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Abstract
Clarke’s inverse function theorem for Lipschitz mappings states that a bi-Lipschitz
mapping f is locally invertible about a point x0 if the generalized Jacobian ∂ f (x0) does
not contain singular matrices. It is shown that under these assumptions the generalized
Jacobian of the inverse mapping at f (x0) is the convex hull of the set of matrices that
can be obtained as limits of sequences J f (xk)−1 with f differentiable in xk and xk
converging to x0. This identity holds as well if f is assumed to be locally bi-Lipschitz
at x0.
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1 Introduction

F. H. Clarke introduced in [1, 2] the concepts of generalized gradients and generalized
Jacobians as a tool to investigateLipschitz continuous real-valued functions andproved
a version of the inverse function theorem. To state this result precisely, we denote the
Jacobian matrix of a mapping f : Rn → R

m , which is differentiable in x0, by J f (x0).
By Rademacher’s theorem, every Lipschitz mapping is λn-a.e. differentiable and the
norm of the Jacobian matrix is bounded by the Lipschitz constant. The convex hull of
a set A ⊆ R

n is denoted by conv(A). Throughout this note, the Euclidean norm of a
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vector x ∈ R
n is written as ‖x‖ and the induced matrix norm is denoted by the same

symbol.

Definition 1.1 For m, n ∈ N and f : Rn → R
m locally Lipschitz continuous, the set

of points in which f is not differentiable is denoted by N f . For any x0 ∈ R
n define

J f (x0) :=
{
lim

�→∞ J f (x�) ∈ R
m×n | x : N → R

n \ N f , x�
�→∞−−−→ x0,

lim
�→∞ J f (x�) exists

}

and the Clarke generalized Jacobian of f at x0 by ∂ f (x0) := conv(J f (x0)).

Since bounded sets in R
m×n are precompact, this set is not empty. Clarke’s inverse

function theorem gives a sufficient condition for local invertibility of a Lipschitz
continuous mapping f : Rd → R

d at some point x0 ∈ R
d by requiring that every

matrix in the Clarke generalized Jacobian ∂ f (x0) be invertible.

Theorem 1.1 ([2, Theorem 1]) Assume that x0 ∈ R
d and that f : Rd → R

d is Lips-
chitz continuous in a neighborhood of x0 with any matrix in ∂ f (x0) being invertible.
Then there exist neighborhoods U ⊆ R

d of x0, V ⊆ R
d of f (x0) and a Lipschitz

continuous mapping g : V → R
d , such that

(a) g( f (u)) = u for every u ∈ U,
(b) f (g(v)) = v for every v ∈ V .

The fundamental assertion of the theorem is the existence of an inverse mapping
which is Lipschitz continuous. Clarke did not include a statement about the generalized
Jacobian of the inverse mapping, and it was recently shown in [3] that the assumptions
of Theorem 1.1 imply the relations

J f (x0)
−1 ⊆ Jg( f (y0)) , (1)

conv(J f (x0)
−1) = ∂g( f (y0)) . (2)

It was left open whether equality holds in (1), an assertion, which gives (2) as an
immediate consequence by taking the convex hull on both sides. In the next section it
is shown that equality holds in (1) even if only the existence of a Lipschitz continuous
local inverse mapping g is assumed instead of the invertibility of anymatrix in ∂ f (x0).
A crucial observation is that in fact f (N f ) = Ng and g(Ng) = N f . Under these
weaker assumptions, a formula for the Clarke generalized Jacobian is, to the best of
our knowledge, not available in the literature.

2 Main Result

Theorem 2.1 Assume that U , V ⊆ R
d are open and that f : U → R

d and g : V →
R
d are Lipschitz continuous with g ◦ f = IdU and f ◦ g = IdV . Then f (N f ) = Ng,
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g(Ng) = N f and for any x0 ∈ U the set J f (x0) is invertible with

J f (x0)
−1 = Jg( f (x0)) .

In particular

∂g( f (x0)) = conv(Jg( f (x0))) = conv(J f (x0)
−1) . (3)

Proof Let L > 0 be a Lipschitz constant for g and fix any x ∈ U\N f . Then J f (x) is
injective, since for every h ∈ R

d and t ∈ R\{0} with x + th ∈ U

‖ f (x + th) − f (x)‖
|t | ≥ ‖g( f (x + th)) − g( f (x))‖

L|t | = ‖th‖
L|t | = ‖h‖

L
.

This lower bound implies injectivity of J f (x) since

‖J f (x)h‖ =
∥∥∥ lim
t→0

f (x + th) − f (x)

t

∥∥∥

= lim
t→0

‖ f (x + th) − f (x)‖
|t | ≥ ‖h‖

L
.

