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Abstract
We generalize a maximum principle for optimal control problems involving sweep-
ing systems previously derived in de Pinho et al. (Optimization 71(11):3363–3381,
2022, https://doi.org/10.1080/02331934.2022.2101111) to cover the case where the
moving set may be nonsmooth. Noteworthy, we consider problems with constrained
end point. A remarkable feature of our work is that we rely upon an ingenious smooth
approximating family of standard differential equations in the vein of that used in de
Pinho et al. (Set Valued Var Anal 27:523–548, 2019, https://doi.org/10.1007/s11228-
018-0501-8).
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1 Introduction

In recent years, there has been a surge of interest in optimal control problems involving
the controlled sweeping process of the form
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ẋ(t) ∈ f (t, x(t), u(t)) − NC(t)(x(t)), u(t) ∈ U , x(0) ∈ C0. (1)

In this respect, we refer to, for example, [3–5, 8–10, 15, 23] (see also accompanying
correction [11]), [6, 13, 14]. Sweeping processes first appeared in the seminal paper
[17] by J.J.Moreau as amathematical framework for problems in plasticity and friction
theory. They have proven of interest to tackle problems in mechanics, engineering,
economics and crowd motion problems; to name but a few, see [1, 5, 15, 16, 21].
In the last decades, systems in form (1) have caught the attention and interest of the
optimal control community. Such interest resides not only in the range of applications
but also in the remarkable challenge they rise concerning the derivation of necessary
conditions. This is due to the presence of the normal cone NC(t)(x(t)) in the dynamics.
Indeed, the presence of the normal cone renders the discontinuity of the right hand of
the differential inclusion in (1) destroying a regularity property central to many known
optimal control results.

Lately, there has been several successful attempts to derive necessary conditions for
optimal control problems involving (1). Assuming that the set C is time independent,
necessary conditions for optimal control problems with free end point have been
derived under different assumptions and using different techniques. In [10], the set C
has the form C = {x : ψ(x) ≤ 0} and an approximating sequence of optimal control
problems, where (1) is approximated by the differential equation

ẋγk (t) = f (t, xγk (t), u(t)) − γke
γkψ(xγk (t))∇ψ(xγk (t)), (2)

for some positive sequence γk → +∞, is used. Similar techniques are also applied to
somehow more general problems in [23]. A useful feature of those approximations is
explored in [12] to define numerical schemes to solve such problems.

More recently, an adaptation of the family of approximating systems (2) is used
in [13] to generalize the results in [10] to cover problems with additional end-point
constraints and with a moving set of the form C(t) = {x : ψ(t, x) ≤ 0}.

In this paper,we generalize themaximumprinciple proven in [13] to cover problems
with possibly nonsmooth sets. Our problem of interest is

(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Minimize φ(x(T ))

over processes (x, u) such that
ẋ(t) ∈ f (t, x(t), u(t)) − NC(t)(x(t)), a.e. t ∈ [0, T ],
u(t) ∈ U , a.e. t ∈ [0, T ],
(x(0), x(T )) ∈ C0 × CT ⊂ C(0) × C(T ),

where T > 0 is fixed, φ : Rn → R, f : [0, T ] × Rn × Rm → Rn , U ⊂ Rm and

C(t) :=
{
x ∈ Rn : ψ i (t, x) ≤ 0, i = 1, . . . , I

}
(3)

for some functions ψ i : [0, T ] × Rn → R, i = 1, . . . , I .
The case where I = 1 in (3) and ψ1 is C2 is covered in [13]. Here, we assume

I > 1 and that the functions ψ i are also C2. Although going from I = 1 in (3) to
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I > 1 may be seen as a small generalization, it demands a significant revision of
the technical approach and, plus, the introduction of a constraint qualification. This is
because set (3) may be nonsmooth.We focus on sets (3), satisfying a certain constraint
qualification, introduced in assumption (A1) in Sect. 2. This is, indeed, a restriction on
the nonsmoothness of (3). A similar problemwith nonsmoothmoving set is considered
in [14]. Our results cannot be obtained from the results of [14] and do not generalize
them.

This paper is organized in the following way. In Sect. 2, we introduce the main
notation and we state and discuss the assumptions under which we work. In this
same section, we also introduce the family of approximating systems to ẋ(t) ∈
f (t, x(t), u(t)) − NC(t)(x(t)) and establish a crucial convergence result, Theorem
2.1. In Sect. 3, we dwell on the approximating family of optimal control problems
to (P) and we state the associated necessary conditions. The maximum principle for
(P) is then deduced and stated in Theorem 4.1, covering additionally, problems in
the form of (P) where the end-point constraint x(T ) ∈ CT is absent. We present an
illustrative example of our main result, Theorem 4.1, in Sect. 5. We end this paper
with some brief conclusions.

2 Preliminaries

In this section, we introduce a summary of the notation and state the assumptions on
the data of (P) enforced throughout. Furthermore, we extract information from the
assumptions establishing relations crucial for the forthcoming analysis.

Notation
For a set S ⊂ Rn , ∂S, cl S and int S denote the boundary, closure and interior of S.
If g : Rp → Rq , ∇g represents the derivative and ∇2g the second derivative. If

g : R × Rp → Rq , then ∇x g represents the derivative w.r.t. x ∈ Rp and ∇2
x g the

second derivative, while ∂t g(t, x) represents the derivative w.r.t. t ∈ R.
The Euclidean norm or the induced matrix norm on Rp×q is denoted by | · |. We

denote by Bn the closed unit ball in Rn centered at the origin. The inner product of x
and y is denoted by 〈x, y〉. For some A ⊂ Rn , d(x, A) denotes the distance between
x and A. We denote the support function of A at z by S(z, A) = sup{〈z, a〉 | a ∈ A}

The space L∞([a, b]; Rp) (or simply L∞ when the domains are clearly understood)
is the Lebesgue space of essentially bounded functions h : [a, b] → Rp. We say that
h ∈ BV ([a, b]; Rp) if h is a function of bounded variation. The space of continuous
functions is denoted by C([a, b]; Rp).

Standard concepts from nonsmooth analysis will also be used. Those can be found
in [7, 18] or [22], to name but a few. The Mordukhovich normal cone to a set S at
s ∈ S is denoted by NS(s) and ∂ f (s) is the Mordukhovich subdifferential of f at s
(also known as limiting subdifferential).

For any set A ⊂ Rn , cone A is the cone generated by the set A.
We now turn to problem (P). We first state the definition of admissible processes

for (P) and then we describe the assumptions under which we will derive our main
results.
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Definition 2.1 A pair (x, u) is called an admissible process for (P) when x is an
absolutely continuous function andu is ameasurable function satisfying the constraints
of (P).

