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Abstract
In this paper, some concepts related to the intrinsic convexity of non-homogeneous
quadratic functions on the hyperbolic space are studied. Unlike in the Euclidean space,
the study of intrinsic convexity of non-homogeneous quadratic functions in the hyper-
bolic space is more elaborate than that of homogeneous quadratic functions. Several
characterizations that allow the construction of many examples will be presented.

Keywords Hyperbolic space · Convex cone · Convex set · Convex function ·
Non-homogeneous quadratic function

Mathematics Subject Classification 90C30 · 90C26

1 Introduction

The hyperbolic space was discovered due to attempts to understand Euclid’s axiomatic
basis for geometry dating back to the 1800s. This space is one of the most interesting
models of non-Euclidean Riemannian manifold of negative constant sectional curva-
ture, see for example [1, 3, 14]. Since the discovery of the hyperbolic space, several
efforts have been made to understand its properties and several models of it have
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emerged over the years, including the hyperboloid model (also called Lorentz model),
the Poincaré half-plane model, the Poincaré disk model and the Klein model, see [1].
The growing interest over the years in the hyperbolic space has resulted in a proven
success story, helping to make impressive advances in many fields of science, one of
the best known being general relativity, see [17]. It is also worth mentioning that in
many practical applications, the natural structure of the data is modeled in the hyper-
bolic space. Various topics of research use this type of modeling, see for example
the papers in machine learning [13], artificial intelligence [12], neural circuits [15],
low-rank approximations of hyperbolic embeddings [7, 16], financial networks [8],
complex networks [9, 11], embeddings of data [19], strain analysis [18, 20] and the
references therein.

The convex quadratic functions are the most popular convex functions in the
Euclidean space as well as various geometric contexts, occurring in many problems,
such as eigenvalue optimization, least square approximation and linear regression.

The convex quadratic functions are the most popular convex functions in Euclidean
space as well as in various geometric contexts, occurring in many problems such as
eigenvalue optimization, least square approximation, and linear regression. A com-
prehensive study of the convexity of homogeneous quadratic functions in the context
of spheres is discussed in [4]. The aim of this paper is to study the convexity of
non-homogeneous quadratic functions on the hyperbolic space in an intrinsic way.
In particular, in this study, we will present several characterizations that allow the
construction of several examples. To this end, among the aforementioned models
of hyperbolic space, we choose the hyperboloid model. The study of the convex-
ity of homogeneous quadratic functions in the hyperboloid model of the hyperbolic
space was started in [5]. As it is well-known, in Euclidean space, there is no con-
ceptual difference between the convexity of homogeneous and non-homogeneous
quadratic functions. However, we will see that in the hyperboloid model of the
hyperbolic space, the conceptual intrinsic hyperbolic convexity of homogeneous and
non-homogeneous quadratic functions are quite different, requiring much more effort
than in the Euclidean scenario to understand it. The primary challenge lies in estab-
lishing the role of the linear term on the hyperbolic convexity of a non-homogeneous
quadratic function. This is because introducing a linear term to a hyperbolically convex
homogeneous function can result in the newly formed non-homogeneous quadratic
function losing its hyperbolic convexity.

The structure of this paper is as follows. In Sect. 1.1, we recall some notations
and basic results. In Sect. 2, we recall some notations, definitions and basic properties
about the geometry of the hyperbolic space. The main results are presented in Sect. 3.
We conclude the paper by making some final remarks in Sect. 4.

1.1 Notation and Basics Results

For any real number α denote α+ := max(α, 0) and α− := (−α)+. Let R
m be

the m-dimensional Euclidean space. Denote by ei is the i-th canonical unit vector
in R

n+1. The Euclidean norm of u ∈ R
m is denoted by ‖u‖2 := √

u�u . The set
of all m × n matrices with real entries is denoted by R

m×n and R
m ≡ R

m×1. For
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M ∈ R
m×n , the matrix M� ∈ R

n×m denotes the transpose of M . The operator
norm associated with Euclidean norm of a matrix M ∈ R

m×m is defined by ‖A‖2 :=
max{‖Mu‖2 : ‖u‖2 = 1, u ∈ R

m}. The numbers λmin(M) and λmax(M) stand for
the minimum and maximum eigenvalue of the matrix M ∈ R

m×m , respectively. If
u ∈ R

m , then diag(u) ∈ R
m×m denotes a diagonal matrix with (i, i)-th entry equal to

ui , i = 1, . . . ,m. The matrix I denotes the m × m identity matrix.
In the following, we state a version of Finsler’s lemma, see [6]. A proof of it can

be found, for example, in [10, Theorem 2].

Lemma 1.1 Let M, N ∈ R
n×n be two symmetric matrices with N �= 0. If x�Nx = 0

implies x�Mx ≥ 0, then there exists λ ∈ R such that M+λN is positive semidefinite.

In order to state a special version of Lemma 1.1 in a convenient form, we take the
diagonal matrix J ∈ R

(n+1)×(n+1) defined by

J := diag(1, . . . , 1,−1) ∈ R
(n+1)×(n+1). (1)

By using the matrix (1), the Lorentz coneL and its boundary ∂L are defined, respec-
tively, by

L :=
{
x ∈ R

n+1 : x�Jx ≤ 0, xn+1 ≥ 0
}

,

∂L :=
{
x ∈ R

n+1 : x�Jx = 0, xn+1 ≥ 0
}

. (2)

A matrix M is called ∂L -copositive if z�Mz ≥ 0, for all z ∈ ∂L . Then, combining
Lemma 1.1 with the second equality in (2), we obtain the following special version of
Lemma 1.1.

Corollary 1.1 Let M ∈ R
n×n be a symmetric matrix. If M is ∂L -copositive, then there

exists λ ∈ R such that M + λJ is positive semidefinite.

The dual cone of a cone K ⊂ R
m is a cone defined by K ∗ := {x ∈ R

m : 〈x, y〉 ≥
0, ∀y ∈ K }. It is well-known that L = L ∗ = (∂L )∗.

