluated. As tT merely controls the scale of the generalized
moments generated by g, this choice is somewhat arbitrary but contributes in our
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experience to improved numerical conditioning of problem (SDP). For the choice
of the parameters ρ, we drawmotivation from linear time-invariant systems theory
and chooseρ based on the singular values of the coefficientmatrix A of themoment
dynamics (mCME). Overall, we choose the test function set F = {

e−σi (tT −t)
}nF
i=1

assembled from the smallest nF unique singular values σ1, . . . , σnF of A.
– Motivated by the scaling of the size of the bounding SDP (see Table 1), we use
the following greedy procedure to ultimately choose m, nI , nT and nF

1. Fix m = 2, nI = 2, nF = 1 and successively increase nT until no significant
bound tightening effect is observed.

2. Increase nF successively until no significant bound tightening effect is
observed.

3. Increasem until bounds are sufficiently tight or the computational cost exceeds
a tolerable amount.

Note that the above procedure fixes the hierarchy level nI at 2. While increasing
nI generally also has a bound tightening effect, in our experience it promotes
numerical ill-conditioning and is rarely significantly more efficient than the other
bound tightening mechanisms.

We study the bound tightening effect of the different hierarchy parameters in greater
detail with an example in Sect. 5.2. In all other case studies, we employ the above
heuristics to choose the hierarchy parameters. As the time point and test function sets
are systematically generated once the parameters nT and nF are chosen, we instead
report these parameters in place of T and F throughout.

5.1.4 Numerical Considerations

Sum-of-squares and moment problems are notorious for poor numerical conditioning,
and the Problems (SDP) and (pwpOCP) are no exception to this issue. And while
promising general remedies, such as the use of better suited polynomial bases like
Chebyshev polynomials [34], exist in theory, it remains a largely open research prob-
lem how to deploy them effectively in practice. To circumvent this deficiency, we
instead employ a simple scaling strategy for the decision variables in the bounding
problems. This strategy is applicable whenever bounds are computed at multiple time
points t1 < t2 < · · · < tT along a trajectory and can be summarized as follows: we
solve the SDPs in chronological order and scale the decision variables in the bounding
problem corresponding to the time point tk by the values attained at the solution of
the bounding problem associated with the previous time point tk−1. For the initial
problem, we scale the system state such that the moments of the initial distribution lie
between 0 and 1. This strategy defers the orders of magnitude of the moments to the
coefficients in the constraints of Problem (SDP) and as such exposes them directly to
the SDP solver which is greatly beneficial in our experience.

While an appropriate scaling of the decision variables is crucial to avoid numerical
issues, it is not always sufficient to achieve convergence of the solver to a desired
degree of accuracy with respect to optimality.We hedge against potentially inaccurate,
suboptimal solutions and ensure validity of the computed bounds by verifying that the
solver converged to a dual feasible point and report the associated dual objective value.
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5.1.5 Implementation

All semidefinite programs solved for the case studies presented in this section were
assembled using JuMP [23] and solved withMOSEK v9.0.97 [6]. Our implementation
is publicly available at https://github.com/FHoltorf/StochMP.

5.2 Bound TighteningMechanisms

In this section, we assess the effect of the different bound tightening mechanisms
provided by the proposed bounding hierarchy. We conduct this empirical analysis on
the basis of the nonlinear birth-death process

∅ c1→ A, 2A
c2→ ∅. (14)

Note that this reaction system has an unbounded state space. Such systems are of
particular interest for the application of moment bounding schemes as their moments
can rarely be found analytically and the corresponding CME gives rise to a countably
infinite system of coupled ODEs precluding a direct numerical integration.

For the sake of simplicity, we restrict our considerations here to studying the bound
tightening effect of increasing the truncation order m, the hierarchy level nI and the
number of time points nT used to discretize the horizon; throughout, we only use the
constant test function (nF = 1).

Figure1 shows the effect of isolated changes in the different hierarchy parameters
on the bounds obtained for the mean molecular count of A and its variance. The
results indicate that all bound tightening mechanisms, when used in isolation, appear
to suffer from diminishing returns, eventually causing the bounds to stall. Moreover,
solely increasing the truncation order m appears insufficient to provide informative
bounds over a long time horizon in this example; increasing either the number of time
points or the hierarchy level nI is significantly more effective in comparison.

