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Abstract
Two-stage methods addressing continuous shortest path problems start local mini-
mization from discrete shortest paths in a spatial graph. The convergence of such
hybrid methods to global minimizers hinges on the discretization error induced by
restricting the discrete global optimization to the graph, with corresponding implica-
tions on choosing an appropriate graph density. A prime example is flight planning,
i.e., the computation of optimal routes in view of flight time and fuel consumption
under givenweather conditions. Highly efficient discrete shortest path algorithms exist
and can be used directly for computing starting points for locally convergent optimal
control methods. We derive a priori and localized error bounds for the flight time of
discrete paths relative to the optimal continuous trajectory, in terms of the graph den-
sity and the given wind field. These bounds allow designing graphs with an optimal
local connectivity structure. The properties of the bounds are illustrated on a set of
benchmark problems. It turns out that localization improves the error bound by four
orders of magnitude, but still leaves ample opportunities for tighter error bounds by a
posteriori estimators.
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1 Introduction

There are applications of numerical optimization that call for the computation of global
instead of just local optima.One example is free flight planning, an instance of airborne
navigation, where travel time is optimized subject to a given wind field (the travel
time T between origin and destination is almost proportional to fuel consumption,
CO2 emission, and cost [22]). Going left or right around obstacles or adverse wind
situations gives rise to locally optimal trajectories with considerably different costs
[19], and airlines are naturally interested in the best of those.

Various approaches to global optimization have been proposed: stochastic ones like
multistart or simulated annealing [6], biologically inspired metaheuristics like genetic
algorithms or particle swarms [14], and rigorous ones based on objective bounds and
branching [2, 9]. The former approaches converge to a global minimizer only almost
surely at increasing computational costs, but provide no guarantees for finiteness. The
latter ones usually require in-depth structural knowledge of the objective, or the use of
interval arithmetics, and quickly suffer from the curse of dimensionality for practically
relevant problems.

In this paper we consider a two-stage multistart approach along the following lines.
It (i) defines a sufficiently large set of possible starting points, (ii) selects few promis-
ing candidates, and (iii) performs local optimization starting from those candidates.
For this to be computationally feasible, the representation and selection of starting
points needs to be highly efficient even for large and high-dimensional design spaces.
This is, of course, problem-dependent. Some problems allow a discretization in terms
of discrete network optimization problems such as minimum cost flow and, in partic-
ular, shortest path problems, which can be solved efficiently to global optimality in
theory and practice [13]. If such discrete problems are close to their continuous coun-
terpart, their solutions might provide promising starting points for local optimization
to converge to a nearby global optimizer.

Obviously, flight planning and discrete shortest path search are related in this
way and can hence serve as examples to substantiate the general idea. The starting
points covering the design space of trajectories between origin and destination can be
implicitly described as paths in a graph covering the spatial domain. In this discrete
approximation of the problem, the selection of promising candidate points can be effi-
ciently performed using Dijkstra’s algorithm or its A∗ variants. This leads to a hybrid
discrete-continuous algorithm combining discrete global optimization methods with
continuous local optimal control methods.

A first successful step in this direction has been taken with the development of
the hybrid algorithm DisCOptER [7] that has been proposed by the authors of this
paper for free flight planning. Even though the potential applications are manifold,
no other similar method has been proposed so far. Note that the discrete stage alone
is traditionally used as a standalone optimizer for practical flight planning on given
airway networks [4, 5], but gets quickly inefficient when the airway networks need to
be refined significantly to exploit the potential benefits of free flight [22]. Similarly,
for robot path planning, rapidly exploring random graphs and trees (RRT) are used
for sampling the trajectory design space at many discrete points [23].
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Guaranteed convergence of a hybrid two-stage algorithm to a global minimizer
hinges on the one hand on a sufficiently dense sampling of possible starting points
in the design space, and on the other hand on the ability of the local optimizer to
converge reliably to a nearby local optimum when started from one of these candidate
points. The present paper investigates the first aspect, i.e., we derive bounds on the
required resolution of the discretization. To this purpose, we introduce a continuous
problem formulation that allows a direct comparison of continuous and discrete 2D
flight paths (Sect. 2), and derive bounds for the flight duration deviation T (ξ)−T (ξC )

between different paths ξ and ξC in terms of spatial distance ‖ξ −ξC‖, angular distance
‖(ξ − ξC )τ‖, and bounds on the stationary wind and its derivatives. Based on the
(h, l) graph density property from [7], we obtain corresponding flight duration bounds
for discrete optimal trajectories (Sect. 3), which also yield a theoretically optimal
ratio h = O(l2) of vertex distance and characteristic edge length. We derive two
types of error bounds: an a priori bound T (ξG) ≤ T (ξC ) + κl2 depending only
on problem quantities but not on a particular solution, and a local bound based on
bounds for the wind in a neighborhood of the optimal trajectory. Taking more detailed
information into account, the latter one improves on the former one by several orders
of magnitude. The theoretical predictions are confirmed by numerical examples for
a set of benchmark problems with varying wind complexity (Sect. 4), which reveal
that there is still ample room for improvement by using a posteriori error estimators.
The flight planning application leaves its imprint on the nature and derivation of these
bounds, but the general idea should work for similar applications that have a discrete-
continuous nature.

2 Shortest Flight Planning: Continuous & Discrete

For simplicity of presentation, we consider flight planning in the Euclidean plane. We
aim at minimizing the travel time T between an origin xO and a destination xD , with
a fixed departure at t = 0 and a constant airspeed v > 0, thus neglecting start and
landing phase. Moreover we assume a spatially heterogeneous, twice continuously
differentiable wind field w to be given, with a bounded magnitude ‖w‖L∞(R2) < v.
Focusing on free flight areas, we also neglect any traffic flight restrictions.