2 Basics Results About the Hyperbolic Space

In this section, we recall some notations, definitions and basic properties about the
geometry of the hyperbolic space used throughout the paper. They can be found in
many introductory books on Riemannian and differential geometry, for example in [1,
14], see also [2].

Let 〈·, ·〉 be the Lorentzian inner product of x := (x1, . . . , xn, xn+1)
� and y :=

(y1, . . . , yn, yn+1)
� on R

n+1 defined as follows:

〈x, y〉 := x1y1 + · · · + xn yn − xn+1yn+1. (3)
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For each x ∈ R
n+1, the Lorentzian norm (length) of x is defined to be the complex

number

‖x‖ := √〈x, x〉. (4)

Here, ‖x‖ is either positive, zero, or positive imaginary. By using (1), the Lorentz
inner product (3) can be stated equivalently as follows:

〈x, y〉 := x�Jy, ∀x, y ∈ R
n+1. (5)

Throughout the paper, the n-dimensional hyperbolic space and its tangent hyperplane
at a point p are denoted by

H
n :=

{
p ∈ R

n+1 : 〈p, p〉 = −1, pn+1 > 0
}

,

TpH
n :=

{
v ∈ R

n+1 : 〈p, v〉 = 0
}

, (6)

respectively. It is worth noting that the Lorentzian inner product defined in (3) is not
positive definite in the entire space R

n+1. However, one can show that its restriction to
the tangent spaces ofH

n is positive definite; see [2, Section 7.6]. Consequently, ‖v‖ >

0 for all v ∈ TpH
n and all p ∈ H

n with v �= 0. Therefore, 〈·, ·〉 and ‖ · ‖ are in fact a
positive inner product and the associated norm in TpH

n , for all p ∈ H
n . Moreover,

for all p, q ∈ H
n , 〈p, q〉 ≤ −1 and 〈p, q〉 = −1 if and only if p = q. Therefore, (3)

actually defines a Riemannian metric onH
n , see [3, pp. 67]. The Lorentzian projection

onto the tangent hyperplane TpH
n is the linear mapping defined by

I + pp�J : R
n+1 → TpH

n, ∀p ∈ H
n . (7)

The Lorentzian projection (7) is self-adjoint with respect to the Lorentzian inner prod-
uct (3), i.e., 〈(I+ pp�J)u, v〉 = 〈u, (I+ pp�J)v〉, for all u, v ∈ R

n+1 and all p ∈ H
n .

Moreover, we also have (I + pp�J)(I + pp�J) = I + pp�J, for all p ∈ H
n .

The intrinsic distance on the hyperbolic space between two points p, q ∈ H
n is

defined by

d(p, q) := arcosh(−〈p, q〉). (8)

It can be shown that (Hn, d) is a complete metric space, so that d(p, q) ≥ 0 for all
p, q ∈ H

n , and d(p, q) = 0 if and only if p = q. Moreover, (Hn, d) has the same
topology as R

n . The intersection curve of a plane though the origin of R
n+1 with H

n

is called a geodesic. If p, q ∈ H
n and q �= p, then the unique geodesic segment from

p to q is

γpq(t) =
(
cosh t + 〈p, q〉 sinh t√〈p, q〉2 − 1

)
p + sinh t√〈p, q〉2 − 1

q, ∀t ∈ [0, d(p, q)].
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Let f : H
n → R be a twice differentiable function. The Hessian on the hyperbolic

space of f at a point p ∈ H
n is the mapping Hess f (p) : TpH

n → TpH
n given by

Hess f (p) :=
[
I + pp�J

] [
J · D2 f (p) + 〈J · Df (p), p〉I

]
, (9)

where D2 f (p) is the usual Hessian (Euclidean Hessian) of the function f at a point
p, see [2, Proposition 7.6, p.163].

3 Hyperbolically Quadratic Convex Functions

Our aim is to study the hyperbolic convexity of the non-homogeneous quadratic func-
tion f : H

n → R defined by

f (p) = p�Ap + b� p + c, (10)

where A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R. For that we first recall some general
characterizations for a non-homogeneous quadratic convex function. We begin with
the general definition of a convex function on the hyperbolic space.

Definition 3.1 A function f : H
n → R is said to be hyperbolically convex (respec-

tively, strictly hyperbolically convex) if for any geodesic segment γ , the composition
f ◦ γ is convex (respectively, strictly convex) in the usual sense.

In the following,we recall the general second-order characterization for hyperbolically
convex functions on hyperbolic spaces, for a proof see [5, Proposition 5.4].

Proposition 3.1 Let f : H
n → R be a twice differentiable function. The function f

is hyperbolically convex if and only if the Hessian Hess f on the hyperbolic space
satisfies the inequality 〈Hess f (p)v, v〉 ≥ 0, for all p ∈ H

n and all v ∈ TpH
n, or

equivalently,

〈
J · D2 f (p)v, v

〉
+ 〈J · Df (p), p〉 〈v, v〉 ≥ 0, ∀ p ∈ H

n, ∀ v ∈ TpH
n,

where D2 f (p) is the usual Hessian and D f (p) is the usual gradient of f at a point
p ∈ H

n. If the above inequalities are strict, then f is strictly hyperbolically convex.

In the following, we present a general characterization for convexity of the function
(10), which is an immediate consequence of Proposition 3.1.

Corollary 3.1 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R. The function f (p) =
p�Ap + b� p + c is hyperbolically convex if and only if

2v�Av + 2p�Ap + b� p ≥ 0, ∀p, v ∈ R
n+1 with p�Jp = −1,

v�Jv = 1, p�Jv = 0.
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Proof Considering that Df (p) = 2Ap + b, D2 f (p) = 2A and JJ = I, we conclude
that

〈
J · D2 f (p)v, v

〉
+ 〈J · Df (p), p〉 〈v, v〉 = 2v�Av + (2p�Ap + b� p) 〈v, v〉 .