Figure2 shows the effect of joint changes in the considered hierarchy parameters on
the tightness of bounds on the mean molecular count. The figure indicates that jointly
changing the hierarchy parameters effectively mitigates stalling of the bounds in this
example such that significantly tighter bounds are obtained overall. While the general
trends illustrated in Figs. 1 and 2 align well with our experiences for a range of other
examples, we wish to emphasize that it is in general hard to predict which combination
of hierarchy parameters provides the best trade-off between computational cost and
bound quality; when the choice of test functions is added to the equation, the situation
becomes even more complicated. Moreover, as Fig. 3 illustrates, the feasible region
of the bounding SDPs shrinks anisotropically and, more importantly, with different
intensity along different directions for different bound tightening mechanisms. This
indicates that the optimal choice of the hierarchy parameters is in general not only
dependent on the system under investigation but also on the statistical quantity to be
bounded.

In summary, the results presented in this section underline the value of the additional
bound tightening mechanisms offered by the proposed hierarchy; however, they also
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Fig. 1 Bounds on the trajectories of the mean molecular count and variance of the birth-death process (14)
for increasing m (a, b), nI (c, d), and nT (e, f) compared against the empiric sample mean and variance
generated with Gillespie’s Stochastic Simulation Algorithm. In each figure only one parameter is varied,
while the others are held constant at the level indicated in the subcaptions
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Fig. 2 Maximum gap between upper and lower bounds on mean molecular count of the birth-death process
(14) among the time points probed along the time horizon for joint changes in m and nI (a), m and nT (b),
and nI and nT (c)

emphasize the need for better guidelines to enable an effective use of the tightening
mechanisms in practice.

5.3 Generic Examples

To contrast the performance of the proposedmethodologywith its predecessor, we first
consider two generic reaction networks that were studied by Dowdy and Barton [22].

5.3.1 Simple Reaction Network

First, we study the bound quality for means and variances of the molecular counts of
the species A and C following the simple reaction network

A + B
c1→ C

c3�
c2

D. (15)

Figure4 shows a comparison between the bounds obtained by bothmethods. For refer-
ence, also the trajectories obtained with Gillespie’s Stochastic Simulation Algorithm
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(a) (b)

(c)

Fig. 3 Projection of the feasible set of (SDP) corresponding to the birth-death process (14) for (a) increasing
truncation orders m, (b) increasing number of time points nT , and (c) jointly increasing truncation orders
and number of time points. All projections are obtained for nI = 2 and t f = 20

are provided. The results showcase that the presented necessary moment conditions
have the potential to tighten the obtained bounds significantly. In particular bounds on
the variance of both species are dramatically improved at the relatively low truncation
order of m = 4.

5.3.2 Large Reaction Network

Departing from examples of toyish size, we now study the reaction network shown in
Fig. 5. In contrast to the previous reaction systems, this large reaction network poses
a major challenge for sampling-based analysis techniques. The underlying reason for
that is twofold. On the one hand, the network is characterized by a large, 7-dimensional
state space containing hundreds of millions of reachable states [22]. On the other hand,
the system is extremely stiff. These properties frustrate sampling-based techniques as
they exacerbate the need for large sample sizes and render each sample path evaluation
expensive.

Figure6 shows bounds on the mean molecular counts of species A and H. In line
with the results of the previous sections, the bounds obtained by the proposed method
are again considerably tighter. In this example, however, this result carriesmoreweight
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(a) (b)

(c)

Fig. 4 Bounds on (a) means and (b, c) variances of molecular counts of species A and C in reaction network
(15); initial state: xA,0 = 40, xB,0 = 41, and xC,0 = xD,0 = 0; kinetic parameters: c = (1, 2.1, 0.3) s−1;
hierarchy parameters: m = 4, nF = 3, nT = 10

Fig. 5 Large reaction network
from Dowdy and Barton [22]
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Fig. 6 Bounds on the mean
molecular counts of species A
and H in the large reaction
network shown in Fig. 5; initial
state: xA,0 = xF,0 = 53,
xB,0 = xC,0 = xD,0 = xE,0 =
xG,0 = xH,0 = xI,0 = xJ,0 = 0;
kinetic parameters: c =
(1, 1, 1, 104, 1, 1, 105, 1) s−1;
hierarchy parameters: m = 2,
nF = 5, nT = 5

as increasing the truncation order leads to a prohibitive increase in problem size for
the method of Dowdy and Barton [22]. Accordingly, the proposed bounding scheme
offers bounds at a quality that was previously not attainable for problems of such
complexity.

