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Abstract
Direct search methods represent a robust and reliable class of algorithms for solving
black-box optimization problems. In this paper, the application of those strategies
is exported to Riemannian optimization, wherein minimization is to be performed
with respect to variables restricted to lie on a manifold. More specifically, classic and
linesearch extrapolated variants of direct search are considered, and tailored strategies
are devised for the minimization of both smooth and nonsmooth functions, by making
use of retractions. A class of direct search algorithms for minimizing nonsmooth
objectives on a Riemannian manifold without having access to (sub)derivatives is
analyzed for the first time in the literature. Along with convergence guarantees, a set
of numerical performance illustrations on a standard set of problems is provided.
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1 Introduction

Riemannian optimization, or solving minimization problems with decision variables
constrained to lie on aRiemannianmanifold, is an important and active area of research
since there are numerous problems in data science, robotics, and other settingswherein
there is a geometric structure characterizing the allowable inputs. Derivative free opti-
mization (DFO), or zeroth-order optimization, involves algorithms that only make
use of function evaluations rather than any gradient computations in their implemen-
tation, designed for applications where accurate approximations of the gradient are
unavailable due to noise or high computational cost. This paper specializes existing
direct search DFO algorithms to Riemannian optimization problems. Reference of
Riemannian optimization and DFO includes [1, 6, 11, 22], respectively.

Direct search methods (see, e.g., [21] and references therein) belong to the class of
derivative free algorithms that do not build models of the objective or gradient approx-
imations. Thus, they are particularly suitable for problems with function evaluations
considered as a black box with little prior information that could suggest how accu-
rate different interpolation models would be, as both differentiability and conditioning
properties of the function are unknown.

To the best of our knowledge, thorough studies of derivative free optimization
(DFO) on Riemannian manifolds have only been carried out recently in the literature.
The closest would be direct search confined to a subspace, presented in [4]. In [23],
the authors focus on a model-based method using a two-point function approximation
for the gradient. The paper [31] presents a specialized Polak–Ribière–Polyak proce-
dure for finding a zero of a tangent vector field on a Riemannian manifold. In [13],
it is claimed that the convergence analysis of mesh adaptive direct search methods
(MADS; see, e.g., [5, 6]) for unconstrained objectives can be extended to the case
of Riemannian manifolds using the exponential map. In the subsequent work [14],
the author focuses on a specific class of manifolds (reductive homogeneous spaces,
including several matrix manifolds), discussingmore in detail how, thanks to the prop-
erties of exponential maps, a straightforward extension of MADS is possible at least
for that class. Some nonsmooth problems on Riemannian manifolds and references to
derivative free optimization methods without convergence analyses can be found in
[18].

Thus, our paper presents the first analysis of retraction-based direct search strate-
gies on Riemannian manifolds, and the first analysis of a direct search algorithm for
minimizing nonsmooth objectives in Riemannian optimization. In particular, a classic
direct search scheme (see, e.g., [11, 21]) and a linesearch-based scheme (see, e.g.,
[12, 24–26] for further details on this class of methods) to deal with the minimiza-
tion of a given smooth function over a manifold are adapted from analogous methods
in the unconstrained settings. Then, inspired by the ideas in [15], the two proposed
strategies are extended to the nonsmooth case. The introduction of the geometric con-
straint presents significant challenges: Namely, the stable structure of the Euclidean
vector space makes it natural for a fixed set of coordinate-like directions to consis-
tently approximate desired directions by spanning the space in a uniformway. The fact
that this geometric structure can change necessitates a careful adjustment of the poll
directions corresponding to the change in this structure, with minimal computational
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expense. The associated convergence theory presents some novel results that could be
of independent interest.

The remainder of this paper is as follows. In Sect. 2, some definitions are presented.
In Sect. 3, a direct search method applicable for continuously differentiable f is pre-
sented, with a convergence proof. In Sect. 4, the case of f not being continuously
differentiable but rather only Lipschitz continuous is considered. Some numerical
results are presented in Sect. 5. Detailed proofs can be found in Appendix.

The codes relevant to the numerical tests are available at the following link: https://
github.com/DamianoZeffiro/riemannian-ds.

2 Definitions and Notation

This section introduces some notation for the formalism used in this article. The reader
is referred to, e.g., [1, 8] for an overview of the relevant background.

Let M be a smooth finite dimensional connected manifold.
The problem of interest here is

min
x∈M

f (x), (1)

with f being continuous and bounded below. Both the case of f (x) being continuously
differentiable and amore general nonsmooth case are considered. For x ∈ M, let TxM
be the tangent vector space at x and TM be the tangent bundle ∪x∈MTxM. M is
assumed to be a Riemannian manifold, so that for x in M, there is a scalar product
〈·, ·〉x : TxM × TxM → R and a norm ‖ · ‖x on TxM smoothly depending on
x . Let dist(·, ·) be the distance induced by the scalar product, so that for x, y ∈ M
the distance dist(x, y) is the length of the shortest geodesic connecting x and y.
Furthermore, let ∇M be the Levi-Civita connection for M (see [8, Theorem 5.5] for
a precise definition), and � : TM × M → TM be a parallel transport with respect
to ∇M, with �

y
x (v) ∈ TyM transport of the vector v ∈ TxM to one in TyM along a

fixed curve connecting x and y. The parallel transport � is assumed to operate always
along a distance minimizing geodesic when it exists. Consequently, for any x ∈ M
there is a neighborhood U of x such that the parallel transport �z

y(v) is well defined
and depends smoothly on y, z, v for y, z ∈ U and v ∈ TyM. Any nonuniqueness in
the definition of � is either explicitly accounted for or inconsequential without loss of
generality in the context.

When M is embedded in R
n , Px is defined as the orthogonal projection from R

n

to TxM, and S(x, r) ⊂ R
n as the sphere centered at x and with radius r .

{ak} is used as a shorthand for {ak}k∈I when the index set I is clear from the context.
The shorthand notations TkM, Pk, 〈·, ·〉k, ‖ · ‖k , �

j
i are also employed, in place of

TxkM, Pxk , 〈·, ·〉xk , ‖ · ‖xk and �
x j
xi . For x0 given point in M serving as initialization

of the algorithms presented in this manuscript, the sublevel set relative to f (x0) is
denoted as L0 = {x ∈ M | f (x) ≤ f (x0)}. When there is no ambiguity on the value
of x , ‖ · ‖ is used instead of ‖ · ‖x .
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The distance dist∗ is defined between vectors in different tangent spaces in a stan-
dard way using parallel transport (see, for instance, [7]): for x, y ∈ M, v ∈ TxM and
w ∈ TyM ,

dist∗(v,w) =
∥
∥
∥v − �x

yw

∥
∥
∥ = ∥

∥w − �
y
x v

∥
∥ , (2)

and for a sequence {(yk, vk)} in TM the notation vk → v means yk → y in M and
dist∗(vk, v) → 0. On compact subsets of M, for dist(x, y) small enough the mini-
mizing geodesic between x and y is uniquely defined and consequently the parallel
transport � and the distance dist∗ also are. As it is common in the Riemannian opti-
mization literature (see, e.g., [2]), to define our tentative descent directions a retraction
R : TM → M is used. This retraction R is assumed to be in C1(TM,M), with

dist(R(x, d), x) ≤ Lr ‖d‖ , (3)

(true in any compact subset of TM given the C1 regularity of R, without any further
assumptions).

