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Abstract
In this paper, we analyze a speed restarting scheme for the inertial dynamics with
Hessian-driven damping, introduced by Attouch et al. (J Differ Equ 261(10):5734–
5783, 2016). We establish a linear convergence rate for the function values along the
restarted trajectories. Numerical experiments suggest that the Hessian-driven damping
and the restarting scheme together improve the performance of the dynamics and
corresponding iterative algorithms in practice.

Keywords Convex optimization · Hessian-driven damping · First-order methods ·
Restarting · Differential equations
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1 Introduction

In convex optimization, first-order methods are iterative algorithms that use function
values and (generalized) derivatives to build minimizing sequences. Perhaps the oldest
and simplest of them is the gradient method [13], which can be interpreted as a finite-
difference discretization of the differential equation

ẋ(t) + ∇φ
(
x(t)

) = 0, (1)
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describing the steepest descent dynamics. The gradient method is applicable to smooth
functions, but there are more contemporary variations that can deal with nonsmooth
ones, and even exploit the functions’ structure to enhance the algorithm’s per iteration
complexity, or overall performance. A keynote example (see [9] for further insight)
is the proximal-gradient (or forward–backward) method [18, 28], (see also [22, 30]),
which is in close relationship with a nonsmooth version of (1). In any case, the analysis
of related differential equations or inclusions is a valuable source of insight into the
dynamic behavior of these iterative algorithms.

In [25, 29], the authors introduced inertial substeps in the iterations of the gradient
method, in order to accelerate its convergence. This variation improves the worst-case
convergence rate from O(k−1) to O(k−2). In the strongly convex case, the constants
that describe the linear convergence rate are also improved. This method was extended
to the proximal-gradient case in [10], and to fixed point iterations [16, 21] (see, for
example [3, 4, 14, 19, 20], among others). Su et al. [31] showed that Nesterov’s inertial
gradient algorithm—and, analogously, the proximal variant—can be interpreted as a
discretization of the ordinary differential equation with Asymptotically Vanishing
Damping

ẍ(t) + α

t
ẋ(t) + ∇φ(x(t)) = 0, (AVD)

where α > 0. The function values vanish along the trajectories [6], and they do so at a
rate of O(t−2) for α ≥ 3 [31], and o(t−2) for α > 3 [23], in the worst-case scenario.

Despite its faster convergence rate guarantees, trajectories satisfying (AVD)—as
well as sequences generated by inertial first order methods—exhibit a somewhat
chaotic behavior, especially if the objective function is ill-conditioned. In particular,
the function values tend not to decrease monotonically, but to present an oscillatory
character, instead.

Example 1.1 We consider the quadratic function φ : R3 → R, defined by

φ(x1, x2, x3) = 1

2
(x21 + ρx22 + ρ2x23 ), (2)

whose condition number is max{ρ2, ρ−2}. Figure1 shows the behavior of the solution
to (AVD), with x(1) = (1, 1, 1) and ẋ(1) = −∇φ

(
x(1)

)
(the direction of maximum

descent).

In order to avoid this undesirable behavior, and partly inspired by a continuous
version ofNewton’smethod [2],Attouch et al. [5] proposed aDynamic InertialNewton
system with Asymptotically Vanishing Damping, given by

ẍ(t) + α

t
ẋ(t) + ∇φ(x(t)) + β∇2φ(x(t))ẋ(t) = 0, (DIN-AVD)

where α, β > 0. In principle, this expression only makes sense when φ is twice
differentiable, but the authors show that it can be transformed into an equivalent first-
order equation in time and space, which can be extended to a differential inclusion that
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Fig. 1 Depiction of the function values according to Example 1.1, on the interval [1, 35], for α = 3.1, and
ρ = 10 (left) and ρ = 100 (right)

Fig. 2 Depiction of the function values according to Example 1.2, on the interval [1, 35], for α = 3.1,
β = 1, and ρ = 10 (left) and ρ = 100 (right)

is well posed whenever φ is closed and convex. The authors presented (DIN-AVD) as
a continuous-time model for the design of new algorithms, a line of research already
outlined in [5], and continued in [7]. Back to (DIN-AVD), the function values vanish
along the solutions, with the same rates as for (AVD). Nevertheless, in contrast with
the solutions of (AVD), the oscillations are tame.

Example 1.2 In the context of Example 1.1, Fig. 2 shows the behavior of the solution
to (AVD) in comparison with that of (DIN-AVD), both with x(1) = (1, 1, 1) and
ẋ(1) = −∇φ

(
x(1)

)
.

An alternative way to avoid–or at least moderate—the oscillations exemplified in
Fig. 1 for the solutions of (AVD) is to stop the evolution and restart it with zero
initial velocity, from time to time. The simplest option is to do so periodically, at
fixed intervals. This idea is used in [26] for the accelerated gradient method, where the
number of iterations between restarts that depends on the parameter of strong convexity
of the function. See also [1, 8, 24], where the problem of estimating the appropriate
restart times is addressed. An adaptive policy for the restarting of Nesterov’s Method
was proposed by O’Donoghue and Candès [27], where the algorithm is restarted at
the first iteration k such that φ(xk+1) > φ(xk), which prevents the function values
to increase locally. This kind of restarting criteria shows a remarkable performance,
although convergence rate guarantees have not been established, although some partial
steps in this direction have beenmade in [15, 17].Moreover, the authors of [27] observe
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Fig. 3 Values along the
trajectory, with (red) and without
(blue) restarting, for (AVD)

that this heuristic displays an erratic behavior when the difference φ(xk) − φ(xk+1)

is small, due to the prevalence of cancellation errors. Therefore, this method must be
handled with care if high accuracy is desired. A different restarting scheme, based on
the speed of the trajectories, is proposed for (AVD) in [31], where rates of convergence
are established. The improvement can be remarkable, as shown in Fig. 3.

In [31], the authors also perform numerical tests using Nesterov’s inertial gradient
method, with this restarting scheme as a heuristic, and observe a faster convergence
to the optimal value.