5.4 Biochemical Reaction Networks

Tofinally demonstrate that the proposedmethodologymay in fact be useful in practice,
we examine two reaction networks drawn from biochemical applications. In these
applications, molecular counts are often in the order of 10 s to 100s necessitating the
consideration of stochasticity.

5.4.1 Michaelis–Menten Kinetics

Michaelis–Menten kinetics underpin a vast range of metabolic processes. Understand-
ing the behavior and noise present in the associated reaction networks is of particular
value for the investigationof themetabolic degradationof trace substances in biological
organisms. We examine the basic Michaelis–Menten reaction network:

S + E
c1�
c2

S : E c3→ P + E

S : E c3→ P + E

P
c4→ S. (16)

Due to reaction invariants, the reaction network is characterized entirely by a two-
dimensional state space. Accordingly, we bound the means and variances of the
molecular counts of only the product P and substrate S. The results are illustrated
in Fig. 7. The proposed method produces high-quality bounds for the means while
providing informatively tight bounds for the variances. Further, it again outperforms
its predecessor, especially with respect to the bounds on the variance.
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(a) (b)

(c)

Fig. 7 Bounds on means (a) and variances (b, c) of the molecular counts of species S and P in the metabolic
reaction network (16); initial state: xS,0 = xE,0 = 100, xP,0 = xS:E,0 = 0; kinetic parameters: c =
(1, 1, 1, 1) s−1; hierarchy parameters: m = 4, nF = 3, nT = 20

To showcase further that the proposed hierarchy can provide notable computational
savings in practice, we also investigate the trade-off between computational cost and
bound quality for a wide range of hierarchy parameters. As the standard moment-sum-
of-squares hierarchy, i.e., the use of monomial test functions, provides an established
alternative for bounding moment trajectories of stochastic chemical systems [61], we
compare against this baseline. Figure8 shows this comparison for bounds on the mean
molecular count of species S at the end of the time horizon t f = 5 s. The proposed
bounding problems allow for the computation of overall tighter bounds, often at a dra-
matic cost reduction. This advantage persists for almost all choices of the hierarchy
parameters from the tested range, albeit some choices are significantly better than oth-
ers. The results further indicate that the new bound tightening mechanisms of refining
the time domain partition and increasing the hierarchy level nI can be more effective
than increasing the truncation order m, emphasizing the practical improvement upon
Dowdy and Barton’s method.
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m=4 m=6

m=8

m=10

m=12 m=16

m=18

m=20

m=22

m=2

m=14

Fig. 8 Trade-off between bound quality and computational cost for the proposed hierarchy and the standard
moment-sum-of-squares hierarchywhen applied to themetabolic reaction network (16). Smallmarkers refer
to results obtained with the proposed bounding problems. For the proposed bounding problems, instances
were constructed using hierarchy parameters in the rangem ∈ {2, 4, 6}, nT ∈ {1, . . . , 100}, nI ∈ {1, . . . , 7}
and nR ∈ {1, 2, 3} so that the computation time does not exceed 200s. For the moment sum-of-squares
hierarchy (M-SOS), the total degree m of monomial test functions was varied

5.4.2 Negative Feedback Biocircuit

Many efforts ofmodern synthetic biology culminate in the design of biocircuits subject
to stringent constraints on robustness and performance. Upon successful design, the
implications of such tailored biocircuits are often far reaching, even addressing global
challenges such as water pollution [66] and energy [55]. Accordingly, in recent years
the use of systems theoretic techniques to conceptualize and speed up the design
process of biocircuits has received considerable attention [19]. In this context, Sakurai
and Hori [60] demonstrated the utility of bounds on stationary moments for the design
of biocircuits subject to robustness constraints.

We show here that the proposed bounding method could enable an extension of
Sakurai and Hori’s analysis to the dynamic case. To that end, we consider the same
negative feedback biocircuit as studied in [60]. The reaction network is illustrated in
Fig. 9 and formally given by the following set of reactions

DNA
c1→ DNA + mRNA

mRNA
c2→ ∅

mRNA
c3→ mRNA + P

P
c4→ ∅

P + DNA
c6�
c5

P : DNA

. (17)

Figure10 illustrates the obtained bounds on means and variances of the molecular
counts of mRNA and protein (P). The bounds are of high quality and may provide
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Fig. 9 Negative feedback
biocircuit. Reproduced from
Sakurai and Hori [60]

c 1

c2

c 3

c4

c 5
, c

6

(a) (b)

