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Abstract
The literature has shown how to optimize and analyze the parameters of different
types of neural networks using mixed integer linear programs (MILP). Building on
these developments, this work presents an approach to do so for a McCulloch/Pitts
and Rosenblatt neurons. As the original formulation involves a step-function, it is
not differentiable, but it is possible to optimize the parameters of neurons, and their
concatenation as a shallow neural network, by using a mixed integer linear program.
Themain contribution of this paper is to additionally enforce sparsity constraints on the
weights and activations as well as on the amount of used neurons. Several experiments
demonstrate that such constraints effectively prevent overfitting in neural networks,
and ensure resource optimized models.

Keywords Mixed integer linear programming · Neural networks · Feature selection ·
Sparse networks · Resource optimization

1 Introduction

Neural networks are commonly used in AI applications ranging from computer vision,
autonomous driving, robotics, games, intelligent production, systems biology, human-
computer-interaction to even arts or music. Nearly all existing methods are commonly
trained using gradient descent-based optimization and auto-differentiation, so that such
optimized systems can be summarized with the term differentiable programming, see
Baydin et al. [8]. It is well known that the gradient descent-based optimization is prone
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to convergence problems, overfitting or getting stuck in local minima, so that many
different (differential) approaches exist to overcome these issues, e.g., using special
optimizers (adam, sgdm, etc.), drop-out layers, etc.

For these reasons, alternative approaches,which allow a global optimization, gained
increased attention in the past, as outlined in Section 2. This work follows this research
strand by modeling and optimization of a shallow neural network, which consists of
non-differentiable neurons. The perceptron model, as it has been originally formu-
lated by Rosenblatt in 1958, is used. As this formulation is not differentiable, this
work explains how this model can be mapped to a mixed integer linear program
(MILP) for given training data in a supervised learning setting. The network weights
can then be (globally) optimized using the simplex algorithm and branch-and-bound
or branch-and-cut. The drawback of the proposed method is that the formulation is
reasonable memory intensive. It requires many slack variables since all training data
and computations through the network are expressed as equality and inequality con-
straints. Thus, in the current stage the proposed method is mainly suited for small
sized datasets.

The optimized network weights can then be assembled to a neural network and
used for forward inference on unseen data. The proposed formulation also allows the
neat integration of additional constraints on the network to enforce sparsity, efficiency
and compactness. In the experiments, examples on enforcing binary or sparseness
constraints are presented, which can be quite problematic using traditional differen-
tiable programming. Additionally, a kill-switch on neurons to minimize the amount of
required neurons during training is presented and finally, the amount of neural activa-
tions can also be minimized. Critical parameters in differentiable programming such
as random seeds, see Picard [58], dropouts, learning rates, etc. do not exist in the pro-
posed optimization framework. On different datasets competitive performance of the
globally optimized sparse MILP neural networks is shown, even though the networks
are rather simple and shallow.

To summarize, this work presents the following contributions:

1. In line with recent literature, the formulation and optimization of a non-
differentiable Rosenblatt perceptron and a corresponding shallow neural network
as a MILP for given training data, is presented.

2. This work presents modifications to prior art in MILP models of neural networks
by incorporating sparsity constraints on the weights, activations and used neurons.
This is useful for explainable AI, the challenge of feature selection and resource
optimization.

3. Empirical experiments on a number of datasets, in particular including a study on
feature selection, are presented.

4. Software examples forMILP-based optimization of neural networks are provided.1

1 http://www.tnt.uni-hannover.de/staff/rosenhahn/KSDemo.zip.
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2 Foundations and Literature

2.1 The Perceptron

In 1943, McCulloch and Pitts formulated their idea for logical calculus using concepts
from nervous activities, see McCulloch and Pitts [49]. A McCulloch-Pitts cell with n
exciting input lines on which the signals (x1 . . . xn) are applied, andm inhibiting input
lines on which the signals (y1 . . . ym) are applied, calculation works as follows: If
m ≥ 1 and if one of the signals (y1 . . . ym) equals 1, the neuron outputs a 0. Otherwise
(which is the standard case) the input signals (x1 . . . xn) are added to up to x = ∑

xi .
For n = 0, x = 0 is set. The value x is compared to the threshold θ . If the values
x is greater than or equal to θ , the neuron returns 1, otherwise it returns 0. In 1958,
Frank Rosenblatt published his perceptron model which extends the summation to a
scalar product, followed by a step function, see Rosenblatt [60]. The perceptron can
be summarized as

σ j =
{
1 : ∑

i ωi j xi + b > 0
0 : else . (1)

Thebias valueb corresponds to the decision threshold andωi j are learnable parameters.
A combination of such perceptrons in a directed acyclic graph leads to a classic (e.g.,
fully connected) neural network.

2.2 Mixed Integer Linear Programming

Linear programming (LP) is a method for the minimization (or maximization) of
a linear objective function, subject to linear equality or inequality constraints, see
Dantzig [17]. Any LP can be expressed in a canonical form as

min cT x s.t. Ax ≤ b, x ≥ 0. (2)

A standard approach for solving such a LP is the simplex algorithm.Note, that standard
solvers also accept equality constraints of the form Aeqx = beq which are directly
transformed in two inequality constraints of the form Aeqx ≤ beq and−Aeqx ≤ −beq.
Thus, the constraintmatrix A refers to the inequality constraints and Aeq to the equality
constraints for better readability. It is also possible to allow for the optimization of
integer constraints, see Murty [52] or Dennis et al. [18], which is then called a mixed
integer linear program (MILP). The solvers then use concepts such as branch-and-cut
or branch-and-bound.