The aim of this work is to analyze the impact that the speed restarting scheme
has on the solutions of (DIN-AVD), in order to set the theoretical foundations to
further accelerate Hessian-driven inertial algorithms—like the ones in [7]—by means
of a restarting policy. This approach combines two oscillation mitigation principles
that result in a monotonic and fast convergence of the function values. We provide
linear convergence rates for functions with quadratic growth and observe a noticeable
improvement in the behavior of the trajectories in terms of stability and convergence
speed, both in comparison with the non-restarted trajectories, and with the restarted
solutions of (AVD). As a byproduct, we generalize and improve some of the results in
[31]. It is worth noticing that the convergence rate result holds for all values of α > 0
and β ≥ 0, in contrast with those in [5–7].

The paper is organized as follows: In Sect. 2, we describe the speed restart scheme
and state the convergence rate of the corresponding trajectories, which is the main
theoretical result of this paper. Section3 contains the technical auxiliary results—
especially some estimations on the restarting time—leading to the proof of our main
result, which is carried out in Sect. 4. Finally, we present a few simple numerical
examples in Sect. 5, in order to illustrate the improvements, in terms of convergence
speed, of the restarted trajectories.

2 Restarted Trajectories for (DIN-AVD)

Throughout this paper, φ : R
n → R is a twice continuously differentiable con-

vex function, which attains its minimum value φ∗, and whose gradient ∇φ is
Lipschitz-continuous with constant L > 0. Consider the ordinary differential equation
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(DIN-AVD), with initial conditions x(0) = x0, ẋ(0) = 0, and parameters α > 0 and
β ≥ 0. A solution is a function in C2 ((0,+∞);Rn) ∩ C1 ([0,+∞);Rn), such that
x(0) = x0, ẋ(0) = 0 and (DIN-AVD) holds for every t > 0. Existence and uniqueness
of such a solution is not straightforward due to the singularity at t = 0, but can be
established by a limiting procedure. As shown in Appendix 1, we have the following:

Theorem 2.1 For every x0 ∈ R
n, the differential equation (DIN-AVD), with initial

conditions x(0) = x0 and ẋ(0) = 0, has a unique solution.

We are concerned with the design and analysis of a restart scheme to accelerate the
convergence of the solutions of (DIN-AVD) to minimizers of φ, based on the method
proposed in [31].

2.1 A Speed Restarting Scheme and theMain Theoretical Result

Since the damping coefficient α/t goes to 0 as t → ∞, large values of t result in a
smaller stabilization of the trajectory. The idea is thus to restart the dynamics at the
point where the speed ceases to increase.

Given z ∈ R
n , let yz be the solution of (DIN-AVD),with initial conditions yz(0) = z

and ẏz(0) = 0. Set

T (z) = inf

{
t > 0 : d

dt
‖ẏz(t)‖2 ≤ 0

}
. (3)

Remark 2.1 Take z /∈ argmin(φ), and define yz as above. For t ∈ (
0, T (z)

)
, we have

d

dt
φ(yz(t)) = 〈∇φ(yz(t)), ẏz(t)〉

= −〈ÿz(t), ẏz(t)〉 − α

t
‖ẏz(t)‖2 − β〈∇2φ(yz(t))ẏz(t), ẏz(t)〉.

But 〈∇2φ(yz(t))ẏz(t), ẏz(t)〉 ≥ 0 by convexity, and 〈ÿz(t), ẏz(t)〉 ≥ 0 by the
definition of T (z). Therefore,

d

dt
φ(yz(t)) ≤ −α

t
‖ẏz(t)‖2 . (4)

In particular, t → φ
(
yz(t)

)
decreases in [0, T (z)].

If z /∈ argmin(φ), then T (z) cannot be 0. In fact, we shall prove (see Corollaries 3.2
and 3.3) that

0 < inf
{
T (z) : z /∈ argmin(φ)

} ≤ sup
{
T (z) : z /∈ argmin(φ)

}
< ∞. (5)

Definition 2.1 Given x0 ∈ R
n , the restarted trajectory χx0 : [0,∞) → R

n is defined
inductively:
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1. First, compute yx0 , T1 = T (x0) and S1 = T1, and define χx0(t) = yx0(t) for
t ∈ [0, S1].

2. For i ≥ 1, having defined χx0(t) for t ∈ [0, Si ], set xi = χx0(Si ), and compute yxi .
Then, set Ti+1 = T (xi ) and Si+1 = Si + Ti+1, and define χx0(t) = yxi (t − Si ) for
t ∈ (Si , Si+1].
In view of (5), Si is defined for all i ≥ 1, inf i≥1(Si+1 − Si ) > 0 and limi→∞ Si =

∞. Moreover, in view of Remark 2.1, we have

Proposition 2.1 The function t → φ
(
χx0(t)

)
is nonincreasing on [0,∞).

Our main theoretical result establishes that φ
(
χx0(t)

)
converges linearly to φ∗,

provided there exists μ > 0 such that

μ(φ(z) − φ∗) ≤ 1

2
‖∇φ(z)‖2 (6)

for all z ∈ R
n . The Łojasiewicz inequality (6) is equivalent to quadratic growth and

is implied by strong convexity (see [11]). More precisely, we have the following:

Theorem 2.2 Let φ : R
n → R be convex and twice continuously differentiable.

Assume ∇φ is Lipschitz-continuous with constant L > 0, there exists μ > 0 such
that (6) holds, and that the minimum value φ∗ of φ is attained. Given α > 0 and
β ≥ 0, let χx0 be the restarted trajectory defined by (DIN-AVD) from an initial point
x0 ∈ R

n. Then, there exist constants C, K > 0 such that

φ
(
χx0(t)

) − φ∗ ≤ Ce−K t(φ(x0) − φ∗) ≤ C L

2
e−K t dist

(
x0, argmin(φ)

)2

for all t > 0.

The rather technical proof is split into several parts and presented in the next sub-
sections.

