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Abstract
In this work, we present a fast, globally convergent, iterative algorithm for com-
puting the asymptotically stable states of nonlinear large-scale systems of quadratic
autonomous ordinary differential equations (ODE) modeling, e.g., the dynamic of
complex chemical reaction networks. Toward this aim, we reformulate the problem
as a box-constrained optimization problem where the roots of a set of nonlinear equa-
tions need to be determined. Then, we propose to use a projected Newton’s approach
combined with a gradient descent algorithm so that every limit point of the sequence
generated by the overall algorithm is a stationary point. More importantly, we sug-
gest replacing the standard orthogonal projector with a novel operator that ensures
the final solution to satisfy the box constraints while lowering the probability that
the intermediate points reached at each iteration belong to the boundary of the box
where the Jacobian of the objective function may be singular. The effectiveness of the
proposed approach is shown in a practical scenario concerning a chemical reaction
network modeling the signaling network of colorectal cancer cells. Specifically, in
this scenario the proposed algorithm is proved to be faster and more accurate than a
classical dynamical approach where the asymptotically stable states are computed as
the limit points of the flux of the Cauchy problem associated with the ODE system.
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1 Introduction

This paper is focused on the solution of root-finding problems in several variables
where the system is composed by algebraic second-degree equations. This kind of
problem is of interest in many application areas, including queuing problems, neu-
tron transport theory, linear quadratic differential games (see, e.g., [29] and references
therein). Our work is motivated by the study of nonnegative steady states of biolog-
ical interaction networks which frequently arise in systems biology [10, 18, 19]. In
particular, the problem of determining the steady states of complex chemical reaction
networks (CRNs) in healthy and cancer cells is considered [23, 34]. In this respect,
the G1/S transition of the cell cycle is a critical time when a cell becomes healthy
or cancerous depending on the presence of certain predetermined genetic mutations.
Several hundreds of proteins and as many reactions are involved in this transition,
resulting in large ODE systems. A method for rapidly solving the system of equations
is critical for modeling therapies that alter the rate constants of the system, such as
current molecularly targeted therapies. The in silico study of these therapies is a pri-
mary perspective that this method aims to support. Indeed, by applying the law ofmass
action, the kinetics of the concentration of the proteins involved in the network can
be modeled by a large first-order polynomial system of ordinary differential equations
(ODEs). Finally, when no exogenous factors are considered, the equation system is
quadratic and autonomous [8, 17, 44]. From an abstract point of view, steady states
of large system of quadratic equations are far from being known, as a general theory
exists up to the two-dimensional case [31]. In the case of an ODE representing a CRN,
unknown concentrations cannot assume negative values, and then, the asymptotically
steady states must fulfill the nonnegative constrained algebraic system of equations
deriving from setting equal to zero the time derivatives of theODE system. The number
of involved unknown protein concentrations may scale up to several hundreds, and an
efficient and accurate algorithm to solve the nonnegative steady-state problem is at the
basis of tuning the kinetic parameters of the ODE system starting from experimental
data, thus enabling the study of cell cancer behavior in real applications.

From a computational point of view, equilibrium can be found either in the direct
way by taking the limit of the flux of the ODEs, or imposing the vanishing of the
derivatives and solving the corresponding root-finding problem. The direct approach
is computationally expensive, especially when the orbits of the dynamical system are
bent around the equilibrium point as the time to run across the orbit may become arbi-
trarily large [15]. On the other hand, the main drawback of the second strategy is that
these systemsdonot usually showanymathematical propertywhich can ensure conver-
gence of the root-finding algorithm. Indeed, pertinent good mathematical properties,
such as matrix positive definiteness, depend on the form of the considered biological
network and are not ensured in a general case. The typical structure of the ODE system
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associated with a chemical reaction network (based on the mass action law) not only
prevents us from exploiting recentmethods to find the steady-state solutions by solving
vector quadratic equations [29], but also makes it difficult to use classical methods,
such as the Newton’s or gradient descent methods. Indeed, as the nonnegative steady
state normally belongs to the frontier of the positive cone, and therefore, it has many
components equal to zero, classical nonnegative projected Newton-type methods are
unstable as the Jacobian matrix—computed in a neighborhood of the solution—is
strongly sparse and noninvertible. Moreover, classical projected gradient methods are
known to be stable but with slow convergence, especially in cases of coupling them
with a nonnegative projection.

In this work, we propose to overcome these limitations, by introducing a root-
finding strategy based on combining steps of Newton’s method and steps of gradient
descent. While the Newton’s method is applied to the algebraic equation system, the
gradient descent is applied by scalarizing the system, i.e., minimizing the norm of the
l.h.s. of the equation system [24]. To make the Newton’s method more stable, instead
of the standard orthogonal projection, we use a nonlinear projection operator onto
the nonnegative orthant that is substantially an idempotent operator providing small
positive entries rather than zero components. Doing so, it improves the condition
number of the Jacobian matrix preventing the Newton’s step to be unstable and hence
making regularization unnecessary. Therefore, we combine the (nonlinearly projected)
Newton’s method with a gradient method to iteratively refine the starting point of the
former until we get the convergence to a nonnegative stationary point. We prove the
convergence of this combined technique provided that a proper backtracking rule on
the gradient method is considered. Moreover, we test the efficiency of the proposed
technique in the case of simulated CRN data, showing that, compared to standard ODE
solvers, thismethod computes the steady states achieving greater accuracy in less time.
TheMATLAB® codes implementing the proposed approach are freely available at the
GitHub repository https://github.com/theMIDAgroup/CRC_CRN.git.

The rest of the paper is organized as follows. In Sect. 2, we introduce the mathe-
matical formulation of the problem and we describe the proposed algorithm whose
convergence properties are studied in Sect. 3. In Sect. 4, we consider the problem of
finding the asymptotically steady states of a CRN and we reformulate it as a nonneg-
ative constrained root-finding problem. In Sect. 5, we show the results obtained by
applying NLPC to a CRN designed for modeling cell signaling in colorectal cells and
the most common mutations occurring in colorectal cancer. Finally our conclusions
are offered in Sect. 6.

