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Abstract
The concept of adjusted sublevel set for a quasiconvex function was introduced
by Aussel and Hadjisavvas who proved the local existence of a norm-to-weak∗
upper semicontinuous base-valued submap of the normal operator associated with
the adjusted sublevel set. When the space is finite-dimensional, a globally defined
upper semicontinuous base-valued submap is obtained by taking the intersection of
the unit sphere, which is compact, with the normal operator, which is closed. Unfor-
tunately, this technique does not work in the infinite-dimensional case. We propose
a partition of unity technique to overcome this problem in Banach spaces. An appli-
cation is given to a quasiconvex quasioptimization problem through the use of a new
existence result for generalized quasivariational inequalities which is based on the
Schauder fixed point theorem.

Keywords Cone upper semicontinuity · Normal operator · Quasiconvexity ·
Quasivariational inequality · Quasioptimization

Mathematics Subject Classification 47H04 · 49J40 · 49J52 · 49J53 · 90C26

1 Introduction

A quasiconvex function is characterized by the convexity of its sublevel sets. This
is why normal cones to the sublevel sets or the strict sublevel sets of a quasicon-
vex function were initially studied in a finite-dimensional setting [13] by Borde and
Crouzeix. To study the continuity properties of the normal cone operator, the authors
first observed that the notion of upper semicontinuity is inappropriate for cone-valued
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maps, and therefore, they introduced the concept of cone upper semicontinuity. Sub-
sequently, characterizations of various classes of quasiconvex functions in terms of
the generalized quasimonotonicity of the normal cone operators were obtained in [7].
Unfortunately, these normal operators do not satisfy quasimonotonicity and upper
semicontinuity at the same time, even if the quasiconvex function is lower semicon-
tinuous. Indeed, these operators fit well with the family of quasiconvex functions
without flat parts, i.e., quasiconvex functions such that each local minimum is a global
minimum.

Aussel and Hadjisavvas [8] proposed the concept of adjusted sublevel set to treat
all kinds of quasiconvex functions defined on a Banach space. The authors proved that
the normal cone operator to the adjusted sublevel sets of a quasiconvex function is
both quasimonotone and cone upper semicontinuous. In particular, they showed that
the normal cone operator admits a locally defined base-valued submap being norm-
to-weak∗ upper semicontinuous. In [6], the authors obtained a globally defined upper
semicontinuous base-valued submap when the space is Euclidean taking the convex
hull of the normalized normal operator which is the intersection of the unit sphere,
which is compact, with the normal operator, which is closed. Since the unit sphere is
not compact in the infinite-dimensional case, this approach is unsuccessful in a Banach
space.

The first aim of this paper is to overcome this problem by using a partition of unity
technique. Theorem 2.5 states the existence of a norm-to-weak∗ upper semicontinuous
map whose values are nonempty weak∗ compact convex sets not containing the origin
and generating the normal cone to the adjusted sublevel set. Subsequently, we establish
an existence result (Theorem 3.3) for a generalized quasivariational inequality which
improves the famous Tan’s result [22]. Finally, combining both results, we present an
application to quasioptimization problems.

We conclude by presenting some preliminary notions and results. For a subset C of
a topological vector space Z , clC and intC are used for denoting the closure and the
interior ofC , respectively. The set K ⊆ Z is a cone if for each z ∈ K and scalar t > 0,
the product t z ∈ K . (Note that some authors define cone with the scalar t ranging over
all nonnegative scalars.) Clearly, the empty set is a cone. Let K be a cone. A convex
subset A of K is called a base if K = {t z : t ≥ 0, z ∈ A} and 0 /∈ cl A. Clearly, the
empty set is a base of the empty cone. Vice versa, if K admits a nonempty base then
K is a convex cone such that {0} � K . In particular, if the base is compact then K is
closed.

The domain and the graph of a set-valued map Φ : Y ⇒ Z between topological
spaces are denoted by domΦ and gphΦ, respectively. The map Φ is lower semi-
continuous at y ∈ Y if for every open set Ω such that Φ(y) ∩ Ω , there exists a
neighborhood Uy of y such that Φ(y′) ∩ Ω , for all y′ ∈ Uy . The characterization
of lower semicontinuity in terms of nets is the following: If {yα} converges to y and
z ∈ Φ(y), then there exist a subnet {yαβ } of {yα} and a net {zβ} converging to z such
that (yαβ , zβ) ∈ gphΦ for each β. If the topologies of Y and Z are first countable, it is
possible to replace nets with sequences. The map Φ is upper semicontinuous at y ∈ Y
if for every open setΩ such thatΦ(y) ⊆ Ω , there exists a neighborhoodUy of y such
that Φ(y′) ⊆ Ω , for all y′ ∈ Uy . It is closed at y if for each net {(yα, zα)} ⊆ gphΦ
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which converges to (y, z), we have that (y, z) ∈ gphΦ. Moreover, we say that Φ is
compact if there exists a compact set containing all the values of Φ.

In this paper, we will consider a real Banach space X with norm ‖·‖, its topological
dual space X∗ with norm ‖ · ‖∗, and the duality pairing 〈·, ·〉 between X∗ and X . The
closed unit balls in X and X∗ will be denoted by B and B∗, respectively. Furthermore,
in order to avoid misunderstanding, the topology that X∗ is endowed with will be
specified, at each time.