2.1 Continuous: Optimal Control

In free flight areas, the flight trajectory is not restricted to a predefined set of airways.
Instead, we consider any Lipschitz-continuous path x : [0, T ] → R

2 in the Sobolev
space H1([0, T ]), connecting origin xO and destination xD , as a valid trajectory if it
satisfies the following ODE almost everywhere,

xt (t) = v(t) + w(x(t), t), (1)

where xt denotes the derivative of x with respect to t and is obtained by adding the
vectors of airspeed and wind. The airspeed v ∈ L2([0, T ]) : [0, T ] �→ R

2 lives in the
Lebesgue space of square integrable functions. Among those trajectories, we need to
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find one with minimal flight duration T , since that is essentially proportional to fuel
consumption [22]. This classic of optimal control is known as Zermelo’s navigation
problem [24].

The optimal control problem of finding a trajectory (x, v) that minimizes travel
time T ∈ R while obeying the dynamics described in (1) and travelling at constant
airspeed v now reads

min
T ,x,v

T s.t. c(T , x, v) =

⎡
⎢⎢⎣

x(0) − xO
x(T ) − xD

xt (t) − (v(t) + w(x(t), t))
v(t)Tv(t) − v2

⎤
⎥⎥⎦ = 0 (2)

with c : R × H1([0, T ])2 × L2([0, T ])2 → R
2 × R

2 × L2([0, T ])2 × L2([0, T ]).
Note that due to vTv = v2, the airspeed v (and therefore also the ground speed
v +w) is bounded almost everywhere, such that any feasible trajectory x is Lipschitz-
continuous, i.e., x ∈ C0,1([0, T ]) [21, Thm. 1.36]. Moreover, it is immediately clear
that there is an ellipse Ω ⊂ R

2 with focal points xO and xD , in which any trajectory
with minimal flight duration is contained.

Problem (2) can be numerically solved efficiently with either direct methods using
a discretization of the variables to formulate a finite-dimensional nonlinear program-
ming problem [10], or with indirect methods relying on Pontryagin’s maximum
principle, leading to a boundary value problem for ordinary differential equations
[12, 16–18, 20, 24]. These approaches have also been considered explicitly for free
flight planning [3, 11].

While the optimal control formulation (2) is convenient for numerically solving the
optimization problem, wewill consider a different formulation defining trajectories on
the unit interval that is better suited for direct comparisonwith graph-based approaches
here. Assume the flight trajectory x : [0, T ] → Ω is given by a strictly monotonously
increasing parametrization t(τ ) on [0, 1] as x(t(τ )) = ξ(τ ), and ξ ∈ H1([0, 1]) :
[0, 1] → Ω being a Lipschitz-continuous path with ξ(0) = xO , ξ(1) = xD . Due to
Rademacher’s theorem, its derivative ξτ exists almost everywhere, and we assume it

not to vanish. Then, t(τ ) is defined by the state equation xt
(1)= v + w 
= 0 and the

airspeed constraint ‖v‖ = v, since

v = ‖xt − w‖ and xt tτ = ξτ 
= 0
imply

(t−1
τ ξτ − w)T(t−1

τ ξτ − w) = v2

⇔ t−2
τ ξTτ ξτ − 2t−1

τ ξTτ w + wTw − v2 = 0

⇔ (v2 − wTw)t2τ + 2ξTτ wtτ − ξTτ ξτ = 0

due to tτ > 0. Solving the quadratic equation yields

tτ =
−ξTτ w +

√
(ξTτ w)2 + (v2 − wTw)(ξTτ ξτ )

v2 − wTw
=: f (t, ξ, ξτ ). (3)
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Fig. 1 Illustration of the effect of the time parametrization τ(t). Blue dots represent position at equidistant
time steps in the normalized time τ ∈ [0, 1]. Wind is blowing to the right with increasing speed

The flight duration T is then given by integrating the ODE (3) from 0 to 1 as T = t(1).
For the ease of presentation let us assume that thewindw is stationary, i.e., independent
of t , and thus f (t, ξ, ξτ ) = f (ξ, ξτ ). Doing so, we avoid the more complicated work
with an ODE. Instead, we obtain

T (ξ) =
∫ 1

0
f
(
ξ(τ ), ξτ (τ )

)
dτ. (4)

We, however, strongly expect our results to directly carry over to the more complex
case. Since the flight duration T as defined in (4) is based on a reparametrization
x(t) = ξ(τ (t)) of the path such that ‖xt (t)−w(x(t))‖ = v, the actual parametrization
of ξ is irrelevant for the value of T . Calling two paths ξ, ξ̂ equivalent if there exists a
Lipschitz-continuous bijection r : [0, 1] → [0, 1] such that ξ̂ (r(τ )) = ξ(τ ), we can
restrict the optimization to equivalence classes [ξ ]. Thus, the admissible set is

X = {[ξ ] | ξ ∈ C0,1([0, 1],Ω), ξ(0) = xO , ξ(1) = xD}. (5)

Example 2.1 This is illustrated in Fig. 1. Consider the case that the wind gets stronger

the farther the airplane proceeds to the right with w(ξ(τ), τ ) =
[
w̄ 0
0 0

]
ξ(τ ). Obvi-

ously, the optimal route is the straight line. This route can be represented differently,
depending on the choice of the time parametrization τ(t). E.g., with τ(t) = t/T con-
stant air speed is maintained. Consequently, the distance travelled in a certain time
step increases over the course of the flight, due to the increasing wind speed (Fig. 1a).
Alternatively, one may choose τ(t) such that the ground speed is constant (Fig. 1b).

Since every equivalence class contains a representative with constant ground speed
‖ξτ (τ )‖, we will subsequently often assume ‖ξτ (τ )‖ = const without loss of gener-
ality, such that ‖ξτ‖ is just the length of the flight trajectory. For convenience, let us
define the set of representatives with constant ground speed as
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X̂ = {ξ | [ξ ] ∈ X , ‖ξτ‖ = const f.a.a. τ ∈ [0, 1]}. (6)

The reduced minimization problem, equivalent to (2), now reads

min[ξ ]∈X T (ξ), or, equivalently, min
ξ∈X̂

T (ξ). (7)

Remark 2.1 Let us interpret this representation of flight duration. In the absence of
wind, i.e., ‖w‖ = 0, (3) yields tτ = ξτ /v. Integrating over [0, 1] yields just the total
path length divided by the velocity (airspeed and ground speed coincide). For low
wind, i.e., ‖w‖ � v, we obtain tτ ≈ (ξτ − ξTτ w)/v from (3), and hence a reduction of
flight duration due to the tail wind component ξTτ w (or an increase in the case ξTτ w < 0
of head wind). For ‖w‖ → v, we obtain tτ → ξτ /(2‖ξτ‖−1|ξTτ w|) from (3) in case of
a tailwind component ξTτ w > 0 and tτ → ∞ otherwise. In any case, flight duration
scales linearly with the length of the path.