For a scalar-valued function f : M → R, the gradient grad f (x) is defined as the
unique element of TxM such that for all v ∈ M, it holds that

Df (x)[v] = 〈v, grad f (x)〉x .

When M is embedded in R
n , the (Riemannian) gradient is a simple projection onto

TxM, i.e., grad f (x) = Px (∇ f (x)).

3 Smooth Optimization Problems

In this section, methods for the solution of problem (1) with the objective f ∈ C1(M)

are considered. In particular, the gradient grad f (x) is assumed to be continuous along
M as a function of x .

3.1 Preliminaries

A Lipschitz continuous gradient assumption is first presented.

Assumption 1 There exists L f > 0 such that for all x, y ∈ M

dist∗(grad f (x), grad f (y)) = ∥
∥�

y
x grad f (x) − grad f (y)

∥
∥ ≤ L f dist(x, y). (4)

The next assumption generalizes the standard descent property.

Assumption 2 There exists L > 0 so that for every x ∈ M ∩ L0, d ∈ TxM

f (R(x, d)) ≤ f (x) + 〈grad f (x), d〉 + L

2
‖d‖2 . (5)
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Under suitable assumptions, the Lipschitz gradient property implies the generalized
standard descent property.

Proposition 3.1 Assume that L0 is compact, f is Lipschitz continuous and that R is a
C2 retraction. Then, Assumption 1 implies Assumption 2.

The proof can be found in Appendix. It should be noted that Proposition 3.1 is a key
tool to extend convergence properties from the unconstrained case to the Riemannian
case. To the best of our knowledge, this result is new to the literature. Under the
stronger assumption that f has Lipschitz gradient as a function in R

n , the standard
descent property (5) was proven for retractions in [9].

For each algorithm in this section, it is further assumed that, at each iteration k, a
positive spanning set (as defined, e.g., in [11]) {p j

k } j∈[1:K ] is available for the tangent
space TkM . This positive spanning set is assumed to stay bounded and not become
degenerate during the algorithm, that is,

Assumption 3 There exists B > 0 such that

max
j∈[1:K ]

∥
∥
∥p

j
k

∥
∥
∥ ≤ B, (6)

for every k ∈ N. Furthermore, there is a constant τ > 0 such that

max
i∈[1:K ]〈r , p

j
k 〉 ≥ τ ‖r‖ , (7)

for every k ∈ N and r ∈ Txk M .

3.2 Direct Search Algorithm

Here, the Riemannian Direct Search method based on Spanning Bases (RDS-SB) for
smooth objectives is presented as Algorithm 1.

This procedure resembles the standard direct search algorithm for unconstrained
derivative free optimization (see, e.g., [11, 21]) with two significant modifications.
First, at every iteration apositive spanning set is computed for the current tangent vector
space TkM. As this space is expected to change at every iteration, it is not possible
to use the same standard positive spanning sets appearing in the classic algorithms.
Second, the candidate point x j

k is computed by retracting the step αk p
j
k from the

current tangent space TkM to the manifold, ensuring satisfaction of the geometric
constraint.

3.3 Convergence Analysis

In this section, asymptotic global convergence of themethod is shown. First it is proved
that the gradient, in unsuccessful iterates, must be bounded by a constant proportional
to the stepsize (Lemma 3.2). This is a well-known condition in the unconstrained case
(see, e.g., [30, Theorem1]), extended to theRiemannian case thanks to Proposition 3.1.
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Algorithm 1 RDS-SB

1: Input: x0 ∈ M, γ1 ∈ (0, 1), γ2 ≥ 1, α0 > 0, γ > 0
2: for k = 0, 1, ... do
3: Compute a positive spanning set {p j

k } j=1:K of TkM
4: for j = 1, ..., K do
5: Let x j

k = R(xk , αk p
j
k )

6: if f (x j
k ) ≤ f (xk ) − γα2k then

7: αk+1 = γ2αk , xk+1 = x j
k

8: Declare the step k successful
9: Break
10: end if
11: end for
12: if f (x j

k ) > f (xk ) − γα2k for j ∈ [1 : K ] then
13: αk+1 = γ1αk , xk+1 = xk
14: Declare the step k unsuccessful
15: end if
16: end for

Given that the stepsize converges to zero, the bound implies that the gradient converges
to zero for unsuccessful steps. It is then proved, using the Lipschitz continuity of the
gradient, that the gradient converges to zero for successful steps as well.

The first lemma states a bound on the scalar product between the gradient and the
descent direction for an unsuccessful iteration.

Lemma 3.1 Let f ∈ C1(�), {xk} generated by Algorithm 1, and let Assumptions 2, 3
hold.
If f (R(xk, αk p

j
k )) > f (xk) − γα2

k , then

αk(LB
2/2 + γ ) > −〈grad f (xk), p j

k 〉. (8)

Proof To start with, we have

f (xk) − γα2
k < f (R(x, αk p

j
k )) ≤ f (xk) + αk〈grad f (xk), p j

k 〉 + L

2
α2
k

∥
∥
∥p

j
k

∥
∥
∥

2

≤ f (xk) + αk〈grad f (xk), p j
k 〉 + L

2
α2
k B

2, (9)

where we used (5) in the second inequality, and (6) in the third one. The above inequal-
ity can be rewritten as

αk〈grad f (xk), p j
k 〉 + α2

k (LB
2/2 + γ ) > 0. (10)

Given that αk > 0, the above is true if and only if

αk > −〈grad f (xk), p j
k 〉

(LB2/2 + γ )
, (11)

which rearranged gives the thesis. ��
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From this, a bound on the gradient with respect to the stepsize is inferred.

Lemma 3.2 Let f ∈ C1(�), {xk} generated by Algorithm 1, and let Assumptions 2, 3
hold. If iteration k is unsuccessful, then

‖grad f (xk)‖ ≤ αk(LB2/2 + γ )

τ
. (12)

Proof If iteration k is unsuccessful, Eq. (8) must hold for every j ∈ [1 : K ]. We obtain
the thesis by applying the positive spanning property (7) in the RHS:

αk(LB
2/2 + γ ) > max

j∈[1:K ] −〈grad f (xk), p j
k 〉 ≥ τ ‖grad f (xk)‖ . (13)

��
Finally, convergence of the gradient norm to zero is shown using the lemmas above

and appropriate arguments regarding the stepsizes.

Theorem 3.1 Let f ∈ C1(�), {xk} generated by Algorithm 1, and let Assumptions 1,
2, 3 hold. For the sequence {xk} generated by Algorithm 1

lim
k→∞ ‖grad f (xk)‖ = 0. (14)

Proof To start with, it holds that αk → 0 since the objective is bounded below, { f (xk)}
is nonincreasing with f (xk+1) ≤ f (xk)− γα2

k if the step k is successful, and so there
can be a finite number of successful steps with αk ≥ ε for any ε > 0.