2 Continuity of the Adjusted Normal Cone Operator

The polar cone of a set C in X is the set

C◦ = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0, ∀z ∈ C}.

In this section, we start studying the closedness properties of the polar map C◦ : Y ⇒
X∗ defined C◦(x) = C(x)◦ where Y ⊆ X and C : Y ⇒ X is a given set-valued map.
Clearly, C◦ has nonempty convex weak∗ closed values. The first result extends to the
infinite-dimensional case Corollary 1 in [9].

Theorem 2.1 If C is lower semicontinuous at x ∈ Y then the polar map C◦ is norm-
to-norm closed at x.

Proof Let {(xn, x∗
n )} be a sequence which converges to (x, x∗) and x∗

n ∈ C◦(xn) for all
n. SinceC is lower semicontinuous, for each fixed z ∈ C(x), there exist a subsequence
{xnk } of {xn} and elements zk ∈ C(xnk ) for each k such that {zk} converges to z. The
conclusion follows from the fact that the duality pairing is jointly norm continuous
and 〈x∗

nk , zk〉 ≤ 0, for all k. ��

Unfortunately, this result does not hold if the norm topology in the dual space is
replaced by the weak∗ topology as the example shows.

Example 2.1 Fix x∗ ∈ X∗ and x ∈ X such that

‖x∗‖∗ = 1/2 and 〈x∗, x〉 = 1/4.

Let A be the collection of all nonempty finite subsets of the bidual X∗∗ containing
x∗∗ where 〈x∗∗, z∗〉 = 〈z∗, x〉, for all z∗ ∈ X∗. The set A is directed by the set
inclusion, α ≥ β whenever α ⊇ β. For each α = {x∗∗

1 , . . . , x∗∗
n }, there exists some

z∗α ∈ ⋂n
i=1 ker x

∗∗
i such that ‖z∗α‖∗ = n. Hence, since x∗∗ ∈ α, the net {z∗α} satisfies

the following properties:

z∗α
∗
⇀0

‖z∗α‖∗ = n

〈z∗α, x〉 = 0.
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By definition, for each α there exists yα ∈ X such that

‖yα‖ ≤ 1 and 〈z∗α, yα〉 = n/2.

Put zα = 2yα/n, then

‖zα‖ → 0 and 〈z∗α, zα〉 = 1.

Now, let us consider the lower semicontinuous map C : X ⇒ X defined by

C(z) = [−z, (x − z)/2] = {u = −t z + (1 − t)(x − z)/2 : t ∈ [0, 1]}

and the net {(xα, x∗
α)} ⊆ X × X∗ such that

xα = zα − x and x∗
α = x∗ + z∗α.

Clearly, the net converges to (−x, x∗). We show that (xα, x∗
α) ∈ gphC◦ for each α.

Since C(xα) = [x − zα, x − zα/2] = (x − zα) + [0, zα/2], for each t ∈ [0, 1/2] we
have

〈x∗
α, x − zα + t zα〉 = (t − 1)〈x∗

α, zα〉 + 〈x∗
α, x〉

= (t − 1)
(
〈x∗, zα〉 + 〈z∗α, zα〉

)
+ 〈x∗, x〉.

Since 〈x∗, zα〉 ≥ −1/2, 〈z∗α, zα〉 = 1 and 〈x∗, x〉 = 1/4, we have x∗
α ∈ C◦(xα).

Nevertheless, the limit (−x, x∗) /∈ gphC◦ sinceC(−x) = {x} and 〈x∗, x〉 = 1/4 > 0.

The lack of closedness of C◦ is due to the norm unboundedness of the convergent
net {z∗α}. However, the duality pairing restricted to B∗×X is jointly continuous, where
X has its norm topology and B∗ has its weak∗ topology [2, Corollary 6.40]. This allows
us to obtain the following which will be useful in the sequel.

Theorem 2.2 Let H ⊆ B∗ be a weak∗ closed set. If C is lower semicontinuous at
x ∈ Y , then the map C◦ ∩ H is norm-to-weak∗ closed at x.

Proof Let {(xα, x∗
α)} be a net which converges to (x, x∗) with respect to the

norm×weak∗ topology and x∗
α ∈ C◦(xα) ∩ H for all α. The limit x∗ ∈ H since

H is weak∗ closed and now the proof follows the same line of reasoning of the proof
of Theorem 2.1. ��

Now, let us consider the particular case of the pointwise polar to the shifted sublevel
set of a quasiconvex function. More precisely, let f : X → R∪{+∞} be an extended-
valued function. Define for any λ ∈ R ∪ {+∞} the sublevel and the strict sublevel
set of f at level λ by Sλ = {x ∈ X : f (x) ≤ λ} and S<

λ = {x ∈ X : f (x) < λ},
respectively. Clearly S∞ = X and S<∞ = dom f . The function f is quasiconvex if Sλ

is convex for all λ ∈ R. Now, we recall the notion of adjusted level set introduced in
[8].
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Definition 2.1 Let f : X → R ∪ {+∞} and x ∈ X . The adjusted sublevel set of f at
x is

Saf (x) =
{
S f (x) if x ∈ arg min f
S f (x) ∩ B(S<

f (x), ρx ) if x /∈ arg min f ,

where ρx = inf{‖y − x‖ : y ∈ S<
f (x)} and

B(S<
f (x), ρx ) = {z ∈ X : ‖y − z‖ ≤ ρx , ∀y ∈ S<

f (x)}.