In contrast to the optimal control formulation (2), the reduced formulation (7) allows
a direct comparison of continuous and discrete flight trajectories, and is therefore the
ideal tool for deriving error bounds in Sect. 3. We point out, however, that it is less
suited for actually computing an optimal solution.

2.2 Discrete: Airway Networks

If flight trajectories are restricted to certain airways connecting predefined waypoints,
flight planning is a special kind of shortest path problem on a graph. Let V ⊂ R

2 be a
finite set of waypoints including xO and xD , and E ⊂ V ×V a set of airways such that
G = (V , E) is a connected directed graph. A discrete flight path is a finite sequence
(xi )0≤i≤n of waypoints with (xi−1, xi ) ∈ E for i = 1, . . . , n, connecting x0 = xO
with xn = xD .

We define a mapping Ξ : (xi )0≤i≤n �→ [ξ ] ∈ X of discrete flight paths to continu-
ous paths by piecewise linear interpolation

ξ(τ ) = x�nτ� + (nτ − �nτ�)(x�nτ� − x�nτ�) (8)

resulting in polygonal chains, which are Lipschitz-continuous with piecewise constant
derivative. We denote its image imΞ ⊂ X , i.e., the set of flight trajectories in the
Euclidean plane that can be realized by adhering to the airway network, by XG . The
discrete flight planning problem then reads

min[ξ ]∈XG
T (ξ), (9)

and differs from its continuous counterpart (7) only by the admissible set, effectively
acting as a particular discretization.

Shortest path problems on static graphs with non-negative weights are usually
solved with the A∗ variant of Dijkstra’s algorithm [15].
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3 Approximation Error Bounds

Having established a setting in which discrete and continuous flight trajectories can be
directly compared, we are interested in bounding the suboptimality, i.e., the increase
of flight duration T relative to the continuous optimum, due to restricting the flight
path to predefined airways. In particular, we aim at relating this approximation error
to the airway network density.

3.1 A Posteriori Error

For estimating the flight time deviation, we start with a Taylor-based bound in terms
of the actual path deviation δξ from a minimizer. This bound will serve as the basis
for computable bounds in Sect. 3.3 and, in addition, provide a quantitative idea of the
efficiency of a posteriori error estimators using computable estimates of ‖δξ‖.

At this point we want to point out that ξ , ξτ , δξ , and δξτ are in general functions
of τ . In favor of a more compact notation we will usually omit the argument τ in the
remainder of the paper.

Lemma 3.1 For any p ∈ Ω let c0(p) = ‖w(p)‖, c1(p) = ‖wx (p)‖, and c2(p) =
‖wxx (p)‖, and assume c0 ≤ v/

√
5. Moreover, let ξ ∈ X̂ , L := ‖ξτ‖ > 0 and

v2(p) := v2 − c20(p). Then the second total directional derivative of f as defined
in (3) is bounded by

| f ′′(ξ, ξτ )[δξ, δξτ ]2| ≤ α0(ξ)‖δξ‖2 + α1(ξ)‖δξ‖ ‖δξτ‖ + α2(ξ)‖δξτ‖2 (10)

for almost all τ ∈ [0, 1], with αi : Ω → R
+, i = 0, . . . , 2, given as

α0(p) = L

v3(p)

(
12c21(p) + 4v(p)c2(p)

)
,

α1(p) = 8c1(p)

v2(p)
,

α2(p) = 2

Lv(p)
.

The proof of this lemma is, though not difficult, rather technical and lengthy calculus
and is provided in the “Appendix”.

Remark 3.1 The assumption of c0 ≤ v/
√
5 covers the usually experiencedwind veloc-

ities, but not the possible extremes.

Theorem 3.1 Let ξC ∈ X̂ be a minimizer of (7) and δξ := ξ − ξC . Then there is a
constant r > 0 depending on ξC and w, such that the a posteriori bound

T (ξ) ≤ T (ξC ) +
∫ 1

0

(
α0(ξC )‖δξ‖2 + α1(ξC )‖δξ‖‖δξτ‖ + α2(ξC )‖δξτ‖2

)
dτ (11)

holds for all paths ξ ∈ X̂ with ‖ξ − ξC‖C0,1([0,1]) ≤ r and αi as defined in Lemma 3.1.
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Proof We note that T : C0,1([0, 1])2 → R as defined in (4) is twice continuously
Fréchet-differentiable at ξC ∈ X̂ due to ‖(ξC )τ‖ =

(6)
L > 0 for almost all τ . By

Lemma 3.1, there are functions α0, α1, α2 depending on the local wind w and its
derivatives as well as the overall trajectory length L , such that

f ′′(ξC , (ξC )τ )[(δξ, δξτ ), (δξ, δξτ )]
≤ α0(ξC )‖δξ‖2 + α1(ξC )‖δξ‖‖δξτ‖ + α2(ξC )‖δξτ‖2

holds for almost all δξ, δξτ ∈ R
2 and τ ∈ [0, 1]. Integrating over τ yields the bound

T ′′(ξC )[δξ, δξ ] ≤
∫ 1

0

(
α0(ξC )‖δξ‖2 + α1(ξC )‖δξ‖‖δξτ‖ + α2(ξC )‖δξτ‖2

)
dτ

for second directional derivatives of the flight duration T in direction δξ ∈
C0,1([0, 1])2 with δξ(0) = δξ(1) = 0. Due to continuity of T ′′, there exists a
neighborhood Br (ξC ) of radius r > 0, such that T ′′(ξ̃ )[δξ, δξ ] ≤ 2