3 Technicalities

Throughout this section,wefix z /∈ argmin(φ) and, in order to simplify the notation,we
denote by x (instead of yz) the solution of (DIN-AVD) with initial condition x(0) = z
and ẋ(0) = 0.

3.1 A Few Useful Artifacts

We begin by defining some useful auxiliary functions and point out the main relation-
ships between them.

To this end, we first rewrite Eq. (DIN-AVD) as

d

dt
(tα ẋ(t)) = −tα∇φ(x(t)) − βtα∇2φ(x(t))ẋ(t). (7)
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Integrating (7) over [0, t], we get

tα ẋ(t) = −
∫ t

0
uα∇φ(x(u)) du − β

∫ t

0
uα∇2φ(x(u))ẋ(u) du

= −
[∫ t

0
uα(∇φ(x(u)) − ∇φ(z)) du

]
−

[
β

∫ t

0
uα∇2φ(x(u))ẋ(u) du

]

(8)

− tα+1

α + 1
∇φ(z). (9)

In order to obtain an upper bound for the speed ẋ , the integrals

Iz(t) =
∫ t

0
uα(∇φ(x(u)) − ∇φ(z)) du and Jz(t) = β

∫ t

0
uα∇2φ(x(u))ẋ(u) du

(10)
will be majorized using the function

Mz(t) = sup
u∈(0,t]

[‖ẋ(u)‖
u

]
, (11)

which is positive, nondecreasing and continuous.

Lemma 3.1 For every t > 0, we have

‖Iz(t)‖ ≤ L Mz(t)tα+3

2(α + 3)
and ‖Jz(t)‖ ≤ βL Mz(t)tα+2

α + 2
.

Proof For the first estimation, we use the Lipschitz-continuity of ∇φ and the fact that
Mz in nondecreasing, to obtain

‖∇φ(x(u)) − ∇φ(z)‖ ≤ L‖x(u) − z‖
≤ L

∥
∥∥∥

∫ u

0
ẋ(s) ds

∥
∥∥∥ ≤ L

∫ u

0
s
‖ẋ(s)‖

s
ds ≤ L Mz(u)

∫ u

0
s ds,

which results in

‖∇φ(x(u)) − ∇φ(z)‖ ≤ Lu2Mz(u)

2
. (12)

Then, from the definition of Iz(t) we deduce that

‖Iz(t)‖ ≤
∫ t

0
uα ‖∇φ(x(u)) − ∇φ(z)‖ du ≤ L Mz(t)

2

∫ t

0
uα+2 du = L Mz(t)tα+3

2(α + 3)
.
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For the second inequality, we proceed analogously to get

∥
∥∥∇2φ(x(u))ẋ(u)

∥
∥∥ =

∥∥
∥∥ limr→u

∇φ(x(r)) − ∇φ(x(u))

r − u

∥∥
∥∥

≤ lim
r→u

L

r − u

∫ r

u
‖ẋ(s)‖ ds ≤ lim

r→u

L Mz(r)

r − u

∫ r

u
s ds,

which yields

∥∥∥∇2φ(x(u))ẋ(u)

∥∥∥ ≤ LuMz(u). (13)

Then,

‖Jz(t)‖ ≤ β

∫ t

0
uα

∥∥∥∇2φ(x(u))ẋ(u)

∥∥∥ du ≤ β

∫ t

0
uα+1L Mz(u) du

≤ βL Mz(t)tα+2

α + 2
,

as claimed. ��
The dependence of Mz on the initial condition z may be greatly simplified. To this

end, set

H(t) = 1 − Lβt

(α + 2)
− Lt2

2(α + 3)
. (14)

The function H is concave, quadratic, does not depend on z, and has exactly one
positive zero, given by

τ1 = −
(

α + 3

α + 2

)
β +

√(
α + 3

α + 2

)2

β2 + 2(α + 3)

L
. (15)

In particular, H decreases strictly from 1 to 0 on [0, τ1].
Lemma 3.2 For every t ∈ (0, τ1),

Mz(t) ≤ ‖∇φ(z)‖
(α + 1)H(t)

. (16)

Proof If 0 < u ≤ t , using (8) and (10), along with Lemma 3.1, we obtain

‖ẋ(u)‖
u

≤ ‖Iz(u) + Jz(u)‖
uα+1 + ‖∇φ(z)‖

α + 1
≤

[
Lu2

2(α + 3)
+ Lβu

α + 2

]
Mz(u)

+ ‖∇φ(z)‖
α + 1

. (17)
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Since the right-hand side is nondecreasing in t , we take the supremum for u ∈ [0, t]
to deduce that

Mz(t) ≤
[

Lt2

2(α + 3)
+ Lβt

α + 2

]
Mz(t) + ‖∇φ(z)‖

α + 1
.

Rearranging the terms, and using the definition of H , given in (14), we see that

H(t)Mz(t) ≤ ‖∇φ(z)‖
(α + 1)

.

We conclude by observing that H is positive on (0, τ1). ��
By combining Lemmas 3.1 and 3.2, and inequalities (12) and (13), we obtain:

Corollary 3.1 For every t ∈ (0, τ1), we have

‖Iz(t) + Jz(t)‖ ≤ tα+1
[
1 − H(t)

H(t)

] ‖∇φ(z)‖
(α + 1)

,

∥∥∥
(∇φ(x(t)) − ∇φ(z)

) + β∇2φ(x(t))ẋ(t)
∥∥∥ ≤

[
Lt2

2
+ βLt

] ‖∇φ(z)‖
(α + 1)H(t)

.

Wehighlight the fact that the bound above depends on z only via the factor ‖∇φ(z)‖.

3.2 Estimates for the Restarting Time

Webegin by finding a lower bound for the restarting time, depending on the parameters
α, β and L , but not on the initial condition z.

Lemma 3.3 Let z /∈ argmin(φ), and let x be the solution of (DIN-AVD) with initial
conditions x(0) = z and ẋ(0) = 0. For every t ∈ (0, τ1), we have

〈ẋ(t), ẍ(t)〉 ≥ t ‖∇φ(z)‖2
(α + 1)2H(t)2

(
1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)

)
.