Note that S<
f (x) ⊆ Saf (x) ⊆ S f (x) for all x ∈ X . Moreover, the convexity of the

adjusted sublevel sets characterizes the quasiconvexity of the function.

Theorem 2.3 (Proposition 2.4 in [8]) The extended-valued function f is quasiconvex
if and only if Saf (x) is convex, for every x ∈ X.

In general, even if f is continuous on a finite-dimensional space, themap Saf : X ⇒
X need not to be upper semicontinuous (see Example 3.1 in [1]). However, mirroring
the proof of Theorem 3.1 in [1], the lower semicontinuity of Saf can be shown in the
infinite-dimensional case.

Theorem 2.4 Let f be quasiconvex. If S f (x) is closed for all x ∈ X, then the map Saf
is lower semicontinuous.

To any quasiconvex function f , we associate the set-valued map Na : X ⇒ X∗
defined by

Na(x) = (Saf (x) − x)◦ = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Saf (x)}.

The map Na has nonempty convex weak∗ closed values, and if int S<
f (x) �= ∅, then

Na(x) is different from {0}. Indeed, S<
f (x) ⊆ Saf (x) implies int Saf (x) �= ∅ and,

since x /∈ int Saf (x), by the separation theorem, there exists x∗ ∈ X∗ \ {0} such that
〈x∗, y〉 ≤ 〈x∗, x〉 for each y ∈ Saf (x).

When we are dealing with a cone-valued map, the concept of upper semicontinuity
is not appropriate to picture the behavior of the map and it is convenient to slightly
alter the definition. A cone-valued map Φ : Y ⇒ Z between the topological space Y
and the topological vector space Z is called

– cone upper semicontinuous [13] at y ∈ Y if for every open cone K such that
Φ(x) ⊆ K ∪ {0}, there exists a neighborhoodUy of y such that Φ(y′) ⊆ K ∪ {0},
for all y′ ∈ Uy ;

– base upper semicontinuous [8] at y ∈ Y if there exist a neighborhoodUy of y and
a set-valued map A : Uy ⇒ Z such that A(y′) is a base of Φ(y′) for each y′ ∈ Uy

and A is upper semicontinuous at y.

Some remarks are needed. If Φ is base upper semicontinuous at y ∈ Y , then there
exists a neighborhood Uy of y such that Φ(y′) �= {0} for each y′ ∈ Uy . Instead, if Φ

is cone upper semicontinuous at y /∈ domΦ then there exists a neighborhoodUy of y
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such thatΦ(y′) ⊆ {0} for each y′ ∈ Uy . Therefore, ifΦ is cone upper semicontinuous
and Φ(y) admits a base for each y ∈ Y then domΦ is closed. Moreover, the base
upper semicontinuity of Φ at y implies the cone upper semicontinuity at the same
point.

The reverse implication has been shown in [8] when Y is a Banach space X , Z is its
dual space X∗ endowedwith theweak∗ topology,Φ(y) admits a base, andΦ(y′) �= {0}
for all y′ in a suitable neighborhood of y. Moreover, the norm-to-weak∗ cone upper
semicontinuity ofΦ implies its norm-to-weak∗ closedness if themap admits a compact
base at every point [12, Proposition 2.3].

Focusing on the normal operator, in [8, Proposition 3.5] the authors showed that Na

is norm-to-weak∗ base upper semicontinuous. The main result of this section consists
in passing from the local existence to the global existence.

Theorem 2.5 Let f : X → R ∪ {+∞} be quasiconvex and lower semicontinuous.
Assume that

int S<
f (x) �= ∅, ∀x /∈ arg min f . (1)

Then

(i) Na is norm-to-weak∗ closed at any x /∈ arg min f ;
(ii) there exists a norm-to-weak∗ upper semicontinuous set-valued map T : X ⇒ B∗

such that T (x) is a weak∗ compact base of Na(x), for all x /∈ arg min f .

Proof Let z /∈ arg min f be fixed. The first step of the proof consists in finding a
suitable bounded base of Na in a neighborhood of z.

We distinguish two cases. If there exists w ∈ int S<
f (z)\ arg min f , set λ = f (w).

Otherwise, the interior of arg min f is nonempty and fix λ with min f < λ < f (z).
In both cases, we have λ < f (z) and there exists wz ∈ int S<

λ .
Now, we proceed similarly as in [8, Lemma 3.6]. Since f is lower semicontinuous,

there exists εz > 0 such that

wz + 2εz B ⊆ S<
λ ⊆ S<

f (x), ∀x ∈ z + εz B.

Notice that z + εz B ⊆ X \ arg min f . Thus, for every x ∈ z + εz B and for every

x∗ ∈ N<(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ S<
f (x)},

we obtain the following:

〈x∗, wz + 2εzu − x〉 ≤ 0, ∀u ∈ B.