A (MI)LP is a very powerful tool, which allows the efficient optimization of graph
problems, e.g., graph cut, graph matching, max-flow or network optimization, see
Almohamad et al., Amaldi et al. or Komodakis et al. [1, 2, 36], logic inference, see
Makhortov et al. or Krishnan [37, 46] and the optimization of NP-hard problems,
such as the traveling salesman problem by using iterative subtour elimination. Here an
efficient branching of the MILP prevents exploring sub-optimal solution spaces. Paul
[56] gives a comprehensive introduction to formulate logic calculus (and beyond) using
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MILPs. It is also possible to optimize decision trees as proposed by Zhu et al. [70]; or
support vector machines, see Nguyen et al. [55], using respective LP formulations.

2.3 Trained Neural Networks andMILP

Already trained neural networks and mixed integer linear programming have been
brought successfully together in the past. Note, that this work is focussing on the direct
optimization of the network weights and its parameters from training data with a close
connection to the works presented in Section 2.5. But since the combination of trained
neural networks with MILP achieved very important results on network validation,
verification and adversarial robustness, the following subsection summarizes some
recent works in this field.

Neural networks and (mixed integer) linear programming have been brought
together in the context of network fooling and model checking as proposed by Heo
et al. and Modas et al. [31, 51]. Already trained networks can be analyzed using LPs,
see Anderson et al. [3] and there exist works where neural networks are proposed
to solve linear programs themselves, see Liu et al. [41]. Thiago et al. [64] introduce
an approach to remove unneccessary units and layers of a neural network while not
changing its output using a MILP. It therefore allows lossless compression of an exist-
ing network. Fischetti et al. [20] model a pertained DNN as a 0-1 Mixed Integer
Linear Program (0-1 MILP) where the continuous variables correspond to the output
values of each unit and a binary variable is associated with each rectified linear unit
(ReLU). The paper discusses the peculiarity of such 0-1 MILP models and presents a
bound-tightening technique to ease its optimization, e.g., for feature visualization and
in the construction of adversarial examples. Grimstad et al. [23] consider the embed-
ding of piecewise-linear deep neural networks (ReLU networks) as surrogate models
in mixed integer linear programming (MILP) problems. Similar to other works, the
formulation is obtained by programming each ReLU operator with a binary variable
and applying the big-M method. As the efficiency of the formulation hinges on the
tightness of the bounds defined by the big-M values, the presence of output bounds can
be exploited in bound tightening. To this end, the authors present several bound tight-
ening procedures that consider both input and output bounds. In Schweidtmann et al.
[61], the training of neural networks and machine learning (ML) models are regarded
as optimization problem where model parameters are varied to minimize the model
error on the training data. Then, a subsequent optimization problem can be solved to
identify the experimental conditions (i.e., inputs of the ML model) that maximize the
experimental performance (i.e., the output of theMLmodel). This task is a subsequent
optimization problem where the optimization contains an already trained ML model.
In [66], the authors Tjandraatmadja et al. improve the effectiveness of propagation-
and linear-optimization-based neural network verification algorithms by proposing a
tightened convex relaxation for ReLU neurons. Based on this relaxation, the authors
present two polynomial-time algorithms for neural network verification.

123



Journal of Optimization Theory and Applications (2023) 199:931–954 935

2.4 Software

In the recent years, several highly efficient software packages for optimization and
machine learning have been proposed. The software package JANOS, proposed by
Bergmann et al. [10], is a framework for optimization of variables under constraints.
It supports linear regression, logistic regression and neural networks with rectified lin-
ear activation functions. The optimizer can only act on already trained neural networks.
The optimization and machine learning toolkit (OMLT) introduced by Ceccon et al. in
[14] is an open-source software package which also works for already trained neural
network and gradient-boosted tree surrogate models. This package allows to make use
of these models for larger optimization problems with applications, e.g., on maximiz-
ing a neural acquisition function or verifying neural networks.With reluMip, see Lueg
et al. [44], it is possible to generate MILP models of trained artificial neural networks
(ANNs) using the rectified linear unit (ReLU) activation function. At themoment, only
TensorFlow sequential models are supported. OptiCL, see Maragno et al. [45], is an
end-to-end framework for mixed integer optimization (MIO) with data-driven learned
constraints. It establishes a methodological foundation for mixed integer optimization
with learned constraints. The software proposes an end-to-end pipeline for data-driven
decision making in which constraints and objectives are directly learned from data
using machine learning (e.g., multi-layer perceptrons). Afterwards, the trained models
are embedded in an optimization formulation. Finally it allows the capture of vari-
ous underlying relationships between decisions, contextual variables, and outcomes.
Scikit-learn [57] is a well known Python module integrating a wide range of state-of-
the-art machine learning algorithms for medium-scale supervised and unsupervised
ML problems. It supports tools for classification, regression, clustering, dimensional-
ity reduction, model selection and preprocessing. It is based on standard methods of
optimization, e.g., back-propagation-based neural network training based on autodiff.

Note, that most of these packages focus on the user interface and the optimization
pipelines. These packages mainly support pre-trained networks andMILPs and do not
focus on resource optimized models, as proposed in this work.