2 Mathematical Formulation

We consider the box-constrained set of nonlinear equations

f(x) = 0

x ∈ Ω, (1)
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whereΩ =�n
i=1 Ωi ⊆ R

n is the Cartesian product of n closed intervalsΩi ⊆ R, and
f : R

n → R
n is a continuously differentiable function onΩ . In the considered problem

of finding the nonnegative steady states of quadratic autonomous ODE systems, f is
composed by second-degree polynomials and Ω is the positive convex cone.

Several numerical approaches have been proposed to solve (1). Among these, a
classical fast approach is the projected Newton’s method [2, 3] where the projector on
the closed convex set Ω , P : R

n → Ω such that for all z ∈ R
n

P(z) = argmin
y∈Ω

||y − z||, (2)

is applied at each iteration of a Newton’s scheme so that the final solution satisfies
the box constraints in (1). However, in the general case convergence properties of
the projected Newton’s methods strongly depend on the initial point, as no global
convergence is guaranteed [26]. Additionally, the standard orthogonal projector P
tends to provide iterative estimates on the boundary ofΩ (e.g., when Ω is the positive
cone P sets to zero all the negative components), and therefore, it may compromise
the stability of the Newton’s method as the Jacobian of f can be singular computed at
these boundary estimates.

An alternative approach toNewton’smethod consists in using the projected gradient
descent method [21, 25] for solving the optimization problem

x = argmin
x∈Ω

Θ(x), (3)

where

Θ(x) = 1

2
||f(x)||2. (4)

As opposite to Newton’s method, many convergence results may be proved for the
projected gradient methods, see, e.g., [3, 42] and references therein. On the other hand,
the projected gradient method only has a sub-linear convergence rate and thus results
to be slower than the Newton’s algorithm also when properly designed strategies for
selecting the step size are used [1, 11, 12, 33].

Motivated by this consideration, some recent works have proposed to combine the
two approaches [9, 13, 22, 36]. Along this lines we present the nonlinearly projected
combined (NLPC) method that is summarized in Algorithm 1. The main ideas behind
NLPC are two. First of all, we replace the classical projector with a novel operator
P , introduced in the following definition, that ensures the constraint x ∈ Ω to be
respected while lowering the probability that the points defined at each iteration reach
the boundary of Ω .

Definition 2.1 GivenΩ =�n
i=1 Ωi ,Ωi ⊆ R convex for all i ∈ {1, . . . , n}, and given

x = (x1, . . . , xn)� ∈ Ω , we define the operator P( · ; x) : R
n → Ω so that, for all

z ∈ R
n , P(z ; x) = (p1(z1 ; x1), . . . , pn(zn ; xn))� where
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Fig. 1 a Example where i ∈ B(x, d). b Example where i ∈ Mα(x, d) and i ∈ N2α(x, d)

pi (v ; w) =
{

v if v ∈ Ωi

w if v /∈ Ωi

with v ∈ R and w ∈ Ωi ⊂ R.

The second idea behind NLPC method was inspired by [9] and consists in trying at
each iteration a fixed number of step lengths α j , j ∈ {0, . . . , J }, along the Newton’s
direction dk , where dk is defined as the solution of the set of equations Jf (xk)dk =
−f(xk), being Jf (xk) the Jacobian matrix of f evaluated in xk . If none of the tested
step sizes satisfies the Armijo Rule

‖f(P(xk + α jdk ; xk))‖ ≤
√
1 − α jσN ‖f(xk)‖, (5)

we then move along the gradient descent direction with a step size chosen so as to
satisfy two conditions that, as we shall prove in Theorem 3.5, guarantee a convergence
result for NLPC algorithm.

3 Convergence Properties of the NLPCMethod

Now we present a convergence analysis of NLPC algorithm after describing the main
tools exploited in the algorithm and the main properties of P .

Definition 3.1 Given x ∈ Ω , d ∈ R
n\{0} and α > 0, we define

B(x,d) := {i ∈ {1, . . . , n} s.t . xi + αdi /∈ Ωi ∀α > 0} (6)

Mα(x,d) := {i ∈ {1, . . . , n} s.t . xi + αdi ∈ Ωi } (7)

Nα(x,d) := {1, . . . , n}\ (B(x,d) ∪ Mα(x,d)) . (8)

For the ease of notation, when d = −∇Θ(x), the set defined in (6), (7) and (8) will
be simply denoted as B(x), Mα(x) and Nα(x), respectively.

Remark 3.1 It can be easily shown that, for all α > 0,

B(x,d) ∪ Mα(x,d) ∪ Nα(x,d) = {1, . . . , n} (9)

and the three sets are pairwise disjoint. More in detail, as illustratively depicted in
Fig. 1a, the setB(x,d) contains all the coordinates i that preventd frombeing a feasible
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Algorithm 1: The NLPC algorithm
Input : x0 ∈ Ω; τ ∈ (0, +∞); α, σN , σG , ρ ∈ (0, 1); J ∈ N\{0}
F L AG ← 0; k ← 0
while ‖f(xk )‖ > τ do

if FLAG=0 then
solve Jf (xk )dk = −f(xk )

j ← 0
while j ≤ J do

xk+1 = P(xk + α jdk ; xk )

if ‖f(xk+1)‖ ≤
√
1 − α j σN ‖f(xk )‖ then

j ← J + 1; F L AG ← 0; k ← k + 1
else

j ← j + 1; F L AG ← 1
end

end
else

dk = −∇Θ(xk )

j ← 0
while F L AG = 1 do

xk+1 = P(xk + α jdk ; xk )

if
Θ(xk+1) ≤ Θ(xk ) + σG∇Θ(xk )T(xk+1 − xk )

and√ ∑
i∈M

α j (xk )

(Pi (xk,i + dk,i ) − xk,i )
2 ≥ ρ

√ ∑
i∈N

α j (xk )

(Pi (xk,i + dk,i ) − xk,i )
2

then
F L AG ← 0; k ← k + 1

else
j ← j + 1

end
end

end
end

direction as moving along the corresponding component di violates the constraint in
(1). As an example, when Ω =�n

i=1[�i , ui ], �i < ui ,

B(x,d) = {i ∈ {1, . . . , n} s.t . (xi = �i ∧ di < 0) ∨ (xi = ui ∧ di > 0)} .