Thus, it follows from Proposition 3.1 that the function f is hyperbolically convex in
H

n if and only if 2v�Av + 2p�Ap + b� p ≥ 0, for all p ∈ H
n , all v ∈ TpH

n with
v�Jv = 1. Considering that p ∈ H

n and v ∈ TpH
n with v�Jv = 1 if and only if

p�Jp = −1, v�Jv = 1 and p�Jv = 0, the result follows. ��
Next, we relate the hyperbolic convexity of f with the boundary of the Lorentz cone
∂L .

Lemma 3.1 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R. The following three
conditions are equivalent:

(i) The function f : H
n → R defined by f (p) = p�Ap+ b� p+ c is hyperbolically

convex;
(ii) 4x�Ax + 4y�Ay + √

2 b�(x + y) ≥ 0, for all x, y ∈ R
n+1 with x, y ∈ ∂L and

x�Jy = −1;
(iii) 4z�Az + 4w�Aw + √−2z�Jw b�(z + w) ≥ 0, for all z, w ∈ R

n+1 with z, w ∈
∂L and z�Jw < 0.

Proof First, we prove the equivalence between (i) and (ii). For that, it is convenient
first to consider the following invertible transformations

p = 1√
2

(x + y), v = 1√
2

(x − y) if and only if x = 1√
2

(p + v),

y = 1√
2

(p − v), (11)

where x, y, p, v ∈ R
n+1. By using the first two equalities in (11), after some calcula-

tions, we have

2p�Jp = x�Jx + 2x�Jy + y�Jy,
2v�Jv = x�Jx − 2x�Jy + y�Jy,
2p�Jv = x�Jx − y�Jy. (12)

On the other hand, by using the last two inequalities in (11), we obtain the following
three equalities

2x�Jx = p�Jp + 2p�Jv + v�Jv,

2y�Jy = p�Jp − 2p�Jv + v�Jv,

2x�Jy = p�Jp − v�Jv. (13)
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Moreover, the equalities in (11) also imply that

v�Av + p�Ap = x�Ax + y�Ay. (14)

First we prove (i) implies (ii). Take x, y ∈ ∂L and x�Jy = −1, and consider the
transformation (11). Thus, by using (12), we conclude that p�Jp = −1, v�Jv = 1 and
p�Jv = 0. Hence, item (i) together with Corollary 3.1 implies that 2v�Av+2p�Ap+
b� p ≥ 0. Therefore, by using (11) and (14), we conclude that 4x�Ax + 4y�Ay +√
2 b�(x+ y) ≥ 0 and item (ii) holds. Next, we prove that (ii) implies (i). Assume that

the item (ii) holds, and take p, v ∈ R
n+1 with p�Jp = −1, v�Jv = 1 and p�Jv = 0,

and consider (11). Hence, by using (13), we have x (or− x) ∈ ∂L , y (or− y) ∈ ∂L
and x�Jy = −1, and item (ii) implies that 4x�Ax + 4y�Ay + √

2 b�(x + y) ≥ 0.
Thus, (11) and (14) implies that 2v�Av + 2p�Ap + b� p ≥ 0, which implies that
item (i) holds.

We proceed to prove the equivalence between (ii) and (iii). Assume that item (ii)
holds and take z, w ∈ ∂L and z�Jw < 0. Since z�Jw < 0, we define

x = z√−z�Jw
, y = w√−z�Jw

(15)

Thus, considering that z, w ∈ ∂L and z�Jw < 0, some calculations show that
x, y ∈ ∂L and x�Jy = −1. Therefore, using (15) together item (ii), we conclude
that

z�Az + w�Aw = −z�Jw
(
x�Ax + y�Ay

)
≥ 0,

and the item (iii) holds. Finally, (iii) implies (ii) is immediate, which concludes the
proof. ��
Proposition 3.2 Let A = A� ∈ R

(n+1)×(n+1), b ∈ R
n+1, c ∈ R and f : H

n → R

defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex, then there exists
μ ∈ R such that A + μJ is positive semidefinite.

Proof Let z, w ∈ R
n+1 with z, w ∈ ∂L and z�Jw < 0. Define the sequence (wk)k∈N,

where wk = (1/k)w with k �= 0. Then, by (iii) of Lemma 3.1, we have

4z�Az + 4
1

k2
w�Aw +

√
−2

k
z�Jw b�

(
z + 1

k
w

)

= 4z�Az + 4w�
k Awk +

√
−2z�Jwk b

�(z + wk) ≥ 0,

for all z, w ∈ ∂L with z�Jw < 0 and all k ∈ N with k �= 0. Hence, by tending with k
to infinity, we obtain that 4z�Az ≥ 0, for all z ∈ ∂L . Therefore, A is ∂L -copositive,
and by using Corollary 1.1, the result follows. ��
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Corollary 3.2 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R

defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex, then A is ∂L -
copositive. As a consequence, h : H

n → R defined by h(p) = p�Ap is hyperbolically
convex.

Proof Combining Proposition 3.2 with items (i), (ii) and (iii) of [5, Theorem 5.1], the
result follows. ��
Since the condition x�Jy ≤ 0, for any x, y ∈ ∂L , is equivalent to the n-dimensional
Cauchy inequality, it all holds. Then, the equivalence between items (i) and (iii) of
Lemma 3.1 can be stated equivalently in the following form.

Proposition 3.3 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R be

defined by f (p) = p�Ap+ b� p+ c. Then, f is hyperbolically convex, if and only if

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) ≥ 0, ∀x, y ∈ R
n+1 with x, y ∈ ∂L .

In next corollary,wepresent a characterization for a linear function to be hyperbolically
convex.

Corollary 3.3 Let b ∈ R
n+1, c ∈ R and g : H

n → R defined by g(p) = b� p + c.
Then, g is hyperbolically convex, if and only if b ∈ L .