2.5 Neural Networks andMILP

The formulation of a linear threshold unit (LTU), which is similar to the perceptron
described above, as an LP has been presented by Mangasarian already in 1993 [47].
Based on this formulation, several LTUs are iteratively connected using a so-called
multisurface method tree. A significant difference to this work is, that the complete
network as oneMILP is optimized. The proposedmodel is not optimized in an iterative
fashion. The special case of binary neural networks using MILP has been presented
by Icarte et al. in [33]. Interestingly, binarized neural networks (BNNs) which are
neural networks with weights and activations in (−1, 1) not only can gain comparable
test performance to standard neural networks, but allow for highly efficient imple-
mentations on resource limited systems as shown by Hubara et al. in 2016 [32]. The
work by Bienstock et al. [11] establishes a general framework to reformulate (regu-
larized) empirical risk minimization problems in machine learning into approximate
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linear programs with explicit bounds on their complexity. The work of Kronqvist et
al. [38] presents relaxations in between the big-M and convex hull formulations of
disjunctions and draws advantages from both. The authors propose so-called P-split
formulations to split convex additively separable constraints into P partitions and form
the convex hull of the partitioned disjuncts. Experiments are performed on K-means
clustering and neural networks with ReLU activation function. As the intermediate
P-split formulations can form strong outer approximations of the convex hull with
fewer variables and constraints than the extended convex hull formulations it can
give significant computational advantages. Lu et al. [43] analyze the expressive power
of neural networks which is important for understanding deep learning. The authors
study how width affects the expressiveness of neural networks. Based on the knowl-
edge that depth-bounded (e.g., depth-2) networks with suitable activation functions
are universal approximators, the authors show a universal approximation theorem for
width-bounded ReLU networks. Already width-(n + 4) ReLU networks, where n is
the input dimension, are universal approximators. In [65] Thorbjarnarson et al. use
a mixed integer linear program to optimize neural network weights. There, also the
optimization on the amount of neurons has been presented (and named as model com-
pression). In contrast, this work additionally optimizes the sparsity on model weights,
integer weights and the amount of neural activations.

There are two arguments why a MILP solution may be disadvantageous, as stated
by Gambella et al. [22] (a) scaling to large datasets is problematic, as the size of
the generated equations scale with the size of the training set and (b) solutions with
provable optimal training error can overfit, thus training data is perfectly explained,
but test performance is much worse. This paper focusses on the second challenge
by the proposed sparsity constraints and resource optimization. The first challenge is
confirmed in the experiments and summarized, e.g., in Table 5.

2.6 Feature Selection

Feature selection, see e.g., Guyon et al. [25] involves the task of measuring contribu-
tions of individual input features to the performance of a supervised learning task. It
is an important tool (among others) for explainable/interpretable AI see Wojciech et
al. [67]. An example application for feature selection is to understand from genomics
data which genes or gene combinations are likely to cause a specific disease.

Feature selection has a reasonably long history with several competitions, such as
the NIPS feature selection challenge, see Guyon et al. [27]. At this time, Bayesian
networks and decision trees produced state-of-the art results. Due to the black-box
behavior of neural networks, teaching a deep neural network to optimize on relevant
features for decision making is quite challenging, see Romero et al. [59]. The work by
Wojtas et al. [68] proposes to address feature importance ranking by using a dual-net
architecture consisting of an operator and selector network. Ye et al. [69] propose
collaborative feature selection based on an intermediate representation and subspace
projection in the context of distributed learning. In [34] Ji et al. propose a particle
swarm-based optimization for feature selection. The work from Ayindel et al. [5]
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proposes networks with non-negative weights and demonstrates increased sparsity
and competitive performance on many tasks.

In contrast to existing works, the proposed MILP formulation can easily respect
constraints on sparsity. Additional constraints can further be used to enforce positive
or even binary weights. Therefore, the proposed MILP formulation for optimizing
weights of a neural network will allow an efficient feature selection during model
optimization as shown in the experiments.

2.7 Resource Optimized Neural Networks

Optimizing neural network architectures means to optimize in a huge search space.
Common approaches are based on reinforcement learning, structural search or perfor-
mance prediction, as presented by Baker et.al, Cai et al. or Negrinho et al. [7, 12, 54].
Neural Architecture Search (NAS) is another common framework which automates
the task of designing a neural network, especially the topology and the amount of used
neurons across different layers, see Han et al. or Liu et al. [29, 40]. Still, all architecture
search algorithms are computationally demanding despite their remarkable improve-
ments over the last years. In this work a so-called kill-switch on neurons is proposed
(see Fig. 4). Additionally, minimization on the neural activations is proposed. Both
modifications fit well to the challenge of resource optimized neural networks [6, 9,
39, 53], as the resulting MILP formulation allows for optimizing a model to enforce
sparsity on activations and additionally to minimize the amount of required neurons.
As mentioned before, the constraints for minimizing the amount of neurons have also
been proposed by Thorbjarnarson et al. [65] where a MILP is used for joint network
training and compression, but only in combination with sparseness constraints on
weights or activations (see also [19]) is the full potential exploited.

3 Modeling a Rosenblatt Perceptron as MILP

The Rosenblatt perceptron requires the computation of a scalar product, followed
by a step function. This can also be expressed as an if-else condition and greater
as, >, test. The formulations can be expressed as MILP using a so-called Big-M
formulation. Note, that the letter M refers to a (sufficiently) large number associated
with the artificial variables, see Paul [56].

The code fragment
if ( δ ) then c=d else c=e

can be expressed in an MILP as follows:

d − M(1 − δ) ≤ c ≤ d + M(1 − δ) (3)

e − Mδ ≤ c ≤ e + Mδ (4)

δ ∈ {0, 1}. (5)

The verification of this expression is quite simple:
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δ = 1 → d − M(1 − δ) ≤ c ≤ d + M(1 − δ)

↔ d ≤ c ≤ d

→ c = d

and e − Mδ ≤ c ≤ e + Mδ (trivial)

δ = 0 → d − M(1 − δ) ≤ c ≤ d + M(1 − δ)

↔ d − M ≤ c ≤ d + M (trivial)

and e − Mδ ≤ c ≤ e + Mδ

↔ e ≤ c ≤ e

→ c = e.

The condition
a >b ↔ δ =1

can be expressed as

a ≥ b + ε − M(1 − δ) (6)

a ≤ b + Mδ (7)

δ ∈ {0, 1}. (8)

The verification of this expression can be done in a similar fashion to equations (3)-(5).
Based on equation (1), both expressions can be put together formodeling the activation
of a perceptron with weights ω, bias b and input x as

if
((

ωT x + b
)

> 0
)
then 1else0. (9)

Please note, that the outcome is a binary vector which is later denoted as sti . It can be
interpreted as an input impulse of a transistor which is switching on/off a memorized
value as input to the next layer, as visualized in Fig. 1.