∫ 1
0 α0‖δξ‖2 +

α1‖δξ‖‖δξτ‖ + α2‖δξτ‖2dτ for all ξ̃ ∈ Br (ξC ). Consequently, by Taylor’s theorem
and using δξ = ξ − ξC , we can bound

T (ξ) = T (ξC ) + T ′(ξC )[δξ ]︸ ︷︷ ︸
=0

+
∫ 1

0
(1 − ν)T ′′(ξC + νδξ)[δξ, δξ ] dν

≤ T (ξC ) +
∫ 1

0

(
α0(ξC )‖δξ‖2 + α1(ξC )‖δξ‖‖δξτ‖ + α2(ξC )‖δξτ‖2

)
dτ

due to ξC being a minimizer. ��

3.2 Trajectory Approximation in Locally Dense Graphs

The approximation error of the optimal discrete flight path ξG according to (9) relative
to the continuous optimum ξC of (7) due to the smaller admissible set XG ⊂ X
depends on the density of the airway network. The discussion will be limited to a
certain class of locally dense digraphs as defined in [7].

Definition 3.1 AdigraphG = (V , E) is said to be (h, l)-dense in a convex setΩ ⊂ R
2

for h, l ≥ 0, if it satisfies the following conditions:

1. containment: V ⊂ Ω

2. vertex density: ∀p ∈ Ω : ∃v ∈ V : ‖p − v‖ ≤ h
3. local connectivity: ∀v,w ∈ V , ‖v − w‖ ≤ l + 2h : (v,w) ∈ E

An example for such an airway digraph is shown in Fig. 2. Note that, even for l → 0,
the minimum local connectivity length of 2 h guarantees that a vertex is connected to
its neighbors. It is easy to show that any (h, l)-dense digraph is connected, such that
a path from origin to destination exists.
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Fig. 2 A locally densely
connected digraph with
Cartesian structure. The center
node (dark blue) is connected to
all nodes in a circular
neighborhood of radius 2h + l
(light blue) with edges in both
directions

Let ξC ∈ X be a global minimizer of the continuous problem formulation (7), and
ξG ∈ XG be a shortest discrete path in the (h, l)-dense airway digraphG satisfying (9).
For establishing a bound for the excess flight duration in terms of the airway density,
we first construct a particular discrete path ξR(ξC ) ∈ XG using a rounding procedure,
and derive a bound for T (ξR) − T (ξC ) ≤ e(h, l), from which the actual error bound
T (ξG) − T (ξC ) ≤ e(h, l) immediately follows from optimality of ξG .

For defining ξR(ξ) ∈ XG , with an (h, l)-dense digraph G with l > 0, for a given
continuous path ξ ∈ X̂ with ξτ = const, we first choose an equidistant grid τi = i/n,
n = �ξτ /l�, for i = 0, . . . , n. By construction, the distance of the corresponding
trajectory points is bounded by ‖ξ(τi )−ξ(τi+1)‖ ≤ l. For each i , there is some vi ∈ V
with ‖vi − ξ(τi )‖ ≤ h, such that ‖vi −vi+1‖ ≤ l+2 h. Consequently, (vi , vi+1) ∈ E ,
and (vi )0≤i≤n is a valid discrete path, for which we define [ξR] = Ξ(vi )i .

It is intuitively clear—and rigorously confirmed below—that the excess flight dura-
tion T (ξR) − T (ξC ) is affected by both, the spatial distance between ξR and ξC , e.g.,
taking a longer detour or flying through an area with adverse wind conditions, and the
angular deviation, e.g., a zigzag path tends to take longer than a straight trajectory. In
order to capture these effects, we will first bound the spatial distance ‖ξR −ξC‖L∞[0,1]
and the angular deviation ‖(ξR − ξC )τ‖L∞[0,1], and equip the space of Lipschitz-
continuous functions with the norm ‖ f ‖C0,1([0,1]) := ‖ f ‖L∞([0,1]) + ‖ fτ‖L∞([0,1]).

Theorem 3.2 Assume ξ ∈ X̂ ∩ C1,1([0, 1],Ω) has bounded curvature, i.e., there is
some σ̄ with ‖ξτ (a) − ξτ (b)‖ ≤ σ |a − b| for a, b ∈ [0, 1], and denote the length
of the trajectory by L = ‖ξτ‖. Then, the following bounds hold for the discrete
approximation ξR(ξ) in an (h, l)-dense digraph:

(distance error) ‖ξR(ξ) − ξ‖L∞([0,1]) ≤ σ l2

8L2 + h , (12)

(angular error) ‖(ξR(ξ) − ξ)τ‖L∞([0,1]) ≤
√
2σ l

L
+ 2h

(
L

l
+ 1

)
. (13)
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If l ≤ L, we obtain the total error bound

‖ξR(ξ) − ξ‖C0,1([0,1]) ≤
(
1

8
+ √

2

)
σ̄
l

L
+ 2h

L

l
+ 3h

≤ 2σ̄
l

L
+ 2h

L

l
+ 3h. (14)

Proof Let ξ̂ (τ ) = ξ(τ�nτ�)+(nτ −�nτ�)(ξ(τ�nτ�)−ξ(τ�nτ�)) be the linear interpolant
of the continuous trajectory ξ on n = �L/l� equisized intervals. Standard interpolation
error estimates yield

‖(ξ̂ − ξ)(τ )‖ ≤ σ/(8n2) ≤ σ l2

8L2

for all τ [1, Ch. 3.1, p. 93 ff.]. Moreover, with α = (nτ − �nτ�) ∈ [0, 1],

ξ̂ (τ ) − ξR(τ ) = ξ(τ�nτ�) − x�nτ� + α
(
ξ(τ�nτ�) − x�nτ� − ξ(τ�nτ�) + x�nτ�

)

= (1 − α)
(
ξ(τ�nτ�) − x�nτ�

)+ α
(
ξ(τ�nτ�) − x�nτ�

)
(15)

implies ‖(ξ̂ − ξR)(τ )‖ ≤ h, which yields the distance error bound (12) by triangle
inequality.