For a fixed ε > 0, let k̄ such that αk ≤ ε for every k ≥ k̄. We now show that, for
every ε > 0 and k ≥ k̄ large enough, we have

‖grad f (xk)‖ ≤ ε

(
(LB2/2 + γ )

τ
+ L f Lr B

γ2

γ2 − 1

)

, (15)

which implies the thesis given that ε is arbitrary.
First, Eq. (15) is satisfied for k ≥ k̄ if the step k is unsuccessful by Lemma 3.2:

‖grad f (xk)‖ ≤ αk(LB2/2 + γ )

τ
≤ ε(LB2/2 + γ )

τ
, (16)

using αk ≤ ε in the second inequality.
If the step k is successful, then let j be the minimum positive index such that the

step k + j is unsuccessful. Notice that such a j exists because αk → 0 which implies
by the Algorithm’s construction an infinite subsequence of unsuccessful steps. We
have that αk+i = αkγ

i
2 for i ∈ [0 : j − 1], and since αk+ j−1 ≤ ε by induction we get

αk+i ≤ εγ
i− j+1
2 . Therefore,

j−1
∑

i=0

αk+i ≤
j−1
∑

i=0

εγ
i− j+1
2 ≤ ε

∞
∑

h=0

γ −h
2 = ε

γ2

γ2 − 1
. (17)
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Then,

dist(xk, xk+ j ) ≤
j−1
∑

i=0

dist(xk+i , xk+i+1) =
j−1
∑

i=0

dist(xk+i , R(xk+i , αk+i p
j(k+i)
k+i ))

≤
j−1
∑

i=0

Lrαk+i B ≤ Lr Bε
γ2

γ2 − 1
, (18)

where we used (3) together with (6) in the second inequality, and (17) in the third one.
In turn,

‖grad f (xk)‖ ≤ dist∗(grad f (xk), grad f (xk+ j )) + ∥
∥grad f (xk+ j )

∥
∥

≤ L f dist(xk, xk+ j ) + ε(LB2/2 + γ )

τ

≤ ε

(
LB2/2 + γ

τ
+ L f Lr B

γ2

γ2 − 1

)

, (19)

where we used (4) and (16) with k + j instead of k for the first and second summand,
respectively, in the second inequality, and (18) in the last one. ��

3.4 Incorporating an Extrapolation Linesearch

The work [25, 26] introduced the use of an extrapolating linesearch that tests the
objective on variable inputs farther away from the current iterate than the tentative
point obtained by direct search on a given direction (i.e., an element of the positive
spanning set). Such a thorough exploration of the search directions ultimately yields
better performances in practice by computing longer successfully objective-decreasing
steps. In thiswork, it is shown that the same technique can be applied in theRiemannian
setting to good effect. In particular, in this section our Riemannian Direct Search with
Extrapolation method based on Spanning Bases (RDSE-SB) for smooth objectives is
presented. The scheme is described in detail as Algorithm 2, which can be viewed as
a Riemannian version of [26, Algorithm 2].

Themethod uses a specific stepsize for each direction in the positive spanning set, so
that instead of αk there is a set of stepsizes {α j

k } j∈[1:K ] for every k ∈ N0. Furthermore,
a retraction-based linesearch procedure (see Algorithm 3) is used to better explore a
given direction in case a sufficient decrease in the objective is obtained.

When analyzing the RDSE-SB method, due to the changes in the tangent space,
the same positive spanning set cannot be kept for different iterates as is done in the
unconstrained case (see [26, Algorithm 2, Step 2 and 3]). Therefore, using the distance
dist∗ to compare different tangent spaces, a novel condition is introduced here ensuring
some continuity in the choice of the positive spanning set.

Assumption 4 For every k ∈ N, j ∈ [1 : K ], there exists a constant L� > 0 such that

dist∗(p j
k , p

j
k+1) ≤ L� dist(xk, xk+1). (20)
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When M is embedded in R
n and L0 is compact, it is easy to see that condition (20)

holds if {p j
k } j∈[1:K ] is the projection of a positive spanning set of Rn (independent

from k) into TkM, using that TxM varies smoothly with x .
It is now convenient to define, for k ≤ l, �̃l

k = �l
l−1 ◦ . . . ◦ �k+1

k , where for k = l

the composition on the RHS is empty and we set �̃l
k equal to the identity. Let also

d(k, l) =
l−k−1
∑

i=0

dist(xk+i , xk+i+1). (21)

The following lemma, which links the directions of the positive spanning sets in
different iterates, holds:

Lemma 3.3 Let f ∈ C1(M), {xk} be generated by Algorithm 2, and Assumptions 1,
3, 4 hold. For k ∈ N, j ≥ 0, i ∈ [1 : K ]:

|〈grad f (xk), pik〉 − 〈grad f (xk+ j ), p
i
k+ j 〉| ≤ L� ‖grad f (xk)‖ d(k, k + j)

+L f d(k, k + j). (22)

Proof First,

∥
∥
∥�̃k+h

k pik − pik+h

∥
∥
∥ =

∥
∥
∥
∥
∥
∥

h−1
∑

j=0

(�̃k+h
k+ j p

i
k+ j − �̃k+h

k+ j+1 p
i
k+ j+1)

∥
∥
∥
∥
∥
∥

≤
h−1
∑

j=0

∥
∥
∥�̃k+h

k+ j p
i
k+ j − �̃k+h

k+ j+1 p
i
k+ j+1

∥
∥
∥ =

h−1
∑

j=0

∥
∥
∥�̃k+h

k+ j+1(�
k+ j+1
k+ j pik+ j − pik+ j+1)

∥
∥
∥

=
h−1
∑

j=0

∥
∥
∥�

k+ j+1
k+ j pik+ j − pik+ j+1

∥
∥
∥ ≤

h−1
∑

j=0

L� dist(xk+ j , xk+ j+1) = L�d(k, k + h),

(23)

where we used (20) in the last inequality. Analogously, from (4) it follows

|
∥
∥
∥grad f (xk+h) − �̃k+h

k grad f (xk)
∥
∥
∥ ≤ L f d(k, k + h). (24)

We can then conclude

|〈grad f (xk+h), p
i
k+h〉 − 〈grad f (xk), pik〉| = |〈grad f (xk+h), p

i
k+h〉

−〈�̃k+h
k grad f (xk), �̃

k+h
k pik〉|

= |〈grad f (xk+h) − �̃k+h
k grad f (xk), p

i
k+h〉

−〈�̃k+h
k grad f (xk), �̃

k+h
k pik − pik+h〉|

≤ |〈grad f (xk+h)