Fig. 10 Bounds on means (a) and variances (b) of the molecular counts of mRNA and P in the negative
feedback biocircuit illustrated in Fig. 9; initial state: xmRNA,0 = 10, xP,0 = xP:DNA,0 = 0, xDNA,0 = 20;
kinetic parameters: c = (0.2, ln(2)/5, 0.5, ln(2)/20, 5, 1)min−1; hierarchy parameters: m = 4, nF = 3,
nT = 20

useful information for robustness analysis as the noise level measured by the vari-
ance changes significantly over the time horizon until a stationary value is reached.
Figure10 also underlines that the proposed bounding scheme is capable of furnishing
considerably tighter bounds at the same truncation order as its predecessor. Figure11
further provides a comparison of the bound quality vs. cost trade-off against the base-
line of the standard moment-sum-of-squares hierarchy. While the proposed bounding
scheme does not outperform the standard moment-sum-of-squares hierarchy at low
precision for this example, it enables the computation of tighter bounds at similar cost
overall. Most critically, it needs to be emphasized that the bounding problems of the
moment-sum-of-squares hierarchy could not be solved beyond the truncation order
m = 14 due to numerical issues. This highlights the practical value of the proposed
tightening mechanisms that avoid increasing the truncation order.
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m=2

m=4

m=6

m=8m=10 m=12

m=14

Fig. 11 Trade-off between bound quality and computational cost for the proposed hierarchy and the stan-
dard moment-sum-of-squares hierarchy when applied to the biocircuit (17). Small markers refer to results
obtained with the proposed bounding problems. For the proposed bounding problems, instances were con-
structed using hierarchy parameters in the range m ∈ {2, 4, 6}, nT ∈ {1, . . . , 100}, nI ∈ {1, . . . , 7} and
nR ∈ {1, 2, 3} so that computation time does not exceed 1000s. For the moment sum-of-squares hierarchy
(M-SOS), the total degree m of monomial test functions was varied

6 Conclusion

6.1 Summary

We have extended the results of Dowdy and Barton [22] by constructing a new hierar-
chy of convex necessary moment conditions for the moment trajectories of stochastic
chemical systems described by the CME. Building on a discretization of the time
domain of the problem, the conditions reflect temporal causality and regularity prop-
erties of the true moment trajectories. It is proved that the conditions give rise to a
hierarchy of SDPs whose optimal values form a sequence of monotonically improv-
ing bounds on the true moment trajectories. Furthermore, the conditions provide new
mechanisms to tighten the obtained bounds when compared to the original condi-
tions proposed by Dowdy and Barton [22]. These tightening mechanisms are often
a more scalable and practical alternative to the primary tightening mechanism of
increasing the moment truncation order in Dowdy and Barton’s moment bounding
scheme [22]; most notably, refining the time discretization results in linearly increas-
ing problem sizes, independent of the state space dimension of the system. As an
additional advantage, this bound tightening mechanism provides a way to sidestep the
poor numerical conditioning of moment-based SDPs featuring high-order moments.
Finally, it is demonstrated with several examples that the proposed hierarchy provides
bounds that may indeed be useful in practice.
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6.2 Open Questions

We close by stating some open questions motivated by our results.

1. In the presented case studies, we naively chose the time points at which the pro-
posed necessary moment conditions were imposed as equidistant. Several results
from numerical integration, perhaps most notably Gauß quadrature, suggest that
this is likely a suboptimal choice. It would be interesting to examine if and how
results from numerical integration can inform improvements of this choice.

2. The choice of the hierarchy parameters in the proposed bounding scheme is crucial
to achieve a good trade-off between bound quality and computational cost. As
indicated by the discussion in Sect. 5.2, however, the interplay between the bound
tighteningmechanisms associatedwith the different hierarchy parameters and their
effect on the bound quality remains poorly understood. Accordingly, we believe
that assessing the trade-offs offered by the different bound tightening mechanisms
in greater detail and developing more rigorous guidelines on how to utilize them
effectively constitutes an important step toward improving the practicality of the
proposed method.

3. The ideas discussed in Sect. 4 constitute additional promising research avenues
toward improving practicality of the proposed method. Specifically, there are sev-
eral open questions pertaining to the concrete implementation of Algorithm 1 and
the way Problem (pwpOCP) can be used to inform an effective use of the different
bound tightening mechanisms. Furthermore, the decomposable, weakly coupled
structure of the bounding SDPs motivates other forms of exploitation than Algo-
rithm1; in particular the use of distributed optimization techniques such asADMM
[14] or overlapping Schwarz decomposition [51, 65] appears promising.
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Appendix A: Proof of Proposition 3.1

Proof We will first introduce a convenient formalism to describe the conditions in the
form of Eq. (7) in terms of the coefficient matrix A of the moment dynamics

K
d y
dt

(t) = Ay(t).