Proof Applying Proposition 3.3 with A = 0 and g = f , we obtain that g is hyperbol-
ically convex if and only if

√
−2x�Jy b�(x + y) ≥ 0, ∀x, y ∈ R

n+1 with x, y ∈ ∂L . (16)

Suppose first that g is hyperbolically convex. Let x ∈ ∂L \{0} arbitrary and y =
−(1/k)Jx ∈ ∂L , where k ∈ N with k �= 0. Thus, it follows from (16) that b�(x −
(1/k)Jx) ≥ 0, for any x ∈ ∂L \{0} and k ∈ N with k �= 0. By tending with k
to infinity in the last inequality, we obtain b�x ≥ 0 for any x ∈ ∂L \{0}. Hence,
b ∈ (∂L \{0})∗ = L ∗ = L . Conversely, if b ∈ L = L ∗, then (16) holds, and
hence, g is hyperbolically convex. ��
In the Euclidean context, the linear term of a quadratic function has no influence on
the convexity of the function. As we will see in the next corollary, this is not the case
in the hyperbolic setting.

Corollary 3.4 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1\L and c ∈ R. Then, there
exists a λ > 0 such that the function fλ : H

n → R defined by fλ(p) = p�Ap +
(λb)� p + c is not hyperbolically convex.

Proof Since b /∈ L = L ∗ andL = ∂L +∂L , it follows that there exists x, y ∈ ∂L
such that (λb)�(x + y) < 0, for all λ > 0. Hence, taking into account that x�Jy < 0,
we conclude that

lim
λ→+∞

(
4x�Ax + 4y�Ay +

√
−2x�Jy (λb)�(x + y)

)
= −∞.
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Thus, it follows that if λ > 0 is sufficiently large, then 4x�Ax + 4y�Ay +√−2x�Jy (λb)�(x + y) < 0. Therefore, by Proposition 3.3, the function fλ is not
hyperbolically convex. ��

Proposition 3.4 Let A = A� ∈ R
(n+1)×(n+1), b = (b1, . . . , bn+1) ∈ R

n+1, c ∈ R

and f : H
n → R defined by f (p) = p�Ap+b� p+ c. If f is hyperbolically convex,

then there exists μ ∈ R such that

A + JAJ + 1

2
bn+1I + μJ

is a positive semidefinite matrix.

Proof Applying Proposition 3.3 with x := (x1, . . . , xn+1) ∈ ∂L and y = −Jx ∈
∂L , we obtain that

4x�(A + JAJ)x +
√
2x�x b�(I − J)x ≥ 0, ∀x ∈ ∂L . (17)

Since 2xn+1 = √
2x�x , for all x ∈ ∂L , we obtain that b�(I− J)x = bn+1(2xn+1) =

bn+1
√
2x�x . Thus, we conclude that

√
2x�x b�(I − J)x = 2bn+1x

�x, ∀x ∈ ∂L .

Hence, combining the last equality with (17), we obtain, after some algebraic manip-
ulations, that

4x�
(
A + JAJ + 1

2
bn+1I

)
x = 4x�(A + JAJ)x +

√
2x�x b�(I − J)x ≥ 0,

∀x ∈ ∂L .

Therefore, A+ JAJ+ 1
2bn+1I is ∂L -copositive, and by using Corollary 1.1, the result

follows. ��

Corollary 3.5 Let A = A� ∈ R
(n+1)×(n+1), b = (b1, . . . , bn+1) ∈ R

n+1, c ∈ R and
f : H

n → R defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex,
then g : H

n → R defined by

g(p) = p�
(
A + JAJ + 1

2
bn+1I

)
p

is hyperbolically convex.

Proof The proof follows from Proposition 3.4 by using the items (i) and (iii) of [5,
Theorem 5.1]. ��
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Remark 3.1 If A is ∂L -copositive and bn+1 > 0, then g in Corollary 3.5 is hyperbol-
ically convex. Indeed, considering that for any p ∈ ∂L , we have q = −Jp ∈ ∂L ,
we conclude that

g(p) = p�
(
A + JAJ + 1

2
bn+1I

)
p = p�Ap + q�Aq + bn+1 p

2
n+1 ≥ 0,

which implies that g is bounded from below. Therefore, the result follows from items
(i) and (iv) of [5, Theorem 5.1].

Proposition 3.5 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R, f : H
n → R be

defined by f (p) = p�Ap + b� p + c and h : H
n → R be defined by h(p) = p�Ap.

Consider the following statements:

(i) The function f is hyperbolically convex.
(ii) The inequality 4x�Ax + √−2x�Jy b�x ≥ 0 holds, for all x, y ∈ R

n+1 with
x, y ∈ ∂L .

(iii) The inequality 4y�Ay + √−2x�Jy b�y ≥ 0 holds, for all x, y ∈ R
n+1 with

x, y ∈ ∂L .
(iv) The function h is hyperbolically convex and b ∈ L .
(v) The matrix A is ∂L -copositive and b ∈ L .
(vi) The vector b ∈ L and there is a μ ∈ R such that A + μJ is positive semidefinite

Then, (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi) �⇒ (i).

Proof Items (ii)and (iii) are equivalent because they are obtained from each other by
swapping x and y. Suppose that (ii) is true. Then, (iii) is also true. By summing up the
inequalities of (ii) and (iii), we obtain that

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) ≥ 0, ∀x, y ∈ R
n+1 with x, y ∈ ∂L .

Hence, (i) follows from Proposition 3.3. The equivalence of items (iv), (v), and (vi)
follow from items (i), (ii) and (iii) of [5, Theorem 5.1]. To complete the proof, we will
show that (ii) ⇐⇒ (v). Suppose that (v) holds. Then, the inequality of (ii) follows
immediately from the ∂L -copositivity of A and the self-duality of L . Reciprocally,
suppose that (ii) holds. Then, (i) also holds. Hence, it follows fromCorollary 3.2 that h
is a hyperbolically convex function. Thus, items (i) and (ii) of [5, Theorem 5.1] imply
that the matrix A is ∂L -copositive. On the other hand, since xk := (1/k)2x ∈ ∂L
for all k ∈ N, it follows from the inequality of (ii) that

4(xk)�Axk +
√

−2(xk)�Jy b�xk ≥ 0,

for all x, y ∈ ∂L and k ∈ N . Substituting xk = (1/k)2x into the last inequity, we
conclude that