−�̃k+h
k grad f (xk), p

i
k+h〉| + |〈�̃k+h

k grad f (xk), �̃
k+h
k pik − pik+h〉|
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≤
∥
∥
∥grad f (xk+h) − �̃k+h

k grad f (xk)
∥
∥
∥

∥
∥
∥pik+h

∥
∥
∥

+
∥
∥
∥�̃k+h

k grad f (xk)
∥
∥
∥

∥
∥
∥�̃k+h

k pik − pik+h

∥
∥
∥

≤ BL f d(k, k + h) + L�d(k, k + h) ‖grad f (xk)‖ , (25)

where we used (23), (24) and (6) in the last inequality. ��

Algorithm 2 RDSE-SB

1: Input: x0 ∈ R
n , {α j

0 } j∈[1:K ], γ > 0, γ1 ∈ (0, 1), γ2 ≥ 1.
2: for k = 0, 1, ... do
3: Compute a positive spanning set {p j

k } j∈[1:K ] of TkM
4: Set j(k) = mod (k, n), αik = α̃ik and α̃ik+1 = α̃ik for i ∈ [1 : K ] \ { j(k)}.
5: Compute α

j(k)
k , α̃

j(k)
k+1 with linesearch procedure(α̃ j(k)

k , xk , p
j(k)
k , γ, γ1, γ2)

6: Set xk+1 = R(xk , α
j(k)
k p j(k)

k )

7: end for

Algorithm 3 Linesearchprocedure(x, α, d, γ, γ1, γ2)

1: if f (R(xk , αd)) > f (x) − γα2 then
2: Return (0, γ1α)

3: end if
4: while f (R(xk , αd)) ≤ f (x) − γα2 do
5: Set α = γ2α

6: end while
7: Return (α/γ2, α/γ2)

Asymptotic convergence of this method is proved in the remaining part of this
section.

Lemma 3.4 Let f ∈ C1(M), {xk} generated by Algorithm 2, and let Assumptions 2,
3 hold. At every iteration k, the following inequality holds:

− 〈grad f (xk), p j(k)
k 〉 < α̃

j(k)
k+1

γ2

γ1
(LB2/2 + γ ). (26)

Proof It is immediate to check that we must always have

f (R(xk,�k p
j(k)
k )) > f (xk) − γ�2

k, (27)

for �k = 1
γ1

α̃
j(k)
k+1 if the linesearch procedure terminates at the second line, and �k =

γ2α̃
j(k)
k+1 if the linesearch procedure terminates in the last line. Then in both cases

− 〈grad f (xk), p j(k)
k 〉 < �k(LB

2/2 + γ ) ≤ α̃
j(k)
k+1

γ2

γ 1
(LB2/2 + γ ), (28)
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where we used Lemma 3.1 in the first inequality. ��
Assumption 4 makes it possible to extend [26, Proposition 5.2] to the Riemannian
case.

Theorem 3.2 Let f ∈ C1(M), {xk} be generated by Algorithm 1, and let Assumptions
1, 2, 3 and 4 hold. We have

lim
k→∞ ‖grad f (xk)‖ → 0. (29)

Proof Let ᾱk = max j∈[1:K ] α̃ j(k)
k+1, so that ᾱk → 0 since α̃

j(k)
k → 0, reasoning as in

the proof of Theorem 3.1. As a consequence of Lemma 3.4, we have

− 〈grad f (xk), p j(k)
k 〉 < ᾱkc1, (30)

for the constant c1 = γ2
γ1

(LB2/2 + γ ) independent from j(k).

It remains to bound 〈grad f (xk), pik〉 for i �= j(k). To start with, we have the following
bound:

−〈grad f (xk), pik〉 ≤ −〈grad f (xk+h), p
i
k+h〉 + |〈grad f (xk+h), p

i
k+h〉

−〈grad f (xk), pik〉|
≤ c1ᾱk+h + |〈grad f (xk+h), p

i
k+h〉 − 〈grad f (xk), pik〉|, (31)

for h ≤ K such that i = j(k + h), and where in the second inequality we used (30)
with k + h instead of k. For the second summand appearing in the RHS of (31), from
Lemma 3.3 it follows

|〈grad f (xk+h), p
i
k+h〉 − 〈grad f (xk), pik〉| ≤ L f d(k, k + h)B

+L� ‖grad f (xk)‖ d(k, k + h). (32)

We can now bound d(k, k + h) as follows

d(k, k + h) =
h−1
∑

l=0

dist(xk+l+1, xk+l)

=
h−1
∑

l=0

dist(xk+l , R(xk+l , ᾱk+l p
j(k+l)
k+l )) ≤

h−1
∑

l=0

Lr ᾱk+l

∥
∥
∥p

j(k+l)
k+l

∥
∥
∥

≤ BLr

h−1
∑

l=0

ᾱk+l ≤ hBLr max
l∈[0:h−1] ᾱk+l

≤ K BLr max
l∈[0:K ] ᾱk+l , (33)

where we used (3) in the second inequality, (6) in the third one, and h ≤ K in the last
one.
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Let �k = maxl∈[0:K ] ᾱk+l , so that in particular �k → 0.
For every i ∈ [1 : K ]:

− 〈grad f (xk), pik〉 ≤ c1ᾱk+h + L f d(k, k + h)B + L� ‖grad f (xk)‖ d(k, k + h)

≤ c2�k + c3�k ‖grad f (xk)‖ , (34)

for c2 = c1 + L f B2K Lr and c3 = K BLr L� . Then, applying (7) and (34), we get

τ ‖grad f (xk)‖ ≤ max
i∈[1:K ] −〈grad f (xk), pik〉 ≤ c2�k + c3�k ‖grad f (xk)‖ (35)

and rearranging, for k large enough so that τ − c3�k > 0,

‖grad f (xk)‖ ≤ c2�k

τ − c3�k
→ 0, (36)

as desired. ��

4 Nonsmooth Objectives

In this section, some direct search methods are studied in the context where f is
Lipschitz continuous, and bounded from below, but not necessarily continuously dif-
ferentiable. The algorithms detailed here are built around the ideas given in [15], where
the authors consider direct search methods for nonsmooth objectives in Euclidean
space.

4.1 Clarke Stationarity for Nonsmooth Functions on RiemannianManifolds

In order to perform our analysis, a definition of the Clarke directional derivative for a
point x ∈ M is needed. The standard approach is to write the function in coordinate
charts and take the standard Clarke derivative in an Euclidean space (see, e.g., [19,
20]). Formally, given a chart (ϕ,U ) at x ∈ M and v ∈ TxM,

f ◦(x; v) = f̃ ◦(ϕ(x); dϕ(x)v), (37)

for f̃ (y) = f (ϕ−1(y)). The following lemma shows the relationship between defini-
tion (37) and a directional derivative like object definedwith retractions. This nontrivial
result is the key tool allowing us to extend the analysis of direct search methods on
R
n to the Riemannian setting.

Lemma 4.1 Let f be Lipschitz continuous. If (yk, qk) → (x, d) and tk → 0,

f ◦(x; d) ≥ lim sup
k→∞

f (R(yk, tkqk)) − f (yk)

tk
. (38)

The proof is rather technical and thus deferred to the Appendix.
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4.2 Refining Subsequences

The definition of refining subsequence used in the analysis of direct search methods
(see, e.g., [3, 15]) is adapted here to the Riemannian setting. Let (xk, dk) be a sequence
in TM.