Proof From (8) and (10), we know that

ẋ(t) = − 1

tα
(
Iz(t) + Jz(t)

) − t

α + 1
∇φ(z). (18)

On the other hand,

d

dt

[
1

tα
(
Iz(t) + Jz(t)

)] = − α

tα+1

(
Iz(t) + Jz(t)

) + (∇φ
(
x(t)

) − ∇φ(z)
)

+ β∇2φ(x(t))ẋ(t).
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Then,

ẍ(t) = α

tα+1

(
Iz(t) + Jz(t)

) − (∇φ(x(t)) − ∇φ(z)) − β∇2φ(x(t))ẋ(t)

− 1

α + 1
∇φ(z)

= A(t) − B(t),

where

A(t) = α

tα+1

(
Iz(t) + Jz(t)

) − 1

α + 1
∇φ(z),

and

B(t) = (∇φ(x(t)) − ∇φ(z)
) + β∇2φ(x(t))ẋ(t).

With this notation, we have

〈ẋ(t), ẍ(t)〉 = 〈ẋ(t), A(t)〉 − 〈ẋ(t), B(t)〉 ≥ 〈ẋ(t), A(t)〉 − ‖ẋ(t)‖ ‖B(t)‖.

For the first term, we do as follows:

〈ẋ(t), A(t)〉 = −
〈
1

tα
(
Iz(t) + Jz(t)

) + t

α + 1
∇φ(z),

α

tα+1

(
Iz(t) + Jz(t)

)

− 1

α + 1
∇φ(z)

〉

≥ t

(α + 1)2
‖∇φ(z)‖2 − α

t2α+1 ‖Iz(t) + Jz(t)‖2

− (α − 1)

tα(α + 1)
‖∇φ(z)‖ ‖Iz(t) + Jz(t)‖

≥ t

(α + 1)2
‖∇φ(z)‖2 − αt

(α + 1)2

[
1 − H(t)

H(t)

]2
‖∇φ(z)‖2

− (α − 1)t

(α + 1)2

[
1 − H(t)

H(t)

]
‖∇φ(z)‖2

= t ‖∇φ(z)‖2
(α + 1)2

(

1 − α

[
1 − H(t)

H(t)

]2
− (α − 1)

[
1 − H(t)

H(t)

])

= t ‖∇φ(z)‖2
(α + 1)2H(t)2

(
H(t)2 − α

(
1 − H(t)

)2 − (α − 1)H(t)
(
1 − H(t)

))

= t ‖∇φ(z)‖2
(α + 1)2H(t)2

(
(α + 1)H(t) − α

)
,
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where we have used the Cauchy–Schwarz inequality and Corollary 3.1. For the second
term, we first use (18) and observe that

‖ẋ(t)‖ ≤ 1

tα
‖Iz(t) + Jz(t)‖ + t

(α + 1)
‖∇φ(z)‖ ≤ t ‖∇φ(z)‖

(α + 1)H(t)
,

and

B(t) ≤
[

Lt2

2
+ βLt

] ‖∇φ(z)‖
(α + 1)H(t)

,

by Corollary 3.1. We conclude that

〈ẋ(t), ẍ(t)〉 ≥ t ‖∇φ(z)‖2
(α + 1)2H(t)2

(
(α + 1)H(t) − α − Lt2

2
− βLt

)

= t ‖∇φ(z)‖2
(α + 1)2H(t)2

(
1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)

)
,

as stated. ��
The function G, defined by

G(t) = 1 − (2α + 3)βLt

(α + 2)
− (α + 2)Lt2

(α + 3)
= (α + 1)H(t) − α − Lt2

2
− βLt,

(19)

does not depend on the initial condition z. Its unique positive zero is

τ3 = − (α + 3)(2α + 3)

2(α + 2)2
β +

√
(α + 3)2(2α + 3)2

4(α + 2)4
β2 + (α + 3)

(α + 2)L
. (20)

In viewof the definition of the restarting time, an immediate consequence of Lemma
3.3 is

Corollary 3.2 Let T∗ = inf
{
T (z) : z /∈ argmin(φ)

}
. Then, τ3 ≤ T∗.

Remark 3.1 If β = 0, then

τ3 =
√

(α + 3)

(α + 2)L
.

The case α = 3 and β = 0 was studied in [31], and the authors provided 4
5
√

L
as a

lower bound for the restart. The arguments presented here yield a higher bound, since

τ3 =
√

6

5L
>

1√
L

>
4

5
√

L
.
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Recall that the function H given in (14) decreases from 1 to 0 on [0, τ1]. Therefore,
H(t) > 1

2 for all t ∈ [0, τ2), where

τ2 = H−1
(
1

2

)
= −

(
α + 3

α + 2

)
β +

√(
α + 3

α + 2

)2

β2 + α + 3

L
< τ1. (21)

Evaluating the right-hand side of (19), we see that

G(τ2) = (1 − α) − Lτ 22 − 2βLτ2

2
< 0,

whence

τ1 > τ2 > τ3 > 0. (22)

These facts will be useful to provide an upper bound for the restarting time.

Proposition 3.1 Let z /∈ argmin(φ), and let x be the solution of (DIN-AVD) with
initial conditions x(0) = z and ẋ(0) = 0. Let φ satisfy (6) with μ > 0. For each
τ ∈ (0, τ2) ∩ (0, T (z)], we have

T (z) ≤ τ exp

[
(α + 1)2

2αμτ 2Ψ (τ)

]
, where Ψ (τ) =

[
2 − 1

H(τ )

]2
.

Proof In view of (8) and (10), we can use Corollary 3.1 to obtain

∥∥∥∥ẋ(τ ) + τ

α + 1
∇φ(z)

∥∥∥∥ = 1

τα
‖I (τ ) + J (τ )‖ ≤ τ

[
1

H(τ )
− 1

] ‖∇φ(z)‖
(α + 1)

.