Assumptions on the data of (P)

A1: The functions ψ i , i = 1, . . . , I , are C2. The graph of C(·) is compact and it is
contained in the interior of a ball r Bn+1, for some r > 0. There exist constants
β > 0, η > 0 and ρ ∈]0, 1[ such that

ψ i (t, x) ∈ [−β, β] 
⇒ |∇xψ
i (t, x)| > η forall (t, x) ∈ [0, T ] × Rn, (4)

and, for I (t, x) = {i = 1, . . . , I | ψ i (t, x) ∈] − 2β, β]},

〈∇xψ
i (t, x),∇xψ

j (t, x)〉 ≥ 0, i, j ∈ I (t, x). (5)

Moreover, if i ∈ I (t, x), then

∑

j∈I (t,x)\{i}

∣
∣〈∇xψ

i (t, x),∇xψ
j (t, x)〉∣∣ ≤ ρ|∇xψ

i (t, x)|2. (6)

Additionally,

ψ i (t, x) ≤ −2β 
⇒ ∇xψ
i (t, x) = 0 for i = 1, . . . I . (7)

A2: The function f is continuous, x → f (t, x, u) is continuously differentiable for
all (t, u) ∈ [0, T ] × Rm . The constant M > 0 is such that | f (t, x, u)| ≤ M and
|∇x f (t, x, u)| ≤ M for all (t, x, u) ∈ r Bn+1 ×U .

A3: For each (t, x), the set f (t, x,U ) is convex.
A4: The set U is compact.
A5: The sets C0 and CT are compact.
A6: There exists a constant Lφ such that |φ(x) − φ(x ′)| ≤ Lφ |x − x ′| for all x, x ′ ∈

Rn .

Assumption (A1) concerns the functionsψ i defining the setC , and it plays a crucial
role in the analysis.Allψ i are assumed to be smoothwith gradients bounded away from
the origin when ψ i takes values in a neighborhood of zero. Moreover, the boundary
of C may be nonsmooth at the intersection points of the level sets

{
x : ψ i (t, x) = 0

}
.

However, nonsmoothness at those corner points is restricted to (5) which excludes
the cases where the angle between the two gradients of the functions defining the
boundary of C is obtuse; see Fig. 1.

On the other hand, (6) guarantees that the Gramian matrix of the gradients of the
functions taking values near the boundary of C(t) is diagonally dominant and, hence,
the gradients are linearly independent.

Inmany situations, as in the examplewe present in the last section, we can guarantee
the fulfillment of (A1), in particular (7), replacing the function ψ i by

ψ̃ i (t, x) = h ◦ ψ i (t, x), (8)
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Fig. 1 Examples of two different
sets C . On the left size, a set that
does not satisfies (5). On the
right side, the set C is
nonsmooth and it fulfills (5)

where

h(z) =
⎧
⎨

⎩

z if z > −β,

hs(z) if −2β ≤ z ≤ −β,

−2β if z < −2β,

Here, h is a C2 function, with hs an increasing function defined on [−2β,−β]. For
example, hs may be a cubic polynomial with positive derivative on the interval ] −
2β,−β[. For all t ∈ [0, T ], set

C̃(t) :=
{
x ∈ Rn : ψ̃ i (t, x) ≤ 0, i = 1, . . . , I

}
.

It is then a simple matter to see that

C(t) = C̃(t) for all t ∈ [0, T ].

and that the functions ψ̃ i (·) satisfy the assumption (A1).
The assumption that the graph of C(·) is compact and contained in the interior

of a ball is introduced to avoid technicalities in our forthcoming analysis. In applied
problems, this may be easily side tracked by considering the intersection of the graph
of C(·) with a tube around the optimal trajectory.

Condition (A1) implies the conditions of Theorem 3.1 in [2] and so our set C(t) is
uniformly prox-regular.

We now proceed introducing an approximation family of controlled systems to (1).
Let x(·) be a solution to the differential inclusion

ẋ(t) ∈ f (t, x(t),U ) − NC(t)(x(t)).

Under our assumptions, measurable selection theorems assert the existence of mea-
surable functions u and ξ i such that u(t) ∈ U , ξ i (t) ≥ 0 a.e. t ∈ [0, T ], ξ i (t) = 0 if
ψ i (t, x(t)) < 0, and

ẋ(t) = f (t, x(t), u(t)) −
I∑

i=1

ξ i (t)∇xψ
i (t, x(t)) a.e. t ∈ [0, T ].

Considering the trajectory x , some observations are called for. Let μ be such that

max
{
(|∇xψ

i (t, x)|| f (t, x, u)| + |∂tψ i (t, x)|) + 1 :
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t ∈ [0, T ], u ∈ U , x ∈ C(t) + Bn, i = 1, . . . , I
}

≤ μ.

The properties of the graph of C(·) in (A1) guarantee the existence of such maximum.
Consider now some t such that, for some j ∈ {1, . . . I }, ψ j (t, x(t)) = 0 and ẋ(t)

exists. Since the trajectory x is always in C , we have (see (5))

0 = d

dt
ψ j (t, x(t)) = 〈∇xψ

j (t, x(t)), ẋ(t)〉 + ∂tψ
j (t, x(t))

= 〈∇xψ
j (t, x(t)), f (t, x(t), u(t))〉 − ξ j (t)|∇xψ

j (t, x(t))|2
−

∑

i∈I (t,x(t))\{ j}
ξ i (t)〈∇xψ

i (t, x(t)),∇xψ
j (t, x(t))〉 + ∂tψ

j (t, x(t))

≤ 〈∇xψ
j (t, x(t)), f (t, x(t), u(t))〉 − ξ j (t)|∇xψ

j (t, x(t))|2 + ∂tψ
j (t, x(t)),

and hence (see (4)),

ξ j (t) ≤ 1

|∇xψ j (t, x(t))|2 (〈∇xψ
j (t, x(t)), f (t, x(t), u(t))〉 + ∂tψ

j (t, x(t))) ≤ μ

η2
.

Define the function

μ(γ ) = 1

γ
log

(
μ

η2γ

)

, γ > 0,

consider a sequence {σk} such that σk ↓ 0 and choose another sequence {γk} with
γk ↑ +∞ and

C(t) ⊂ int Ck(t) = int
{
x : ψ i (t, x) − σk ≤ μk, i = 1, . . . , I

}
,

where

μk = μ(γk).

