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Abstract
The publication “ J.Optim. TheoryAppl. 186, 86–101 (2020). https://doi.org/10.1007/
s10957-020-01691-0” requires minor modifications which are carried out.

Keywords Pseudo-Jacobian · Constraint qualification · Necessary optimality
condition

Mathematics Subject Classification 90C46 · 49J52

Correction to:
Journal of Optimization Theory and Applications (2020) 186:86–101
https://doi.org/10.1007/s10957-020-01691-0

1 Introduction

In [1], some parts of the proofs of Theorems 3.1 and 3.2(ii) are needed to be revised.
The conclusion of [1, Theorem 3.1] holds under an additional assumption, thus it is
restated and proved. Also, the proof of [1, Theorem 3.2(ii)] is modified. With this
method of proof, the USRC of the function d̃(u) at u = 0 becomes a smaller set in
comparisonwith its counterpart in [1, Theorem 3.2(ii)]. Thus we can say, the statement
of [1, Theorem 3.2(ii)] is improved. Furthermore, [1, Lemmas 3.2 and 3.3] are not
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required and hence are omitted. Accordingly, the paragraph before these Lemmas is
also removed. Further, [1, Theorem 3.3] gives a better form of the optimality condition
and is updated. No other changes are required regarding the preliminaries, definitions,
main conclusions and examples.

2 Modified Results

First, we update [1, Theorem 3.1] by adding the following additional assumption from
[2]:

We say that the function F is calm at x̄ with some modulus l > 0, if there exists a
positive scalar δ satisfying ‖F(x) − F(x̄)‖ � l‖x − x̄‖, for each x ∈ x̄ + δBn .

Theorem 2.1 ([1, Theorem 3.1] updated) Assume that the function F is calm at x̄ with
some modulus l > 0 and dΛ is directionally differentiable at F(x̄). If EBCQ holds at
x̄ with a constant σ , then ACQ is satisfied at x̄ with the same constant.

Proof (modified) Let u /∈ T (x̄; F−1(Λ)) (otherwise there is nothing to prove) and
EBCQ be satisfied at x̄ with σ = 1. Assume also that 0 � d̃(u) < ∞ (if d̃(u) = +∞,
the ACQ obviously holds). Thus, there is a sequence tk ↓ 0 such that

d̃(u) = lim
k→∞ dT (F(x̄);Λ)

(
F(x̄ + tku) − F(x̄)

tk

)
.

The closedness of T (F(x̄);Λ), gives us a sequence {wk} such that for each k,

dT (F(x̄);Λ)

(
F(x̄ + tku) − F(x̄)

tk

)
=

∥∥∥∥ F(x̄ + tku) − F(x̄)

tk
− wk

∥∥∥∥ . (1)

We assert that the sequence {wk} is bounded. Fixing ε > 0 and observing (1), we
obtain the following inequalities for all k sufficiently large:

‖wk‖ �
∥∥∥∥ F(x̄ + tku) − F(x̄)

tk
− wk

∥∥∥∥ +
∥∥∥∥ F(x̄ + tku) − F(x̄)

tk

∥∥∥∥ < d̃(u) + ε + l‖u‖,

which shows the boundedness of {wk} and the assertion is proved. Thus by passing to
a subsequence, without relabelling, {wk} converges to some vector w ∈ T (F(x̄);Λ).
Now, By EBCQ one has

dF−1(Λ)(x̄ + tku)

tk
� dΛ(F(x̄ + tku))

tk

� dΛ(F(x̄) + tkwk)

tk
+

∥∥∥∥ F(x̄ + tku) − F(x̄)

tk
− wk

∥∥∥∥ .

(2)

123



858 Journal of Optimization Theory and Applications (2023) 199:856–861

Next, we claim that lim supk→∞
dΛ(F(x̄)+tkwk )

tk
= 0. From [1, Lemma 3.1] and the fact

that dΛ is directionally differentiable at F(x̄), we get

0 � lim sup
k→∞

dΛ(F(x̄) + tkwk)

tk
� lim

k→∞

{
dΛ(F(x̄) + tkw)

tk
+ ‖wk − w‖

}

= d ′
Λ(F(x̄);w) = 0,

(3)

which proves the claim. Now, it follows from (2), (3) and (1) that

lim inf
k→∞

dF−1(Λ)(x̄ + tku)

tk
� lim sup

k→∞

{
dΛ(F(x̄) + tkwk)

tk

+
∥∥∥∥ F(x̄ + tku) − F(x̄)

tk
− wk

∥∥∥∥
}

� lim sup
k→∞

dΛ(F(x̄) + tkwk)

tk

+ lim
k→∞

∥∥∥∥ F(x̄ + tku) − F(x̄)

tk
− wk

∥∥∥∥
= d̃(u).

Using again [1, Lemma 3.1], the above especially implies that

dT (x̄;F−1(Λ))(u) = d−
F−1(Λ)

(x̄; u) � d̃(u),

and completes the proof of the theorem. �	

In what follows, the proof of [1, Theorem 3.2(ii)] is modified. By this modification,
USRC of the function d̃(.) at u = 0 becomes a smaller set and gives a better result;
hence its statement is also improved.