From the (reverse) triangle inequality and the definition of H , it ensues that

‖ẋ(τ )‖ ≥ τ ‖∇φ(z)‖
α + 1

− τ

[
1

H(τ )
− 1

] ‖∇φ(z)‖
(α + 1)

= τ

[
2 − 1

H(τ )

] ‖∇φ(z)‖
α + 1

,

(23)
which is positive, because τ ∈ (0, τ2).Now, take t ∈ [τ, T (z)]. Since‖ẋ(t)‖2 increases
in

[
0, T (z)

]
, Remark 2.1 gives

d

dt
φ
(
x(t)

) ≤ −α

t
‖ẋ(t)‖2 ≤ −α

t
‖ẋ(τ )‖2 ≤ −1

t

[
ατ 2Ψ (τ) ‖∇φ(z)‖2

(α + 1)2

]

.

Integrating over [τ, T (z)], we get

φ
(
x(T (z))

) − φ
(
x(τ )

) ≤ −
[

ατ 2Ψ (τ) ‖∇φ(z)‖2
(α + 1)2

]

ln

[
T (z)

τ

]
. (24)
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It follows that

[
ατ 2Ψ (τ) ‖∇φ(z)‖2

(α + 1)2

]

ln

[
T (z)

τ

]
≤ φ

(
x(τ )

) − φ
(
x(T (z))

) ≤ φ(z) − φ∗

≤ ‖∇φ(z)‖2
2μ

,

in view of (6). It suffices to rearrange the terms to conclude. ��

Corollary 3.3 Let φ satisfy (6) with μ > 0, and let τ∗ ∈ (0, τ2) ∩ (0, T∗]. Then,

sup
{
T (z) : z /∈ argmin(φ)

} ≤ τ∗ exp
[

(α + 1)2

2αμτ 2∗ Ψ (τ∗)

]
.

4 Function Value Decrease and Proof of Theorem 2.2

The next result provides the ratio at which the function values have been reduced by
the time the trajectory is restarted.

Proposition 4.1 Let z /∈ argmin(φ), and let x be the solution of (DIN-AVD) with
initial conditions x(0) = z and ẋ(0) = 0. Let φ satisfy (6) with μ > 0. For each
τ ∈ (0, τ2) ∩ (0, T (z)], we have

φ
(
x(t)

) − φ∗ ≤
[
1 − αμτ 2Ψ (τ)

(α + 1)2

]
(
φ(z) − φ∗)

for every t ∈ [τ, T (z)].

Proof Take s ∈ (0, τ ). By combining Remark 2.1 with (23), we obtain

d

ds
φ(x(s)) ≤ −α

s
‖ẋ(s)‖2 ≤ −αs ‖∇φ(z)‖2

(α + 1)2

[
2 − 1

H(s)

]2
≤ −αs ‖∇φ(z)‖2

(α + 1)2
Ψ (τ)

because H decreases in (0, τ1), which contains (0, τ ). Integrating on (0, τ ) and using
(6), we obtain

φ
(
x(τ )

) − φ∗ ≤ φ(z) − φ∗ − ατ 2Ψ (τ) ‖∇φ(z)‖2
2(α + 1)2

≤
[
1 − αμτ 2Ψ (τ)

(α + 1)2

] (
φ(z) − φ∗).

To conclude, it suffices to observe that φ
(
x(t)

) ≤ φ
(
x(τ )

)
in view of Remark 2.1. ��
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Remark 4.1 Since Ψ is decreasing in [0, τ2), we have Ψ (t) ≥ Ψ (τ∗) > 0, whenever
0 ≤ t ≤ τ∗ < τ2. Moreover, in view of (22) and Corollary 3.2, we can take τ∗ = τ3
to obtain a lower bound. If β = 0, we obtain

Ψ (t) ≥ Ψ (τ3) =
[
2 − 1

H(τ3)

]2
=

[

2 − 1

1 − 1
2(α+2)

]2

=
[
2 − 2α + 4

2α + 3

]2

=
[
2α + 2

2α + 3

]2
,

which is independent of L . As a consequence, the inequality in Proposition 4.1
becomes

φ
(
x(t)

) − φ∗ ≤
(
1 − 4α(α + 3)

(α + 2)(2α + 3)2
μ

L

)
(φ(x0) − φ∗).

For α = 3, this gives

φ
(
x(t)

) − φ∗ ≤
(
1 − 8

45

μ

L

)
(φ(x0) − φ∗).

For this particular case, a similar result is obtained in [31] for strongly convex functions,
namely

φ
(
x(t)

) − φ∗ ≤
(

1 − 3

25

(
67

71

)2
μ

L

)

(φ(x0) − φ∗).

Our constant is approximately 66.37% larger than the one from [31], which implies
a greater reduction in the function values each time the trajectory is restarted. On
the other hand, if β > 0, we can still obtain a slightly smaller lower bound, namely

Ψ (τ3) >

(
2α + 1

2α + 2

)2

, independent from β and L . The proof is technical and will be

omitted.

Proof of Theorem 2.2 Adopt the notation in Definition 2.1, take any τ∗ ∈ (0, τ2) ∩
(0, T∗], and set

τ ∗ = τ∗ exp
[

(α + 1)2

2αμτ 2∗ Ψ (τ∗)

]
, where Ψ (τ∗) =

[
2 − 1

H(τ∗)

]2
.

In view of Corollaries 3.2 and 3.3, we have

τ∗ ≤ T (xi ) ≤ τ ∗

for all i ≥ 0 (we assume xi /∈ argmin(φ) since the result is trivial otherwise). Given
t > 0, let m be the largest positive integer such that mτ ∗ ≤ t . By time t , the trajectory
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will have been restarted at least m times. By Proposition 2.1, we know that

φ
(
χx0(t)

) ≤ φ
(
χx0(mτ ∗)

) ≤ φ
(
χx0(mτ∗)

)
.