Let φ = (ξ̂ − ξ)k , k ∈ {1, 2}, be one of the two components of the difference
between continuous trajectory and linear interpolant. By the mean value theorem,
there is a point τ̂ ∈ ]τi , τi+1[ with φτ (τ̂ ) = 0. Thus,

|φτ (τ )| = |φτ (τ ) − φτ (τ̂ )| ≤ σ

n
∀τ ∈ [τi , τi+1]

holds for all i = 0, . . . , n − 1 and implies ‖(ξ̂ − ξ)τ (τ )‖ ≤ √
2σ/n ≤ √

2σ l/L for
all τ . Moreover, (15) implies

(ξ̂ − ξR)τ (τ ) = −n
(
ξ(τ�nτ�) − x�nτ�

)+ n
(
ξ(τ�nτ�) − x�nτ�

)

and therefore ‖(ξ̂ − ξR)τ‖ ≤ 2nh ≤ 2h(L/l + 1) and yields the angular error
bound (13) by triangle inequality. ��

Of course, if l < l̂, then the (h, l)-dense digraph G is a subgraph of the (h, l̂)-
dense digraph Ĝ, provided their vertex sets coincide. Thus, the discretization error of
a shortest path in Ĝ is less or equal to one inG—a fact that is not reflected by Theorem
3.2. The reason is the explicit rounding procedure, which tends to select arcs of length
l̂ in Ĝ even if shorter arcs of length l would be better. This effect can be essentially
avoided if the connectivity length l is chosen sufficiently small compared to the path
length. It should not be chosen too small compared to h, however, because then the
angular error can dominate, as the following pathological example shows.

Example 3.1 Consider ξ(τ ) = [τ, 0]T and

V = {[l(2i + j), 2 j − 1]T | i, j ∈ Z} ∪ {[0, 0]T, [1, 0]T}
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Fig. 3 Illustration of Example
3.1. Green: continuous trajectory
ξ , gray: rounded path ξR

with l � 1 and h = √1 + l2/4 ≈ 1. Rounding to the nearest vertex yields a discrete
zigzag path with length at least 2h/l, as illustrated in Fig. 3. Thus, the bounds (13)
and (14) are asymptotically sharp for l → 0.

Hence, we select a theoretically optimal l by minimizing the error bound (14).

Theorem 3.3 Under the assumptions of Theorem 3.2, including l ≤ L, the choice

l = L

√
h

σ̄
⇔ h = σ̄

l2

L2

is optimal with respect to the error bound (14) and yields the bounds

‖ξR(ξ) − ξ‖L∞([0,1]) ≤ 9σ l2

8L2 , (16)

‖(ξR(ξ) − ξ)τ‖L∞([0,1]) ≤ 11σ l

2L
, (17)

‖ξR(ξ) − ξ‖C0,1([0,1]) ≤ 7σ̄
l

L
. (18)

Proof Straightforward minimization of (14) yields the given optimal choice of l.
Inserting this into (12), (13), and the bound (14) and using l ≤ L yields the claims. ��

Thepathological Example 3.1 reveals a further limitation of the derivation of bounds
by employing an explicit rounding procedure: the length of the rounded path ξR can
be much larger than the length of the discretely optimal path ξG . In the example this is
O(2/l) → ∞ compared toO(1), with ξG connecting the vertices along the horizontal
line [0, 1] × {1}. We point out that this susceptibility of the bound to pathological
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worst cases is structurally similar to common a priori error estimates for finite element
methods [8]. Nevertheless, even if the angular error responsible for the pathological
behavior is ignored, the same optimal order of h = O(l2) is obtained.

3.3 Computable Error Bounds

Theorem 3.4 Assume that ξC ∈ X̂ ∩C1,1([0, 1])2 is a minimizer of (7) with bounded
curvature, i.e., there is σ < ∞ such that ‖ξτ (a) − ξτ (b)‖ ≤ σ |a − b| for all a, b ∈
[0, 1]. Let L = ‖(ξC )τ‖ denote the length of the optimal flight trajectory and αi :=
maxτ∈[0,1] αi (ξC (τ )) with αi defined in Lemma 3.1. Then, there is a constant r > 0,
such that the local bound

T (ξG) − T (ξC ) ≤ 4σ 2l2

3L2

(
l2

L2 α0 + 5
l

L
α1 + 23α2

)
≤ 92σ 2α2

3L2 l2 + O(l3) (19)

holds for all (h, l)-dense digraphs with l ≤ min
{ r
7σ̄ , 1

}
L and h ≤ σ̄ l2

L2 .

Proof Inserting the bounds (16) and (17) from Theorem 3.3 into the claim (11), we
obtain

T (ξR) − T (ξC ) ≤
∫ 1

0

(
α0

81σ 2l4

64L4 + α1
9σ l2

8L2

11σ l

2L
+ α2

121σ 2l2

4L2

)
dτ

<
4σ̄ 2l2

3L2

∫ 1

0

(
α0

l2

L2 + 5α1
l

L
+ 23α2

)
dτ,

since l ≤ min
{ r
7σ̄ , 1

}
L , where r is the neighborhood radius from Theorem 3.1 and

αi provided by Lemma 3.1. Inserting the upper bounds αi for αi yields the claim. ��
Note that the bound holds in a certain neighborhood of a continuous minimizer ξC

and therefore bounds the asymptotic error behavior for h, l → 0, rather than providing
a globally reliable error bound.

We can go one step further and eliminate the dependence on the actual optimal path
ξC by choosing appropriate global bounds on the constants and route properties. For
that, we define the global bounds

c0 := ‖w‖L∞(Ω), c1 := ‖wx‖L∞(Ω), and c2 := ‖wxx‖L∞(Ω)

for the wind and its derivatives.

Lemma 3.2 Let ξC ∈ X̂ be a minimizer of (7). Further, let ‖w(p)‖ ≤ c0 and
‖wx (p)‖ ≤ c1 ∀p ∈ Ω . Then, it is twice continuously differentiable and its sec-
ond derivative is bounded by

‖(ξC )ττ‖ ≤ σ := 2vc1L2

(v − c0)3

(
(1 + √

2)v + c0
)

. (20)

For c0 ≤ v/
√
5 this simplifies to σ ≤ 17 c1L2

v
.
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Again, the proof of this Lemma is rather long and can be found in the “Appendix”.