4

k4
x�Ax + 1

k3

√
−2x�Jy b�x ≥ 0.
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for all x, y ∈ ∂L and k ∈ N . Multiplying the latest inequality by k3, then tendingwith
k to infinity and finally dividing by

√−2x�Jy , we obtain b�x ≥ 0, for all x ∈ ∂L .
Hence, b ∈ (∂L )∗ = L . Therefore, item (v) holds and the proof is completed. ��

For simplifying the statement and proof of the next results, it is convenient to intro-
duce the following notations. For a given A ∈ R

(n+1)×(n+1), consider the following
decomposition:

A :=
(

Ā ā
ā� σ

)
, Ā ∈ R

n×n, ā ∈ R
n×1, σ ∈ R. (18)

Denote Ī ∈ R
n×n the identitymatrix. In addition, for a given vector z ∈ R

n+1, consider
the following decomposition:

z :=
(

z̄
zn+1

)
∈ R

n+1, z̄ ∈ R
n, zn+1 ∈ R. (19)

By using the above decompositions, we have the following result:

Proposition 3.6 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R

defined by f (p) = p�Ap+ b� p+ c. Then, f is hyperbolically convex, if and only if

4x̄�( Ā + σ Ī )x̄ + 4ȳ�( Ā + σ Ī )ȳ + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ)
+

√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ

(
b̄�(x̄ + ȳ) + bn+1 (‖x̄‖2 + ‖ȳ‖2)

)
≥ 0,

for all x̄, ȳ ∈ R
n.

Proof First note that, by using (2) and (19), we conclude that all x, y ∈ ∂L can be
written

x :=
(

x̄
‖x̄‖2

)
∈ R

n+1, y :=
(

ȳ
‖ȳ‖2

)
∈ R

n+1. (20)

Hence, using (18), (19) and (20), we obtain that

4x�Ax = 4x̄�( Ā + σ Ī)x̄ + 8‖x̄‖2ā� x̄ (21)

4y�Ay = 4ȳ�( Ā + σ Ī)ȳ + 8‖ȳ‖2ā� ȳ (22)√
−2x� J y =

√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ (23)

b�(x + y) = b̄�(x̄ + ȳ) + bn+1(‖x̄‖2 + ‖ȳ‖2). (24)
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By using equations (21), (22), (23) and (24), we conclude that

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) = 4x̄�( Ā + σ Ī )x̄ + 4ȳ�( Ā + σ Ī )ȳ

+8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ)
+

√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ

(
b̄�(x̄ + ȳ) + bn+1 (‖x̄‖2 + ‖ȳ‖2)

)
.

Therefore, by using the last equality together with Proposition 3.3, the desired result
follows. ��
Remark 3.2 Let A = A� ∈ R

(n+1)×(n+1), b ∈ R
n+1, c ∈ R and f : H

n → R be
defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex, then 4x̄�( Ā +
σ Ī )x̄ + 8ā�‖x̄‖2 x̄ ≥ 0, for all x̄ ∈ R

n . To see that set ȳ = 0 in Proposition 3.6.

Corollary 3.6 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R be

defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex, then

Ā +
(

σ + 1

2
bn+1

)
Ī ∈ R

n×n

is positive semidefinite.

Proof First note that by letting ȳ = −x̄ in Proposition 3.6, we obtain that if f is hyper-
bolically convex then 8x̄� (

Ā + σ Ī
)
x̄ + 4bn+1‖x̄‖22 ≥ 0, for all x̄ ∈ R

n . Considering
that

8x̄�
(
Ā +

(
σ + 1

2
bn+1

)
Ī

)
x̄ = 8x̄� (

Ā + σ Ī
)
x̄ + 4bn+1‖x̄‖22, ∀x̄ ∈ R

n .

and f is hyperbolically convex, the result follows. ��
Proposition 3.7 Let A = A� ∈ R

(n+1)×(n+1), b ∈ R
n+1, c ∈ R. Then, there

exists a λ > 0 such that the function fλ : H
n → R defined by fλ(p) =

p�Ap + (
b − λen+1

)�
p + c is not hyperbolically convex.

Proof Consider the following matrix

Ā +
(

σ + 1

2
(bn+1 − λ)

)
Ī ∈ R

n×n . (25)

The eigenvalues of the matrix (25) are the form β + σ + 1
2 (bn+1 − λ), where β is

an eigenvalue of Ā. Thus, the matrix (25) have negative eigenvalue by taking λ > 0
sufficiently large. Consequently, the matrix (25) will not positive semidefinite for
λ > 0 sufficiently large. Therefore, by applying Corollary 3.6 for f = fλ the result
follows. ��
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Theorem 3.1 Let A = A� ∈ R
(n+1)×(n+1) be a nonzero matrix, b ∈ R

n+1, c ∈ R,
f : H

n → R be defined by f (p) = p�Ap + b� p + c and g : H
n → R be defined by

g(p) = pT p + b� p + c. Then, the following statements hold:

(i) If f is a hyperbolically convex, then the function h : H
n → R defined by

h(p) = pT p +
(
bA

)�
p + c

is hyperbolically convex, where

bA = 1

‖A‖2 b. (26)

(ii) If there exists a μ ∈ R and a λ ≥ 0 such that the matrix A − λI + μJ is positive
semidefinite and b + 4λen+1 ∈ L , then f is hyperbolically convex.

(iii) If b + 4en+1 ∈ L , then g is hyperbolically convex.

Proof Proof of item (i): Since f is hyperbolically convex, the Cauchy inequality and
Proposition 3.3 imply that

4‖A‖2‖x‖22 + 4‖A‖2‖y‖22 +
√

−2x�Jy b�(x + y) ≥ 4x�Ax + 4y�Ay

+
√

−2x�Jy b�(x + y) ≥ 0, (27)

for any x, y ∈ R
n+1 with x, y ∈ ∂L . Divide (27) by ‖A‖2 and use (26) to obtain

4x�x + 4y�y +
√

−2x�Jy
(
bA

)�
(x + y) ≥ 0,

for any x, y ∈ R
n+1 with x, y ∈ ∂L . Thus, applying Proposition 3.3 with f = h, it

follows that h is hyperbolically convex.
Proof of item (ii): First note that by using Cauchy and triangular inequalities, we

have

1

‖x̄‖2 + ‖ȳ‖2 b̄
� (x̄ + ȳ) + bn+1 ≥ −‖b̄‖2‖x̄ + ȳ‖2

‖x̄‖2 + ‖ȳ‖2 + bn+1 ≥ bn+1 − ‖b̄‖2,
∀x̄, ȳ ∈ R

n \ {0}.