To that end, we assume that the moments are ordered according to their corresponding
multi-indices, i.e., the first entry corresponds to y0, the following n entries correspond
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to the moments y j with | j | ≤ 1 and so on. Then, we define the matrices K l =
[InL (l)×nL (l) 0nL (l)×nH (l)] with nL(l) = (m−lq+n

n

)
and nH (l) = (m+q+n

n

) − nL(l). In
words, applying K l to y extracts all moments up to orderm− lq. Now we can express

the higher derivatives dk

dtk
(K l y) for any k ≤ l + 1 in the following way: let Ai be the

coefficient matrix such that d
dt (K i+1 y) = Ai K i y. By induction, we then arrive at the

convenient expression

dk

dtk
(K l y) =

k∏

i=1

Al−i K l−k y.

Recalling the definition of Eq. (7) in terms of the Taylor series expansion of the true
moment trajectories, it follows that the equation system

K l yt2 =
l∑

k=0

(t2 − t1)k

k!
k∏

i=1

Al−i K l−k yt1 + 1

l!
l+1∏

i=1

Al−i zgl ,t2 (16l )

corresponds to all equations of the form of Eq. (7) with | j | ≤ m − lq for fixed
l ∈ {0, . . . , nI }. Note that we already used the fact that K−1 reduces to the identity in
the above relation.

Now notice that Eq. (6) holds for all l = 0, . . . , nI if and only if

K
(
yt2 − yt1

) = Azg0,t2 (18)

holds alongside

1

(l − 1)!
l∏

i=1

Al−i K 0zgl−1,t2 = (t2 − t1)l

l!
l∏

i=1

Al−i K 0 yt1 + 1

l!
l+1∏

i=1

Al−i zgl ,t2 (19)

for l = 1, . . . , nI since Eq. (18) is equivalent to Eqs. (160) and Eq. (19) is obtained
simply by matching coefficients of Eqs. (16l) and (16l−1) for each l ∈ {1, . . . , nI }.

Factoring out
∏l

i=1 Al−i in Eq. (19) and noting that A−1 = A as well as K 0 = K
shows that Eq. (19) is implied by

lK zgl−1,t2 = (t2 − t1)
lK yt1 + Azgl ,t2 . (20)

Thus, by using that gl(t2) = 0 for l = 1, . . . , nI , it follows that Eq. (20) is equivalent
to Eq. (6) for l = 1, . . . , nI . We finally conclude the proof by noting that Eq. (18) is
equivalent to Eq. (6) for l = 0. ��
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Appendix B: Commutative Property of IL and IR

Lemma B.1 The left and right integral operators IL , IR : C(R2) → C(R2) defined by

(IL f )(t1, t2) =
∫ t2

t1
f (t1, t) dt

(IR f )(t1, t2) =
∫ t2

t1
f (t, t2) dt .

commute.

Proof Using the definition of IL and IR we obtain

(IL IR f )(t1, t2) =
∫ t2

t1
(IR f )(t1, t) dt =

∫ t2

t1

∫ t

t1
f (s, t) ds dt .

By defining ΩLR = {(s, t) ∈ R
2 : t1 ≤ s ≤ t, t1 ≤ t ≤ t2} we can write more

concisely

(IL IR f )(t1, t2) =
∫

ΩLR

f (s, t) d(s, t).

Likewise, we have that

(IR IL f )(t1, t2) =
∫ t2

t1
(IL f )(s, t2) ds =

∫ t2

t1

∫ t2

s
f (s, t) dt ds =

∫

ΩRL

f (s, t) d(s, t),

where ΩRL = {(s, t) ∈ R
2 : t1 ≤ s ≤ t2, s ≤ t ≤ t2}. Observing that ΩRL = ΩLR

concludes the proof. ��

Appendix C: Proof of Corollary 3.1

Proof Let l ∈ {0, . . . , nI } be fixed. We show that

z(hlg; t2) = l!
(

zl+1(g; t2) −
l∑

k=0

(t2 − t1)l−k

(l − k)! zk+1(g; t1)
)

(21)

satisfies the desired conditions. First note that Eq. (21) is equivalent to

z(hlg; t2) = l!Ωl+1,0

({
zi (g; t1)

}l+1

i=1
,
{
zi (g; t2)

}l+1

i=1
, t1, t2

)

.