Let xk be a solution to the differential equation

ẋk(t) = f (t, xk(t), uk(t)) −
I∑

i=1

γke
γk (ψ

i (t,xk(t))−σk )∇xψ
i (t, xk(t)) (9)

for some uk(t) ∈ U a.e. t ∈ [0, T ]. Take any t ∈ [0, T ] such that ẋk(t) exists and
ψ j (t, xk(t)) − σk = μk . Assume that |ψ j (t, xk(t))| ≤ β and ψ i (t, xk(t)) ≤ β, for
all i .
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Then, whenever γk is sufficiently large, we have (see (5) and (7))

d

dt
ψ j (t, xk(t)) = 〈∇xψ

j (t, xk(t)), f (t, xk(t), uk(t))〉
− γke

γk (ψ
j (t,xk (t))−σk)|∇xψ

j (t, xk(t))|2
−

∑

i∈I (t,xk (t))\{ j}
γke

γk (ψ
i (t,xk (t))−σk)〈∇xψ

i (t, xk(t)),∇xψ
j (t, xk(t))〉

−
∑

i /∈I (t,xk (t))
γke

γk (ψ
i (t,xk (t))−σk)〈∇xψ

i (t, xk(t)),∇xψ
j (t, xk(t))〉

+ ∂tψ
j (t, xk(t))

≤ 〈∇xψ
j (t, xk(t)), f (t, xk(t), uk(t))〉 + ∂tψ

j (t, xk(t))

− γke
γk (ψ

j (t,xk (t))−σk)|∇xψ
j (t, xk(t))|2

≤ μ − 1 − η2γke
γkμk

= −1.

In the last inequality, we have used the definition of μ.
Thus, if xk(0) ∈ Ck(0), we have xk(t) ∈ Ck(t), for all t ∈ [0, T ], and

γke
γk (ψ

j (t,xk (t))−σk ) ≤ γke
γkμk = μ

η2
. (10)

It follows that, for k sufficiently large, we have

|ẋk(t)| ≤ (const).

We remark that the inclusion xk(t) ∈ Ck(t) is a direct consequence of Theorem 3 in
[20].

We are now a in position to state and prove our first result, Theorem 2.1. This is
in the vein of Theorem 4.1 in [23] (see also Lemma 1 in [10] when ψ is independent
of t and convex) deviating from it in so far as the approximating sequence of control
systems (9) differs from the one introduced in [10].1 The proof of Theorem 2.1 relies
on (10).

Theorem 2.1 Let {(xk, uk)}, with uk(t) ∈ U a.e., be a sequence of solutions of Cauchy
problems

ẋk(t) = f (t, xk(t), uk(t)) −
I∑

i=1

γke
γk (ψ

i (t,xk(t))−σk )∇xψ
i (t, xk(t)),

xk(0) = bk ∈ Ck(0).

(11)

1 See also Theorem 2.2 in [13]
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If bk → x0, then there exists a subsequence {xk} (we do not relabel) converging
uniformly to x, a unique solution to the Cauchy problem

ẋ(t) ∈ f (t, x(t), u(t)) − NC(t)(x(t)), x(0) = x0, (12)

where u is a measurable function such that u(t) ∈ U a.e. t ∈ [0, T ].
If, moreover, all the controls uk are equal, i.e., uk = u, then the subsequence

converges to a unique solution of (12), i.e., any solution of

ẋ(t) ∈ f (t, x(t),U ) − NC(t)(x(t)), x(0) = x0 ∈ C(0) (13)

can be approximated by solutions of (11).

Proof Consider the sequence {xk}, where (xk, uk) solves (11). Recall that xk(t) ∈
Ck(t) for all t ∈ [0, T ], and

|ẋk(t)| ≤ (const) and ξ ik(t) = γke
γk (ψ

i (t,xk(t))−σk ) ≤ (const). (14)

Then, there exist subsequences (we do not relabel) weakly-∗ converging in L∞ to
some v and ξ i . Hence,

xk(t) = x0 +
∫ t

0
ẋk(s)ds −→ x(t) = x0 +

∫ t

0
v(s)ds, ∀ t ∈ [0, T ],

for an absolutely continuous function x . Obviously, x(t) ∈ C(t) for all t ∈ [0, T ].
Considering the sequence {xk}, recall that

ẋk(t) ∈ f (t, xk(t),U ) −
I∑

i=1

ξ ik(t)∇xψ
i (t, xk(t)). (15)

Inclusion (15) is equivalent to

〈z, ẋk(t)〉 ≤ S(z, f (t, xk(t),U )) −
I∑

i=1

ξ ik(t)〈z,∇xψ
i (t, xk(t))〉, ∀ z ∈ Rn .

Integrating this inequality, we get
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〈

z,
xk(t + τ) − xk(t)

τ

〉

≤ 1

τ

∫ t+τ

t

(

S(z, f (s, xk(s),U )) −
I∑

i=1

ξ ik(s)〈z,∇xψ
i (s, xk(s))〉

)

ds

= 1

τ

∫ t+τ

t

(

S(z, f (s, xk(s),U )) −
I∑

i=1

ξ ik(s)〈z,∇xψ
i (s, x(s))〉

+
I∑

i=1

ξ ik(s)〈z,∇xψ
i (s, x(s)) − ∇xψ

i (s, xk(s))〉
)

ds. (16)

Passing to the limit as k → ∞, we obtain

〈

z,
x(t + τ) − x(t)

τ

〉

≤ 1

τ

∫ t+τ

t

(

S(z, f (s, x(s),U )) −
I∑

i=1

ξ i (s)〈z,∇xψ
i (s, x(s))〉

)

ds. (17)

Let t ∈ [0, T ] be a Lebesgue point of ẋ and ξ . Passing in the last inequality to the
limit as τ ↓ 0, it leads to

〈z, ẋ(t)〉 ≤ S(z, f (t, x(t),U )) −
I∑

i=1

ξ i (t)〈z,∇xψ
i (t, x(t))〉.

Since z ∈ Rn is an arbitrary vector and the set f (t, x(t),U ) is convex, we conclude
that

ẋ(t) ∈ f (t, x(t),U ) −
I∑

i=1

ξ i (t)∇xψ
i (t, x(t)).

By the Filippov lemma, there exists a measurable control u(t) ∈ U such that

ẋ(t) = f (t, x(t), u(t)) −
I∑

i=1

ξ i (t)∇xψ
i (t, x(t)).

Furthermore, observe that ξ i is zero ifψ i (t, x(t)) < 0. If for some u such that u(t) ∈ U
a.e., uk = u for all k, then the sequence xk converges to the solution of

ẋ(t) = f (t, x(t), u(t)) −
I∑

i=1

ξ i (t)∇xψ
i (t, x(t)).

123



282 Journal of Optimization Theory and Applications (2023) 199:273–297

Indeed, to see this, it suffices to pass to the limit as k → ∞ and then as τ ↓ 0, in the
equality

xk(t + τ) − xk(t)

τ
= 1

τ

∫ t+τ

t

(

f (s, xk(s), u(s)) −
I∑

i=1

ξ ik(s)∇xψ
i (s, xk(s))

)

ds.