Taking into account that b+4λen+1 ∈ L , we obtain that bn+1−‖b̄‖2 ≥ −4λ. Hence,
we have

1

‖x̄‖2 + ‖ȳ‖2 b̄
� (x̄ + ȳ) + bn+1 ≥ −4λ. (28)
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On the other hand, some calculations show that

−4 = max
ρ>0

−8 − 8ρ2

2
√

ρ (1 + ρ)
≥

−8 − 8

(‖ȳ‖2
‖x̄‖2

)2

2

√
‖ȳ‖2
‖x̄‖2

(
1 + ‖ȳ‖2

‖x̄‖2
) = −8‖x̄‖22 − 8‖ȳ‖22√

4‖x̄‖2‖ȳ‖2 (‖x̄‖2 + ‖ȳ‖2) .

If x̄ and ȳ are not parallel, then Cauchy inequality implies that 4‖x̄‖2‖ȳ‖2 ≥
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ > 0. Thus, it follows from the last inequality that

−4 ≥ −8‖x̄‖22 − 8‖ȳ‖22√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ (‖x̄‖2 + ‖ȳ‖2)

.

Combining the previous equality with (28), we obtain that

1

‖x̄‖2 + ‖ȳ‖2 b̄
� (x̄ + ȳ) + bn+1 ≥ λ

−8‖x̄‖22 − 8‖ȳ‖22√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ (‖x̄‖2 + ‖ȳ‖2)

,

which, after some algebraic manipulations, can be rewritten equivalently as follows:

8λ‖x̄‖22 + 8λ‖ȳ‖22 +
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
)

[
b̄� (x̄ + ȳ) + bn+1 (‖x̄‖2 + ‖ȳ‖2)

]
≥ 0. (29)

The last inequality holds for any x̄, ȳ ∈ R
n , since it is also true for x̄ and ȳ parallel

or if any of x and y is zero. To proceed, note that by using (2) and (19), we conclude
that all x, y ∈ ∂L can be written

x :=
(

x̄
‖x̄‖2

)
∈ R

n+1, y :=
(

ȳ
‖ȳ‖2

)
∈ R

n+1. (30)

In addition, for any x, y ∈ ∂L , we have

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) = 4x�(A + μJ)x + 4y�(A + μJ)y

+
√

−2x�Jy b�(x + y).

On the other hand, since A − λI + μJ is positive semidefinite, we obtain

4x�(A + μJ)x + 4y�(A + μJ)y ≥ 4λx�x + 4λy�y, ∀x, y ∈ R
n+1,
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which combined with the last equality yields

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) ≥ 4λx�x + 4λy�y

+
√

−2x�Jy b�(x + y) (31)

for any x, y ∈ R
n+1. Now, by using (30), we obtain after some calculations that

4λx�x + 4λy�y +
√

−2x�Jy b�(x + y) = 8λ‖x̄‖22 + 8λ‖ȳ‖22
+

√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
) [

b̄� (x̄ + ȳ) + bn+1 (‖x̄‖2 + ‖ȳ‖2)
]
.

for any x, y ∈ ∂L . Thus, combining (29) and (31) with the previous equality, we
obtain that

4x�Ax + 4y�Ay +
√

−2x�Jy b�(x + y) ≥ 0, ∀x, y ∈ ∂L .

Therefore, by applying Proposition 3.3, we conclude that f is hyperbolically convex.
Proof of item (iii): It is a particular case of (ii) with A = I , λ = 0 and μ = 1. ��

Corollary 3.7 Let A = A� ∈ R
(n+1)×(n+1), b := (b̄�, bn+1)

� ∈ R
n+1, c ∈ R and

f : H
n → R be defined by f (p) = p�Ap + b� p + c. If there exists a μ ∈ R such

that

A − 1

4

(‖b̄‖2 − bn+1
)+

I + μJ

is positive semidefinite, then f is hyperbolically convex.

Proof If b ∈ L , then 1
4

(‖b̄‖2 − bn+1
)+

I = 0. Thus, in this case, we are under the
following assumptions: b ∈ L and A + μJ is positive semidefinite. Therefore, it
follows from items (i) and (vi) of Proposition 3.5 that f is hyperbolically convex.
Now, assume that b /∈ L . In this case, by setting

λ = 1

4
(‖b̄‖2 − bn+1)

+ = 1

4
(‖b̄‖2 − bn+1),

we conclude that

b + 4λen+1 =
(

b̄
‖b̄‖2

)
∈ L .

In this case, by applying item (ii) ofTheorem3.1,wealsoobtain that f is hyperbolically
convex. ��
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Example 3.1 Let A = A� ∈ R
(n+1)×(n+1), b := (b̄�, bn+1)

� ∈ R
n+1, c ∈ R and

f : H
n → R be defined by f (p) = p�Ap + b� p + c. For all b /∈ L , we can

construct many examples of hyperbolically convex quadratic functions f . Indeed, take
any b /∈ L , any μ ∈ R, any positive semidefinite matrix P and A = P + 1

4 (‖b̄‖2 −
bn+1)

+I + μJ. Then, the hyperbolic convexity of f follows from Corollary 3.7.