Definition 4.1 The subsequence {xi(k)} is refining if xi(k) → x∗, and i(k) is unsuc-
cessful for every k. In this case, the limit x∗ is called a refined point.

Definition 4.2 Given a refining subsequence {xi(k)} with refined point x∗, a direction
d ∈ TxM with ‖d‖x = 1 is said to be a refined direction if for a further subsequence
{ j(i(k))}

lim
k→∞ dist∗(d j(i(k)), d) = 0. (39)

A sufficient condition for the directions in a refined point to be refining is now given,
assuming that the manifold is embedded in R

n and that the directions are obtained
projecting from the unit sphere to the tangent spaces.

Proposition 4.1 If xi(k) is a refining subsequence, d̄i(k) is dense in the unit sphere,

di(k) = Pk(d̄i(k))

‖Pk(d̄i(k))‖k
,

for Pk(d̄i(k)) �= 0 and di(k) = 0; otherwise, then every d ∈ Tx∗M with ‖d‖x∗ = 1 is
refining.

Proof Fix d ∈ Tx∗M, with ‖d‖x∗ = 1, and let d̄ = d/‖d‖. By density, d̄ j(i(k)) → d̄
for a proper choice of the subsequence { j(i(k))}. Then,

lim
k→∞ d j(i(k)) = lim

k→∞
Pk(d̄ j(i(k)))

∥
∥Pk(d̄ j(i(k)))

∥
∥
k

= Px∗(d̄)
∥
∥Px∗(d̄)

∥
∥
x∗

= d̄
∥
∥d̄

∥
∥
x∗

= d, (40)

where in the second equality we used the continuity of Px and of the norm ‖ · ‖x , and
in the third equality we used Px∗(d̄) = d̄ since d̄ ∈ Tx∗M by construction. ��

4.3 Direct Search for Nonsmooth Objectives

Our Riemannian Direct Search method based on Dense Directions (RDS-DD) for
nonsmooth objectives is presented here. The scheme is presented in detail asAlgorithm
4. The algorithm performs three simple steps at an iteration k. First, a search direction
is selected randomly in the current tangent space. Then, a tentative point is generated
by retracting the step αkdk from the tangent space to the manifold. Such a point is
then eventually accepted as the new iterate if a sufficient decrease condition of the
objective function is satisfied (and the stepsize is expanded); otherwise, the iterate
stays the same. (And the stepsize is reduced.)
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Algorithm 4 RDS-DD

1: Input: x0 ∈ R
n , α0 > 0, γ > 0, γ1 ∈ (0, 1), γ2 ≥ 1

2: for k = 0, 1, ... do
3: Sample dk randomly in {d ∈ TkM | ‖d‖xk = 1}
4: if f (R(xk , αkdk )) ≤ f (x) − γα2k then
5: xk+1 = R(xk , αkdk ), αk+1 = γ2αk
6: else
7: xk+1 = xk , αk+1 = γ1αk
8: end if
9: end for

Thanks to the theoretical tools previously introduced, and in particular to the relation
between retractions and the Clarke directional derivative proved in Lemma 4.1, it
showed in a straightforward way that a suitable subsequence of unsuccessful iterations
of the RDS-DD method converges to a Clarke stationary point.

Theorem 4.1 Let f be Lipschitz continuous and {xk} be generated by Algorithm 4. If
{xi(k)} is refining, with xi(k) → x∗, and every d ∈ Tx∗M with ‖d‖x∗ = 1 is a refining
direction, x∗ is Clarke stationary.

Proof By the same assumptions as in the smooth case αk → 0 and in particular
αi(k) → 0. Since by assumption i(k) is an unsuccessful step, we have, for every i(k),

f (R(xi(k), αi(k)di(k))) − f (xi(k)) > −γα2
i(k). (41)

Let d ∈ Tx∗M with ‖d‖x∗ = 1, let { j(i(k))} be such that d j(i(k)) → d, and let
yk = x j(i(k)), qk = d j(i(k)), tk = α j(i(k)). We have

lim sup
k→∞

f (R(yk, tkqk)) − f (yk)

tk
≥ lim sup

k→∞
−γαi(k) = 0, (42)

thanks to (41), and by applying Lemma 4.1 we get

f ◦(x∗; d) ≥ lim sup
k→∞

f (R(yk, tkqk)) − f (yk)

tk
≥ 0, (43)

which implies the thesis since d is arbitrary. ��

4.4 Direct Search with Linesearch Extrapolation for Nonsmooth Objectives

Our Riemannian Direct Search method with linesearch Extrapolation based on Dense
Directions (RDSE-DD) for nonsmooth objectives is presented here. It can be seen
as an extension to the Riemannian setting of the DFNsimple algorithm introduced in
[15] for the Euclidean setting with bound constraints. The detailed scheme is given
in Algorithm 5. The algorithm performs just two simple steps at an iteration k. First,
a given search direction is suitably projected on the current tangent space. Then,
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Algorithm 5 RDSE-DD

1: Input: x0 ∈ R
n , α0 > 0, γ > 0, γ1 ∈ (0, 1), γ2 ≥ 1.

2: for k = 0, 1, ... do
3: Sample dk randomly in {d ∈ TkM | ‖d‖xk = 1}
4: Compute αk , α̃k+1 with linesearch procedure(α̃k , xk , dk , γ, γ1, γ2)
5: Set xk+1 = R(xk , αkdk )
6: end for

a linesearch is performed using Algorithm 3 to hopefully obtain a new point that
guarantees a sufficient decrease.

Once again, by exploiting the theoretical tools previously introduced, it is proved in a
straightforward way that a suitable subsequence of the RDSE-DD iterations converges
to a Clarke stationary point. Thanks to the use of the linesearch strategy, the following
result is not restricted to considering unsuccessful iterations. Given the lack of such
iterations, for the purposes of Definition 4.1, every converging subsequence generated
by Algorithm 5 is considered as refining.

Theorem 4.2 Let f be Lipschitz continuous and {xk} be generated by Algorithm 5. If
{xi(k)} is refining, with xi(k) → x∗ and every d ∈ Tx∗M with ‖d‖x∗ = 1 is a refining
direction, then x∗ is Clarke stationary.