Recall that the set C(t) is uniformly prox-regular. The proof of uniqueness of
solution for general sweeping processes with prox-regular sets can be found in [19],
and it holds under the requirement that the moving set is Lipschitz continuous with
respect to time. Although we do not assume the Lipschitz dependence directly, under
our assumptions we can appeal to the implicit function theorem to show that C(t)
is locally Lipschitz. However, for our special case, it is possible to have a simple
alternative proof, which we present next for the convenience of the reader. The proof
is in the vein of that of Theorem 4.1 in [23]. Suppose that there exist two different
solutions of (12): x1 and x2. We have

1

2

d

dt
|x1(t) − x2(t)|2 = 〈x1(t) − x2(t), ẋ1(t) − ẋ2(t)〉

= 〈x1(t) − x2(t), f (t, x1(t), u(t)) − f (t, x2(t), u(t))〉

−
〈

x1(t) − x2(t),
I∑

i=1

ξ i1(t)∇xψ
i (t, x1(t)) −

I∑

i=1

ξ i2(t)∇xψ
i (t, x2(t))

〉

.

(18)

If, for all i , ψ i (t, x1(t)) < 0 and ψ i (t, x2(t)) < 0, then ξ i1(t) = ξ i2(t) = 0, and we
obtain

1

2

d

dt
|x1(t) − x2(t)|2 ≤ L f |x1(t) − x2(t)|2.

Suppose that ψ j (t, x1(t)) = 0. Then, by the Taylor formula we get

ψ j (t, x2(t)) = ψ j (t, x1(t)) + 〈∇xψ
j (t, x1(t)), x2(t) − x1(t)〉

+1

2
〈x2(t) − x1(t),∇2

xψ
j (t, θx2(t) + (1 − θ)x1(t))(x2(t) − x1(t))〉, (19)

where θ ∈ [0, 1]. Since ψ j (t, x2(t)) ≤ 0, we have

〈∇xψ
j (t, x1(t)), x2(t) − x1(t)〉

≤ −1

2
〈x2(t) − x1(t),∇2

xψ
j (t, θx2(t) + (1 − θ)x1(t))(x2(t) − x1(t))〉

≤ (const)|x1(t) − x2(t)|2. (20)

Now, if ψ j (t, x2(t)) = 0, we deduce in the same way that

〈∇xψ
j (t, x2(t)), x1(t) − x2(t)〉 ≤ (const)|x1(t) − x2(t)|2.
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Thus, we have

1

2

d

dt
|x1(t) − x2(t)|2 ≤ (const)|x1(t) − x2(t)|2.

Hence, |x1(t) − x2(t)| = 0. ��

3 Approximating Family of Optimal Control Problems

In this section, we define an approximating family of optimal control problems to (P)

and we state the corresponding necessary conditions.
Let (x̂, û) be a global solution to (P) and consider sequences {γk} and {σk} as

defined above. Let x̂k(·) be the solution to

ẋ(t) = f (t, x(t), û(t)) −
I∑

i=1

γke
γk (ψ

i (t,x(t))−σk )∇xψ
i (t, x(t)),

x(0) = x̂(0).

(21)

Set εk = |x̂k(T ) − x̂(T )|. It follows from Theorem 2.1 that εk ↓ 0. Take α > 0 and
define the problem

(Pα
k )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize φ(x(T )) + |x(0) − x̂(0)|2 + α

∫ T

0
|u(t) − û(t)|dt

over processes (x, u) such that

ẋ(t) = f (t, x(t), u(t)) −
I∑

i=1

∇xe
γk (ψ

i (t,x(t))−σk ) a.e. t ∈ [0, T ],
u(t) ∈ U a.e. t ∈ [0, T ],
x(0) ∈ C0, x(T ) ∈ CT + εk Bn,

Clearly, the problem (Pα
k ) has admissible solutions. Consider the space

W = {(c, u) | c ∈ C0, u ∈ L∞ with u(t) ∈ U }

and the distance

dW ((c1, u1), (c2, u2)) = |c1 − c2| +
∫ T

0
|u1(t) − u2(t)|dt .

Endowed with dW ,W is a complete metric space. Take any (c, u) ∈ W and a solution
y to the Cauchy problem
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ẏ(t) = f (t, y(t), u(t)) −
I∑

i=1

∇x e
γk (ψ

i (t,y(t))−σk ) a.e. t ∈ [0, T ],
y(0) = c.

Under our assumptions, the function

(c, u) → φ(y(T )) + |c − x̂(0)|2 + α

∫ T

0
|u − û| dt

is continuous on (W , dW ) and bounded below. Appealing to Ekeland’s theorem, we
deduce the existence of a pair (xk, uk) solving the following problem

(APk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize �(x, u) = φ(x(T )) + |x(0) − x̂(0)|2 + α

∫ T

0
|u(t) − û(t)|dt

+εk

(

|x(0) − xk(0)| +
∫ T

0
|u(t) − uk(t)|dt

)

,

over processes (x, u) such that

ẋ(t) = f (t, x(t), u(t)) −
I∑

i=1

∇x e
γk (ψ

i (t,x(t))−σk ) a.e. t ∈ [0, T ],
u(t) ∈ U a.e. t ∈ [0, T ],
x(0) ∈ C0, x(T ) ∈ CT + εk Bn,

Lemma 3.1 Take γk → ∞, σk → 0 and εk → 0 as defined above. For each k, let
(xk, uk) be the solution to (APk). Then, there exists a subsequence (we do not relabel)
such that

uk(t) → û(t) a.e., xk → x̂ uniformly in [0,T].

Proof We deduce from Theorem 2.1 that {xk} uniformly converges to an admissible
solution x̃ to (P). Since U and C0 are compact, we have U ⊂ K Bm and C0 ⊂ K Bn .
Without loss of generality, uk weakly-∗ converges to a function ũ ∈ L∞([0, T ],U ).
Hence, it weakly converges to ũ in L1. From optimality of the processes (xk, uk), we
have

φ(xk(T )) + |xk(0) − x̂(0)|2 + α

∫ T

0
|uk(t) − û(t)|dt

≤ φ(x̂k(T )) + εk

(

|x̂k(0) − xk(0)| +
∫ T

0
|uk(t) − û(t)|dt

)

≤ φ(x̂k(T )) + 2K (1 + T )εk .

Since (x̂, û) is a global solution of the problem, passing to the limit, we get

φ(x̃(T )) + |x̃(0) − x̂(0)|2 + α

∫ T

0
|ũ(t) − û(t)|dt
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≤ lim
k→∞(φ(xk(T )) + |xk(0) − x̂(0)|2) + α lim inf

k→∞

∫ T

0
|uk(t) − û(t)|dt

≤ lim
k→∞ φ(x̂k(T )) = φ(x̂(T )) ≤ φ(x̃(T )).

Hence, x̃(0) = x̂(0), ũ = û a.e., and uk converges to û in L1, and some subsequence
converges to û almost everywhere (we do not relabel). ��

We now finish this section with the statement of the optimality necessary conditions
for the family of problems (APk). These can be seen as a direct consequence of
Theorem 6.2.1 in [22].