Corollary 3.8 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R be

defined by f (p) = p�Ap + b� p + c. If f is hyperbolically convex, then

bn+1 ≥ −4‖A‖2
Proof From item (i) of Theorem 3.1, it follows that the function h(p) = pT p +(
bA

)�
p + c is hyperbolically convex, where

bA = 1

‖A‖2 b. (32)

Applying Corollary 3.6 with f = h, it follows that

Ī +
(
1 + 1

2
bAn+1

)
Ī ∈ R

n×n

is positive semidefinite, which implies that 2 + (1/2)bAn+1 ≥ 0. Therefore, it fol-
lows from (32) that 2 + (1/2)(bn+1/‖A‖2) ≥ 0, which is equivalent to the required
inequality. ��
Corollary 3.9 Let A = A� ∈ R

(n+1)×(n+1), b ∈ R
n+1, c ∈ R and f : H

n → R be
defined by f (p) = p�Ap + b� p + c. Then, the following statements hold:

(i) If f is hyperbolically convex, then there exists aμ ∈ R such that A+μJ is positive
semidefinite and λmax(A + μJ) ≥ 1

4b
−
n+1.

(ii) If there exists a μ ∈ R such that λmin(A + μJ) ≥ 1
4 (‖b̄‖2 − bn+1)

+, then f is
hyperbolically convex. In particular, if b̄ = 0 and there exists a λ ∈ R such that
λmin(A + μJ) ≥ 1

4b
−
n+1, then f is hyperbolically convex.

Proof Proof of item (i): Suppose that f is hyperbolically convex. FromProposition 3.2,
it follows that there exists a μ ∈ R such that A + μJ is positive semidefinite. Since

f (p) = p�(A + μJ)p + b� p + c + μ

for any p ∈ H
n , is hyperbolically convex, it follows from Corollary 3.8 that

bn+1 ≥ −4‖A + μJ‖2 = −4λmax(A + μJ). (33)

If bn+1 ≥ 0, then λmax(A + μJ) ≥ 0 = 1
4b

−
n+1. On the other hand, if bn+1 < 0, then

(33) implies that λmax(A + μJ) ≥ 1
4b

−
n+1, which concludes the proof of item (i).
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Proof of item (ii): Assume that there exists a λ ∈ R such that λmin(A + λJ) ≥
1
4 (‖b̄‖2 − bn+1)

+. Then, the following matrix

A − 1

4
(‖b̄‖2 − bn+1)

+I + λJ

is positive semidefinite. Hence, by applying Corollary 3.7, we conclude that f is
hyperbolically convex, which concludes the proof. ��
Proposition 3.8 Let ρ, c ∈ R and f : H

n → R be defined by f (p) = p� p+ρ pn+1+
c. Then, f is hyperbolically convex if and only if ρ ≥ −4.

Proof By applying Corollary 3.9 with A = I, μ = 0, b̄ = 0 and bn+1 = ρ, the result
follows. ��
To state the next theorem, it is convenient to introduce the following notation: Denote
by w ∦ z that neither of the vectors w and z is a nonnegative multiple of the other one.

Theorem 3.2 Let A = A� ∈ R
(n+1)×(n+1), b ∈ R

n+1, c ∈ R and f : H
n → R be

defined by f (p) = p�Ap + b� p + c. Define

ϕ
(
b̄, A

) = inf
x̄,ȳ∈Rn

x̄∦ȳ

⎡
⎣4

(
x̄� Āx̄ + ȳ� Ā ȳ

) + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ) + 4σ
(‖x̄‖22 + ‖ȳ‖22

)

(‖x̄‖2 + ‖ȳ‖2)
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
)

+ b̄�(x̄ + ȳ)

‖x̄‖2 + ‖ȳ‖2
]

.

Then, f is hyperbolically convex if and only if

bn+1 + ϕ
(
b̄, A

) ≥ 0.

In particular, if A = I, then f is hyperbolically convex if and only if

bn+1 + ϕ
(
b̄
) ≥ 0,

where

ϕ
(
b̄
) = inf

x̄,ȳ∈Rn

x̄∦ȳ

⎡
⎣ 8

(‖x̄‖22 + ‖ȳ‖22
)

(‖x̄‖2 + ‖ȳ‖2)
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
) + b̄�(x̄ + ȳ)

‖x̄‖2 + ‖ȳ‖2

⎤
⎦ .

Proof It follows from Proposition 3.6 that f is hyperbolically convex, if and only if

4x̄�( Ā + σ Ī)x̄ + 4ȳ�( Ā + σ Ī)ȳ + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ)
+

√
2‖x̄‖2‖ȳ‖2 − 2x̄� ȳ

(
b̄�(x̄ + ȳ) + bn+1 (‖x̄‖2 + ‖ȳ‖2)

)
≥ 0,
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for all x̄, ȳ ∈ R
n . The first statement follows after dividing the last inequality by the

quantity

(‖x̄‖2 + ‖ȳ‖2)
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
)

and then using the definition of the infimum. The second statement is a particular
instance of the first one. ��
Corollary 3.10 Let A = A� ∈ R

(n+1)×(n+1) be a nonzero matrix, b ∈ R
n+1, c ∈ R,

f : H
n → R be defined by f (p) = p�Ap + b� p + c and h : H

n → R be defined by
h(p) = p�Ap. Then, the following statements hold:

(i) If λmin( Ā) + σ ≥ 2‖ā‖2 and bn+1 ≥ ‖b̄‖2 + 4‖ā‖2 − 2λmin( Ā) − 2σ, then f
is hyperbolically convex. In particular, if A = I and bn+1 ≥ ‖b̄‖2 − 4, then f is
hyperbolically convex.

(ii) If λmin( Ā) + σ ≥ 2‖ā‖2, then h is hypebolically convex.

Proof Proof of item (i): By using the notations of Theorem2 and triangular andCauchy
inequality, we have

ϕ
(
b̄, A

) ≥ inf
x̄,ȳ∈Rn

x̄∦ȳ

[
4

(
x̄� Āx̄ + ȳ� Ā ȳ

) + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ) + 4σ
(‖x̄‖22 + ‖ȳ‖22

)

2 (‖x̄‖2 + ‖ȳ‖2)√‖x̄‖2‖ȳ‖2
−‖b̄‖2

]

≥ − ‖b̄‖2 + inf
x̄,ȳ∈Rn

x̄∦ȳ

(
2λmin( Ā) − 4‖ā‖2 + 2σ

)
(‖x̄‖22 + ‖ȳ‖22)

(‖x̄‖2 + ‖ȳ‖2)√‖x̄‖2‖ȳ‖2 .