Instead, fixed a step size α > 0, Mα(x,d) contains all the components i for which
xi + αdi still satisfies the constraint of the problem, while Nα(x,d) collects the
components for which the step size α is too big, but a feasible vector may be found
by lowering it, see Fig. 1b.

Proposition 3.1 Given x ∈ Ω and d ∈ R
n it holds

(a) For all α > 0

(x − P(x + αd ; x))T (x + αd − P(x + αd ; x)) = 0 (10)
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and

||P(x + αd ; x) − x|| = α

√ ∑
i∈Mα(x,d)

d2
i ; (11)

(b) g : (0,∞) → Ω s.t. g(α) = P(x + αd ; x) is continuous in 0;
(c) ϕ : (0,∞) → R s.t. ϕ(α) = ||P(x+αd ; x)−x||

α
is monotonically nonincreasing.

Proof (a) Equations (10) and (11) follow from Definition 2.1 which implies

(x−P(x + αd ; x))T (x + αd − P(x + αd ; x))

=
n∑

i=1

(xi − pi (xi + αdi ; xi )) (xi + αdi − pi (xi + αdi ; xi ))) = 0

and

||P(x + αd ; x) − x|| =
√√√√ n∑

i=1

(pi (xi + αi di ; xi ) − xi )2 = α

√ ∑
i∈Mα(x,d)

d2
i .

(b) The result directly follows from Eq. (11). Indeed

||g(α) − g(0)|| = ||P(x + αd ; x) − x|| = α

√ ∑
i∈Mα(x,d)

d2
i ≤ α ||d|| −−−−→

α→0+ 0.

(c) We observe that Eq. (11) implies ϕ(α) =
√∑

i∈Mα(x,d) d2
i . Since Ωi is a convex

set, given 0 ≤ α1 ≤ α2 it holds Mα2(x,d) ⊆ Mα1(x,d), and thus,

ϕ(α1) − ϕ(α2) =
√ ∑

i∈Mα1 (x,d)

d2
i −

√ ∑
i∈Mα2 (x,d)

d2
i ≥ 0.

��
As we shall see in the next theorems, the results shown in Proposition 3.1 allow

us to prove convergence properties of the proposed NLPC algorithm similar to those
holding when the classical projector on the closed set Ω is employed instead of the
operator P [3, 9].

Theorem 3.1 Given Θ : R
n → R a continuously differentiable function on Ω and

x ∈ Ω , then x is a stationary point of Θ in Ω iff

P(x − α∇Θ(x) ; x) = x ∀α > 0. (12)
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Proof Let us consider the projector P on the closed convex set Ω , defined in Eq. (2).
The following properties hold: (i) P(z) = (P1(z1), . . . , Pn(zn)), being

Pi (zi ) =
⎧⎨
⎩

�i if zi ≤ �i

zi if �i < zi < ui

ui if zi ≥ ui

,

where we denoted Ωi = [�i , ui ] with �i , ui ∈ R ∪ {±∞}; and (ii) x is a stationary
point iff P(x − α∇Θ(x)) = x ∀α > 0 [3].

We now assume that condition (12) holds, and thus, ∀i ∈ {1, . . . , n},

pi (xi − α∂iΘ(x) ; xi ) = xi ∀α > 0.

For each i ∈ {1, . . . , n}, we then have only three possibilities:

– xi ∈ (�i , ui ) and ∂iΘ(x) = 0. Then Pi (xi − α∂iΘ(x)) = P(xi ) = xi ∀α > 0;
– xi = �i and ∂iΘ(x) ≥ 0. In this case, Pi (xi − α∂iΘ(x)) = �i = xi ∀α > 0;
– xi = ui and ∂iΘ(x) ≤ 0. In this case, Pi (xi − α∂iΘ(x)) = ui = xi ∀α > 0.

In all three cases, we obtained Pi (xi − α∂iΘ(x)) = xi ∀α > 0 which implies that
x ∈ Ω is a stationary point on Ω .

Conversely, consider a stationary point x ∈ Ω and let us assume it exists α > 0
such that P(x − α∇Θ(x); x) �= x. From Proposition 3.1 (a) it follows

0 = (x − P(x − α∇Θ(x) ; x))T (x − α∇Θ(x) − P(x − α∇Θ(x) ; x))
= ||x − P(x − α∇Θ(x) ; x)||2 − α∇Θ(x)T (x − P(x − α∇Θ(x) ; x)) ,

and thus,

∇Θ(x)T (P(x − α∇Θ(x) ; x) − x) = −||x − P(x − α∇Θ(x) ; x)||2
α

< 0. (13)

Equation (13) contradicts the assumption of x being a stationary point that would
imply ∇Θ(x)T(z − x) ≥ 0 ∀ z ∈ Ω [3]. ��
Theorem 3.2 Given Θ : R

n → R a continuously differentiable function on Ω and
x ∈ Ω that is not a stationary point of Θ , then it exists α∗ > 0 such that ∀α ∈ (0, α∗]
(P(x − α∇Θ(x) ; x) − x) is a descent direction for Θ .

Proof Since x is not a stationary point, according to Theorem 3.1 it exists α∗ >

0 such that P(x − α∗∇Θ(x); x) �= x, and thus, P(x − α∇Θ(x); x) �= x ∀α ∈
(0, α∗] because Ωi is a convex set ∀ i ∈ {1, . . . , n}. Therefore, from (13) it follows
∇Θ(x)T (P(x − α∇Θ(x) ; x) − x) < 0. ��
Theorem 3.3 Given Θ : R

n → R a continuously differentiable function on Ω , x ∈ Ω

and σG ∈ (0, 1), it exists α > 0 so that for all α ∈ (0, α]

Θ(P(x − α∇Θ(x) ; x)) ≤ Θ(x) + σG∇Θ(x)T (P(x − α∇Θ(x) ; x) − x) . (14)
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Proof If P(x − α∇Θ(x) ; x) = x for all α > 0, then the thesis holds for any α > 0.
Therefore, we can assume it exists α̃ ∈ (0, 1) such that P(x − α∇Θ(x) ; x) �= x for
all α ∈ (0, α̃]. In the following, we shall denote x(α) := P(x − α∇Θ(x) ; x).
By the mean value theorem, it exists ξα on the segment between x and x(α) so that

Θ(x(α)) − Θ(x) = ∇Θ(ξα)T (x(α) − x)

= σG∇Θ(x)T (x(α) − x) − (σG − 1)∇Θ(x)T (x(α) − x)

+ (∇Θ(ξα) − ∇Θ(x)
)T

(x(α) − x) ,

and thus, the inequality (14) can be rewritten as

(∇Θ(ξα) − ∇Θ(x)
)T

(x(α) − x) ≤ (σG − 1)∇Θ(x)T (x(α) − x) .