Lemma 3.3 Assume that ξC is a global minimizer of (7) with path length L and that
c0 ≤ v/

√
5. Then

‖xD − xO‖ ≤ L ≤ v + c0
v − c0

‖xD − xO‖ <
8

3
‖xD − xO‖. (21)

Proof The lower bound is clear, since the trajectory cannot be shorter than the straight
connection. The flight time Ts on the straight line is at most ‖xD−xO‖

v−c0
. Since ξG is

optimal, we obtain

Ts ≥ T (ξC ) ≥ L

v + c0
,

which yields the upper bound for L . ��
We can now completely eliminate the need for a posteriori information about ξC

and derive an a priori error bound.

Theorem 3.5 Let ξC ∈ X̂ ∩ C1,1([0, 1])2 be a global continuous minimizer and ξG
be a shortest path in the (h, l)-dense graph G. Moreover, let L̃ := ‖xD − xO‖ and
assume c0 ≤ v/

√
5. Then, with σ from Lemma 3.2, the following a priori error bound

holds for sufficiently dense graphs:

T (ξG) − T (ξC ) ≤ 4σ 2

3L̃3v

(
14l2

(
7

2
c21 + vc2

)
+ 51c1l

v
+ 52

)
l2 (22)

≤ 1.5 · 105 c
2
1 L̃

v3
l2 + O(l3). (23)

Proof For v(p) =
√

v2 − c20(p) we obtain 8v/9 < v ≤ v. Lemma 3.3 together with
αi from Lemma 3.1 now yields the global bounds

α0(p) ≤ 8L̃

3v(p)3
(12c21 + 4v(p)c2) ≤ 14L̃

v

(
7

2
c21 + c2v

)
=: α̃0,

α1(p) ≤ 8c1
v(p)2

≤ 81c1
8v2

=: α̃1, and

α2(p) ≤ 2

L̃v(p)
≤ 9

4L̃v
=: α̃2.

Inserting them into (19) provides the bound

T (ξG) − T (ξC ) ≤ T (ξR) − T (ξC )

≤ 4σ 2l2

3L̃2

(
l2

L̃2
α̃0 + 5

l

L̃
α̃1 + 23α̃2

)
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≤ 4σ 2l2

3L̃2

(
14l2

L̃v

(
7

2
c21 + c2v

)
+ 405c1l

8v2 L̃
+ 207

4L̃v

)

≤ 4σ 2l2

3L̃3v

(
14l2

(
7

2
c21 + c2v

)
+ 51c1l

v
+ 52

)
,

which completes the proof. ��

4 Numerical Examples

In Sect. 3 we derived three error bounds: (i) the a priori bound (22), (ii) the local
bound (19), and (iii) the computationally in general unavailable a posteriori bound (11).
Nowwevalidate these boundswith the four test problems from [7]. For this comparison
and for evaluating the a posteriori boundwe compute the optimal continuous trajectory
ξC numerically using a direct collocation approach to high accuracy.

4.1 Test Instances

The goal in all four test instances is to find a time-optimal trajectory from xO = [0, 0]T
to xD = [1, 0]T through wind fields of varying spatial frequency, see Fig. 4. The wind
speed is always bounded by ‖w‖ ≤ w̄ = 0.5v. All values are chosen dimensionless,
i.e., v = 1. For the first test problem (a) we define the laminar shear flow

w(p) =
[
w̄min(max(2 p2

H −1,−1), 1)
0

]
,

with H = 0.5, and p2 denoting the y-component of p, see Fig. 4a. In problems (b)–(d),
the wind w is the sum of an increasing number of non-overlapping vortices wi , each
of which is described by

wi (p) = si w̃i (ri )

[− sin(αi )

cos(αi )

]
,

where si is the spin of the vortex (si=+1: counter-clockwise, si=−1: clockwise),
ri = ‖p − zi‖2 is the distance from the vortex center zi , αi is the angle between p,
zi , and the positive x-axis with tan(αi ) = (p−zi )2

(p−zi )1
and the absolute vortex wind speed

w̃i is a function of r and the vortex radius Ri :

w̃i (r) =
[

w̄ exp
(

(r/Ri )2

(r/Ri )2−1

)
if r < Ri

0 otherwise

]
.

More precisely, problems (b)–(d) involve 1, 15, and 50 regularly aligned vortices with
R=1/2, 1/8, and 1/16, respectively, see Fig. 4b–d. Vortices with positive spin (counter-
clockwise) are colored green, vortices with negative spin (clockwise) are colored red.
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Fig. 4 Test problems (a–d), xO = [0, 0]T, xD = [1, 0]T, w̄ = 1
2 v. Blue dots: (h, l)-dense rectangular

network-graph of some exemplary density and connectivity, satisfying h = σ l2/L2, red: shortest path on
the graph, green: continuous optimal trajectory. Note that in every case the straight trajectory is particularly
unfavorable

Note that at least problem (d) is clearly an exaggeration, as no commercial plane
would ever try to traverse awind field like this.We use this instance to provide evidence
that our claims hold even under the most adverse conditions.

4.2 Results

The three error bounds (i) a priori, (ii) local, and (iii) a posteriori involve an increasing
amount of information about the optimal trajectory ξC . Hence it is not surprising that
the first is far from being sharp and overestimates the actual error by several orders of
magnitude. This is mainly due to the worst case estimates that must be considered in
several steps finding globally valid constants. Most importantly, the wind speed and
its derivatives need to be bounded globally, even though the conditions experienced
along the actually flown path are usually much easier, as can be seen in Fig. 4. On the
other hand, the a posteriori requires information about the optimal trajectory, that is not
available at the time of calculation. However it helps us evaluate the more interesting
question: how much can be gained by incorporating a posteriori information?
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Fig. 5 Evaluation of the derived error bounds (i) a priori (top, red), (ii) local (middle, purple), and (iii)
a posteriori (bottom, gray), comprising three terms visualized by the colored areas. From top to bottom:∫

α0‖δξ‖2dτ , ∫ α1‖δξ‖‖δξτ ‖dτ , ∫ α2‖δξτ ‖2dτ . The blue dots represent results from numerical experi-
ments together with a linear regression line. The subfigures a–d refer to the corresponding test instances

In order to answer this, we evaluate the error between a graph-based shortest path
and the continuous optimum for various graph densities, respecting the optimal com-
bination of node density and connectivity h = σ l2/L2 as stated in Theorem 3.3. The
results are shown in the double-logarithmic plots of Fig. 5 as blue dots together with
a linear regression.