Proposition 3.1 For each k, let (xk, uk) be a solution to (APk). Then, there exist
absolutely continuous functions pk and scalars λk ≥ 0 such that

(a) (nontriviality condition)
λk + |pk(T )| = 1, (22)

(b) (adjoint equation)

ṗk = −(∇x fk)∗ pk +∑I
i=1 γkeγk (ψ

i
k−σk )∇2

xψ
i
k pk

+∑I
i=1 γ 2

k e
γk (ψ

i
k−σk )∇xψ

i
k〈∇xψ

i
k, pk〉,

(23)

where the superscript ∗ stands for transpose,
(c) (maximization condition)

max
u∈U

{〈 f (t, xk, u), pk〉 − αλk |u − û| − εkλk |u − uk |
}

(24)

is attained at uk(t), for almost every t ∈ [0, T ],
(d) (transversality condition)

(pk(0),−pk(T )) ∈ λk
(
2(xk(0) − x̂(0)) + εk Bn, ∂φ(xk(T ))

)

+NC0(xk(0)) × NCT +εk Bn (xk(T )). (25)

To simplify the notation above, we drop the t dependence in pk , ṗk , xk , uk , x̂ and û.
Moreover, in (b), we write ψk instead of ψ(t, xk(t)), fk instead of f (t, xk(t), uk(t)).
The same holds for the derivatives of ψ and f .

4 Maximum Principle for (P)

In this section, we establish ourmain result, aMaximumPrinciple for (P). This is done
by taking limits of the conclusions of Proposition 3.1, following closely the analysis
done in the proof of [10, Theorem 2].
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Observe that

1

2

d

dt
|pk(t)|2 = −〈∇x fk pk, pk〉 +

I∑

i=1

γke
γk (ψ

i
k−σk )〈∇2

xψ
i
k pk, pk〉

+
I∑

i=1

γ 2
k e

γk (ψ
i
k−σk )〈∇xψ

i
k, pk〉2

≥ −〈∇x fk pk, pk〉 +
I∑

i=1

γke
γk (ψ

i
k−σk )〈∇2

xψ
i
k pk, pk〉

≥ −M |pk |2 +
I∑

i=1

γke
γk (ψ

i
k−σk )〈∇2

xψ
i
k pk, pk〉,

where M is the constant of (A2). Taking into account hypothesis (A1) and (10), we
deduce the existence of a constant K0 > 0 such that

1

2

d

dt
|pk(t)|2 ≥ −K0|pk(t)|2.

This last inequality leads to

|pk(t)|2 ≤ e2K0(T−t)|pk(T )|2 ≤ e2K0T |pk(T )|2.

Since, by (a) of Proposition 3.1, |pk(T )| ≤ 1, we deduce from the above that there
exists M0 > 0 such that

|pk(t)| ≤ M0. (26)

Now, we claim that the sequence { ṗk} is uniformly bounded in L1. To prove our claim,
we need to establish bounds for the three terms in (23). Following [10, 13], we start
by deducing some inequalities that will be of help.

Denote Ik = I (t, xk(t)) and S j
k = sign

(
〈∇xψ

j
k , pk〉

)
. We have

I∑

j=1

d

dt

∣
∣
∣〈∇xψ

j
k , pk〉

∣
∣
∣

=
I∑

j=1

(
〈∇2

xψ
j
k ẋk, pk〉 + 〈∂t∇xψ

j
k , pk〉 + 〈∇xψ

j
k , ṗk〉

)
S j
k

=
I∑

j=1

(

〈pk,∇2
xψ

j
k fk〉 −

I∑

i=1

γke
γk (ψ

i
k−σk )〈pk,∇2

xψ
j
k ∇xψ

i
k〉
)

S j
k

+
I∑

j=1

(
〈∂t∇xψ

j
k , pk〉 − 〈∇xψ

j
k , (∇x fk)

∗ pk〉
)
S j
k
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+
I∑

j=1

(
I∑

i=1

γke
γk (ψ

i
k−σk )〈∇xψ

j
k ,∇2

xψ
i
k pk〉

)

S j
k

+
I∑

i=1

I∑

j=1

γ 2
k e

γk (ψ
i
k−σk )〈∇xψ

j
k ,∇xψ

i
k〉〈∇xψ

i
k, pk〉S j

k .

Observe that (see (6) and (7))

I∑

i=1

I∑

j=1

γ 2
k e

γk (ψ
i
k−σk )〈∇xψ

j
k ,∇xψ

i
k〉〈∇xψ

i
k, pk〉S j

k

=
I∑

i=1

∑

j∈Ik
γ 2
k e

γk (ψ
i
k−σk )〈∇xψ

j
k ,∇xψ

i
k〉〈∇xψ

i
k, pk〉S j

k

=
∑

i /∈Ik
γ 2
k e

γk (ψ
i
k−σk )

∑

j∈Ik
〈∇xψ

j
k ,∇xψ

i
k〉〈∇xψ

i
k, pk〉S j

k

+
∑

i∈Ik
γ 2
k e

γk (ψ
i
k−σk )

⎛

⎝|∇xψ
i
k |2 +

∑

j∈Ik\{i}
〈∇xψ

j
k ,∇xψ

i
k〉S j

k Sik

⎞

⎠ |〈∇xψ
i
k, pk〉|

=
∑

i∈Ik
γ 2
k e

γk (ψ
i
k−σk )

⎛

⎝|∇xψ
i
k |2 +

∑

j∈Ik\{i}
〈∇xψ

j
k ,∇xψ

i
k〉S j

k Sik

⎞

⎠ |〈∇xψ
i
k, pk〉|

≥ (1 − ρ)
∑

i∈Ik
γ 2
k e

γk (ψ
i
k−σk )|∇xψ

i
k |2|〈∇xψ

i
k, pk〉|

= (1 − ρ)

I∑

i=1

γ 2
k e

γk (ψ
i
k−σk )|∇xψ

i
k |2|〈∇xψ

i
k, pk〉|.

Using this and integrating the previous equality, we deduce the existence ofM1 > 0
such that:

∫ T

0

I∑

i=1

γ 2
k e

γk (ψ
i
k−σk )|∇xψ

i
k |2|〈∇xψ

i
k, pk〉|dt ≤ M1. (27)

We are now in a position to show that

∫ T

0

I∑

i=1

γ 2
k e

γk (ψ
i
k−σk )|∇xψ

i
k |
∣
∣
∣〈∇xψ

i
k, pk〉

∣
∣
∣ dt

is bounded. For simplicity, set Li
k(t) = γ 2

k e
γk (ψ

i
k−σk )|∇xψ

i
k |
∣
∣〈∇xψ

i
k, pk〉

∣
∣. Notice that

I∑

i=1

∫ T

0
Li
k(t)dt =

I∑

i=1

{∫

{t :|∇xψ
i
k |<η}
Li
k(t) dt +

∫

{t :|∇xψ
i
k |≥η}
Li
k(t)dt

}

.