Since σG < 1, from Proposition 3.1 (c) it follows that

(σG − 1)∇Θ(x)T (x(α) − x) = (1 − σG)
||x(α) − x||2

α

≥ (1 − σG)
||x(̃α) − x||

α̃
||x(α) − x|| > 0.

The theorem is proved if we show that it exists α ∈ (0, α̃] such that
(∇Θ(ξα) − ∇Θ(x)

)T
(x(α) − x) ≤ (1 − σG)

||x(̃α) − x||
α̃

||x(α) − x||,

for all α ∈ [0, α]. This follows from the fact that

lim
α→0

∣∣∣∣(∇Θ(ξα) − ∇Θ(x)
)T (x − x(α))

||x − x(α)||
∣∣∣∣ ≤ lim

α→0
||∇Θ(ξα) − ∇Θ(x)|| = 0,

where the last equality is a consequence of Proposition 3.1 (b) and of the regularity
assumptions on Θ . ��
Theorem 3.4 Given Θ : R

n → R, a continuously differentiable function on Ω , x ∈ Ω ,
and ρ ∈ (0, 1], it exists α > 0 so that, for all α ∈ (0, α], Nα(x) = ∅, and thus,

√ ∑
i∈Mα(x)

(Pi (xi − ∂iΘ(x)) − xi )2 ≥ ρ

√ ∑
i∈Nα(x)

(Pi (xi − ∂iΘ(x)) − xi )2. (15)

Proof For all i ∈ {1, . . . , n} � B(x), we only have three possibilities:

– xi ∈ Ω̊i , where Ω̊i denotes the interior of Ωi . Then, since Ω̊i is an open set,
∃ αi > 0 such that xi − α∂iΘ(x) ∈ Ω̊i ⊆ Ωi ∀α ≤ αi ;

– xi = �i and ∂iΘ(x) < 0. Then xi − α∂iΘ(x) ∈ Ωi ∀α ≤ αi := − ui −�i
∂i Θ(x) ;

– xi = ui and ∂iΘ(x) > 0. Then xi − α∂iΘ(x) ∈ Ωi ∀α ≤ αi := ui −�i
∂i Θ(x) .
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Fig. 2 Illustration of the benefit of the additional condition (15). In a, only the first component of x is
updated as 1 ∈ Mα(x) and 2 ∈ Nα(x). In this scenario, NLPC may get stuck in a point which is not
stationary because the chosen step size is too big and the second component never updated. As shown in b,
inequality (15) prevents this issue by promoting the choice of a smaller step size so that a higher number
of components is updated. Here, x̂ = P(x − α∇Θ(x) ; x), xmin is a stationary point of Θ , and ρ = 1

Therefore, for all i ∈ {1, . . . , n} � B(x) it exists αi > 0 such that i ∈ Mα(x)
∀α ∈ (0, αi ]. By choosing α = min

i∈{1,...,n}�B(x)
αi , it follows that, for all α ≤ α,

Nα(x) = ∅, and thus,

√ ∑
i∈Mα(x)

(Pi (xi − ∂iΘ(x)) − xi )2 ≥ 0 = ρ

√ ∑
i∈Nα(x)

(Pi (xi − ∂iΘ(x)) − xi )2.

(16)

Hence, the theorem is proved. ��
Remark 3.2 The previous theorems hold in particular ifΘ is defined as in equation (4).
Specifically, inequality (14) is the classical Armijo rule along the projection arc where
we employed the operator introduced in Definition 2.1. Inequality (15) is an additional
condition that prevents NLPC from choosing a too large step size that would result
in an actual update of only few components. An illustrative example can be seen in
Fig. 2.

Theorems 3.3 and 3.4 together guarantee that the step size within the gradient
descent step of the NLPC algorithm is well defined.

Henceforth, {xk}k∈N
⊆ Ω and

{
α jk

}
k∈N

shall denote a sequence of points generated
with the NLPC algorithm described in Algorithm 1, and the corresponding step sizes,
respectively. In particular, α ∈ (0, 1), while jk is a suitable exponent whose value
belongs to a different range depending onwhether theNewton’s or the gradient descent
approach has been used at the kth iteration.

Lemma 3.1 Let {xk}k∈N
be a sequence generated with the NLPC algorithm. For each

k ∈ N

(a) if xk+1 has been obtained with a projected gradient descent step, then Θ(xk+1) ≤
Θ(xk);
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(b) if xk+1 has been obtained with a projected Newton’s step, then

Θ(xk+1) ≤
(
1 − α J σN

)nk+1
Θ(x0),

being nk the number of projected Newton’s steps performed until iteration k;
(c) 0 ≤ Θ(xk+1) ≤ Θ(xk), that is, {Θ(xk)}k∈N is bounded below by zero and not

increasing.

Proof (a) By the Armijo rule along the projected arc in Eq. (14), we have

Θ(xk+1) ≤ Θ(xk) + σG∇Θ(xk)
T(xk+1 − xk) ≤ Θ(xk),

where the last inequality follows from Theorem 3.2. Thus, we have the thesis.
(b) If xk+1 is defined with the projected Newton’s method, then it exists j ∈

{0, . . . , J } such that

Θ(xk+1) ≤ (1 − α jσN ) Θ(xk) ≤ (1 − α J σN ) Θ(xk), (17)

where in last inequality we exploited the fact that α < 1.
The thesis follows by iteratively applying (17) for each projected Newton’s step

and the result in point (a) for each projected gradient descent step.
Point (c) follows straightforwardly from (a) and Eq. (17), since both α J and σN

belong to the interval (0, 1).
��

Theorem 3.5 Let {xk}k∈N
be a sequence generated with the NLPC algorithm, and let

x∗ be an accumulation point of {xk}k∈N
; then, x∗ is a stationary point of Θ in Ω .