We may now apply Proposition 4.1 repeatedly to deduce that

φ
(
χx0(t)

) − φ∗ ≤ Qm(
φ(x0) − φ∗) where Q =

[
1 − αμτ 2∗ Ψ (τ∗)

(α + 1)2

]
< 1.

By definition, (m + 1)τ ∗ > t , which entails m > t
τ∗ − 1. Since Q ∈ (0, 1), we have

Qm ≤ Q
t

τ∗ −1 = 1

Q
exp

(
ln(Q)

τ ∗ t

)
,

and the result is established, withC = Q−1 and K = − 1
τ∗ ln(Q). The proof is finished

due to the fact that φ(u) ≤ φ∗ + L
2 ‖u − u∗‖2 for every u∗ ∈ argmin(φ). ��

The convergence rate given in Theorem 2.2 holds for C and K of the form

C = C(τ∗) =
[
1 − αμτ 2∗ Ψ (τ∗)

(α + 1)2

]−1

and

K = K (τ∗) = − 1

τ∗
exp

[
− (α + 1)2

2αμτ 2∗ Ψ (τ∗)

]
ln

[
1 − αμτ 2∗ Ψ (τ∗)

(α + 1)2

]

>
αμτ∗Ψ (τ∗)
(α + 1)2

exp

[
− (α + 1)2

2αμτ 2∗ Ψ (τ∗)

]
,

for any τ∗ ∈ (0, τ2) ∩ (0, T∗]. In view of (22) and Corollary 3.2, τ∗ = τ3 is a valid
choice. On the other hand, the function K (·) vanishes at τ ∈ {0, τ2} and is positive on
(0, τ2). By continuity, it attains its maximum at some τ̂∗ ∈ (0, τ2)∩(0, T∗]. Therefore,
K (τ̂∗) yields the fastest convergence rate prediction in this framework.

Remark 4.2 It is possible to implement a fixed restart scheme. To this end, we modify
Definition 2.1 by setting Ti ≡ τ , with any τ ∈ (0, τ2) ∩ (0, T∗], such as τ̂∗ or τ3, for
example. In theory, τ̂∗ gives the same convergence rate as the original restart scheme
presented throughout this work. From a practical perspective, though, restarting the
dynamics too soonmay result in a poorer performance. Therefore, finding larger values
of τ̂∗ and τ3 is crucial to implement a fixed restart (see Remarks 3.1 and 4.1).

5 Numerical Illustration

In this section, we provide a very simple numerical example to illustrate how the
convergence is improved by the restarting scheme. A more thorough numerical anal-
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Fig. 4 Values along the
trajectory, with (red) and
without (blue) restarting, for
(DIN-AVD)

ysis will be carried out in a forthcoming paper, where implementable optimization
algorithms will be analyzed.

5.1 Example 1.2 Revisited

We consider the quadratic function φ : R3 → R, defined in Example 1.1 by (2), with
ρ = 10. We set α = 3.1 and β = 0.25 and compute the solutions of (AVD) and
(DIN-AVD), starting from x(1) = x1 = (1, 1, 1) and zero initial velocity, with and
without restarting, using thePython toolodeint from thescipy package. Figure4
shows a comparison of the values along the trajectory with and without restarting, first
for (AVD), and then, for (DIN-AVD). We observe the monotonic behavior established
in Proposition 2.1, as well as a faster linear convergence rate. We shall provide more
quantitative insight in a moment.

However, one can do better. As mentioned earlier, restarting schemes based on
function values are effective from a practical perspective, but show an erratic behavior
as the trajectory approaches a minimizer. It seems natural as a heuristic to use the first
(or n-th) function-value restart point as a warm start, and then apply speed restarts,
for which we have obtained convergence rate guarantees. Although the velocity must
be set to zero after each restart, there are no constraints on the initial velocity used to
compute the warm starting point. The results are shown in Fig. 5, with initial velocities
ẋ(1) = 0 and ẋ(1) = −β∇φ(x1), respectively.

A linear regression after the first restart provides estimations for the linear conver-
gence rate of the function values along the corresponding trajectories, when modeled
as φ

(
χ(t)

) ∼ Ae−Bt , with A, B > 0. The results are displayed in Table 1. The abso-
lute value of the exponent B in the linear convergence rate is increased by 34.67% in
the case ẋ(1) = 0, and by 39.86% in the case ẋ(1) = −β∇φ(x1). Also, the minimum
values for the methods presented in Fig. 5 can be analyzed. The last and best function
values on [1, 25] are displayed in Table 2. In all cases, the best value without restart is
approximately 104 times larger than the one obtained with our policy. We also observe
similar final values for the restarted trajectories despite the different initial velocities.
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Fig. 5 Top: Values along the trajectory, with warm start, for (AVD) (blue) and (DIN-AVD) (red), with
ẋ(1) = 0 (left) and ẋ(1) = −β∇φ(x1) (right). Bottom: Includes trajectorieswithout restarting, for reference

Table 1 Coefficients in the
linear regression, when
approximating
φ
(
χ(t)

) ∼ Ae−Bt

ẋ(1) = 0 ẋ(1) = −β∇φ(x1)
β = 0 β = 0.25 β = 0 β = 0.25

A 3.7545 8.16e−6 3.2051 1.65e−05

B 0.8837 1.1901 0.859 1.2014

Table 2 Values reached for φ at t = 25

ẋ(1) = 0 ẋ(1) = −β∇φ(x1)
β = 0 β = 0.25 β = 0 β = 0.25

Last value without restart 0.0009 3.4793e−07 0.0079 2.8094e−07

Best value without restart 4.0697e−06 2.8024e−14 3.2770e−05 3.2760e−14

Last/best value with restart and warm start 9.8118e−10 2.0103e−18 1.3940e−09 1.9452e−18

5.2 A First Exploration of the Algorithmic Consequences

Different discretizations of (DIN-AVD) can be used to design implementable algo-
rithms and generate minimizing sequences for φ, which hopefully will share the stable
behavior we observe in the solutions of (DIN-AVD). Three such algorithms were first
proposed in [7], for which we implemented a speed restart scheme, analogue to the one
we have used for the solutions of (DIN-AVD). Since we obtained very similar results
and the numerical analysis of algorithms is not the focus of this paper, we describe
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Fig. 6 Function values along iterations of Algorithm 1 without (left) and with (right) warm start

only the simplest one in detail and present the numerical results for that one. As in
[31], a parameter kmin is introduced, to avoid two consecutive restarts to be too close.