Thus, for an output layer, the matrix vector product of the weights with the input
reduces to an addition operation of memorized values so that the next perceptron can
be expressed as MILP as well,

if

⎛

⎝

⎛

⎝
∑

sti=1

qi + bF

⎞

⎠ > 0

⎞

⎠ then 1else0. (10)

Please note, that such a perceptron can be interpreted as a neuron which performs
neural memory allocation based on memorized values (qi ), see Kastellakis et al. [35].

As classification loss function for the MILP formulated neural network, the xor-
error of the network outcome to each dimension of the one-hot encoded target vector
is used. The xor-function can be modeled as MILP using
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Fig. 1 Visualization of the neural network using separate building blocks of scalar products, summation
operations, step functions and switches. This example network consists of two input values (X1, X2), three
hidden neurons (marked as a yellow box) with weight matrix (ωi, j ) and bias bi to generate the scalar
product value spi followed by a step function sti . For the next layer, three switches pass over memorized
values to a final layer with (in this case) two summation and step function operations for a 2-dimensional
binary decision output

z ≤ x + y (11)

z ≥ x − y (12)

z ≥ y − x (13)

z ≤ 2 − x − y (14)

x, y, z ∈ {0, 1}. (15)

Taking the input and output pair of the vector x and the one-hot encoded target y, a
set of equations simulating the forward path for every training example is generated.

3.1 A Neural Network as MILP

Figure1 visualizes the different parts required to formulate a training sample for a
classification task as constraints for an MILP: The input is a m-dimensional input
vector X = (X1, X2, . . . Xm)T followed by n hidden neurons and a K -dimensional
output. In the example illustration in Fig. 1, the input dimension m is set to two, the
amount of neurons in the hidden layer n is set to three and the output dimension K is
also set to two. The connection of the input vector to the hidden layer is amatrix–vector
product involving the weights ωi j . The index i indicates the number of the neuron and
j the vector dimension. Then the bias values bi for each neuron are added to the
product and stored in the three slack variables spi . Then the step function is evaluated
and the 0/1 values stored in the slack variables sti . Afterwards, the weights qi,k and
the values of the step function sti are evaluated and stored in a slack variable pi,k . This
can be seen as the input for the next layer, which is already the K -dimensional output
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layer. In each output perceptron, the sum of pi,k is computed, the bias bF,k added and
stored in spF,k . Then a step function is evaluated and stored in the variable stF,k and
finally the xor-value (Er ) to the ground truth (GT) is computed for each output value
as loss.

Whereas the learning parameters ωi j , the bias values bi , bF,k and the weights qi,k
are simultaneously accessed for all training examples, the slack variables are unique
for each training example used during optimization. The above steps generate a set of
equality and inequality constraints, aswell as integer conditions (for the step functions)
which can be more concretely formalized by using the above MILP-formulations:

min f T x s.t . (16)

Scalarproduct

∀i = 1 . . . n (17 − 23)
m∑

j=1

X jωi j + bi − spi = 0 (17)

boolean var for step function

ε − M(1 − sti ) − spi ≤ 0 (18)

spi − Msti ≤ 0 (19)

(∀k = 1 . . . K )

if-else condition

qi,k − M(1 − sti ) − pi,k ≤ 0 (20)

pi,k − qi,k − M(1 − sti ) ≤ 0 (21)

−Msti − pi,k ≤ 0 (22)

pi,k − Msti ≤ 0 (23)

summation 2nd layer
n∑

i=1

pi,k + bF,k − spF,k = 0 (24)

Step Function (classification task)

ε − M(1 − stF,k) − spF,k ≤ 0 (25)

spF,k − MstF,k ≤ 0 (26)

xor (classification task)

Er ,k − stF,k − GTk ≤ 0 (27)

−Er ,k + stF,k − GTk ≤ 0 (28)

−Er ,k + GTk − stF,k ≤ 0 (29)

Er ,k − 2 + stF,k + GTk ≤ 0 (30)

classification integer conditions

GTk, Er ,k, stF,k, sti ∈ {0, 1}. (31)
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Fig. 2 Visualization of the target vector f which encodes the xor-error and the equality and inequality
constraints for the respective network weights and slack variables for the training data

Fig. 3 Size of the equality and inequality constraint matrices. The x-axis gives the number of sample points
(training data). The five curves show the increase for increasing numbers of neurons (from 1 to 5). The
blue curve shows the size of the matrices, whereas the red curve displays the memory consumption for the
variables. Even though the size is increasing nonlinearly, due to the use of sparse memory representations
for the matrices, the increase in memory is nearly linear. (Best viewed in color and zoom in)

All variables can be ordered as a large vector and accessed via an index-operation
ind(.). The equations lead to sparse vector expressions and describe an integer linear
program which can be optimized with standard tools, e.g., based on Gurobi [24].

Figure2 summarizes the resulting structure of the target vector f , the network
parameters and the slack variables for each training sample on a classification task
(using the xor-error). Minimizing the objective function f means to minimize the
xor-error for all training examples and therefore the estimation of appropriate neural
network weights. Thus, f is a vector containing only 0-values, except for the index
holding the error Er ,k , e.g., f (ind(Er ,k)) = 1. After optimization, the weights can be
assembled to a neural network for forward inference on test data.