Additionally if the projected Newton’s method has been used for infinitely many k,
then x∗ is a solution of (1).

Proof Since x∗ is an accumulation point of {xk}k∈N
, there exists a subsequence

{xk}k∈K ⊆ {xk}k∈N
, K ⊆ N, such that lim

k(∈K )→∞ xk = x∗, and thus, lim
k(∈K )→∞ Θ(xk) =

Θ(x∗). For all k ∈ K , from Lemma 3.1 it follows

Θ(xk) ≤
(
1 − α J σN

)nk
Θ(x0).

If the projected Newton’s method has been used for infinitely many k, then
lim

k(∈K )→∞ nk = +∞; therefore,

Θ(x∗) = lim
k(∈K )→∞ Θ(xk) ≤ lim

k(∈K )→∞

(
1 − α J σN

)nk
Θ(x0) = 0.

Hence, Θ(x∗) = 0, that is, x∗ solves (1) and is a stationary point of Θ .
Instead, if the projected gradient direction has been used for all but finitely many

iterations, then it exists k ∈ N so that xk+1 has been obtained through a gradient descent
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step ∀ k ≥ k. From Lemma 3.1 (c), it follows that {Θ(xk)}k≥k is not increasing and
bounded below by zero. Hence, it converges and

lim
k→∞ (Θ(xk+1) − Θ(xk)) = 0.

Henceforth, we shall denote with {α jk }k∈N the sequence of step sizes used within
NLPC. From (14), (13) and (11), it holds

Θ(xk+1) − Θ(xk) ≤ σG∇Θ(xk)
T
(
P(xk − α jk ∇Θ(xk) ; xk) − xk

)
= −σG

||P(xk − α jk ∇Θ(xk) ; xk) − xk ||2
α jk

= −σG α jk
∑

i∈M
α jk (xk )

(∂iΘ(xk))
2 ≤ 0,

and thus,

lim
k(∈K )→∞ α jk

∑
i∈M

α jk (xk )

(∂iΘ(xk))
2 = 0. (18)

Two cases exist: lim inf
k(∈K )→∞ α jk > 0 (case 1) and lim inf

k(∈K )→∞ α jk = 0 (case 2).

If case 1 holds, then Eq. (18) implies

0 = lim
k(∈K )→∞

∑
i∈M

α jk (xk )

(∂iΘ(xk))
2

≥ lim
k(∈K )→∞

∑
i∈M

α jk (xk)

(Pi (xk,i − ∂iΘ(xk)) − xk,i )
2

≥ ρ2 lim
k(∈K )→∞

∑
i∈N

α jk (xk)

(Pi (xk,i − ∂iΘ(xk)) − xk,i )
2,

where the last inequality comes from the constraint described by (15). Hence, in
particular

lim
k(∈K )→∞

∑
i∈M

α jk (xk)

(Pi (xk,i − ∂iΘ(xk)) − xk,i )
2 =

lim
k(∈K )→∞

∑
i∈N

α jk (xk)

(Pi (xk,i − ∂iΘ(xk)) − xk,i )
2 = 0.

Since additionally (Pi (xk,i − ∂iΘ(xk)) − xk,i ) = 0 for all i ∈ B(xk), from Eq. (9),
from the continuity of ∇Θ and of the classical projector, and being x∗ the limit point
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of {xk}k∈K , it follows

||P(x∗ − ∇Θ(x∗)) − x∗||2 = lim
k(∈K )→∞

n∑
i=1

(Pi (xk,i − ∂iΘ(xk)) − xk,i )
2 = 0.

Hence, x∗ is a stationary point.
On the other hand, case 2 implies it exists an infinite set K ′ ⊂ K such that
lim

k(∈K ′)→∞
α jk = 0, and thus, lim

k(∈K ′)→∞
α jk−1 = 0. Therefore, by defining J =

{i ∈ {1, . . . , n} s.t . i /∈ B(x∗) ∧ |∂iΘ(x∗)| > 0}, the following holds.

(i) x∗ is a stationary point iff J = ∅. More specifically, |Pi (x∗
i − ∂iΘ(x∗))− x∗

i | = 0
iff i /∈ J .

(ii) It exists k such that ∀ k ∈ K ′, k ≥ k, J ⊆ Mα jk−1(xk).
Indeed, let us consider i ∈ J . Since in particular i /∈ B(x∗) and α < 1, from
Theorem3.4 it follows that it exists j ∈ N such thatNα j (x∗) = ∅ and i ∈ Mα j (x∗)
∀ j ≥ j . It can be easily shown that, being x∗ the limit point of {xk}k∈K , this implies
it exists ki such that ∀ k ∈ K ′ with k ≥ ki , i ∈ Mα j (xk) ∀ j > j . Additionally,
since lim

k(∈K ′)→∞
α jk−1 = 0, it exists k′

i ≥ ki such that ∀ k ∈ K ′, k ≥ k′
i , α

jk−1 <

α j . Hence, the thesis follows by considering k = max
i∈{1,...,n}{k

′
i }.

To prove that x∗ is a stationary point, we proceed by contradiction and we assume that
it exists i ∈ J . Then, by the results in (i) and (ii), it follows

lim
k(∈K ′)→∞

√√√√ ∑
i∈M

α jk−1 (xk)

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

≥ lim
k(∈K ′)→∞

√∑
i∈J

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

=
√∑

i∈J

|Pi (x∗
i − ∂iΘ(x∗)) − x∗

i |2 > 0,

while, denoted J C = {1, . . . , n} \J ,

lim
k(∈K ′)→∞

ρ

√√√√ ∑
i∈N

α jk−1 (xk )

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

≤ ρ lim
k(∈K ′)→∞

√∑
i∈J C

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

= ρ

√∑
i∈J C

|Pi (x∗
i − ∂iΘ(x∗)) − x∗

i |2 = 0.
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Therefore, for sufficiently large k ∈ K ′

√√√√ ∑
i∈M

α jk−1 (xk)

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

≥ ρ

√√√√ ∑
i∈N

α jk−1 (xk )

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2,

i.e., condition (15) is satisfied by the step size α jk−1 which is the last step size tried
by NLPC before the chosen one. As a consequence, such a step size cannot satisfy
condition (14), i.e.,

Θ(P(xk − α jk−1∇Θ(xk) ; xk)) − Θ(xk)

> σG∇Θ(xk)
T
(
P(xk − α jk−1∇Θ(xk) ; xk) − xk

)
.