Theorem 2.2 ([1, Theorem 3.2(ii)] updated) Assume that ∂F(x̄) is an u.s.c. PJ of
F : Rn → R

m at x̄ . Suppose also that F(x̄) ∈ Λ ⊆ R
m and ∂dΛ(F(x̄)) is a bounded

USRC of dΛ at F(x̄). Then the closure of the set

∂dΛ(F(x̄)) ◦ {conv ∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]}

is an USRC of the function d̃ at u = 0.

Proof (revised) Put A := ∂dΛ(F(x̄)) ◦ {conv∂F(x̄) ∪ [(∂F(x̄))∞\{0}]} and fix
u ∈ R

n . First, let us show that supη∈A 〈η, u〉 � 0. For given M ∈ conv∂F(x̄) ∪
[(∂F(x̄))∞\{0}], we have

sup
ξ∈∂dΛ(F(x̄))

〈ξ, Mu〉 � d+
Λ(F(x̄); Mu) � 0.
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Thus, using the definition of A, we get

sup
η∈A

〈η, u〉 = sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξM, u〉

= sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξ, Mu〉 � 0.

There are two possible cases: If d̃+(0; u) = 0, then trivially we obtain

d̃+(0; u) � sup
η∈A

〈η, u〉 . (4)

Hence, let d̃+(0; u) > 0. If the following inequality holds:

sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξ, Mu〉 > 0,

due to the cone property of (∂F(x̄))∞\{0}, we get

sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξ, Mu〉 = +∞,

and the inequality in (4) holds trivially. Finally, the following case remains

sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξ, Mu〉 = 0. (5)

For each fixed M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞\{0}], one has

0 � d+
Λ(F(x̄); Mu) � sup

ξ∈∂dΛ(F(x̄))
〈ξ, Mu〉

� sup
ξ ∈ ∂dΛ(F(x̄))

M ∈ conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]

〈ξ, Mu〉 = 0

Utilizing [1, Lemma 3.1], we have

0 � dT (F(x̄);Λ)(Mu) = d−
Λ(F(x̄); Mu) � d+

Λ(F(x̄); Mu) = 0,

whichmeans thatMu ∈ T (F(x̄);Λ), for allM ∈ conv∂F(x̄)∪[(∂F(x̄))∞\{0}].Now,
since d̃+(0; u) > 0, there exits some positive number c such that c < d̃+(0; u) =
d̃(u). Thus for some sequence tk ↓ 0 and for all k sufficiently large, one has

c < dT (F(x̄);Λ)

(
F(x̄ + tku) − F(x̄)

tk

)
. (6)
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Applying now the mean value Theorem in [1, Propostion 2.3], we have for each k,

F(x̄ + tku) − F(x̄) ∈ clconv{∂F[x̄ + tku, x̄]tku}.

Using the upper semicontinuity of ∂F(.) at x̄ , for given sequence rs ↓ 0, there exits
ks > ks−1 satisfying

F(x̄ + tks u) − F(x̄) ∈ clconv{∂F[x̄ + tks u, x̄]tks u}
⊆ clconv{{∂F(x̄) + rs

2
Bm×n}tks u}

⊆ cl{{conv∂F(x̄) + rs
2
Bm×n}tks u}.

Thus, there exists Mks ∈ conv∂F(x̄) such that

∥∥∥∥ F(x̄ + tks u) − F(x̄)

tks
− Mks u

∥∥∥∥ < rs‖u‖.

Choosing now subsequences Ms := Mks and ts := tks , and using the inequality in (6),
we deduce that

c < dT (F(x̄);Λ)

(
F(x̄ + tsu) − F(x̄)

ts

)
< dT (F(x̄);Λ)(Msu) + rs‖u‖.

Observing thatdT (F(x̄);Λ)(Msu) = 0 and taking limit as s → ∞ in the latter inequality,
we arrive at the contradiction c � 0, which shows the case d̃+(0; u) > 0 and the
equality (5) do not occur together and the proof is completed. �	

Since the USRC of the function d̃ is changed, the optimality condition in [1,
Theorem 3.3] is improved and updated, accordingly.

Theorem 2.3 ([1, Theorem 3.3] updated) Suppose that ACQ is satisfied at the local
optimal point x̄ of GOP. Let ∂ f (x̄) and ∂F(x̄) are USRC and u.s.c. PJ of f and F at
x̄, respectively and ∂dΛ(F(x̄)) is a bounded USRC of dΛ at F(x̄). Then

0 ∈ cl conv{∂ f (x̄) + lσ∂dΛ(F(x̄)) ◦ {conv∂F(x̄) ∪ [(∂F(x̄))∞ \ {0}]}},

where σ is the positive constant of ACQ and l is the Lipschitz constant of the function
f in a neighborhood of x̄ .

3 Conclusion

The proofs of [1, Theorems 3.1 and 3.2(ii)] are rectified and their statements are
updated. Also, [1, Theorem 3.3] gives a better form of the optimality condition which
is improved.
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