Figure3 shows the size of the equality and inequality constraintmatrices. The x-axis
gives the number of sample points (training data). The five curves show the increase
for increasing numbers of neurons (from 1 to 5). In this experiment, the dimension of
the input and output is kept constant (to the value 2). These parameters also add up
to the behavior of the curves for more complex settings. The blue curve displays the
size of the matrices, whereas the red curve shows the memory consumption for the
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Fig. 4 Visualization of the
different blocks to enforce
sparsity: Sparsity can be
enforced for the network weights
ωi, j , the amount of activations
can be minimized sti or neurons
can be completely switched off
by adding a switch KSi

variables. Even though the size is increasing polynomially, due to the use of sparse
memory representations for matrices, the increase in memory is nearly linear. Note,
that the amount of training data and the required slack variables can be a severememory
limitation for large sized problems. In the experiments, see Table 5, already smaller
sized datasets lead to optimization problems of noticeable dimension, e.g., the ovarian
dataset of dimension 100 × 4000 results for a neural network with up to 8 neurons in
an inequality matrix A of size 73.148 × 68.172. Thus, it is mandatory to use sparse
memory representations for both, the problem encoding and the optimization. Please
also note, that it is also possible to generate deeper fully connected networks with this
approach. As the equations are getting even larger, this will be investigated as part of
future work.

3.2 Sparsity Constraints

As already discussed by Gambella et al. [22], a globally optimized model explaining
the training data can perform bad on test data, due to overfitting. Thus, it is important
to reduce the complexity of themodel by enforcing sparsity on different involved com-
ponents: Fig. 4 visualizes different parts of the neurons which can bemodified together
with the objective function to enforce sparsity: (1) Minimizing the weights ωi, j and
enforcing small, but positive integer values allows to optimize integer or binary net-
works. It requires to addωi, j to the objective function f and to enforce positive integer
numbers on these weights. Additionally it is possible to limit the amount of weighting
factors by adding an upper limit on the sum of weights Nmax. This allows, e.g., to
enforce sparse binary weight matrices. The sparse matrices finally allow a semantic
interpretation about relevant features for decision making. To balance the constraints
and the overall error of the loss function, the scaling factor is empirically set to the
value 0.1 for the experiments. This ensures the main focus is on the minimization of
the classification error. Based on the earlier MILP, the following additional constraints
can be added to enforce this property of sparse positive weight matrices:

f (ind(ωi, j )) = 0.1 (32)
∑

ωi, j ≤ Nmax (33)

ωi, j ∈ N
+. (34)
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As mentioned above, all variables used are assumed to be ordered and their positions
are accessible via an index-operation ind(.).

(2) The second option to minimize the model is the kill switch (KSi ) which allows
the minimization of the amount of neurons used. It is a simple if-else condition on the
evaluated step function:

sti − M(1 − KSi ) − pi ≤ 0 (35)

pi − sti − M(1 − KSi ) ≤ 0 (36)

−Msti − pi ≤ 0 (37)

pi − MKSi ≤ 0 (38)

KSi ∈ {0, 1}. (39)

The optimization function f needs to be modified with f (ind(KSi )) = 0.1.
This variant for optimization has also been described by Thorbjarnarson et al. in

[65] and called model compression.
(3) The final option for sparsity is minimizing the amount of activations (at the step

functions sti ). It allows to minimize the neural effort for decision making. This is valid
under the assumption, that the generation of a nervous activation is accompanied with
a certain amount of energy. For this, the f -vector of the objective function needs to
be modified by

f (ind(sti )) = 0.1. (40)

Thus, for example the sparsity of neural activations can be enforced by adding a
small positive value to the objection function f at the positions of the evaluated step-
functions on the if-else conditions sti .

Even though the modifications appear simple and redundant, they have a major
impact on the overall performance of the optimized models. Note, that the constraints
are not exclusive, thus they can also be jointly optimized if desired. Even though they
are simple to express as an MILP, they are very hard to optimize using differentiable
programming. The effects of these different combinations of sparsity constraints are
evaluated in detail in Section 4.3. The weighting factors (0.1) have been empirically
chosen with the intention to have the main emphasis on the explanation of the training
data. The optimization of the sparseness is important, but a subordinate task. The
balancing factors across the sparsity variants can also be jointly optimized. This could
be achieved, e.g., by using Bayesian optimization [62]. But it requires one to optimize
and evaluate several MILPs, which can be very time consuming.

4 Experiments

Data loading and MILP formulation is implemented in MATLAB [48] and the integer
linear program is optimized using Gurobi, see [24]. For this work, MATLAB version
2021b and the Gurobi version 9.1.2 build v.9.1.2rc0 (linux64) have been used. The
optimization parameters for the MILP (presolving, rounding, diving, etc.) have not
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Fig. 5 Left: Training data and test for a simple corner dataset. Right: Training data and test for a spiral
dataset

been changed throughout all experiments (default parameters are used). Thus, the
same optimization problem leads to the same result, unless heuristics cause a different
branching behavior. The optimizer stops once a global optimal solution is obtained or
the maximum amount of computation time has been reached. This usually leads to a
feasible solution which is accepted for evaluation. All results have been achieved in
a Linux environment on Xeon Gold 5120 CPUs with 10 cores allocated for parallel
computing.More recent software versions and better hardwarewill lead to a significant
increase in performance. The experiments are divided in four parts. At first some
results using standard datasets (e.g., from the UCI repository) and on synthetic data
are presented. Then experiments on the feature selection challenge from NIPS 2003,
which is available (at the time of writing) at CodaLab.org, are shown. Afterwards,
detailed experiments on the proposed sparseness constraints are presented. Overall,
experiments on more than 15 different datasets, including recent microarray datasets,
are performed to cover a large variability of decision tasks.

4.1 Proof of Concept MILP

Figure5 shows the training and testdata for a simple corner and spiral dataset. The
respective networks take a 2-dimensional input and classify a binary output. The left
example is based on two perceptrons in the hidden layer. Each perceptron learns a
decision plane needed to correctly classify the upper left corner. The spiral dataset
also shows that decision planes are learned, but here more planes are necessary to
get a suited model after MILP optimization. Overall, this experiment shows, that the
neural network formulated as an MILP can be optimized and that the weights of the
shallow neural network learn effective decision planes to solve the optimization task.