By the mean value theorem, it exists τ ∈ (0, 1) such that, defined ξ k = τxk + (1 −
τ)P(xk − α jk−1∇Θ(xk) ; xk), then

Θ(P(xk − α jk−1∇Θ(xk) ; xk)) − Θ(xk)

= ∇Θ(ξ k)
T
(
P(xk − α jk−1∇Θ(xk) ; xk) − xk

)
= (∇Θ(ξ k) − ∇Θ(xk)

)T (P(xk − α jk−1∇Θ(xk) ; xk) − xk

)
+ ∇Θ(xk)

T
(
P(xk − α jk−1∇Θ(xk) ; xk) − xk

)
.

Together with the previous result, this implies

(1 − σG)∇Θ(xk)
T
(
xk − P(xk − α jk−1∇Θ(xk) ; xk)

)
<
(∇Θ(ξ k) − ∇Θ(xk)

)T (P(xk − α jk−1∇Θ(xk) ; xk) − xk

)
≤ ||∇Θ(ξ k) − ∇Θ(xk)|| · ||P(xk − α jk−1∇Θ(xk) ; xk) − xk ||;

hence,

1

1 − σG
||∇Θ(ξ k) − ∇Θ(xk)|| >

∇Θ(xk)
T
(
xk − P(xk − α jk−1∇Θ(xk) ; xk)

)
||P(xk − α jk−1∇Θ(xk) ; xk) − xk ||

=
√√√√ ∑

i∈M
α jk−1 (xk )

(∂iΘ(xk))2,
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where the last equality comes from Eqs. (13) and (11). Therefore, from the properties
of the classical projector and from the result previously shown in (ii), it follows

0 = lim
k(∈K ′)→∞

√√√√ ∑
i∈M

α jk−1 (xk )

(∂iΘ(xk))2

≥ lim
k(∈K ′)→∞

√√√√ ∑
i∈M

α jk−1 (xk )

|Pi (xk,i − ∂iΘ(xk)) − xk,i |2

≥
√∑

i∈J

|Pi (x∗
i − ∂iΘ(x∗)) − x∗

i |2,

which is possible only if J = ∅ and this contradicts the hypothesis. ��
Finally, we remark that all the results proved in this section can be easily extended

to the case where the gradient direction is scaled for example by normalizing it [43]
or by exploiting Barzilai–Borwein’s step lengths [1].

4 Application to Chemical Reaction Networks

Let us consider a chemical reaction network (CRN) composed of r chemical reactions
involving n well-mixed proteins. Specifically, in this work we will focus on the CRN
devised for modeling cell signaling during the G1/S transition phase in colorectal cells
described in [39, 40] and henceforth denoted as CR-CRN. In this case, n = 419 and
r = 851.

By assuming that the law of mass action holds [38, 44], the dynamics of the CRN
gives rise to a set of n ordinary differential equations (ODEs)

ẋ = Sv(x,k), (19)

where the state vector x ∈ R
n+ contains the protein molecular concentrations (nM); the

superposed dot denotes the time derivative; S is the constant stoichiometric matrix of
size n×r ; k ∈ R

r+ is the vector of the rate constants of the reactions; and v(x,k) ∈ R
r+

is the time-variant vector of the reaction fluxes. Specifically, from the law of mass
action it follows [28]

v(x,k) = diag(k)z(x), (20)

where the elements of z(x) are monomials of the form z j (x) = ∏n
i=1 x

pi j
i , ∀ j =

1, . . . , r . In the CR-CRN, pi j ∈ {0, 1, 2}, because all the reactions involve up to two
reactants.

Given a solution x(t) of system (19), a semi-positive conservation vector is a con-
stant vector γ ∈ N

n\{0} for which it exists c ∈ R+ so that γ Tx(t) = c∀ t > 0
[37, 38]. Conservation vectors can be determined by studying the kernel of ST [32].
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In the remaining of the paper, we shall assume that the considered CRN satisfies the
following properties in terms of its conservation vectors.

(i) The CRN is weakly elemented [38], i.e., it exists a set of independent generators{
γ 1, . . . , γ p

} ⊂ N
n\{0} of the semi-positive conservation vectors such that p =

n − rank(S) and, up to a change of the proteins order,

N :=
⎡
⎢⎣

γ T
1
...

γ T
p

⎤
⎥⎦ = [

Ip,N2
]

(21)

being Ip the identity matrix of size p × p.
(ii) TheCRNsatisfies the global stability condition [38], i.e., for each c ∈ R

p
+ it exists a

unique asymptotically stable state on the stoichiometric compatibility class (SCC){
x ∈ R

n+ s.t. Nx = c
}
. Fixed a SCC, the corresponding asymptotically stable state

xe ∈ R
n+ solves the system

Sv(x,k) = 0

Nx − c = 0. (22)

Lemma 4.1 For a weakly elemented CRN satisfying the global stability condition, the
system in (22) is equivalent to the square system

S2v(x,k) = 0

Nx − c = 0, (23)

where S2 is a matrix of size (n − p) × r defined by the last n − p rows of S.

Proof Obviously, a solution of (22) also solves (23). On the other hand, let xe be a
solution of (23). The theorem is proved by showing that

S1v(xe,k) = 0

being S1 the matrix of size p × r defined by the first p rows of S. To this end, we
observe that, since any conservation vector belongs to the kernel of ST, it holds

0 = NS = S1 + N2S2.

Therefore,

S1v(xe,k) = −N2S2v(xe,k) = 0.