123



288 Journal of Optimization Theory and Applications (2023) 199:273–297

Using (A1) and (27), we deduce that

I∑

i=1

∫ T

0
Li
k(t) dt ≤

I∑

i=1

(
γ 2
k e

−γk (β+σk )η2 max
t

|pk(t)|
)

+
I∑

i=1

(

γ 2
k

∫

{t :|∇xψ
i
k |≥η}

eγk (ψ
i
k−σk )

|∇xψ
i
k |2

|∇xψ
i
k |
∣
∣
∣〈∇xψ

i
k, pk〉

∣
∣
∣ dt

)

≤ γ 2
k I e

−γk (β+σk )η2M0

+ 1

η

I∑

i=1

(∫ T

0
γ 2
k e

γk (ψ
i
k−σk )|∇xψ

i
k |2
∣
∣
∣〈∇xψ

i
k, pk〉

∣
∣
∣ dt

)

≤ η2M0 I + M1

η
,

for k large enough. Summarizing, there exists a M2 > 0 such that

I∑

i=1

γ 2
k

∫ T

0
eγk (ψ

i
k−σk )|∇xψ

i
k |
∣
∣
∣〈∇xψ

i
k, pk〉

∣
∣
∣ dt ≤ M2. (28)

Mimicking the analysis conducted in Step 1, b) and c) of the proof of Theorem 2
in [10] and taking into account (b) of Proposition 3.1, we conclude that there exist
constants N1 > 0 such that

∫ T

0

∣
∣ ṗγk (t)

∣
∣ dt ≤ N1, (29)

for k sufficiently large, proving our claim.
Before proceeding, observe that it is a simple matter to assert the existence of a

constant N2 such that

I∑

i=1

∫ T

0
γ 2
k e

γk (ψ
i
k−σk )|〈∇xψ

i
k, pγk 〉|dt ≤ N2. (30)

This inequality will be of help in what follows.
Let us now recall that

ξ ik(t) = γke
γk (ψ

i (t,xk (t))−σk)

and that the second inequality in (14) holds. We turn to the analysis of Step 2 in the
proof of Theorem 2 in [10] (see also [13]). Adapting those arguments, we can conclude
the existence of some function p ∈ BV ([0, T ], Rn) and, for i = 1, . . . , I , functions
ξ i ∈ L∞([0, T ], R) with ξ i (t) ≥ 0 a. e. t , ξ i (t) = 0, t ∈ I ib, where

I ib =
{
t ∈ [0, T ] : ψ i (t, x̂(t)) < 0

}
,

and finite signed Radon measures ηi , null in I ib, such that, for any z ∈ C([0, T ], Rn)
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∫ T

0
〈z, dp〉 = −

∫ T

0
〈z, (∇x f̂ )

∗ p〉dt +
I∑

i=1

(∫ T

0
ξ i 〈z, ∇2

x ψ̂ i p〉dt +
∫ T

0
〈z, ∇x ψ̂

i 〉dηi

)

,

where ∇x ψ̂
i = ∇xψ

i (t, x̂(t)). Set ∇xψ
i
k = ∇xψ

i (t, xk(t)). The finite signed Radon
measures ηi are weak-∗ limits of

γ 2
k e

γk (ψ
i (t,xk (t))−σk)〈∇xψ

i (t, xk(t)), pk(t)〉dt .

Observe that the measures

〈∇xψ
i (t, x̂(t)), p(t)〉dηi (t) (31)

are nonnegative.
For each i = 1, . . . , I , the sequence ξ ik is weakly-∗ convergent in L∞ to ξ i ≥ 0.

Following [13], we deduce from (30) that, for each i = 1, . . . , I ,

∫ T

0
|ξ i 〈∇x ψ̂

i , p〉|dt = lim
k→∞

∫ T

0
|ξ ik〈∇x ψ̂

i , p〉|dt

≤ lim
k→∞

(∫ T

0
ξ ik |〈∇x ψ̂

i , p〉 − 〈∇xψ
i
k, pk〉|dt +

∫ T

0
ξ ik |〈∇xψ

i
k, pk〉|dt

)

≤ lim
k→∞

(∣
∣
∣ξ

i
k

∣
∣
∣
L∞

∣
∣
∣〈∇x ψ̂

i , p〉 − 〈∇xψ
i
k, pk〉

∣
∣
∣
L1

+ N2

γk

)

= 0.

It turns out that
ξ i 〈∇x ψ̂

i , p〉 = 0 a.e.. (32)

Consider now the sequence of scalars {λk}. It is an easy matter to show that there
exists a subsequence of {λk} converging to some λ ≥ 0. This, together with the
convergence of pk to p, allows us to take limits in (a) and (c) of Proposition 3.1 to
deduce that

λ + |p(T )| = 1

and
〈p(t), f (t, x̂(t), u)〉 − αλ|u − û(t)| ≤ 〈p(t), f (t, x̂(t), û(t))〉 ∀u ∈ U , a.e. t ∈ [0, T ].

It remains to take limits of the transversality conditions (d) in Proposition 3.1. First,
observe that

CT + εk Bn = {x : d(x,CT ) ≤ εk} .

123



290 Journal of Optimization Theory and Applications (2023) 199:273–297

From the basic properties of the Mordukhovich normal cone and subdifferential (see
[18], section 1.3.3), we have

NCT +εk Bn (xk(T )) ⊂ cl cone ∂d(xk(T ),CT )

and

NCT (x̂(T )) = cl cone ∂d(x̂(T ),CT ).

Passing to the limit as k → ∞, we get

(p(0),−p(T )) ∈ NC0(x̂(0)) × NCT (x̂(T )) + {0} × λ ∂φ(x̂(T )).

Finally, and mimicking Step 3 in the proof of Theorem 2 in [10], we remove the
dependence of the conditions on the parameter α. This is done by taking further limits,
this time considering a sequence of α j ↓ 0.

We then summarize our conclusions in the following Theorem.

Theorem 4.1 Let (x̂, û) be the optimal solution to (P). Suppose that assumption A1–
A6 are satisfied. For i = 1, · · · , I , set

I ib = {t ∈ [0, T ] : ψ i (t, x̂(t)) < 0}.