4.2 Feature Selection Task

A useful property of the MILP formulation consists of the option to formulate addi-
tional constraints on the optimized weights. One constraint can be the restriction of
the weights to binary values and a predefined maximal amount of features which are
allowed to be used, see Section 3.2. A typical setting is the analysis of important
features from highdimensional data for decision making, as it often occurs in medi-
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Fig. 6 Left: Features of the first hidden layer neuron after optimizing a shallow neural network. Right:
Features of the MILP optimized neural network with sparsity constraints. Both networks are trained on
50% of the ovarian dataset and achieve an accuracy of 95% on the test set (best viewed in color and zoom
in). The network on the right side is interpretable as selected factors are used for decision making

Table 1 Summary of the neurips feature selection benchmark dataset

Name Size (MB) Type Features # Train/Val # Test

Arc. 8.7 Dense 10K 100/100 700

Gis. 22.5 Dense 5K 6000/1000 6500

Dex. 0.9 Sparse int. 20K 300/300 2000

Doro. 4.7 Sparse bin. 100K 800/350 800

Mad. 2.9 Dense 500 2000/600 1800

cal applications. The goal is to answer the question, which biological factors can be
important for medical diagnostics or treatment.

For the next experiment the ovarian dataset [16] with 4000 features has been used.
It consists of 200 examples, where 100 randomly selected examples are used for
training and 100 for testing. Figure6 shows the optimized weights of one standard
perceptron of a shallow neural network which has been optimized using differential
back propagation. As can be seen, many features are combined and it is not possible
to tell which feature is relevant for decision making. Indeed, the risk for overfitting
is very high. The image on the right shows the binary selected features of a globally
optimized sparse neuron. This ismuch easier to interpret. Overall, the dataset is benign,
both models achieve an accuracy of approx. 95% on the test set, but the overall quality
heavily depends on the randomly selected samples. Please note, that the sparsity is
crucial here, as shown in Table 3.

In 2003, NIPS hosted the feature selection challenge [26]. It consisted of five binary
classification problems which are further explained and discussed in [28]. The chal-
lenge was the classification of high dimensional data with a limited amount of training
data being available. Please note, that the challenge is still available at CodaLab.2

Table 1 summarizes the dataset and its intrinsic properties.
As the benchmark is accessible at CodaLab, the MILP optimized neural networks

have been used to participate in there. The proposed approach is currently listed on
place 8, as shown in Table 2. For comparison, variants based on SVMs, decision
trees and a random forest have also been evaluated and uploaded on the codalab
server. Our proposed framework performs superior to these classical methods. Note,

2 https://competitions.codalab.org/competitions/3931.
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Table 2 Results of the proposed
MILP net on the CodaLab
benchmark and a comparison to
three reference versions based
on a random forest, svm and
decision tree (accessed June
2022)

Rank User Arc. Dexter Doro. Gis. Mad.

8 LP2NN 0.84 0.91 0.70 0.968 0.87

10 RFBaseline 0.81 0.91 0.72 0.97 0.68

12 svmBaseline 0.86 0.96 0.64 0.92 0.51

13 DecTree 0.77 0.83 0.76 0.93 0.76

that the approach is in the top10 of this well established and frequently used dataset.
Additionally, it is an outcome without any bells-and-whistles.

Please note, that this (automated) benchmark does only evaluate the accuracy on
the test data. Thus, the initial goal of finding sparse solutions is not reflected in these
scores. This would require one to balance and evaluate both aspects of sparsity and
accuracy for different MLmodels which is a challenging task by itself. Therefore, this
experiment only shows the possibility of optimizing non-differentiable neural network
on various types of data. Table 2 shows the entry of the results obtained during the
participation (with the usernameLP2NN). TheMILPoptimized neural networks are all
very shallow, with up to 10 neurons. Tests with deeper nets and more neurons mainly
increased the memory consumption and computation times without causing major
changes in the scores. Better computational resources or more advanced optimization
strategies may be able to change this in the future.

4.3 Sparse Models

In Section 3.2, three variants for enforcing sparsity on the model are proposed. Simple
constraints in the MILP allow one to (a) reduce the entries of the weight matrices,
(b) minimize the amount of neural activations and (c) reduce the amount of required
neurons during training. A motivation is, that the complexity of a given optimization
problem, and with this the amount of required neurons, is hard to estimate. One effect
is, that performance is unsatisfactory without enough neurons, which could model the
given task; or overfitting is observed, which means the model can fully explain the
training data, but generalization fails.

For the experiments, the classical wine, zoo, breastEW and ovarian dataset have
been used. The first two datasets aremulticriterial classification tasks,with 3 categories
for the wine dataset and 7 categories for the zoo dataset. The ovarian and breastEW
dataset provides a binary test. For this experiment 50% of the data is used for train-
ing and 50% for testing and then each experiment is repeated ten times to analyze
the obtained performance. For this experiment, the amount of neurons is set to the
constant number 8. In Section 3.2 three variants to enforce sparsity are described, (1)
by minimizing the weights, (2) by minimizing the amount of activations and (3) by
minimizing the amount of neurons. All factors can be individually and jointly used in
the MILP. Thus, 8 combinations are possible. The impact can be measured by several
factors, (A) the accuracy on a test set (B) the amount of optimized weights (C) the
amount of neuron activations and (D) the amount of neurons used. Table 3 summarizes
the effect of switching off and on these individual factors. The numbers are the mean
scores from 10 repetitions. For the accuracy, also the standard deviation of the results
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Table 3 Evaluation of combining sparsity constraints during model optimization on the wine, breastEW,
ovarian and zoo dataset: the letters b, c, d stand for the different constraints to minimize (b) the weights, (c)
the amount of activations and (d) the amount of neurons