Considering that λmin( Ā) + σ ≥ 2‖ā‖2, we obtain from the last inequality that

ϕ
(
b̄, A

) ≥ −‖b̄‖2 + (
2λmin( Ā) − 4‖ā‖2 + 2σ

)
inf

x̄,ȳ∈Rn

x̄∦ȳ

‖x̄‖22 + ‖ȳ‖22
(‖x̄‖2 + ‖ȳ‖2)√‖x̄‖2‖ȳ‖2 .

(34)

Taking into account that

inf
x̄,ȳ∈Rn

x̄∦ȳ

‖x̄‖22 + ‖ȳ‖22
(‖x̄‖2 + ‖ȳ‖2)√‖x̄‖2‖ȳ‖2 ≥ 1,

it follows from (34) that ϕ
(
b̄, A

) ≥ −‖b̄‖2 + 2λmin( Ā) − 4‖ā‖2 + 2σ . Therefore,
considering that bn+1 ≥ ‖b̄‖2+4‖ā‖2−2λmin( Ā)−2σ , we conclude that ϕ

(
b̄, A

) ≥
−bn+1 or equivalently that bn+1 + ϕ

(
b̄, A

) ≥ 0. Hence, applying Theorem 3.2, we
obtain that f is hyperbolically convex and the first statement of item (i) is proved. The
second statement is an immediate consequence of the first one.
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Proof of item (ii): Choose bn+1 ≥ ‖b̄‖2 + 4‖ā‖2 − 2λmin( Ā)− 2σ . It follows from
item (i) that f is hyperbolically convex. Then, Corollary 3.2 implies that h is also
hyperbolically convex. ��
Remark 3.3 Item (ii) of Corollary 3.10 improves item (iii) of [5, Theorem 5.2], where
the inequality is strict.

Example 3.2 For the particular case in item (i) of Corollary 3.10, by taking A = I any
b̄ ∈ R

n and bn+1 ∈ [‖b̄‖2 − 4, ‖b̄‖2
)
, another large class of hyperbolically convex

quadratic functions f with b /∈ L follows.

Corollary 3.11 Let n ≥ 3 be an integer, A = A� ∈ R
(n+1)×(n+1) be a nonzero matrix,

b ∈ R
n+1, c ∈ R, f : H

n → R be defined by f (p) = p�Ap + b� p + c. If f is
hyperbolically convex, then

bn+1 ≥ ‖b̄‖2
2

+ 2
√
2
ā�b̄
‖b̄‖2

− √
2
b̄� Āb̄

‖b̄‖22
− √

2 λmax( Ā) − 2
√
2 σ. (35)

In particular if f is hyperbolically convex and A = I, then

bn+1 ≥ ‖b̄‖2
2

− 4
√
2 . (36)

Proof Wewill use thenotationofTheorem3.2.Wehaveϕ(b̄, A) = inf x̄,ȳ∈Rn

x̄∦ȳ
ψ(x̄, ȳ, b̄, A),

where

ψ(x̄, ȳ, b̄, A) = 4
(
x̄� Āx̄ + ȳ� Ā ȳ

) + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ) + 4σ
(‖x̄‖22 + ‖ȳ‖22

)

(‖x̄‖2 + ‖ȳ‖2)
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
)

+ b̄�(x̄ + ȳ)

‖x̄‖2 + ‖ȳ‖2 .

Hence, ψ(x̄, ȳ, b̄, A) ≤ ζ(x̄, ȳ, b̄, A), where

ζ(x̄, ȳ, b̄, A)

:= 4
(
x̄� Āx̄ + λmax( Ā)‖ȳ‖22

) + 8ā� (‖x̄‖2 x̄ + ‖ȳ‖2 ȳ) + 4σ
(‖x̄‖22 + ‖ȳ‖22

)

(‖x̄‖2 + ‖ȳ‖2)
√
2

(‖x̄‖2‖ȳ‖2 − x̄� ȳ
)

+ b̄�(x̄ + ȳ)

‖x̄‖2 + ‖ȳ‖2
and ϕ(b̄, A) ≤ inf x̄,ȳ∈Rn

x̄∦ȳ
ζ(x̄, ȳ, b̄, A) ≤ ζ(x̄, ȳ, b̄, A) for any x̄, ȳ ∈ R

n with x̄ ∦ ȳ.

Thus, Theorem 3.2 implies

bn+1 + ζ(x̄, ȳ, b̄, A) ≥ bn+1 + ϕ(b̄, A) ≥ 0. (37)
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Let x̄ := −b̄ and ȳ ∈ R
n such that ȳ�ā = 0, ȳ�b̄ = 0 and ‖y‖2 = ‖b‖2. Then, a

simple calculation yields that the right-hand side of equation (35) is −ζ(x̄, ȳ, b̄, A).
Hence, (35) follows from (37) and (36) is a simple consequence of (35). ��

4 Final Remarks

This paper is a natural continuation of [5], where the study of convexity of homoge-
neous quadratic functions in hyperbolic spaceswas started. In contrast to the Euclidean
space, the study of non-homogeneous quadratic functions in the hyperbolic space is
more elaborate than the study of homogeneous quadratic functions. In [4], the study
of the convexity of quadratic functions on the sphere was conducted, with a specific
focus on homogeneous functions. An intriguing investigation thatmerits further explo-
ration involves characterizing non-homogeneous quadratic functions on the sphere,
complementing the findings presented in the paper [4]. It is worth noting that when
defining a quadratic function on the sphere and in the hyperbolic space, we rely on
the fact that these manifolds are subsets of the Euclidean space. In fact, this kind of
study could potentially be extended to manifolds that are subsets of matrix spaces.
However, conducting a comprehensive study of convex quadratic functions, or more
generally, engaging in convex analysis within a general Riemannianmanifold, remains
a challenging endeavor.
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