Since by assumption

Ωl+1,0

({
zi (g; t1)

}l+1

i=1
,
{
zi (g; t2)

}l+1

i=1
, t1, t2

)

∈ C(X),
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it follows that Condition (10) holds for the definition in Eq. (21). Next, note that
Condition (10) can be equivalently written as

Az(hlg; t2) = K
(
l z(hl−1g; t2) − z(hlg′; t2) − (t2 − t1)

l g(t1) y(t1)
)

using the definition of hl and that by assumption z((hlg)′; t2) = z(h′
l g; t2) +

z(hlg′; t2). Thus, we need to show that the following identity holds:

A

(

zl+1(g; t2) −
l∑

k=0

(t2 − t1)l−k

(l − k)! zk+1(g; t1)
)

= K

(

zl(g; t2) −
l−1∑

k=0

(t2 − t1)l−1−k

(l − 1 − k)! zk+1(g; t1)
)

− K

(

zl+1(g′; t2) −
l∑

k=0

(t2 − t1)l−k

(l − k)! zk+1(g′; t1)
)

− K
(t2 − t1)l

l! g(t1) y(t1).

By rearranging this equation as

l∑

k=0

(t2 − t1)
l−k

(l − k)!
(
A
[
zk+1(g; t2) − zk+1(g; t1)

]
+ K

[
zk+1(g′; t2) − zk+1(g′; t1)

])

−
l∑

k=1

(t2 − t1)
l−k

(l − k)! K
(
zk (g; t2) − zk (g; t1)

)

=
l−1∑

k=0

(t2 − t1)
l−k

(l − k)!
(
Azk+1(g; t2) + K zk+1(g′; t2)

)
−

l−1∑

k=1

(t2 − t1)
l−k

(l − k)! K zk (g; t2)

− (t2 − t1)
l

l! Kg(t1) y(t1)

and using that

Azk+1(g; ti ) + K zk+1(g′; ti ) = K

(

zk(g; ti ) − tki
k! g(0) y(0)

)

holds for all k ∈ {0, . . . , nI } and i ∈ {1, 2}with z0(g; ti ) = g(ti ) y(ti ), we obtain after
simplifying and collecting terms that

l∑

k=1

(t2 − t1)l−k(tk1 − tk2 )

(l − k)!k! Kg(0) y(0) + (t2 − t1)l

l! K (g(t2) y(t2) − g(t1) y(t1))

= −
l−1∑

k=0

(t2 − t1)l−k tk2
(l − k)!k! Kg(0) y(0) + (t2 − t1)l

l! K (g(t2) y(t2) − g(t1) y(t1)).

Applying the binomial theorem finally verifies that this equation is true, so Condition
(10) is indeed satisfied for z(hlg; t2) as defined in Eq. (21). ��

123



Journal of Optimization Theory and Applications (2024) 200:104–149 143

Appendix D: Proof of Corollary 3.2

Our proof of Corollary 3.2 relies in large part on explicit computations. To
that end, it is first essential to provide an explicit algebraic relation for

Ωl,k

(
{zs(g; t1)}ls=1 , {zs(g; t2)}ls=1 , t1, t2

)
. Recall that Ωk,l was introduced to com-

pactly denote expressions of the form (I nL I
m
R f )(t1, t2) with f (x, y) = z1(g; y) −

z1(g; x). To avoid unnecessary clutter of notation, we will give an explicit algebraic
expression for the latter; adjusting the indices to obtain an expression for Ωl,k is
straightforward and can be found in the proof of Corollary 3.2. It is easily verified by
induction that for any m, n ∈ Z+, the following identity holds:

(I nL I
m
R f )(t1, t2) =

m∑

k=0

(−1)k
(
n + k

n

)
(t2 − t1)m−k

(m − k)! zn+1+k(g; t2)

+(−1)m+1
n∑

k=0

(
m + k

m

)
(t2 − t1)n−k

(n − k)! zm+1+k(g; t1). (22)

With this in hand, we will first proof the following Lemmawhich answers the essential
question behind Corollary 3.2.