It follows that

2εz‖x∗‖∗ = 2εz sup
u∈B

〈x∗, u〉 ≤ 〈x∗, x − wz〉
= 〈x∗, z − wz〉 + 〈x∗, x − z〉
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≤ 〈x∗, z − wz〉 + εz‖x∗‖∗.

Thus,

〈x∗, z − wz〉 ≥ εz‖x∗‖∗, ∀x ∈ z + εz B, x∗ ∈ N<(x).

Set Hz = {x∗ ∈ X∗ : 〈x∗, z − wz〉 = εz}. Obviously, for every x ∈ z + εz B we have
N<(x) ∩ Hz ⊆ B∗. Since Na(x) ⊆ N<(x) and Na(x) \ {0} �= ∅, the nonempty set
Na(x) ∩ Hz ⊆ B∗ is a weak∗ compact base for the cone Na(x). From now on, let
Az : z + εz B ⇒ X∗ be the set-valued map defined by Az(x) = Na(x) ∩ Hz , for all
x ∈ z + εz B.

We prove (i) that is the norm-to-weak∗ closedness of Na at z. Let {(zα, z∗α)} be a
net norm×weak∗ convergent to (z, z∗) such that z∗α ∈ Na(zα), and without loss of
generality, assume that zα ∈ z + εz B for each α. Hence, there exist two nets {tα} ⊆ R

and {y∗
α} such that tα ≥ 0, y∗

α ∈ Az(zα) and z∗α = tα y∗
α , for each α. Therefore,

tα = 〈z∗α, z − wz〉/εz converges to t = 〈z∗, z − wz〉/εz . Moreover, since {y∗
α} is

bounded, by passing to a subnet if necessary, we may assume that y∗
α converges to

y∗ ∈ X∗. Thanks to Theorems 2.2 and 2.4, we have y∗ ∈ Az(z) which implies
z∗ = t y∗ ∈ Na(z).

We prove (ii) and the last step of the proof consists in finding a selection A as a
convex combination of the local maps Az through a partition of unity technique (see
[2, Sect. 2.19] for more details). The family {z + εz int B : z ∈ X\ arg min f } is an
open cover of the space X \ arg min f . Since this space is paracompact, there exists
an open refinement cover U = {Ui : i ∈ I }, i.e., everyUi ∈ U is a subset of some ball
z + εz int B, which is locally finite, i.e., each point x has a neighborhood that meets at
most finitely manyUi . Now, for each i take a z such thatUi ⊆ z+ εz int B and denote
by Ai the map Az corresponding to the ball z + εz B. Moreover, there is a partition
of unity {λi : i ∈ I } subordinate to U such that each λi : X\ arg min f → [0, 1] is
continuous, the finite sum

∑
i∈I λi (x) = 1 for any x and λi (x) = 0 for each x /∈ Ui .

For every x /∈ arg min f , let I (x) = {i ∈ I : λi (x) > 0}, which is nonempty and
finite, and define the map A : X\ arg min f ⇒ X∗ as follows

A(x) =
∑

i∈I (x)
λi (x)Ai (x).

Clearly, A(x) is a weak∗ compact base of Na(x), for all x . Moreover, since all the
values of A are contained in the weak∗ compact ball B∗, the norm-to-weak∗ upper
semicontinuity of A is equivalent to prove that gph A is norm×weak∗ closed. Assume
that the net {xα} converges to x . Since all the λi are continuous, it is not restrictive to
assume that I (x) ⊆ I (xα) for all α and we get

A(xα) =
∑

i∈I (x)
λi (xα)Ai (xα) +

∑

i∈I (xα)\I (x)
λi (xα)Ai (xα).
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Moreover, from the continuity of the functions λi , we deduce

lim
α

∑

i∈I (xα)\I (x)
λi (xα) = 1 − lim

α

∑

i∈I (x)
λi (xα) = 0. (2)

Now, let {x∗
α} be a net which weakly∗ converges to x∗ and such that x∗

α ∈ A(xα), for
any α. Then, there exist x∗

i,α ∈ Ai (xα) for every i ∈ I (xα) such that

x∗
α =

∑

i∈I (x)
λi (xα)x∗

i,α +
∑

i∈I (xα)\I (x)
λi (xα)x∗

i,α. (3)

The second addend of (3) weakly∗ converges to zero since, thanks to (2), it converges
to zero in norm

∥
∥
∥
∥
∥
∥

∑

i∈I (xα)\I (x)
λi (xα)x∗

i,α

∥
∥
∥
∥
∥
∥∗

≤
∑

i∈I (xα)\I (x)
λi (xα)‖x∗

i,α‖∗ ≤
∑

i∈I (xα)\I (x)
λi (xα).

On the other hand, without loss of generality, we may assume that {x∗
i,α} weakly∗

converges to some x∗
i , for every i ∈ I (x). Since Theorem 2.2 guarantees that Ai is

norm×weak∗ closed at x , we obtain x∗
i ∈ Ai (x) and x∗ ∈ A(x) follows from (3)

taking the weak∗ limit. Finally, let T : X ⇒ X∗ be defined as

T (x) =
{
B∗ if x ∈ arg min f
A(x) if x /∈ arg min f .