��
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According to Lemma 4.1, in a weakly elemented CRN satisfying the global stability
condition, the equilibrium point on a fixed SCC can be computed by solving a box-
constrained system as in Eq. (1), being Ω = R

n+ and

f(x) =
[
S2v(x,k)

Nx − c

]
. (24)

Lemma 4.2 Consider the function f : R
n → R

n defined as in Eq. (24). f is continu-
ously differentiable on R

n+ and

Jf (x) =
[
S2diag(k)Jz(x)

N

]
, (25)

where [Jz(x)] j i = pi j x
pi j −1
i

∏n
�=1,� �=i x

p� j
� ∀i ∈ {1, . . . , n} and j = 1, . . . , r .

Proof The thesis follows from the definition of the reaction fluxes in Eq. (20). ��

5 Numerical Results on the CR-CRN

5.1 General Consideration

To show the advantages of using NLPC for computing the asymptotically stable states
of a CRN, we applied it to the CR-CRN. The parameters describing the network in a
physiological state have been extensively described in previous works [38–40] and can
be downloaded from the GitHub repository https://github.com/theMIDAgroup/CRC_
CRN.git as MATLAB® structure. This includes the list of proteins and reactions
involved in the network, as well as the values of the rate constants k and of the
total conserved moieties c. The corresponding stoichiometric matrix S and reaction
fluxes v(x,k) can be derived as described in the previous section. The aforementioned
repository also contains theMATLAB® codes implementing the NLPC algorithm and
the analysis shown in this paper.

We exploited the model introduced by Sommariva and colleagues [38, 39] to test
the proposed approach under different biologically plausible conditions. Specifically,
we modified the values of the parameters k and c as described in [39] to simulate
the effect of some of the mutations that most commonly arise in colorectal cancer. A
total of 9 different mutations was considered (loss of function of APC, AKT, SMAD4,
PTEN, p53 and gain of function of k-Ras, Raf, PI3K, Betacatenin) which give rise to
as many different mutated networks.

From a practical point of view, if not otherwise specified, the parameters required in
input by Algorithm 1 were set as follows. The threshold within the stopping criterion
was τ = 10−12, while σN = σG = 10−4 and ρ = 10−2. The initial step size was
α = 0.79 and a maximum of J = 20 step sizes was tested within each iteration of the
Newton’s method. NLPC is initialized with a point x0 randomly drawn from the SCC{
x ∈ R

n+ s.t. Nx = c
}
by exploiting the procedure presented in [38]. Additionally, we
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only retained points such that the condition number of the Jacobian matrix Jf (x0) was
lower than 1017. To avoid the algorithm getting stuck in a stationary point that is not a
zero of f , we also set amaximumnumber of allowed iterations: If the stopping criterion
was not reached after 250 iterations, then a new initial point was drawn from the SCC
and NLPC was restarted. Finally, to speed up NLPC (i) we fixed a maximum number
of tested step sizes also within the gradient descent method: if conditions (14) and (15)
were not met after 40 possible values of the step length, we chose the last tested value,
and at the following NLPC iteration, we performed again a gradient descent step; (ii)
at each iteration, we scaled the gradient direction: two scaling procedures were tested,
namely we normalized the gradient and we implemented an approach inspired by the
Barzilai–Borwein’s (BB) rule thoroughly described in Online Resource 1.

5.2 Comparison with a Classical Dynamic Approach

A classical approach [38, 39] for computing the stationary state of system (19) on a
given SCC consists in simulating the whole concentration dynamics x(t) by solving
the Cauchy problem

ẋ = Sv(x,k)

x(0) = x0, (26)

where x0 is a point on the SCC, and then computing the asymptotic value

xdyn = lim
t→+∞ x(t). (27)

In this section, we compare the results obtained through this approach with those from
NLPC algorithm.

To this end, we started from the CR-CRN and we built 10 different experiments, by
varying the values of the kinetic parameters k and of the total conservedmoieties c that
define the SCC, so as tomimic a colorectal cell either healthy or affected by one of the 9
mutations listed in Sect. 5.1. For each experiment, we sampled 50 initial points x( j)

0 on
the corresponding SCC. For each initial point, i.e., for j ∈ {1, . . . , 50}, we computed
the solutions x( j)

nlpc and x( j)
nlpc_bb provided by the NLPC algorithm when the gradient

direction is scaled by its norm or through the BB-inspired scaling rule, respectively.
We compared these results with the asymptotically stable state x( j)

dyn computed through
the dynamic approach previously described.

Specifically, as in [38], we used the MATLAB® tool ode15s [35] to integrate the
ODE system in (26) on the interval [0, 2.5 · 107] and we defined x( j)

dyn as the value of
the computed solution at the last time point of the interval.

All the other options of the ode15s routine were kept fixed to MATLAB® default
values. The choice of this parameter setting was inspired by previous works [38,
39] where the obtained results were extensively validated. In particular, one of the
parameters affecting the quality of the final solution is the span of the time interval.
However, some tests summarized in Online Resource 1 suggested that larger intervals
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do not noticeably improve the accuracy of the solution while they may introduce
numerical errors.

As shown in Figs. 3 and 4, NLPC outperforms the dynamic approach in terms of
both accuracy of the obtained results and computational cost. Indeed, Fig. 3 shows that,
in all the 10 considered experiments, when the gradient direction is normalized, the
elapsed time for the NLPC algorithm averaged across 50 runs obtained by varying the
initial points, ranges from about 23 s (mutated network with gain of function of k-Ras)
to 59 s (mutated network with loss of function of PTEN). Such values decrease even
more when the BB rule is chosen for scaling, going down to a range between 5 and 37
s. Despite this, it is important to underline that in this second case sometimes (in our
simulations, with about 5.4% of probability) numerical issues occur compromising
the stability of the method and preventing it from returning the desired equilibrium
point. On the contrary, the results of the dynamic approach show an higher variability
across the different CRNs and the averaged elapsed time scales up to about 8 min in
the network incorporating a gain of function mutation of PI3K. It is worth noticing
that, for each of the 10 experiments, few runs of NLPC required an higher elapsed time
(higher than the third quartile of the corresponding distributions). These runs needed
a large number of restarts of the NLPC algorithm due to the fact that the maximum
number of 250 iterations was reached without meeting the stopping criterion on the
norm of f , probably because the gradient method tended to stationary points that were
not roots of f . Future work will be devoted to refining the stopping criterion so that,
when needed, NLPC is restarted before reaching 250 iterations.