There exist λ ≥ 0, p ∈ BV ([0, T ], Rn), finite signed Randon measures ηi , null in I ib,
for i = 1, · · · , I , ξ i ∈ L∞([0, T ], R), with i = 1, · · · , I , where ξ i (t) ≥ 0 a. e. t
and ξ i (t) = 0, t ∈ I ib, such that

a) λ + |p(T )| �= 0,

b) ˙̂x(t) = f (t, x̂(t), û(t)) −
I∑

i=1

ξ i (t)∇x ψ̂
i (t),

c) for any z ∈ C([0, T ]; Rn)

∫ T

0
〈z(t), dp(t)〉 = −

∫ T

0
〈z(t), (∇x f̂ (t))

∗ p(t)〉dt

+
I∑

i=1

(∫ T

0
ξ i (t)〈z(t),∇2

x ψ̂
i (t)p(t)〉dt +

∫ T

0
〈z(t),∇x ψ̂

i (t)〉dηi
)

,

where ∇ f̂ (t) = ∇x f (t, x̂(t), û(t)), ∇x ψ̂
i (t) = ∇xψ

i (t, x̂(t)) and ∇2
x ψ̂

i (t) =
∇2ψ i (t, x(t)),

d) ξi (t)〈∇xψ
i (t, x̂(t)), p(t)〉 = 0, a.e. t for all i = 1, . . . , I ,

e) for all i = 1, . . . , I , the measures 〈∇xψ
i (x̂(t)), p(t)〉dηi (t) are nonnegative,

f) 〈p(t), f (t, x̂(t), u)〉 ≤ 〈p(t), f (t, x̂(t), û(t))〉 for all u ∈ U , a.e. t ,
g) (p(0),−p(T )) ∈ NC0(x̂(0)) × NCT (x̂(T )) + {0} × λ∂φ(x̂(T )).
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Noteworthy, condition e) is not considered in any of our previous works.
We now turn to the free end-point case, i. e., to the problem

(Pf )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Minimize φ(x(T ))

over processes (x, u) such that
ẋ(t) ∈ f (t, x(t), u(t)) − NC(t)(x(t)), a.e. t ∈ [0, T ],
u(t) ∈ U , a.e. t ∈ [0, T ],
x(0) ∈ C0 ⊂ C(0).

Problem (Pf ) differs from (P) because x(T ) is not constrained to take values in
CT . We apply Theorem 4.1 to (Pf ). Since x(T ) is free, we deduce from (f) in the
above Theorem that −p(T ) = λ∂φ(x̂(T )). Suppose that λ = 0. Then, p(T ) = 0
contradicting the nontriviality condition (a) of Theorem4.1.Without loss of generality,
we then conclude that the conditions of Theorem 4.1 hold with λ = 1. We summarize
our findings in the following Corollary.

Corollary 4.1 Let (x̂, û) be the optimal solution to (Pf ). Suppose that assumption
A1–A6 are satisfied. For i = 1, · · · , I , set

I ib = {t ∈ [0, T ] : ψ i (t, x̂(t)) < 0}.

There exist p ∈ BV ([0, T ], Rn), finite signed Randon measures ηi , null in I ib, for
i = 1, · · · , I , ξ i ∈ L∞([0, T ], R), with i = 1, · · · , I , where ξ i (t) ≥ 0 a.e. t and
ξ i (t) = 0 for t ∈ I ib, such that

a) ˙̂x(t) = f (t, x̂(t), û(t)) −
I∑

i=1

ξ i (t)∇x ψ̂
i (t),

b) for any z ∈ C([0, T ]; Rn)

∫ T

0
〈z(t), dp(t)〉 = −

∫ T

0
〈z(t), (∇x f̂ (t))

∗ p(t)〉dt

+
I∑

i=1

(∫ T

0
ξ i (t)〈z(t),∇2

x ψ̂
i (t)p(t)〉dt +

∫ T

0
〈z(t),∇x ψ̂

i (t)〉dηi
)

,

where ∇ f̂ (t) = ∇x f (t, x̂(t), û(t)), ∇ψ̂ i (t) = ∇ψ i (t, x̂(t)) and ∇2ψ̂ i (t) =
∇2ψ i (t, x(t)),

c) ξ i (t)〈∇xψ
i (t, x̂(t)), p(t)〉 = 0 for a.e. t and for all i = 1, . . . , I ,

d) for all i = 1, . . . , I , the measures 〈∇xψ
i (x̂(t)), p(t)〉dηi (t) are nonnegative,

e) 〈p(t), f (t, x̂(t), u)〉 ≤ 〈p(t), f (t, x̂(t), û(t))〉 for all u ∈ U, a.e. t ,
f) (p(0),−p(T )) ∈ NC0(x̂(0)) × ∂φ(x̂(T )).
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5 Example

Let us consider the following problem (Fig. 2)

Minimize − x(T )

over processes ((x, y, z), u) such that⎡

⎣
ẋ(t)
ẏ(t)
ż(t)

⎤

⎦ ∈
⎡

⎣
0 σ v0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦+
⎡

⎣
0
u
0

⎤

⎦− NC (x, y, z),

u ∈ [−1, 1],
(x, y, z)(0) = (x0, y0, z0),
(x, y, z)(T ) ∈ CT ,

where

• 0 < σ � 1,
• C = {(x, y, z) | x2 + y2 + (z + h)2 ≤ 1, x2 + y2 + (z − h)2 ≤ 1}, 2 h2 < 1,
• (x0, y0, z0) ∈ intC , with x0 < −δ, y0 = 0 and z0 > 0,
• CT = {(x, y, z) | x ≤ 0, y ≥ 0, δy − y2x ≤ δy2} ∩ C , where

δ <
y2|x0|
y1

, with y1 =
√

1 − x20 − (z0 + h)2 and y2 =
√
1 − h2.

We choose T > 0 small and, nonetheless, sufficiently large to guarantee that, when
σ = 0, the system can reach the interior of CT but not the segment {(x, 0, 0) | x ∈
[−δ, 0]}. Since σ and T are small, it follows that the optimal trajectory should reach
CT at the face δy − y2x = δy2 of CT .

To significantly increase the value of the x(T ), the optimal trajectory needs to live
on the boundary ofC for some interval of time. Then, before reaching and after leaving
the boundary of C , the optimal trajectory lives in the interior of C . Since δ is small,
the trajectory cannot reach CT from any point of the sphere x2 + y2 + (z + h)2 = 1
with z > 0. This means that, while on the boundary of C the trajectory should move
on the sphere x2 + y2 + (z+h)2 = 1 until reaching the plane z = 0 and then it moves
on the intersection of the two spheres.

While in the interior of C , the control can change sign from −1 to 1 or from 1
to −1. Certainly, the control should be 1 right before reaching the boundary and −1
right before arriving at CT . Changes of the control from 1 to −1 or −1 to 1 before
reaching the boundary translate into time waste and lead to smaller values of x(T ). It
then follows that the optimal control should be of the form

u(t) =
{

1, t ∈ [0, t̃],
−1, t ∈ ]t̃, T ], (33)

for some value t̃ ∈]0, T [.
After themodification (8), the data of the problemsatisfy the conditions underwhich

Theorem 4.1 holds. We now show that the conclusions of Theorem 4.1 completely
identify the structure (33) of the optimal control.
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x

y

z

CT

z0

x0

y2

0
-!

t1

t3
t2

Fig. 2 The set C , consisting of the intersection of two balls, in thin solid line, the set CT in dashed line and
the optimal trajectory in bold line

From Theorem 4.1, we deduce the existence of λ ≥ 0, p, q, r ∈ BV ([0, T ], R),
finite signed Randon measures η1 and η2, null, respectively, in