Proof Let βk = α̃k+1/γ1 if the linesearch procedure exits before the loop, and βk =
γ2α̃k otherwise, so that in particular βk → 0. Then by definition of the linesearch
procedure, for every k

f (R(xk, βkdk)) − f (xk) > −γβ2
k . (44)

The rest of the proof is analogous to that of Theorem 4.1. ��

5 Numerical Results

In this section, results of some numerical experiments of the algorithms described
in this paper on a set of simple but illustrative example problems are presented. The
comparison among the algorithms is carried out by using data and performance profiles
[27]. Specifically, let S be a set of algorithms and P a set of problems. For each s ∈ S
and p ∈ P , let tp,s be the number of function evaluations required by algorithm s on
problem p to satisfy the condition

f (xk) ≤ fL + τ( f (x0) − fL), (45)

where 0 < τ < 1 and fL is the best objective function value achieved by any solver on
problem p. Then, the performance anddata profiles of solver s are defined, respectively,
by the following functions

ρs(α) = 1

|P|
∣
∣
∣
∣

{

p ∈ P : tp,s
min{tp,s′ : s′ ∈ S} ≤ α

}∣
∣
∣
∣
,
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ds(κ) = 1

|P|
∣
∣
{

p ∈ P : tp,s ≤ κ(n p + 1)
}∣
∣ ,

where n p is the dimension of problem p.
A budget of 100(n p + 1) function evaluations is used in all cases, and two differ-

ent precisions for the condition (45), that is, τ ∈ {10−1, 10−3}. Randomly generated
instances of well-known optimization problems over manifolds from [1, 8, 18] are
considered. A brief description of those problems as well as the details of our imple-
mentation can be found in Appendix (see Sects. 7.3, 7.4 and 7.5). The size of the
ambient space for the instances varies from 2 to 200. In the results, the problems are
split by ambient space dimension: between 2 and 15 for small instances, between 16
and 50 for medium instances, and between 51 and 200 for large instances.

5.1 Smooth Problems

In Fig. 1, the results related to 8 smooth instances of problem (1) from [1, 8] are
included, each with 15 different problem dimensions (from 2 to 200), for a total
number of 60 tested instances, split as described above. Our methods, that is, RDS-SB
and RDSE-SB, are compared with the zeroth-order gradient descent (ZO-RGD, [23,
Algorithm 1]).

The results clearly show that RDSE-SB performs better thanRDS-SB andZO-RGD
both in efficiency and reliability for both levels of precision. It can also be seen how
the gap between RDSE-SB and the other two algorithms gets larger as the problem
dimension grows.

5.2 Nonsmooth Problems

Here, a preliminary comparison is reported between a direct search strategy, a line-
search strategy, and ZO-RGD on two nonsmooth instances of (1) from [18], each with
15 different problem sizes (from 2 to 200), thus getting a total number of 30 tested
instances, split by dimension as for smooth instances. It should be noted that while
in the unconstrained setting the performance of zeroth-order (sub)gradient descent
methods on nonsmooth objectives has been analyzed (see, e.g., [28]), there are, to the
best of our knowledge, no convergence guarantees in the Riemannian setting.

In the direct search strategy (RDS-DD+), the RDS-SB method is applied until
αk+1 ≤ αε , at which point the nonsmooth version RDS-DD is used. Analogously,
in the linesearch strategy (RDSE-DD+), the RDSE-SB method is applied until
max j∈[1:K ] α̃ j

k+1 ≤ αε , at which point the nonsmooth version RDSE-DD is used.
Both strategies use a threshold parameter αε > 0 to switch from the smooth to the
nonsmooth DFO algorithm. The reader is referred to [15] and references therein for
other direct search strategies combining coordinate and dense directions.

In Fig. 2, the comparison between the considered strategies is reported. As in the
smooth case, the linesearch-based strategy outperforms both the simple direct search
and the zeroth-order one. It can once again be seen how the gap between the algorithms
gets larger as the problem dimension gets large enough.
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Fig. 1 From top to bottom: results for small, medium, and large instances in the smooth case
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Fig. 2 From top to bottom: results for small, medium, and large instances in the nonsmooth case
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6 Conclusion

In this paper, direct search algorithms with and without an extrapolation linesearch
for minimizing functions over a Riemannian manifold are presented. It was found
that, modulo modifications to account for the changing vector space structure with
the iterations, direct search strategies provide guarantees of convergence for both
smooth and nonsmooth objectives. It was also found that in practice, in our numerical
experiments, the extrapolation linesearch speeds up the performance of direct search
in both cases, and it appears that it even outperforms a gradient approximation-based
zeroth-order Riemannian algorithm in the smooth case. As a natural extension for
future work, considering the stochastic case would be a reasonable next step.
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7 Appendix

7.1 Proof of Proposition 3.1

Before proving Proposition 3.1, a local version is stated and proved.

Lemma A.1 Let Assumption 1 hold and R ∈ C2(TM,M). Then, for every x ∈ M
there is a neighborhood Ux of x, and constants Lx and Dx such that for every y ∈ Ux,
d ∈ TyM with ‖d‖ ≤ Dx

f (R(y, d)) ≤ f (y) + 〈grad f (y), d〉 + Lx

2
‖d‖2 . (46)

Proof Let (ϕ) be a chart defined in a neighborhood U of x ∈ M. We can take the
neighborhood small enough so that for y, z varying in U the parallel transport �z

y

depends smoothly on y, z and is uniquely defined. We use the notation (x̃, d̃) =
(ϕ(x), dϕ(x)d) for (x, d) ∈ TM. We push forward the manifold and the related
structure with the chart ϕ, i.e., for ϕ̄ = ϕ−1 we define f̃ = f ◦ ϕ̄, Ũ = ϕ(U ),
R̃(ỹ, d̃) = R(y, d); for d, q ∈ TxM we define g(d̃, q̃) = 〈d, q〉x , ‖d̃ − q̃‖x̃ =
‖d − q‖x , and �̃

ỹ
x̃ (d̃) = �

y
x (d). With slight abuse of notation, we use dist(x̃, ỹ) to

denote dist(x, y). We also define as grad f̃ the gradient of f̃ with respect to the scalar
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product g, so that g(grad f̃ (x̃), d̃) = 〈∇ f̃ (x), d〉 for any d̃ ∈ R
m . Importantly, by the

equivalence of norms in Rm we can use O(‖d̃‖x ) and O(‖d̃‖) interchangeably.
We can choose (ϕ,U ) and B > 0 in such a way that for some neighborhood

Ũx ⊂ Ũ of x̃ , for every ỹ ∈ Ũx and d̃ with ‖d̃‖ỹ ≤ B we have R̃(ỹ, d̃) ∈ Ũ2 ⊂ Ũ ,
with Ũ2 compact.

With this notation, we need to prove

f̃ (R̃(ỹ, d̃)) ≤ f̃ (ỹ) + g(grad f̃ (ỹ), d̃) + Lx

2

∥
∥
∥d̃

∥
∥
∥

2

ỹ
, (47)

for d̃ such that ‖d̃‖ỹ ≤ B, ỹ ∈ Ũx ⊂ Ũ and some Lx > 0.
First, since R̃ is in particular C1 regular

R̃(x̃, d̃) = x̃ + O(

∥
∥
∥d̃

∥
∥
∥
x̃
), (48)

and by the local smoothness of the parallel transport, for ỹ, z̃ ∈ Ũ2, we have

�̃ z̃
ỹ q̃ = q̃ + O(‖ỹ − z̃‖). (49)

Furthermore,

grad f̃ (R̃(ỹ, q̃)) = �̃
R̃(ỹ,q̃)

ỹ grad f̃ (ỹ) + O(dist(ỹ, R̃(ỹ, q̃)))

= �̃
R̃(ỹ,q̃)

ỹ grad f̃ (ỹ) + O(‖q̃‖), (50)

where we used (4) in the first equality and (3) in the second equality.
Finally, since, d

dt R̃(ỹ, t q̃) is C1 regular, we also have

d

dt
R̃(ỹ, t q̃)|t=h = d

dt
R̃(ỹ, t q̃)|t=0 + O(‖hq̃‖)

= q̃ + O(h ‖q̃‖) = �̃
R(ỹ,hq̃)

ỹ q̃ + O(‖R(ỹ, hq̃) − ỹ‖) + O(h ‖q̃‖)
= �̃

R(ỹ,hq̃)

ỹ q̃ + O(h ‖q̃‖), (51)

where we used (49) in the third equality, and (3) in the last one. Again by compactness,
for ỹ ∈ Ũ1, t ≤ 1, ‖q̃‖ ≤ B the implicit constants can be taken with no dependence
from the variables.