Algorithm 1: Inertial Gradient Algorithm with Hessian Damping (IGAHD) -
Speed Restart version
Choose x0, x1 ∈ R

n , N , kmin and h > 0. Set j = 1.
for k = 1 . . . N do

Compute yk = xk + (1 − α
j )(xk − xk−1) − βh(∇φ(xk ) − ∇φ(xk−1)),

and then xk+1 = yk − h2∇φ(yk ).
if

∥
∥xk+1 − xk

∥
∥ <

∥
∥xk − xk−1

∥
∥ and j ≥ kmin then

j = 1;
else

j = j + 1.

end
return xN .

Example 5.1 We begin by applying Algorithm 1, as well as the variation with the
warm start, to the function φ : R3 → R in Examples 1.1 and 1.2, with the parameters
kmin = 10, β = h = 1/

√
L and α = 3.1. Figure6 shows the evolution of the function

values along the iterations. The coefficients in the approximation φ(xk) ∼ Ae−Bt ,
with A, B > 0, obtained for each algorithm, are detailed in Table 3. As one would
expect, the value of B is similar and that of A is significantly lower. Also, Table 4
shows the values obtained along 1000 iterations. The best value without restart is 105

times larger than the one obtained with our policy.

Example 5.2 Given a positive definite symmetric matrix A of size n × n, and a vector
b ∈ R

n , define φ : Rn → R by

φ(x) = 1

2
xT Ax + bT x .

For the experiment, n = 500, A is randomly generated with eigenvalues in (0, 1),
and b is also chosen at random. We first compute L , and set kmin = 10, h = 1/

√
L ,
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Table 3 Coefficients in the
linear regression
φ(xk ) ∼ Ae−Bt for Example
5.1

Algorithm 1 Algorithm 1 with warm start

A 0.3722 1.0749e−4

B 0.0571 0.057

Table 4 Functions values for Example 5.1

Last iteration without restart 1.2927e−20

Best iteration without restart 2.2907e−24

Last/best iteration with restart and warm start 2.0206e−29

Fig. 7 Function values along iterations of Algorithm 1 without (left) and with (right) warm start

Table 5 Coefficients in the
linear regression
φ(xk ) ∼ Ae−Bt for Example
5.2

Algorithm 1 Algorithm 1 with warm start

A 3813.01 1.6142

B 0.0117 0.0121

α = 3.1 and β = h. The initial points x0 = x1 are generated randomly as well.
Figure7 shows the comparison for Algorithm 1 and a variation of it giving a warm
start as the one described in the continuous setting. That is, to restart the first time
when the function increases instead of decrease, and then, performing the speed restart
detailed onAlgorithm1. It can be seen that the restart scheme stabilizes and accelerates
the convergence in both cases. The coefficients obtained for each algorithm in the
approximation φ(xk) ∼ Ae−Bt , with A, B > 0, are presented in Table 5. Also,
Table 6 shows the value gaps obtained along 1800 iterations. The best value without
restart is more than 104 times larger than the one obtained with restart.

6 Conclusions

We have proposed and analyzed a speed restarting scheme for the inertial dynamics
with Hessian-driven damping (DIN-AVD), introduced in [5]. We have established a
linear convergence rate for the function values, which decrease monotonically to the
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Table 6 Function values for Example 5.2

Last iteration without restart 0.0139

Best iteration without restart 9.4293e−06

Last/best iteration with restart and warm start 5.8481e−10

minimum along the restarted trajectories, when the function φ has quadratic growth,
for every value of α > 0 and β ≥ 0. As a byproduct, we improve and extend the
results of Su, Boyd and Candès [31], obtained in the strongly convex case for α = 3
and β = 0.

Our numerical experiments suggest that theHessian-driven damping and the restart-
ing scheme produce a better improvement in the performance of the dynamics and
related iterative algorithms—for the purpose of approximating the minimum of φ—
when used together, compared to using either technique separately.
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Appendix A: Proof of Theorem 2.1

Consider the differential equation

ẍ(t) + γ (t)ẋ(t) + F(
x(t)

)
ẋ(t) + G(

x(t)
) = 0. (25)

We assume that γ is continuous and positive, with limt→0 γ (t) = +∞, and that F
and G are (continuous and) sufficiently regular so that, for each δ > 0, the differential
equation (25)—with initial conditions x(δ) and ẋ(δ) given—has a unique solution
defined on [δ, T∞), for some T∞ ∈ (0,∞]. Let

M(δ, t) := sup
s∈[δ,t]

{
γ (s) ‖ẋδ(s) − v0‖

}
. (26)

We have the following:
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Theorem A.1 Assume there is T > 0 such that

sup
0<δ≤t≤T

M(δ, t) < +∞. (27)

Then, the differential equation (25), with initial condition x(0) = x0 and ẋ(0) = v0,
has a solution.