Lemma D.1 Let zl be a sequence of functions that satisfies zl(t) = ∫ t
0 zl−1(τ )dτ for

l ≥ 2. Further, define f (x, y) = z1(y) − z1(x) and consider a convex cone C. Then,
for any 0 ≤ t1 ≤ t2 ≤ t3 < +∞ and n,m ∈ Z+, the following implications hold:

(I pL I
s
R f )(t1, t2), (I

p
L I

s
R f )(t2, t3) ∈ C for all 0 ≤ p ≤ n + 1 and 0 ≤ s ≤ m

�⇒ (I n+1
L ImR f )(t1, t3) ∈ C

(23)

and

(I pL I
s
R f )(t1, t2), (I

p
L I

s
R f )(t2, t3) ∈ C for all 0 ≤ p ≤ n and 0 ≤ s ≤ m + 1

�⇒ (I nL I
m+1
R f )(t1, t3) ∈ C .

(24)

Proof We focus on proving Implication (23). To that end, note that in order to establish
Implication (23), it suffices to show that

∫ t3

t2
(I nL I

m
R f )(t1, t) − (I nL I

m
R f )(t2, t) dt ∈ C (25)

holds as

(I n+1
L ImR f )(t1, t3) =

∫ t2

t1
(I nL I

m
R f )(t1, t) dt +

∫ t3

t2
(I nL I

m
R f )(t1, t) dt .

We will thus show that the left-hand side of Eq. (25) can be expressed as a conic
combination of (I pL I

s
R f )(t1, t2) and (I pL I

s
R f )(t2, t3)with 0 ≤ p ≤ n+1 and 0 ≤ s ≤
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m. From the definition of IL and IR , we obtain

(I nL I
m
R f )(t1, t) − (I nL I

m
R f )(t2, t)

=
m∑

k=0

(−1)m−k
(
n + m − k

n

)
(t − t1)k

k! zn+m+1−k(t)

−
m∑

k=0

(−1)m−k
(
n + m − k

n

)
(t − t2)k

k! zn+m+1−k(t)

+ (−1)m+1
n∑

k=0

(
m + n − k

m

)
(t − t1)k

k! zn+m+1−k(t1)

− (−1)m+1
n∑

k=0

(
m + n − k

m

)
(t − t2)k

k! zn+m+1−k(t2). (26)

Using the binomial formula, it further follows that

m∑

k=0

(−1)m−k
(
n + m − k

n

)
(t − t1)k

k! zn+m+1−k(t)

=
m∑

k=0

(−1)m−k
(
n + m − k

n

)

zn+m+1−k(t)
k∑

l=0

(t − t2)k−l

(k − l)!
(t2 − t1)l

l!

=
m∑

l=0

(t2 − t1)l

l!
m−l∑

k=0

(−1)m−k−l
(
n + m − k − l

n

)
(t − t2)k

k! zn+m+1−k−l(t)

and likewise

(−1)m+1
n∑

k=0

(
m + n − k

m

)
(t − t1)k

k! zn+m+1−k(t1)

= (−1)m+1
n∑

k=0

(
m + n − k

m

)

zn+m+1−k(t1)
k∑

l=0

(t2 − t1)k−l

(k − l)!
(t − t2)l

l!

= (−1)m+1
n∑

l=0

(t − t2)l

l!
n−l∑

k=0

(
m + n − k − l

m

)
(t2 − t1)k

k! zn+m+1−k−l(t1).

Combining the above identities with Eq. (26) yields

(I nL I
m
R f )(t1, t) − (I nL I

m
R f )(t2, t)

=
m∑

l=1

(t2 − t1)l

l!
m−l∑

k=0

(−1)m−k−l
(
n + m − l − k

n

)
(t − t2)k

k! zn+m+1−l−k(t)
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+
n∑

l=0

(t − t2)l

l!

{

(−1)m+1
n−l∑

k=0

(
m + n − k − l

m

)
(t2 − t1)k

k! zn+m+1−k−l(t1)

−(−1)m+1
(
m + n − l

m

)

zn+m+1−l(t2)

}

.

By adding and subtracting

m∑

l=1

(−1)m−l+1 (t2 − t1)l

l!
n∑

k=0

(
n + m − l − k

m − l

)
(t − t2)k

k! zn+m+1−l−k(t2)

=
n∑

l=0

(t − t2)l

l!
m∑

k=1

(−1)m−k+1
(
n + m − l − k

n − l

)
(t2 − t1)k

k! zn+m+1−l−k(t2),

we get

(I nL I
m
R f )(t1, t) − (I nL I

m
R f )(t2, t)

=
m∑

l=1

(t2 − t1)l

l!