Now, for d̃ s.t. d̃ ≤ B define q̃ = Bd̃/‖d̃‖, so that d̃ = t̄ q̃ for t̄ = ‖d̃‖/B. Then,
we obtain (47) reasoning as follows:

f̃ (R̃(ỹ, d̃)) − f̃ (R̃(ỹ, 0)) = f̃ (R̃(ỹ, t̄ q̃)) − f̃ (R̃(ỹ, 0))

=
∫ t̄

0

d

dt
f̃ (R̃(ỹ + t q̃))dt =

∫ t̄

0
g(grad f (R̃(ỹ, t q̃)),

d

dt
R̃(ỹ, t d̃))dt

=
∫ t̄

0
g(�̃ R̃(ỹ,t q̃)

ỹ grad f̃ (ỹ) + O(t ‖q̃‖), �̃ R̃(ỹ,t d̃)

ỹ d̃ + O(t ‖q̃‖))dt
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=
∫ t̄

0

(

g(�̃ R̃(ỹ,t q̃)

ỹ grad f̃ (ỹ), �̃ R̃(ỹ,t d̃)

ỹ d̃) + O(t ‖q̃‖)
)

dt

= g(grad f (ỹ), d̃) + O(t̄2 ‖q̃‖) = g(grad f (ỹ), d̃) + O(

∥
∥
∥d̃

∥
∥
∥

2
), (52)

where we used (50) and (51) in the fourth equality, and the implicit constant for the
O(‖d̃‖2) term can be taken as some Lx > 0 independent from d̃ and ỹ. ��
Proof (Proposition 3.1) By the compactness of L0, the local property of Lemma A.1
can be extended to all L0: For some L̃, B > 0, (5) holds for every x ∈ L0 ∩ M,
d ∈ TxM with ‖d‖ ≤ B. Let

M f = max
x∈L0

‖grad f (x)‖ . (53)

We now claim that when ‖d‖ > B, (5) holds with L = 2(M f +L0Lr )
2B , for L0 Lipschitz

constant of f . Indeed in this case, we have

f (R(x, d)) ≤ f (x) + L0 dist(x, R(x, d)) ≤ f (x) + L0Lr ‖d‖
= f (x) − M f ‖d‖ + (M f + L0Lr ) ‖d‖ ≤ f (x) + 〈grad f (x), d〉

+2(M f + L0Lr )

2B
B ‖d‖

≤ f (x) + 〈grad f (x), d〉 + 2(M f + L0Lr )

2B
‖d‖2 , (54)

as desired. Combining the results obtained for the case ‖d‖ ≤ B and ‖d‖ > B, we

obtain the desired result for L = max
(
2(L0Lr+M f )

B , L̃
)

. ��

7.2 Proof of Lemma 4.1

In order to prove Lemma 4.1, the following lemma is needed, which will be proved
with an argument analogous to the one used in the proof of [5, Proposition 3.9].

Lemma A.2 For a Lipschitz continuous function h : Rm → R, ỹ, ṽ ∈ R
m, if ỹk → ỹ,

ṽk → ṽ, and tk → 0, then

h◦(ỹ; ṽ) ≥ lim sup
k→∞

h(ỹk + tk ṽk) − h(ỹk)

tk
. (55)

Proof We have

|h(ỹk + tk ṽk) − h(ỹk + tk ṽ)| ≤ tk Lh ‖ṽ − ṽk‖ = o(tk), (56)

with Lh being the Lipschitz constant of h. Then,

lim sup
k→∞

h(ỹk + tk ṽk) − h(ỹk)

tk
= lim sup

k→∞
h(ỹk + tk ṽ) + o(tk) − h(ỹk)

tk
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= lim sup
k→∞

h(ỹk + tk ṽ) − h(ỹk)

tk
≤ h◦(ỹ; ṽ), (57)

where we used (56) in the first equality, and with the inequality true by definition of
the Clarke derivative. ��
Proof (Lemma 4.1) We use the notation introduced in the proof of Proposition 3.1, so
that in particular x̃ = ϕ(x) and d̃ = dϕ(x)d. Without loss of generality, we assume
that U is bounded, that ϕ can be extended to a neighborhood containing the closure
of U , {xk} ⊂ U , and that the parallel transport �y

x v depends smoothly from x, y ∈ U
and v ∈ TxM.

First, since pushforward R̃ of a C2 retraction on R is a C2 retraction itself of TRm

on Rm , we have the Taylor expansion

R̃(ỹ, ṽ) = ỹ + ṽ + O(‖ṽ‖2), (58)

with the implicit constant uniform for ỹ varying in Ũ and ṽ chosen in Rm .
Second, for any fixed constant B > 0, by continuity we have

∥
∥
∥�̃

x̃k
x̃ q̃ − q̃

∥
∥
∥ ≤ O (‖x̃ − x̃k‖) , (59)

for k → ∞, q̃ ∈ R
m with ‖q̃‖ ≤ B, and with a uniform implicit constant.

Therefore,
∥
∥
∥d̃k − d̃

∥
∥
∥ ≤

∥
∥
∥d̃k − �̃

x̃k
x̃ d̃

∥
∥
∥ +

∥
∥
∥�̃

x̃k
x̃ d̃ − d̃

∥
∥
∥ ≤ O

(∥
∥
∥d̃k − �̃

x̃k
x̃ (d̃)

∥
∥
∥
x̃

)

+ O (‖x̃ − x̃k‖)
= O

(∥
∥dk − �xk

x (d)
∥
∥
x

) + O (‖x̃ − x̃k‖) = o(1), (60)

where in the second inequality we used (59), and in the last equality we used dk → d
together with x̃k → x̃ .