The three bounds are illustrated in (i) red, (ii) purple and (iii) gray. In the last case,
the a posteriori bound (11), we depict the three individual parts of the integral by col-
ored areas, from bottom to top:

∫
α0‖δξ‖2dτ , ∫ α1‖δξ‖‖δξτ‖dτ ,

∫
α2‖δξτ‖2dτ . The

linearly scaled depiction in Fig. 6 makes it easier to see that the relative distribution of
these parts is more or less stable over a wide range of graph densities. Each part is rel-
evant and none is vanishing even for dense graphs. This suggests that the theoretically
optimal choice of (h, l) balances the error terms against each other evenly.

It needs to be mentioned, that, because we have only ‖w‖/v ≤ 0.5 here (not
≤ 1/

√
5), we cannot use αi as stated in Lemma 3.1, but must revert to the results from

Theorem A.1 in the “Appendix”. Since the purpose of that Lemma is solely to provide
a more compact notation, however, this should not be of any concern. For the same
reason, the coefficients in (22) also need to be adjusted accordingly.

We show linear trend lines for the a posteriori bound (iii) and the experimental
results, excluding the data of the 10% sparsest graphs (rightmost data points). Results
in that region are dominated by effects of local minima (e.g., the continuous optimum
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Table 1 Exponent p for the
fitted trend lines l p of the a
posteriori bound (iii) and the
numerical results for all four test
instances (a)–(d) as depicted in
Fig. 5

(a) (b) (c) (d)

Theoretical (i) and (ii) 2.84 2.65 2.65 2.79

(iii) A posteriori 2.84 2.65 2.65 2.79

Actual 2.64 2.69 2.25 2.00

Table 2 Average ratio between the bounds on T (ξG ) − T (ξC ) and the actual differences for all four test
cases (a)–(d)

(a) (b) (c) (d)

(i) A priori 2.6 × 107 4.9 × 107 3.1 × 107 1.5 × 107

(ii) Local 1.0 × 103 1.8 × 103 1.1 × 103 2.5 × 103

(iii) A posteriori 5.9 8.5 9.3 1.1 × 101

goes left, while the discrete path goes right, which results in a large distance error)
which vanish quickly and do not contribute to the asymptotical error behavior. As our
error bounds were developed to hold in a certain neighborhood of ξC , we ignore these
effects. It is, however, interesting to see that the bounds hold anyway. This, together
with the accumulation of data points on the left side, leads to a noticeable visual bias
in the trend lines.

Remember that the (i) a priori (22) and (ii) the local error bound (19) both have the
form

T (ξG) − T (ξC ) ≤ cl2 + O(l3),

differing only in the constant c. As a first important result we point out that the
quadratic order of these bounds matches the numerical results satisfyingly well. The
exponents obtained fromfitting a regression line to the numerical data and the evaluated
a posteriori bound (iii) according to (11) are listed in Table 1.

Further, starting from the a priori bound (i), we note that the bound can be tightened
significantly by incorporating a posteriori knowledge. With the local approach, the
bound can already be improved by roughly four orders of magnitude, but taking all the
a posteriori information into account clearly makes the biggest difference. In doing
so, the bound comes close to the numerical data up to a factor of 6–11 (see Table 2)
and can even resolve the aliasing artifacts.

Let us briefly discuss the visible oscillations in the actual errors. We consider the
case (d), as the effect is most prominent here. The optimal solution is to quickly switch
to a mostly horizontal trajectory in the middle between the first and second row of
vortices and to switch back very late, using the spin of both the very first and the very
last vortex. Since the horizontal part of the trajectory amounts to the majority of the
travel time, it is crucial to hit the right level between the two rows.

Graph-based shortest paths, which, unsurprisingly, tend to mimic this strategy, are,
however, restricted to certain discrete levels. Consequently, the error is sensitive to
the exact node positions. If the optimal level is matched by a row of nodes, the error
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a) b)

c) d)

Fig. 6 Shares of the three parts of the a posteriori error bound; from top to bottom:
∫

α0‖δξ‖2dτ ,∫
α1‖δξ‖‖δξτ ‖dτ , ∫ α2‖δξτ ‖2dτ . The subfigures a–d refer to the corresponding test instances. Note that

on very sparse graphs (large l, right) local minima lead to a dominating distance error term
∫

α0‖δξ‖2dτ
(dark, top); this is irrelevant for asymptotic considerations

will attain a minimum. On the other hand, if the nodes are positioned such that the
optimal trajectory lies exactly between two rows of nodes, we see a maximum error.
Obviously, these are nothing more than local deviations from a clear trend.

Finally, it is interesting to notice that in all four test cases the angular error term of
the a posteriori bound

∫
α2‖δξτ‖2dτ (light blue in Fig. 5) would have been enough to

bound the numerical data (blue dots) alone, which lets us conclude that, even though
the bound is sharp in the worst case, in particular the average angular error is not
perfectly captured.

5 Conclusion

Discretizing the Zermelo navigation problem with a graph-based approach for com-
puting global optima inevitably leads to approximation errors depending on the graph
as well as the continuous optimal path. For a certain class of locally densely connected
graphs, we have derived three bounds on the excess flight duration in terms of graph
and wind properties.

While the local bound improves on the a priori bound by four orders of magnitude,
stressing the importance of using localized quantities if possible, it still is far fromsharp
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in numerical examples. The—computationally in general unavailable—a posteriori
bound, in contrast, is quite sharp, and thus indicates that the use of a posteriori error
estimators providing rough approximations of the actual path error δξ can be expected
to improve the bounds further. The observed convergence rates, however, agree well
with the computational bounds in both cases.