Flags wine breastEW
Test #ω #act. #neur Test #ω #act. #neur

(b,c,d) (A) ↑ (B) ↓ (C) ↓ (D) ↓ (A) ↑ (B) ↓ (C) ↓ (D)
0,0,0 0.77± 0.09 47 511 8 0.80± 0.03 123 241 8
0,0,1 0.72± 0.06 43 497 2 0.87± 0.027 94.5 246 1.6
0,1,0 0.75± 0.05 46 53 8 0.79± 0.056 119.4 177 8
0,1,1 0.83± 0.09 44 53 2 0.85± 0.058 118 176 2.3
1,0,0 0.90± 0.06 17 448 6.4 0.92± 0.014 28 839 6.8
1,0,1 0.91± 0.02 11 434 2.2 0.89± 0.01 19 304 3
1,1,0 0.88± 0.05 13 71 5 0.93± 0.011 15 118 3.8
1,1,1 0.84± 0.03 12 71 3.7 0.91± 0.03 21 49 1

int 1,1,1 0.94± 0.03 10 91 2 0.90 ± 0.03 27 285 2.4
Flags ovarian zoo

Test #ω #act. #neur Test #ω #act. #neur
(b,c,d) (A) ↑ (B) ↓ (C) ↓ (D) ↓ (A) ↑ (B) ↓ (C) ↓ (D)
0,0,0 0.53± 0.047 15893 417 8 0.72± 0.09 62 261 8
0,0,1 0.51± 0.06 15634 411 1 0.63± 0.06 60 244 3
0,1,0 0.54± 0.06 15328 357 8 0.74± 0.05 59 46 8
0,1,1 0.52± 0.07 15437 358 1 0.71± 0.09 49 55 5
1,0,0 0.82± 0.05 46 189 7.9 0.87± 0.06 17 211 6.4
1,0,1 0.82± 0.1 23 162 1 0.72± 0.02 25 282 3.1
1,1,0 0.77± 0.05 47 52 8 0.87± 0.05 18 43 7.3
1,1,1 0.91± 0.03 21 49 1 0.91± 0.03 15 46 5.6

int 1,1,1 0.93 ± 0.03 20 105 2 0.90± 0.03 14 52 5.2

The impact is measured by (A) the accuracy on a test set (B) the weight sum (C) the absolute amount of
neuron activations and (D) the final amount of used neurons
The row int denotes the performance of a discrete neural network with integer input and integer weights
(best viewed in color)

is shown. Note, that the absolute numbers are not that relevant, as they depend on
the size of the input vectors and the size of the network. Only the relative changes
are important. It is clearly visible, that the constraints are working appropriately and
they allow a large reduction in the complexity of the neural network, while main-
taining (or even improving) the test accuracy. The color code in Table 3 indicates the
respective sparsity constraint which has been activated during optimization. As the
flag b indicates to enforce sparsity on the amount of neurons, the values in column #ω
should significantly decrease when this bin is active. The same holds for flag c which
penalizes the amount of activations #act and flag d which penalizes the amount of
used neurons #neur . Note, that the factors can also be individually weighted, but for
this experiment they were kept constant with a factor of 0.1 as mentioned in Section
3.2. It is also worth to notice that without the proposed sparsity constraints (where
the flags are set to 0, 0, 0), the test performance is not competitive. The variant 0, 0, 1
corresponds to the model proposed by Thorbjarnarson et al. [65]. The results are inline
with the comments of Gambella, et al [22], where it is shown that only minimizing
the objective function (and thus to explain the training data) can lead to suboptimal
generalization performance. Only with addition of the constraints, does suitable gen-
eralization occur. Overall, it also shows that many neural network models which are
currently trained are over parameterized.
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The numbers in Table 3 indicate that the sparsity on the network weights is the
most important ingredient to improve generalization. But still, the optimization of the
amount of activations and theminimization of the neurons are also important factors for
an efficient and generalizing system. The row int denotes the performance of a discrete
neural network with integer input and integer weights. To obtain integer input values
each input dimension is scaled to [0, 1], multiplied by 10 and rounded. The optimizer is
furthermore only optimizing integer weights for the weight matrices and bias vectors.
Thus, together with the optimized step function, a network model is optimized which
can work highly efficient on resource limited systems. Please note, that optimizing
integer weights, and at the same time minimizing three other aspects (number of
neurons, number of weights, and number of activations) is a highly challenging task
for differentiable programming.

Table 4 summarizes the mean as well as the minimum and maximum computa-
tion times in seconds. The maximum is set to 12000s. The computation time mainly
depends on the complexity of the task with the size of input and output dimensions
and the amount of examples, as well as the amount of required integer variables. The
variance in the computation time can vary to quite some extent, but also after reaching
the time limit, feasible solutions are obtained.

Table 5 summarizes the complexity of the obtainedMILPs for different datasets. The
column Train summarizes the dimensions of the training data in terms of #examples×
#dimensions, the dimensions of the obtained objective function f , the inequality
constraints A and equality constraints Aeq. The last column Encode shows the time
to generate the equations for the MILP solver in seconds. Note, that the equations are
only generated once before the optimization. As all data is optimized simultaneously
there are no iterations involved. Note, that a comparison of Tables 4 and 5 reveals
that the dimensionality of the training data does not directly correlate to the required
amount of time for optimization. Whereas the ovarian dataset is of reasonable size
and converges after 2654s for the binary flags (1, 1, 1), the optimization of the much
smaller wine dataset takes up the maximum amount of time (12.000 sec). Even though
after 12.000s the performance gap with 0.1% is very small and the feasible solution of
good quality. But still, the algorithm has not fully converged up till then. With respect
to the hyper-parameters of the MILP optimizer, Gurobi parameters such as Heuristics
orMIPFocus can speed up finding feasible solutions, but proving optimality still takes
its time.