{

(−1)m−l+1
n∑

k=0

(
n + m − l − k

m − l

)
(t − t2)k

k! zn+m+1−l−k(t2)

+
m−l∑

k=0

(−1)m−k−l
(
n + m − l − k

n

)
(t − t2)k

k! zn+m+1−l−k(t)

}

+ (−1)m+1
n∑

l=0

(t − t2)l

l!

{
n−l∑

k=0

(
m + n − k − l

m

)
(t2 − t1)k

k! zn+m+1−k−l(t1)

−
(
m + n − l

m

)

zn+m+1−l(t2)

−
m∑

k=1

(−1)−k
(
n + m − l − k

m − k

)
(t2 − t1)k

k! zn+m+1−l−k(t2)

}

which can finally be simplified to

m∑

l=1

(t2 − t1)l

l!

{

(−1)m−l+1
n∑

k=0

(
n + m − l − k

m − l

)
(t − t2)k

k! zn+m+1−l−k(t2)

+
m−l∑

k=0

(−1)m−k−l
(
n + m − l − k

n

)
(t − t2)k

k! zn+m+1−l−k(t)

}

+
n∑

l=0

(t − t2)l

l!

{

(−1)m+1
n−l∑

k=0

(
m + n − k − l

m

)
(t2 − t1)k

k! zn+m+1−k−l(t1)

+
m∑

k=0

(−1)m−k
(
n + m − l − k

m − k

)
(t2 − t1)k

k! zn+m+1−l−k(t2)

}

.
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Close inspection reveals that this is precisely what we set out to show: every term in
the first sum is equivalent to (I nL I

m−l
R f )(t2, t), while every term in the second sum is

equivalent to (I n−l
L ImR f )(t1, t2). Thus, integrating the above relation over [t2, t3] yields

a conic combination of (I pL I
s
R f )(t1, t2) and (I pL I

s
R f )(t2, t3) with 0 ≤ p ≤ n + 1 and

0 ≤ s ≤ m.
The proof of implication (24) is analogous. ��

Proof of Corollary 3.2 As argued in the beginning of this section,
Ωl,k({zs(ti )}ls=1 , {zs(ti+1)}ls=1 , ti , ti+1) takes the following algebraic form

Ωl,k

({
zs(ti )

}l
s=1 ,

{
zs(ti+1)

}l
s=1 , ti , ti+1

)

=
k∑

s=0

(−1)s
(
l − 1 − k + s

l − 1 − k

)
(t2 − t1)s

s! zl−k+s(ti+1)

+(−1)k+1
l−1−k∑

s=0

(
k + s

k

)
(t2 − t1)l−1−k−s

(l − 1 − k − s)! z
k+1+s(ti ).

The result therefore follows immediately from Lemma D.1. ��

Appendix E: Reformulation of Condition (i) in Proposition 3.2

In the definition of S(F, T, nI )we reformulatedCondition (i) of Proposition 3.2 in order
to endow S(F, T, nI ) with a decomposable structure. Without modification, Condition
(i) in Proposition 3.2 gives rise to the following necessary moment conditions

Γg

(
{zl( f ; t)} f ∈F

)
= K

(

zl−1(g; t) − t l−1

(l − 1)!g(0) y0
)

, ∀t ∈ T. (27)

In order to turn this condition into a form that lends itself to be decomposed as described
in Sect. 4.1, we can recognize that the above conditions evaluated for different time
points are only linked through the term g(0)K y0. To expose the recurrent structure
of the constraints, we replace this linkage with one between adjacent time points. To
that end, we can rearrange the above equation to obtain

g(0)K y0 = (l − 1)!
t l−1

(
K zl−1(g; t) − Γg

(
{zl( f ; t)} f ∈F

))
, ∀t ∈ T. (28)

We then simply replace the linking term in Eq. (27) by the right-hand side of Eq. (28)
evaluated at an appropriately shifted time point. Concretely, for the first time point in
T we retain the unmodified equation

Γg

(
{zl( f ; t1)} f ∈F

)
= K

(

zl−1(g; t1) − t l−1
1

(l − 1)!g(0) y0
)
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and for any other t ∈ T we reformulate Eq. (27) by replacing g(0)K y0 with the right-
hand side of Eq. (28) evaluated at the left adjacent time point n(t). This yields the
desired relation

Γg

(
{zl( f ; t)} f ∈F

)
−
(

t

n(t)

)l−1

Γg

(
{zl( f ; n(t))} f ∈F

)

= K

(

zl−1(g; t) −
(

t

n(t)

)l−1

zl−1(g; n(t))

)

, ∀t ∈ T\{t1}.
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