As a final test, we verified whether the parameter setting in the two approaches
coincide in terms of solution accuracy. Since we are looking for the roots of f , the
accuracy of the obtained results was evaluated by computing the �2-norm of f in the
solutions provided by the two algorithms, namely x( j)

nlpc and x
( j)
dyn, j ∈ {1, . . . , 50}. As

shown in Fig. 4, for all 10 considered experiments the norm of f in the NLPC solutions,
x( j)
nlpc, was always below 10−12 as imposed by the stopping criterion of the algorithm.

Instead the value of ||f(x( j)
dyn)|| ranged between 10−2 and 101, regardless of the time

employed to compute the solution x( j)
dyn.

5.3 Benefits of the OperatorP over the Classical Projector

The goal of this section is to quantify the benefit of using the operator P instead
of the classical projector P on the closed convex set Ω defined in Eq. (2). To this
end, for each of the 10 experiments defined in the previous section, and for each of
the 50 initial points x( j)

0 , j ∈ {1, . . . , 50}, drawn on the corresponding SCCs, we
computed the solution of NLPC (with normalized gradient) by replacing in Algorithm
1 the proposed operator P with the classical projector P . We denoted with x( j)

ort the
corresponding solution.

As shown in Fig. 5, if combined with the classical projector, NLPC algorithm
requires a higher number of restarts and thus a higher elapsed time than those required
when the proposed operator is used. Specifically, the ratio between the number of
restarts required by the projector P and the one required by the operator P , averaged
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Fig. 3 Elapsed time for the NLPC algorithm to converge, when the gradient direction is normalized (NLPC)
or is scaled through a Barzilai–Borwein-inspired rule (NLPC with BB), compared to the time required to
compute the equilibrium point by solving the dynamical system in (26). Boxplots summarize the values
obtained across 50 different runs for 10 distinct networks mimicking either a physiological state (phys) or
a mutation affecting the protein shown in the axis labels

Fig. 4 Accuracy as a function of the elapsed time for the NLPC algorithm (left) and the dynamic approach
(right). Accuracy is quantified as the norm of f evaluated in the results provided by the two algorithms,
xnlpc and xdyn, respectively. In each panel, 50 different results are shown for each of the considered CRNs
that mimic mutations of k-Ras, Raf and PTEN (orange diamonds), physiological state and mutations of
Betacatenin, APC, AKT, SMAD4, PTEN, p53 (yellow crosses), and mutation of PI3K (purple dots). This
color code has been chosen so as to cluster together results for which the times required for computing
xdyn were similar, as depicted in Fig. 3. Notice the different scale on the y-axis. The analogous plot for the
NLPC with BB approach can be found in Online Resource 1

over all the 10 considered experiments and all the sampled initial points, is around
4.87.

The bad performances of the projector P are caused by the fact that at any given
iteration k all the negative components of the novel proposed point xk+1 are set equal
to zero. As a consequence, the percentage of proteins estimated as having a null
concentration increases sharply and this results in a high condition number of the
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Fig. 5 Number of restarts required by NLPC in order to satisfy the stopping criterion within the fixed
maximum number of iterations. The boxplots describe the values obtained across 50 different runs for
10 distinct networks when, within NLPC, we employed the proposed nonlinear projector P (red) or the
classical orthogonal projector P (green)

Table 1 Average and standard deviation over 50 initial points of the maximum number of null components
(first row) and the maximum condition number of the Jacobian matrix Jf (second row) reached across the
iterations performed by NLPC

Novel proj. P Orth. proj. P

Num. null components (%) 0.59 ± 0.14 36.99 ± 8.42

Cond. number Jf (log. scale) 14 ± 2 17 ± 3

Results obtained by using the novel nonlinear projector P (first column) and the classical orthogonal
projector P (second column) are compared. Since results across the 10 considered experiments were similar,
only those concerning the original physiological CR-CRN are shown

corresponding Jacobian matrix Jf defined as in (25). In turn, the ill-conditioning of
Jf compromises the stability of Newton’s method, and thus, NLPC algorithm tends to
spend most of the allowed iterations by performing gradient descent steps. As shown
in Table 1, the use of the operator P helps preventing this issue.

6 Conclusions

In this paper an iterative algorithm for solving root-finding box-constrained prob-
lems is presented. It combines Newton’s and gradient descent methods and exploits
the operator P in Definition (2.1) for assuring the required constraints at each itera-
tion (and preventing numerical instability issues that would occur if the projector P
was applied). Together with a suitable backtracking rule we prove that the method
converges to a stationary point of the objective function in Eq. (4). Despite outper-
forming the dynamic approach both in accuracy and speed, in CRNs’ framework the
NLPC algorithm provides less information than simulating the whole concentration
dynamics. However, in many contexts such as tuning kinetic parameters starting from
experimental data or for topics described in [38, 39] the comprehension of the whole
dynamic is not required, but only knowing equilibrium points of the system is of inter-
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est. The present work could be extended in different aspects. On the one hand, defining
and implementing a stopping criterion in case the algorithm converged to stationary
points which do not coincide with roots of f would be interesting. On the other hand,
general properties of the NLPC algorithm should be investigated in extreme scenar-
ios such those of problems where the solution is not unique or does not exist. In our
case, this means that the function f has multiple nonnegative roots or does not have
any. Some preliminary results shown in Online Resource 1 suggest that in the former
case NLPC is able to find the different roots by changing the initial point, while in
the latter case the stopping criterion ||f(xk)|| > τ is not met and the algorithm may
approach local minima ofΘ possibly on the boundary ofΩ . In this respect, a different
future development of this research could go in the direction of coupling the homotopy
continuation methods with the proposed numerical tools. Finally, an interesting study
would concern a thorough benchmarking with other state-of-the-art methods also in
terms of scalability [7, 14, 16, 20, 30]. Some preliminary tests on the comparison with
the interior point optimizer (IPOPT, [27, 41]) and the scaled gradient projection (SGP
[4–6]) method are presented in Online Resource 1.
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org/10.1007/s10957-023-02323-z.
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