As afinal experiment for challenging state-of-the-art classification taskswe perform
an analysis on three gene expression DNA microarray datasets and follow the general
protocol as described by Liu et al. in [42]. The properties of the dataset used are
summarized in the left of Table 6. As the LP easily finds perfect solutions to model
the training data, sparsity is necessary. The results and a comparison to state of the
art [42], where intrinsically sparse networks are optimized using evolutionary deep
learning, as well as another commonly used approach published byMocanu et al. [50],
is shown in the right of Table 6. To demonstrate the impact of themulticriterial sparsity
of network weights and activations, the method proposed by Thorbjarnarson et al. in
[65], where only the amount of neurons is minimized, is also shown. The decreasing
performance shows that it is crucial to not only optimize the amount of neurons, but
also the activations and the amount of weights.
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Table 4 Mean and min/max
computation times (in seconds)
for different sparsity
configurations on the wine,
breastEW, ovarian and zoo
dataset

Binary Wine BreastEW Ovarian Zoo
Flags
(b,c,d) seconds (mean, min–max)

0,0,0 17 27 341 38

10–28 12–79 126–694 24–55

0,0,1 29 189 129 409

12–66 3–607 100–166 104–1749

0,1,0 63 293 214 50

22–109 182–472 126–749 31–91

0,1,1 387 919 1419 4894

180–12K 283–1791 539–3262 633–12K

1,0,0 57 8059 604 38

17–87 288–12K 193–1084 11–74

1,0,1 12K 2467 473 3932

50–12K 12K–12K 267–867 109–12K

1,1,0 981 12K 892 348

3686–12K 12K–12K 380–1822 90–846

1,1,1 12K 12K 2654 5967

12K–12K 12K–12K 987–3581 878–12K

Bin (b) indicates theminimization of theweights, bin (c) theminimiza-
tion of the amount of neuron activations and bin (d) the minimization
of the amount of used neurons, similar to Table 3

Table 5 Size of the resulting MILP for the used datasets

DataSet Train f A Aeq Encode (sec)

Wine 89 × 13 1 × 4655 10804 × 4655 1246 × 4655 0.79

BreastEW 284 × 30 1 × 11340 24412 × 11340 3408 × 11340 4.02

Ovarian 108 × 4000 1 × 68172 73148 × 68172 1296 × 68172 149, 67

Zoo 50 × 16 1 × 5064 13122 × 5064 1100 × 5064 1.04

Shown is the input size of the training data (e.g., 89 examples with a 13 dimensional feature vector is
used for training of the wine dataset), the size of the objective function f and the inequality and equality
constraint matrices A and Aeq. The last column shows the time to generate the equations for the MILP
solver in seconds

Table 6 Used microarray datasets and a comparison of the obtained results to alternative approaches

Dataset Samples Features Classes Set-MLP
[42] (%)

MLP [50] (%) Compression
[65] (%)

Ours (%)

SUB-111 [30] 111 11.340 3 81.6 71.3 70.0 73

CAN-187 [63] 187 19.993 2 75.2 68.5 68 72

GLI-85 [21] 85 22.283 2 94.48 92.41 85 93
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It is well known that these datasets seriously suffer from an extremely small number
of samples which explains the high deviations among several solutions and makes it
mandatory to enforce sparse solutions.

5 Summary and Discussion

Based on current developments in training NNs by using an exact optimization solver,
this work presents an approach to optimize parameters of a Rosenblatt perceptron,
and based on this the parameters of a neural network, as a MILP. The methodology
followed in this paper is fundamentally different to differentiable programming and
ensures a solution which is globally optimal (with respect to the loss function). The
optimized weights can then be used to assemble a neural network for inference on
unseen data. The parsing and definition of the MILP have been implemented in the
MATLAB [48] environment and Gurobi [24] is used for optimization. In this paper,
three constraints on sparsity are proposed to (a) minimize the network weights, to (b)
minimize the amount of activations and to (c) minimize the amount of neurons. Addi-
tionally it is possible to optimize discrete models (only working on integer values).
All constraints can be neatly formulated as additional constraints in the MILP and
can even be jointly optimized. This allows sparsity and resource optimization of neu-
ral networks. Resource optimization involves the minimization of both, the amount
of neurons, as well as the amount of activations required for decision making. An
empirical comparison with the baseline formulation shows, that sparsity measures are
important for generalization on unseen data.

The presented approach has one major drawback as mentioned earlier by Gambella
et al. [22]: The computation time for optimization heavily increases with the amount of
data and the amount of dimensions. Still, the usedmethodology can guarantee globally
optimal results while being nearly parameter free. Especially, it is independent from
random seeds, dropouts or other hyperparameters which can be crucial for high quality
but are also time and energy demanding in differentiable programming.As part of basic
and fundamental research, the used datasets are not in the same league of datasets used
with large models and big data applications nowadays. Still, it is important to continue
the research on alternative optimization strategies, especially on methods which can
reach global optimality and methods that allow the imposition of conditions which are
hard to optimize in differentiable programming.

Basedon thiswork, several extensions are possible, ranging frommodeling different
layer types and operations such as convolutions, pooling or probabilistic models, see
e.g., Capobianco et al. [13] or Awiszus et al. [4] to the optimization of the network
topology, see Negrinho et al. [54]. It is also possible to generate deeper fully connected
networks with the proposed approach. Here, an additional challenge is that the amount
of equations and the amount of slack variables are heavily increasing. Recently, the
use of graph neural networks for LP solving has been presented by Chen et al. [15].
Finally, only standard solvers are currently used. Intrinsic properties of the equality
and inequality constraints should allow solving the system much faster, see Kronqvist
et al. [38]. This will also allow to analyze and model deeper fully connected models
as part of future work.
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