(4)

Once J f (x) is shown to be injective, according to [7, III, Theorem 3.3], this matrix
is invertible. By [3, Lemma 1], or more generally by [4, Corollary 3.1], g is differ-
entiable at f (x) with Jg( f (x)) = J f (x)−1. In particular, f (U\N f ) ⊆ V \Ng and
consequently

Ng = V \ (V \ Ng) ⊆ f (U ) \ f (U \ N f ) = f (N f ) .

With the same argument for g, we have N f ⊆ g(Ng) and

Ng ⊆ f (N f ) ⊆ f (g(Ng)) = Ng ,

which implies f (N f ) = Ng . Analogously we obtain g(Ng) = N f . Fix now x0 ∈ U ,
M ∈ J f (x0) and a sequence x : N → U\N f converging to x0 with J f (x�) converging
to M for � → ∞. Then M is injective, since by (4) for any h ∈ R

d the uniform lower
bound

‖Mh‖ = ‖ lim
�→∞ J f (x�)h‖ = lim

�→∞ ‖J f (x�)h‖ ≥ ‖h‖
L

is satisfied. Hence by [7, III, Theorem 3.3], M is invertible. By the continuity of the
matrix inversion on the set of invertible matrices, (Jg( f (x�)))�∈N = (J f (x�))

−1 con-
verges to M−1 ∈ Jg( f (x0)) for � → ∞. Consequently J f (x0)−1 ⊆ Jg( f (x0)).
By the same argument for g we have that the set Jg( f (x0)) is invertible with
Jg( f (x0))−1 ⊆ J f (g( f (x0))). 	
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For a convenience of a readerwe present a special case of the example constructed in
[6, Example 2.2] and [5, Example 3.9], which provides a piecewise linear bi-Lipschitz
mapping from R

2 to R
2, to which Theorem 1.1 cannot be applied at the origin due

to singularity of the Clarke generalized Jacobian. Nevertheless the inverse function
and its Clarke generalized Jacobian can be given explicitly, which verifies formula (3)
from Theorem 2.1.

Example 2.1 Setting i = √−1, we use polar coordinates in the plane with x =
r exp(iφ), φ ∈ [0, 2π), r > 0. Define

α :=
(
0,

π

6
,
2π

6
,
3π

6
,
4π

6
,
7π

6
, 0

)
, β :=

(
0,

π

6
,
5π

6
,
9π

6
,
10π

6
,
11π

6
, 0

)

and a j = exp(iα j ), b j = exp(iβ j ), j = 1, . . . , 7. For j = 1, . . . , 6, define the matrix
Mj by Mja j = b j and Mja j+1 = b j+1, which leads to

M1 = Id , M2 = 1

2

(
3 + √

3 −3 − √
3

−1 + √
3 −1 + √

3

)
, M3 =

( −√
3 0

1 + √
3 −1

)

and

M4 = −Id , M5 = 1

2

(−1 − √
3 −1 + 1√

3
1 + √

3 −1 + 1√
3

)
, M6 =

(
1 −1 − 1√

3
0 1√

3

)
.

Since α j+1 − α j , β j+1 − β j ∈ (0, π), all the matrices Mj are invertible with positive
determinant. The mapping

f : R2 → R
2, x �−→

{
Mj x if x = 0, α j ≤ φ(x) < α j+1,

0 if x = 0

is bi-Lipschitz with the inverse mapping

g : R2 → R
2, x �−→

{
M−1

j x if x = 0, β j ≤ φ(x) < β j+1,

0 if x = 0.

The mappings f and g are λ2-a.e. differentiable with

N f = {t · a j | j ∈ {1, . . . , 6}, t ≥ 0}, Ng = {t · b j | j ∈ {1, . . . , 6}, t ≥ 0},

the range of the derivative consists for f and g of the six matrices Mj and M−1
j ,

respectively. Moreover, we have Ng = f (N f ), N f = g(Ng) and

J f (0) = {Mj | j ∈ {1, . . . , 6}}
Jg(0) = {M−1

j | j ∈ {1, . . . , 6}} = J f (0)
−1,
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as asserted inTheorem2.1. Since 0 = 1
2 (Id+(−Id)) ∈ ∂ f (0)∩∂g(0), the assumptions

in Clarke’s inverse function theorem are not satisfied for f or g. However, since the
inverse mapping is known to exist, Theorem 2.1 is applicable and this example nicely
illustrates formula (3).

3 Conclusions

We presented a formula for the Clarke generalized Jacobian of the inverse f −1 of a
bi-Lipschitz map f : Rd → R

d which relates the Clarke generalized Jacobian of f −1

to the Clarke generalized Jacobian of f . In particular, if the assumptions of Clarke’s
inverse function theorem hold, then our result provides a formula for the subgradient
of the inverse map. Of course, the most important part in Clarke’s theorem is the
existence of the inverse map and it is a challenging open problem to identify sufficient
conditions for the existence of an inverse map which is Lipschitz continuous if the
Clarke generalized Jacobian of a Lipschitz function contains singular matrices.

Data sharing is not applicable to this article as no datasets were generated or ana-
lyzed during the current study.
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