Let now ṽk = (R̃(x̃k, tk d̃k) − x̃k)/tk . Then,
∥
∥
∥ṽk − d̃

∥
∥
∥ = 1

tk

∥
∥
∥R̃(x̃k, tk d̃k) − x̃k − tk d̃

∥
∥
∥

≤ 1

tk
(

∥
∥
∥R(x̃k, tk d̃k) − x̃k − tk d̃k

∥
∥
∥ + tk

∥
∥
∥d̃k − d̃

∥
∥
∥)

= 1

tk
(O(t2k

∥
∥
∥d̃k

∥
∥
∥

2
) + tko(1)) = o(1), (61)

where we used (58) and (60) for the first and the second summand in the second
equality. In other words, ṽk → d̃ . To conclude,

lim sup
k→∞

f (R(yk, tkdk)) − f (yk)

tk
= lim sup

k→∞
f̃ (R̃(ỹk, tk d̃k)) − f̃ (ỹk)

tk

= lim sup
k→∞

f̃ (ỹk + tk ṽk) − f̃ (ỹk)

tk
≤ f̃ ◦(x̃; d̃) = f̃ ◦(ϕ(x); dϕ(x)d) = f ◦(x; d),

(62)
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where in the inequality we were able to apply Lemma A.2 because ṽk → d̃ by (61),
and the last equality follows by the definition (37). ��

7.3 Implementation Details

For all the problems, themanifold structure usedwas the one available in theMANOPT
library [10].

After a basic tuning phase, the algorithm parameters were set as follows: γ1 = 0.61,
γ2 = 1 and γ = 0.77 were used for Algorithm 1, γ1 = 0.81, γ2 = 3.12, and γ = 0.11
for Algorithm 2, and the stepsize 1.64/n (recall that n is the dimension of the ambient
space) for the ZO-RGD method.

For the nonsmooth strategies RDS-DD+ and RDSE-DD+, the same parameters of
the smooth case for RDS-SB and RDSE-SB were considered, setting αε = 10−4, and
for both RDS-DD and RDSE-DD used γ1 = 0.95, γ2 = 2, and γ = 1. When dealing
with the nonsmooth case, the stepsize used for ZO-RGD was the same as the one
considered in the smooth case.

The positive spanning set was obtained both in Algorithm 1 and Algorithm 2 by
projecting the positive spanning set (e1, . . . , en,−e1, . . . ,−en) of the ambient space
R
n on the tangent space. The initial stepsize was set to 1 for all the direct search

methods, with no fine tuning.
The starting point and the parameters related to the instances were generated either

withMATLAB rand function or by using the random element generators implemented
in the MANOPT library.

7.4 Smooth Problems

Here, the 8 smooth instances of problem (1) from [1, 8] are described.

7.4.1 Largest Eigenvalue, Singular Value, and Top Singular Values Problem

In the largest eigenvalue problem [8, Section 2.3], given a symmetric matrix A ∈
Sn−1 := {A ∈ R

n×n | A = A�}, the goal is to compute

max
x∈S(0,1)

x�Ax . (63)

The largest singular value problem [8, Section 2.3] can be formulated generalizing
(63): Given A ∈ R

m×h , the problem to solve is

max
x∈S(0,1),y∈S(0,1)

x�Ay. (64)

Notice how the domain in (63) and (64) is a sphere and the product of two spheres,
respectively.
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Finally, to compute the sum of the top r singular values, as explained in [8, Section
2.5] it suffices to solve

max
X∈St(m,r),Y∈St(h,r)

X�AY , (65)

for St(a, b) the Stiefel manifold with dimensions (a, b).

7.4.2 Dictionary Learning

The dictionary learning problem [8, Section 2.4] can be formulated as

min
D∈Rd×h ,C∈Rh×k

‖Y − DC‖ + λ ‖C‖1
s.t. ‖D1‖ = . . . = ‖Dh‖ = 1 (66)

for a fixed Y ∈ R
d×k , λ > 0, ‖ · ‖1 the �1− norm, and D1, . . . , Dh the columns of D.

In our implementation, the objective is smoothed by using a smoothed version
‖ · ‖1,ε of ‖ · ‖1

‖C‖1,ε =
∑

i, j

√

C2
i, j + ε2. (67)

In our tests, the solution C̄ is generated usingMATLAB sprand function, with a density
of 0.3, set the regularization parameter λ to 0.01 and ε to 0.001.

7.4.3 Synchronization of Rotations

Let SO(d) be the special orthogonal group:

SO(d) = {R ∈ R
d×d | R�R = Id and det(R) = 1}. (68)

In the synchronization of rotations problem [8, Section 2.6], rotations R1, . . . , Rh ∈
SO(d)must be retrieved from noisymeasurements Hi j of Ri R

−1
j , for every (i, j) ∈ E ,

a subset of
(h
2

)

(the set of couples of distinct elements in [1 : h]). The objective is then

min
R̂1,...,R̂h∈SO(d)

∑

(i, j)∈E

∥
∥
∥R̂i − Hi j R̂ j

∥
∥
∥

2
. (69)

In our tests, the case h = 2 is considered for simplicity.
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7.4.4 Low-rank Matrix Completion

The low-rank matrix completion problem [8, Section 2.7] can be written, for a fixed
matrix M ∈ R

m×h , as

min
X∈Rm×h

∑

(i, j)∈�

(

Xi j − Mi j
)2

,

s.t. rank(X) = r , (70)

given a positive integer r > 0 and a subset of indices � ⊂ [1 : m] × [1 : h]. It can be
proven that the optimization domain, that is, the matrices in R

m×n with fixed rank r ,
can be given a Riemannian manifold structure (see, e.g., [29]).

7.4.5 Gaussian Mixture Models

In the Gaussian mixture model problem [8, Section 2.8], the goal is to compute a
maximum likelihood estimation for a given set of observations x1, . . . , xh :

max
û1,...,ûk∈Rd

�̂1,...,�̂k∈Sym(d)+,

w∈�K−1+

h
∑

i=1

log

(
K

∑

k=1

wk
1√

2π det(�k)
e

(x−μk )��
−1
k (x−μk )

2

)

, (71)

where Sym(d)+ is the manifold of positive definite matrices

Sym(d)+ = {X ∈ R
d×d | X = X�, X � 0}, (72)

and �K−1+ is the subset of strictly positive elements of the simplex �K−1, which
can be given a manifold structure. In our tests, the case K = 2 is considered with
the reformulation proposed in [17], which does not use the unconstrained variables
(û1, . . . , ûk).

7.4.6 Procrustes Problem

The Procrustes problem [1] is the following linear regression problem, for fixed A ∈
R
l×n and B ∈ R

l×p:

min
X∈St(n,p)

‖AX − B‖2F , (73)

In our tests, the variable X ∈ R
n×p is assumed to be in the Stiefel manifold St(n, p),

a choice leading to the so-called unbalanced orthogonal Procrustes problem.

7.5 Nonsmooth Problems

Here, two nonsmooth problems taken from [18] are described.
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7.5.1 Sparsest Vector in a Subspace

Given an orthonormal matrix Q ∈ R
m×n , the problem of finding the sparsest vector

in the subspace generated by the columns of Q can be relaxed as

min
x∈Sn−1

‖Qx‖1 . (74)

7.5.2 Nonsmooth Low-rank Matrix Completion

In the nonsmooth version of the low-rank matrix completion problem (70) the
Euclidean norm is replaced with the l1 norm, so that the objective consists in a sum
of absolute values:

min
X∈Rm×n

∑

(i, j)∈�

∣
∣Xi j − Mi j

∣
∣ ,

s.t. rank(X) = r . (75)
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