I 1b =
{
(x, y, z) | x2 + y2 + (z + h)2 − 1 < 0

}

and

I 2b =
{
(x, y, z) | x2 + y2 + (z − h)2 − 1 < 0

}
,

ξi ∈ L∞([0, T ], R), with i = 1, 2, where ξi (t) ≥ 0 a. e. t and ξi (t) = 0, t ∈ I ib,
such that

(i)

⎡

⎣
ẋ(t)
ẏ(t)
ż(t)

⎤

⎦ =
⎡

⎣
0 σ 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦+
⎡

⎣
0
u
0

⎤

⎦− 2ξ1

⎡

⎣
x
y

z + h

⎤

⎦− 2ξ2

⎡

⎣
x
y

z − h

⎤

⎦

(ii) d

⎡

⎣
p
q
r

⎤

⎦ =
⎡

⎣
0 0 0

−σ 0 0
0 0 0

⎤

⎦

⎡

⎣
p
q
r

⎤

⎦ dt

+2(ξ1 + ξ2)

⎡

⎣
p
q
r

⎤

⎦ dt + 2

⎡

⎣
x
y

z + h

⎤

⎦ dη1 + 2

⎡

⎣
x
y

z − h

⎤

⎦ dη2,

(iii)

⎡

⎣
p
q
r

⎤

⎦ (T ) =
⎡

⎣
λ

0
0

⎤

⎦+ μ

⎡

⎣
y2
−δ

0

⎤

⎦ , where μ ≥ 0,

(iv) ξ1(xp + yq + (z + h)r) = 0, ξ2(xp + yq + (z − h)r) = 0,

(v) the measures (xp + yq + (z + h)r)dη1 and (xp + yq + (z − h)r)dη2
are nonnegative,
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(vi) max
u∈[−1,1] uq = ûq,

where û is the optimal control.
Let t1 be the instant of time when the trajectory reaches the sphere x2 + y2 + (z +

h)2 = 1, t2 the instant of time when the trajectory reaches the intersection of the two
spheres and t3 be the instant of time the trajectory leaves the boundary of C . We have
0 < t1 < t2 < t3 < T .

Next, we show that the multiplier q changes sign only once and so identifying the
structure (33) of the optimal control in a unique way. We start by looking at the case
when t = T . We have

[
p
q

]

(T ) =
[

λ

0

]

+ μ

[
y2
−δ

]

.

Starting from t = T , let us go backwards in time until the instant t3 when the trajectory
leaves the boundary of C . If q(T ) = 0, then p(T ) = λ > 0 and we would have
q(t) > 0 for t ∈]t3, T [ (see (ii) above), which is impossible. We then have p(T ) > 0
and q(T ) < 0 and, in ]t3, T [, since σ is small, the vector (p(t), q(t)) does not change
much. At t = t3, the vector (p, q) has a jump and such jump can only occur along the
vector (x(t3), y(t3)). Therefore, we have p(t3 − 0) > 0 and q(t3 − 0) < 0.

Let us now consider t ∈]t2, t3[. We have the following

1. when t ∈ [t2, t3], we have z = 0;
2. condition (i) implies that ξ1 = ξ2 = ξ , ξ > 0 since, otherwise the motion along

x2 + y2 = 1 − h2 would not be possible;
3. from 0 = d

dt (x
2 + y2) = σ2xy − 8ξ x2 + 2uy − 8ξ y2, we get ξ = σ xy+uy

4(1−h2)
;

4. condition (iv) implies that r = 0 leading to xp + yq = 0. Since x < 0, y > 0,
then q = 0 implies p = 0;

5. condition (ii) implies dη1 = dη2 = dη;

6. 0 = d(xp + yq) = uqdt + 4(1 − h2)dη ⇒ dη

dt = − uq
4(1−h2)

;
7. from the above analysis, we deduce that

ṗ = σ xy + uy

(1 − h2)
p − xuq

(1 − h2)
,

q̇ = −σ p + σ xy

(1 − h2)
q.

Thus, (p, q) is a solution to a linear system and it can never be equal to zero. It
follows that q cannot be zero because q = 0 implies p = 0. Since q �= 0, we have
q > 0.

Let us consider the case when t = t2. We claim that

(p(t2 − 0), q(t2 − 0)) �= (0, 0).
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Seeking a contradiction, assume that it is (p(t2 − 0), q(t2 − 0)) = (0, 0). Then, we
have

(p(t2 + 0), q(t2 + 0)) = (0, 0) + (2x2(t2), 2y2(t2))(dη1 + dη2)

and such jump has to be normal to (x(t2), y(t2)) since r(t2 + 0) = 0 (see (iv)). It
follows that (x2(t2) + y2(t2))(dη1 + dη2) = 0 and, since x2(t2) + y2(t2) > 0, we get
dη1 + dη2 = 0, proving our claim.

We now consider t ∈]t1, t2[. It is easy to see that ξ2 = 0 and dη2 = 0. We also
deduce that

1. 0 = d
dt (x

2 + y2 + (z+h)2) = 2σ xy+2uy−4ξ1y2 −4ξ1x2 −4ξ1(z+h)2 which

implies that ξ1 = σ xy+uy
2 ;

2. also 0 = d(xp + yq + (z + h)r) = uqdt + 2dη1 implies that dη1
dt = − uq

2 ;
3. from the above, we deduce that

ṗ = (σ xy + uy)p − xuq,

q̇ = −σ p + σ xyq.

Thus, (p, q) is a solution to a linear system and never is equal to zero. The second
equation implies that if q = 0, then q̇ �= 0. Hence, q > 0.

Now, we need to consider t = t1. We claim that

(p(t1 − 0), q(t1 − 0), r(t1 − 0)) �= (0, 0, 0).

Let us then assume that it is (p(t1−0), q(t1−0), r(t1−0)) = (0, 0, 0). It then follows
that (p(t1 + 0), q(t1 + 0), r(t1 + 0)) = (0, 0, 0) + (2x(t1)dη1, 2y(t1)dη1, 2(z(t1) +
h)dηη1). We now show that there is no such jump. Set r(t1 −0) = r0. Then, it follows
from (iv) that (x(t1) · 0 + y(t1) · 0 + (z(t1) + h))r0 = 0 which implies that r0 = 0.
We also have (x2(t1) + y2(t1) + (z(t1) + h)2)dη1 = 0 from (v). But this implies that
dη1 = 0. Consequently, the multipliers do not exhibit a jump at t1.

From the previous analysis, we deduce that q should be positive almost everywhere
on the boundary. It then follows that to find the optimal solution we have to analyze
admissible trajectories corresponding to controls with the structure (33) and choose
the optimal value of t̃ .

6 Conclusions

We proved necessary conditions for an optimal control problem involving sweeping
processes with a nonsmooth sweeping set depending on time. The main feature of our
work is the use of exponential penalization functions. We have applied successfully
this approach in previous works on optimal control problems involving sweeping
processes with a smooth set. In this work, to deal with the sweeping set nonsmoothness
we impose rather strong constraint qualifications. The weakening of these hypotheses
will be the subject of our future work.
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