Since arg min f is closed and A(x) ⊆ B∗, then T is norm-to-weak∗ upper
semicontinuous and the proof is completed. ��

Remark 2.1 For proving Proposition 3.5 in [8], the authors required that int Sλ �= ∅,
for all λ > inf f . Our assumption (1) is clearly weaker. Consider, for example, the
function f : R → R defined by f (x) = |x | if x �= 0 and f (0) = −1. Then (1) holds
but int Sλ = ∅ for any level λ such that −1 = inf f < λ ≤ 0.

Statement (i) has been proved in [6] where x ∈ dom f \ arg min f . The assumption
in [6, Proposition 4.3], that is, for each x /∈ arg min f there exists λ < f (x) such that
int Sλ �= ∅, coincides with ours. Recently, the same result has been proved avoiding
assumption (1) but in the finite-dimensional case [1].

Taking advantage of the compactness of the unit sphere S in Rn and the closedness
of Na , Aussel and Cotrina deduced [6, Proposition 4.4] the upper semicontinuity of
the normalized submap Na ∩ S : Rn\ arg min f ⇒ B. Unfortunately, their technique
does not work in the infinite-dimensional case, since the sphere is not weak∗ compact.
A workaround for this issue in a Banach space is to consider firstly the intersection
with a hyperplane in a neighborhood of each point and then to use a partition of unity
technique as done in the proof of statement (ii) of Theorem 2.5.
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3 An Existence Result for Generalized Quasivariational Inequalities

One of the main advantages of the normal operator approach is that it provides a
sufficient optimality condition for a quasiconvex optimization problem expressed by
a variational inequality. Given a nonempty subset C of X and a map T : C ⇒ X∗, the
generalized variational inequality GV I (T ,C) consists in finding

x ∈ C such that ∃x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀y ∈ C .

This problem has its origins with Stampacchia and Fichera and it provides a broad
unifying setting for the study of optimization, complementarity problems, and,more in
general, equilibriumproblems. In a recent paper [5], the authors established a sufficient
optimality condition based on the following continuity-type hypothesis.

Definition 3.1 A quasiconvex function f : X → R is said to be sub-boundarily
constant on C ⊆ X if, for every x, y ∈ C , one has that

y ∈ S<
f (x) �⇒ ]y, x[⊆ int Saf (x).

As observed in [5], if f is radially continuous or X = R, then f is sub-boundarily
constant. Anyway, the family of the sub-boundarily constant functions is quite large.

Example 3.1 The function f : R2 → R defined by

f (x, y) =
{
x2 + y2 if (x, y) ∈ B
x2 + y2 + 1 otherwise

is quasiconvex, lower semicontinuous and sub-boundarily constant. Clearly, it is not
radially continuous.

Nevertheless, not all the quasiconvex functions are sub-boundarily constant.

Example 3.2 The function f : R2 → R defined by

f (x, y) =
{
2x/(x + 1) if x, y ≥ 0
3 otherwise

is quasiconvex, but it is not sub-boundarily constant on C = {(x, 0) : x ≥ 0}. Indeed,
take (0, 0) and (1, 0) in C . Then f (0, 0) = 0 < 1 = f (1, 0) and each element (t, 0)
with t ∈ (0, 1) does not belong to int Saf (1, 0) = (0, 1) × (0,+∞).

The following result was proved when X = Rn [5, Proposition 2.9], but the same
proof works in the infinite-dimensional case and it is omitted.

Theorem 3.1 Let C be a nonempty subset of X and f : X → R be a quasiconvex and
sub-boundarily constant function on C. Then, any solution of GV I (Na

f \ {0},C) is a
global minimizer of f over C.
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This variational approach may be useful also for studying the existence of solu-
tions for optimization problems where the feasible region of each agent depends by
the choices of the other agents. For this reason, we introduce the generalized quasi-
variational inequality problem, that is, a generalized variational inequality where the
constraint set is subject to modifications depending on the considered point. In partic-
ular, letC be a nonempty subset of X , T : C ⇒ X∗ and K : C ⇒ C be two set-valued
maps, the generalized quasivariational inequality GQV I (T , K ) consists in finding

x ∈ K (x) such that ∃x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K (x),

that is, x ∈ fix K and it solves the generalized variational inequality GV I (T , K (x)).
One of the most classic existence results forGQV I (T , K ) in the infinite-dimensional
setting is due to Tan and it was stated for locally convex topological vector spaces.

Theorem 3.2 (Theorem 1 in [22]) Let C be compact and convex and K be closed
and lower semicontinuous with nonempty convex values. Assume that T is norm-
to-norm upper semicontinuous with nonempty norm compact convex values, then
GQV I (T , K ) has a solution.

The existence of solutions for GQV I (T , K ) can be obtained with weaker assump-
tions on T if the space X is normed. To this purpose, we need to recall the notion of
inside point of a convex set that appeared in 1956 in the famous Michael’s paper [20].
The convex set S ⊆ C is a face of C if x1, x2 ∈ C , t ∈ (0, 1) and t x1 + (1− t)x2 ∈ S
imply x1, x2 ∈ S. Let FC be the (possibly empty) collection of all proper closed faces
of clC .