Proof For δ ∈ (0, T ), define xδ : [0, T ] → R
n as follows: for t ∈ [0, δ], xδ(t) =

x0+ tv0; and for t > δ, xδ is the solution of (25) with initial condition x(δ) = x0+δv0
and ẋ(δ) = v0. Notice that xδ is a continuous function such that matches a solution of
(25) on [δ, T ]. From the hypotheses, there exist c, K > 0 and such that γ (t) ≥ c and
M(δ, t) ≤ K for all 0 < δ ≤ t ≤ T . Therefore,

c ‖ẋδ(s) − v0‖ ≤ γ (s)‖ẋδ(s) − v0‖ ≤ M(δ, t) ≤ K , (28)

whenever 0 < δ ≤ s ≤ t ≤ T , so that

‖ẋδ(s) − v0‖ ≤ K

c
,

for all s ∈ [0, T ]. As a consequence,

‖xδ(s) − x0‖ ≤
∫ s

0
‖ẋδ(τ )‖ dτ ≤ ‖v0‖δ + K T

c

on [0, T ]. It follows that (xδ) is bounded in H1(0, T ;Rn).
By weak sequential compactness and the Rellich–Kondrachov Theorem (see, for

instance [12, Theorem 9.16]), there is a sequence (δν) converging to zero, such that
xδν converges uniformly to a continuous function x∗, while ẋδν converges weakly in
L2(0, T ;Rn) to some y∗. Clearly, x∗(0) = x0. In turn, for t ∈ (0, T ], we have

x∗(t) − x0
t

= lim
ν→∞

xδν (t) − x0
t

. (29)

Now, write ζν(t) = xδν (t)− tv0. By the Mean Value Theorem, there is tν ∈ (0, t) (we
may assume that tν ∈ (δν, t), actually), such that

‖xδν (t) − x0 − tv0‖ = ‖ζν(t) − ζ(0)‖ ≤ t‖ζ̇ν(tν)‖ = t‖ẋδν (tν) − v0‖ ≤ t K

min
s∈(0,t] γ (s)

,

in view of (28). Dividing by t and using (29), we obtain

∥∥
∥∥

x∗(t) − x0
t

− v0

∥∥
∥∥ ≤ K

min
s∈(0,t] γ (s)

.
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The right-hand side tends to zero as t → 0. It remains to prove that x∗ satisfies (25).
To this end, take any t0 ∈ (0, T ) and observe that δν < t0 for all sufficiently large ν.
Therefore, xδν satisfies (25) on [t0, T ) for all such ν. Multiplying by

Γ (t) := exp

(∫ t

t0
γ (s) ds

)
,

we deduce that

Γ (t)ẋδν (t)−Γ (t0)ẋδν (t0)+
∫ t

t0
Γ (s)F(

xδν (s)
)
ẋδν (s) ds+

∫ t

t0
Γ (s)G(

xδν (s)
)

ds = 0.

By taking yet another subsequence if necessary, wemay assume that ẋδν (t0) converges
to some v∗. From the uniform convergence of xδν to x∗ on [0, T ], and the weak
convergence of ẋδν to y∗ in L2(0, T ;Rn), it ensues that

Γ (t)y∗(t) − Γ (t0)v
∗ +

∫ t

t0
Γ (s)F(

x∗(s)
)
y∗(s) ds +

∫ t

t0
Γ (s)G(

x∗(s)
)

ds = 0

for all t ∈ (t0, T ). As a consequence, x∗ is continuously differentiable, ẋ∗ = y, and
x∗ satisfies (25). ��
Corollary A.1 Equation (DIN-AVD) has at least one solution.

Proof According to TheoremA.1, for the existence, it suffices to show that the expres-
sion M(δ, t), defined in (26), is bounded for 0 < δ ≤ t ≤ T , for some T > 0.
Mimicking the proof of Lemma 3.2, we show that

H(t)M(δ, t) ≤ ‖∇φ(x0)‖
α + 1

, with H(t) = 1 − βLt

α + 2
− Lt2

2(α + 3)
.

The only positive zero of H is τ1, given by (15), and H is decreasing on (0, τ1). Hence,
if T < τ1, then

sup
0<δ≤t≤T

M(δ, t) ≤ ‖∇φ(x0)‖
(α + 1)H(T )

< +∞,

as claimed. ��
Proposition A.1 Equation (DIN-AVD), with initial condition x(0) = x0 and ẋ(0) = 0,
has at most one solution in a neighborhood of t = 0.

Proof Let x and y satisfy (DIN-AVD)with the same initial state andnull initial velocity.
We define

M̃(t) = sup
u∈[0,t)

{‖ẋ(u) − ẏ(u)‖},
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and proceed as in the proof of Lemma 3.1, to obtain

‖∇φ(x(t)) − ∇φ(y(t))‖ ≤ Lt M̃(t). (30)

As x and y satisfy (DIN-AVD), we integrate by parts to obtain

tα(ẋ(t) − ẏ(t)) = −
∫ t

0
uα (∇φ(x(u)) − ∇φ(y(u))) du

− β

∫ t

0
uα

(
∇2φ(x(u))ẋ(u) − ∇2φ(y(u))ẏ(u)

)
du

= −
∫ t

0
uα (∇φ(x(u)) − ∇φ(y(u))) du

− β

∫ t

0
uα d

du
(∇φ(x(u)) − ∇φ(y(u))) du

= −
∫ t

0
uα (∇φ(x(u)) − ∇φ(y(u))) du

− βtα (∇φ(x(t)) − ∇φ(y(t)))

+ αβ

∫ t

0
uα−1 (∇φ(x(u)) − ∇φ(y(u))) du.

Using (30), and the fact that M̃(t) is increasing, we get

tα ‖ẋ(t) − ẏ(t)‖ ≤
∫ t

0
Luα+1M̃(u) du + βLtα+1M̃(t) + αβ

∫ t

0
Luα M̃(u) du

≤ 1

α + 2
L M̃(t)tα+2 + 2α + 1

α + 1
βL M̃(t)tα+1.

Then,

‖ẋ(t) − ẏ(t)‖ ≤ 1

α + 2
L M̃(T )T 2 + 2α + 1

α + 1
βL M̃(T )T ,

whenever 0 < t ≤ T . Taking supremum, we conclude that

Q(t)M̃(T ) ≤ 0 with Q(t) = 1 − 2α + 1

α + 1
βLt − 1

α + 2
Lt2,

for all T > 0. Since Q(T ) > 0 in a neighborhood of 0, it follows that M̃ must vanish
there, whence x and y must coincide. ��
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