Definition 3.2 Let C be a convex subset of X . A point x ∈ C is said to be an inside
point of C if it is not in any proper closed face of clC . Denote by

I (C) = C \
⋃

S∈FC

S

the set of the inside points of C and by D(X) the following family of convex sets

D(X) = {C ⊆ X : C is convex and I (clC) ⊆ C}.

The family D(X) contains all the convex sets which are either closed or with
nonempty relative interior. In particular, when X is finite-dimensionalD(X) coincides
with the family of all convex sets. For further details and a comparison with other
notions of relative interior, the interested reader can refer to [14, 15] and the references
therein. Now, we are in a position to state and prove our existence result.

Theorem 3.3 Let C be convex and K be a compact and lower semicontinuous set-
valued map with nonempty values in D(X), and assume that fix K is closed. If T is
norm-to-weak∗ upper semicontinuous with nonempty weak∗ compact convex values,
then GQV I (T , K ) has a solution.
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Proof Notice that K admits a continuous selection thanks to [15, Theorem3.2]. Hence,
the Schauder fixed point theorem as formulated in [18, Proposition 6.3.2] guarantees
fix K �= ∅.

Let us consider the set-valued map F : fix K ⇒ X defined as

F(x) =
⋂

x∗∈T (x)

{y ∈ X : 〈x∗, y − x〉 < 0} =
{

y ∈ X : max
x∗∈T (x)

〈x∗, y − x〉 < 0

}

.

Clearly, F has convex values. To prove that F has open graph in fix K × X , it is
sufficient to show that the function m : fix K × X → R defined as

m(x, y) = max
x∗∈T (x)

〈x∗, y − x〉

is upper semicontinuous. First, fix K is compact since closed subset of the compact
set which contains K (C). From Aliprantis and Border [2, Lemma 17.8], the subset
T (fix K ) is weak∗ compact; hence, it is norm bounded. Thanks to Aliprantis and
Border [2, Corollary 6.40], the duality pairing 〈·, ·〉 restricted to T (fix K ) × X is
jointly continuous, where X has its norm topology and X∗ has its weak∗ topology;
hence, Aliprantis and Border [2, Lemma 17.30] guarantee the upper semicontinuity
of m.

By contradiction, assume that F(x) ∩ K (x) �= ∅ for all x ∈ fix K . Fix (x0, y0) ∈
gph K and define the map K0 : C ⇒ C as

K0(x) =
{
K (x) if x �= x0
{y0} if x = x0.

K0 is compact and lower semicontinuous, and K0(x) ∈ D(X) for every x ∈ C . From
Castellani and Giuli [15, Theorem 3.2], the map K0 admits a continuous selection.
From Aubin and Cellina [3, Proposition 1.10.4], we deduce that F ∩ K is locally
selectionable, that is, for all z ∈ fix K and y ∈ F(z)∩K (z), there exists a neighborhood
Uz of z such that the restriction of F∩K toUz admits a continuous selection fz passing
through (z, y). Since fix K is paracompact, there exists a locally finite open covering
U = {Ui : i ∈ I } where every Ui ∈ U is a subset of some Uz : let us denote by fi
the map fz corresponding to Uz . Moreover, there is a partition of unity {λi : i ∈ I }
subordinate to U such that each λi : fix K → [0, 1] is continuous, the finite sum∑

i∈I λi (x) = 1 for any x and λi (x) = 0 for each x /∈ Ui . For every x ∈ fix K ,
let I (x) = {i ∈ I : λi (x) > 0}, which is nonempty and finite, and define the map
f : fix K → C as follows

f (x) =
∑

i∈I (x)
λi (x) fi (x).

Clearly, f is continuous. Furthermore, f is a selection of F∩K . Indeed, for x ∈ fix K
we have x ∈ Ui , for all i ∈ I (x), so fi (x) ∈ F(x) ∩ K (x) which implies f (x) ∈
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F(x)∩K (x) since F(x)∩K (x) is convex. Therefore, the set-valued map Υ : C ⇒ C
defined as

Υ (x) =
{
K (x) if x /∈ fix K
{ f (x)} if x ∈ fix K

is lower semicontinuous [15, Lemma2.3]with values in the classD(X). Hence,Castel-
lani and Giuli [15, Theorem 3.2] guarantee that f can be extended to a continuous
selection ϕ for Υ . The Schauder fixed point theorem guarantees that ϕ has a fixed
point, that is, there exists x ∈ C such that x = ϕ(x) ∈ Υ (x). Clearly x ∈ fix K and
this implies x = f (x) ∈ F(x) which is absurd. Therefore, there exists x ∈ fix K such
that F(x) ∩ K (x) = ∅, that is,

inf
y∈K (x)

max
x∗∈T (x)

〈x∗, y − x〉 ≥ 0.

Invoking the Sion’s minimax theorem [21], we deduce that

max
x∗∈T (x)

inf
y∈K (x)

〈x∗, y − x〉 ≥ 0,

which means that x solves the generalized quasivariational inequality. ��
Remark 3.1 Let us compare our result with Theorem3.2 due toTan. The first difference
is about the setting: Tan’s result works in a locally convex topological vector space;
instead, Theorem 3.3 is stated in a Banach space. Nevertheless, the other assumptions
of Theorem 3.3 are rather weaker than the ones in Theorem 3.2. Maybe, the most
significant improvement consists in requiring the norm-to-weak∗ upper semicontinuity
of T instead of the stronger norm-to-norm upper semicontinuity. Moreover, the values
of T are assumed weakly∗ compact instead of norm compact. Also, the assumptions
on K are weaker. In Theorem 3.2, the map K is closed, which implies the closedness
of K (x), for all x . Conversely, in Theorem 3.3 we require only the closedness of fix K ,
which is necessary for the closedness of K , and K (x)may not be closed but belonging
to the class D(X) only. Lastly, we do not assume the compactness of C , not even its
closedness, but only the fact that K (C) is contained in a compact set.

The following example highlights the improvements of Theorem 3.3.

Example 3.3 LetC = B be the closed unit ball in an infinite-dimensional Banach space
X and fix x0 ∈ X , x∗

0 ∈ X∗ such that ‖x0‖ = 1, ‖x∗
0‖∗ = 2 and 〈x∗

0 , x0〉 < −3/2.
Define K : C ⇒ C by

K (x) =
{ ] − x0, ‖x‖x0] if x �= −x0

[−x0, x0] if x = −x0

and T : C ⇒ X∗ by

T (x) = {x∗ ∈ X∗ : ‖x∗ − x∗
0‖∗ ≤ ‖x‖}.
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Then all the assumptions of Theorem 3.3 are satisfied. In particular, the compact set
fix K = [−x0, x0] contains all the values of the lower semicontinuous map K , and
T is norm-to-weak∗ upper semicontinuous with weak∗ compact values. The solution
set of GQV I (T , K ) is [0, x0]. Nevertheless, Theorem 3.2 cannot be applied since
C is not compact, K is not closed and T has no norm compact values. Moreover,
if the Banach space X is not reflexive, the map T is not even norm-to-norm upper
semicontinuous. Indeed, X∗ is not reflexive and James [19, Theorem 2] affirms that
there is a linear continuous functional x∗∗ ∈ X∗∗ of norm 1 which does not attain its
norm. Hence, fixed x ∈ C with ‖x‖ = 1/2, the open set

V = x∗
0 + {x∗ ∈ X∗ : 〈x∗∗, x∗〉 < 1/2}

contains T (x0), but the distance of T (x0) to the boundary of V is zero. So T (x ′) � V
whenever ‖x ′‖ > 1/2.

Generalized quasivariational inequality problems over product sets are of great
interest in game theory. This particular format is when

X =
∏

i∈I
Xi C =

∏

i∈I
Ci K =

∏

i∈I
Ki ,

where I is a finite index set, and for each i ∈ I , Xi is a normed space with X∗
i its

topological dual, Ci ⊆ Xi is a nonempty set, and Ki : C ⇒ Ci is a set-valued map.
Denote by xi the i-component of an element x ∈ X , and by 〈·, ·〉i the duality pairing
of (X∗

i , Xi ). Here, the product map K : C ⇒ X is defined as K (x) = ∏
i∈I Ki (x).

The problem consists in finding a fixed point x ∈ K (x) such that for each i ∈ I
there exists x∗

i ∈ Ti (x) with

∑

i∈I
〈x∗

i , yi − xi 〉i ≥ 0, ∀y ∈ K (x),

whereTi : X ⇒ X∗
i . Ifwedenote byT : X ⇒

∏
i∈I X∗

i the productmapT = ∏
i∈I Ti ,

then the designation of this problem as GQV I (T , K ) is a certain abuse of notation
due to the fact that the range space of T is the product of the dual spaces instead of
the dual of the product X∗ = (

∏
i∈I Xi )

∗. However, we stress the fact that these two
vector spaces are isomorphic taking the bijection

x∗ �→
∑

i∈I
x∗
i

and that this map is a homeomorphism when considering the product of the weak∗
topologies on

∏
i∈I X∗

i and the weak∗ topology on X∗.
The study of the existence of solutions to GQV I (T , K ) by requiring the regularity

of the component set-valued maps Ti and Ki only is not always possible if certain gen-
eralized monotonicity and continuity assumptions are needed. For a comprehensive
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analysis of the problem, the interested reader can refer to Aussel et al. [4] and the refer-
ences therein.Working without monotonicity conditions, we obtain an existence result
for product-type generalized quasivariational inequalities as a natural consequence of
Theorem 3.3.

Corollary 3.1 Let Xi be Banach spaces, Ci ⊆ Xi be convex, and Ki be compact and
lower semicontinuous set-valued maps with nonempty values in D(Xi ). Assume that
fix K is closed. If Ti are norm-to-weak∗ upper semicontinuous with nonempty weak∗
compact convex values, then GQV I (T , K ) has a solution.

Proof TheTychonoff’s theoremguarantees the compactness of themap K , andLemma
3.3 in [15] implies that K has nonempty values inD(X). Moreover, according to Berge
[11, Theorems VI.2.4 and VI.2.4′], the lower semicontinuity and the norm-to-weak∗
upper semicontinuity are preserved by the product of set-valued maps. Hence, all the
assumptions of Theorem 3.3 are verified and the conclusion follows. ��

We conclude with an application of Theorems 2.5 and 3.3 to a quasioptimization
problem which is not a standard optimization problem since, analogously to the qua-
sivariational inequalities, the constraint set is subject to modifications. Given C ⊆ X
nonempty, K : C ⇒ C and f : C → R, a quasioptimization problem consists in
finding

x ∈ K (x) such that f (x) ≤ f (y), ∀y ∈ K (x).

Clearly, if K (x) = C for all x ∈ C , the quasioptimization problem reduces to the clas-
sical optimization problem. The quasioptimization problem highlights the parallelism
to quasivariational inequalities that express the optimality conditions. As pointed out
in [17], if f stands for the gap function of the Nikaido–Isoda function associated
with a convex generalized Nash equilibrium problem, then x is a solution of the qua-
sioptimization problem with f (x) = 0 if and only if x solves the generalized Nash
equilibrium problem.

Theorem 3.4 Let C be convex and K be a compact and lower semicontinuous set-
valued map with nonempty values in D(X) and fix K be closed. Assume that f :
X → R is lower semicontinuous, sub-boundarily constant on C, quasiconvex and (1)
holds. Then the quasioptimization problem has a solution.

Proof Let T : X ⇒ X∗ be the norm-to-weak∗ upper semicontinuous set-valued
map obtained in Theorem 2.5. In this way, thanks to Theorem 3.3, it follows that
GQV I (T , K ) has a solution x ∈ C . Hence, x ∈ fix K and it solves the generalized
variational inequality GV I (T , K (x)). Clearly, if x ∈ arg min f , then f (x) ≤ f (y)
for all y ∈ K (x). Instead, if x /∈ arg min f , since

T (x) ⊆ Na(x) \ {0},

x is a solution to the generalized variational inequality associated with the operator
Na \ {0} and the feasible set K (x). The thesis follows from Theorem 3.1. ��
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In [6], Aussel and Cotrina proposed two existence results for a quasioptimization
problem with a quasiconvex objective function: Proposition 4.2, when X is a Banach
space and Proposition 4.5 when X = Rn . Such results were extended to locally convex
topological vector spaces in [16, Corollary 3.2]. Very recently, Theorem 8 in [10] has
improved slightly the result in [16] since the compactness of the feasible region C is
replaced by the compactness of K .

Theorem 3.4 is stated in a Banach space but with weaker assumptions on f and K .
Indeed, the continuity of f has been replaced by some continuity-like properties of its
sublevel sets, the values of K are not necessarily closed and the upper semicontinuity
K is not required as done in [10, 16].

4 Conclusions

In this work, we prove the existence of a globally defined upper semicontinuous
and base-valued submap of the normal cone operator to the adjusted sublevel sets
of a quasiconvex function. The result is stated in a Banach space and it opens the
door to potential applications in optimization and economics via a reformulation in
terms of variational inequalities. An existence result for quasivariational inequalities
is proved in this regard. In particular, our result is obtained without any assumption of
monotonicity which is not usually inherited by the product of set-valued maps. This
allows us to cover the case of quasivariational inequalities over product sets. Hence,
although it is out of the scope of this paper, applications to generalized Nash equilib-
rium problems could be a natural extension of this work. In the end, an application to
quasioptimization problems is considered.

Funding Open access funding provided by Università degli Studi dell’Aquila within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Al-Homidan, S., Hadjisavvas, N., Shaalan, L.: Transformation of quasiconvex functions to eliminate
local minima. J. Optim. Theory Appl. 177, 93–105 (2018). https://doi.org/10.1007/s10957-018-1223-
7

2. Aliprantis, C., Border, K.: Infinite Dimensional Analysis. AHitchhikers Guide. Springer, Berlin (2006)
3. Aubin, J., Cellina, A.: Differential Inclusions. Set-valued Maps and Viability Theory. Springer, Berlin

(1984)
4. Aussel, D., Van Cao, K., Salas, D.: Quasi-variational inequality problems over product sets with quasi-

monotone operators. SIAM J. Optim. 29, 1558–1577 (2019). https://doi.org/10.1137/18M1191270

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10957-018-1223-7
https://doi.org/10.1007/s10957-018-1223-7
https://doi.org/10.1137/18M1191270


Journal of Optimization Theory and Applications (2024) 200:858–873 873

5. Aussel, D., Van Cao, K., Salas, D.: Existence results for generalized Nash equilibrium problems under
continuity-like properties of sublevel sets. SIAM J. Optim. 31, 2784–2806 (2021). https://doi.org/10.
1137/20M1353629

6. Aussel, D., Cotrina, J.: Quasimonotone quasivariational inequalities: existence results and applications.
J. Optim. Theory Appl. 158, 637–652 (2013). https://doi.org/10.1007/s10957-013-0270-3

7. Aussel, D., Daniilidis, A.: Normal characterization of the main classes of quasiconvex functions.
Set-Valued Anal. 8, 219–236 (2000). https://doi.org/10.1023/A:1008728926224

8. Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator, and quasi-convex programming.
SIAM J. Optim. 16, 358–367 (2005). https://doi.org/10.1137/040606958
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