The error bounds derived here can on the one hand guide the choice of optimal graph
structures—the dependence of vertex density h to connectivity length l as presented
here is one example—, and on the other hand help identifying switchover points in
hybrid discrete-continuous optimization algorithms [7].
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Appendix

Recall from (3) the derivative

f (ξ, ξτ ) =
−ξTτ w(ξ) +

√
(ξTτ w(ξ))2 + (v2 − ‖w(ξ)‖2)ξ2τ
v2 − ‖w(ξ)‖2

of the timeparametrization t(τ ). Here,wewill compute andbound its secondderivative
with respect to ξ and ξτ in terms of the wind w and its derivatives.

Theorem A.1 Let c0(ξ) = ‖w(ξ)‖ < v, c1(ξ) = ‖wx (ξ)‖, and c2(ξ) = ‖wxx (ξ)‖.
Moreover, let L = ξτ > 0. Then, the second total directional derivative of f is
bounded by

f (ξ, ξτ )
′′[δξ, δξτ ]2 ≤ α0(ξ)‖δξ‖2 + α1(ξ)‖δξ‖‖δξτ‖ + α2(ξ)‖δξτ‖2

with

v2 = v2 − c20,

α0 = L

[
c21
v3

⎛
⎝1 + 6

c0
v

+ 2

√
v2 + c20

v
+ 6

c20
v2

+ 8
c30
v3

+ 8
c20

√
v2 + c20
v3

⎞
⎠

+ c2
v2

⎛
⎝1 + 2

c0
v

+ 2
c20
v2

+ 2
c0
√

v2 + c20
v2

⎞
⎠
]
,

α1 = c1
v2

[
2 + 8

c0
v

+ 4
c20
v2

+ 8
c30
v3

]
,

α2 = 1

vL

[
1 + 3

c20
v2

]
.

Proof The derivative f = tτ of parametrized time consists of two terms, the tailwind
term

f1 = −ξTτ w

g
, g = v2 − wTw,

and the length term

f2 = g−1
(
(ξTτ w)2 + g(ξTτ ξτ )

)1/2
.

At each time τ , we obtain

v2 := v2 − c20 ≤ g ≤ v2.
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The directional derivatives of g in direction (δξ, δξτ ) read

g′δξ = −2wTwxδξ ⇒ ‖g′‖ ≤ 2c0c1

and, as we are only interested in second order directional derivatives,

δξTg′′δξ = −2δξT(wT
x wx + wTwxx )δξ ⇒ ‖g′′‖ ≤ 2(c21 + c0c2).

For the tailwind term, we consider

f ′
1δξ = −g−2

(
(δξTτ w + ξTτ wxδξ)g − ξTτ wg′δξ

)
.

Again, we are only interested in second directional derivatives and thus consider

f ′′
1 [δξ, δξ ] = −

[
− 2g−3g′δξ

(
(δξTτ w + ξTτ wxδξ)g − ξTτ wg′δξ

)

+ g−2
(
(δξTτ wxδξ + δξT(ξTτ wxx )δξ + δξTτ wxδξ)g

+ (δξTτ w + ξTτ wxδξ)g′δξ − δξTτ wg′δξ

− ξTτ wxδξ
Tg′δξ − ξTτ wδξTg′′δξ

)]

= δξT
[
2g−2wT

x ξτ g
′ − 2g−3g′TξTτ wg′ − g−1(ξTτ wxx )

− g−2wT
x ξτ g

′ + g−2wT
x ξτ g

′ + g−2ξTτ wg′′
]
δξ

+ δξTτ

[
2g−2wg′ − 2g−1wx − g−2wg′ + g−2wg′

]
δξ

= δξT
[
2g−2wT

x ξτ g
′ − 2g−3g′TξTτ wg′ − g−1(ξTτ wxx ) + g−2ξTτ wg′′

]
δξ

+ δξTτ

[
2g−2wg′ − 2g−1wx

]
δξ.

Now we turn to f2, first considering the term F := (ξTτ w)2 + g(ξTτ ξτ ) with

v2L2 ≤ F ≤ L2(v2 + c20).

Then,

F ′δξ = 2ξTτ w(δξTτ w + ξTτ wxδξ) + g′δξξTτ ξτ + 2gξTτ δξτ

and

F ′′[δξ, δξ ] = 2(δξTτ w + ξTτ wxδξ)2

+ 2ξTτ w(δξTτ wxδξ + δξTτ wxδξ + δξT(ξTτ wxx )δξ)

+ δξTg′′δξξTτ ξτ + 2g′δξξTτ δξτ + 2g′δξξTτ δξτ + 2gδξTτ δξτ
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= δξT
[
2wT

x ξτ ξ
T
τ wx + 2ξTτ w(ξTτ wxx ) + ξTτ ξτ g

′′
]
δξ

+ δξTτ

[
4wξTτ wx + 4ξTτ wwx + 4ξτ g

′
]
δξ

+ δξTτ

[
2wwT + 2g

]
δξτ .

For f2 = g−1
√
F , we thus obtain

f ′
2δξ = −g−2g′δξF1/2 + 1

2
g−1F−1/2F ′δξ.

The second directional derivative is

f ′′
2 [δξ, δξ ] = 2g−3(g′δξ)2F1/2 − g−2δξTg′′δξF1/2 − g−2g′δξ 1

2
F−1/2F ′δξ

− 1

2
g−2g′δξF−1/2F ′δξ − 1

4
g−1F−3/2(F ′δξ)2

+ 1

2
g−1F−1/2δξTF ′′δξ

= 2g−3(g′δξ)2F1/2 − g−2δξTg′′δξF1/2 − g−2g′δξF−1/2F ′δξ

− 1

4
g−1F−3/2(F ′δξ)2 + 1

2
g−1F−1/2δξTF ′′δξ.

Adding f ′′
1 and f ′′

2 , we finally obtain

f ′′(ξ, ξτ )[δξ, δξτ ]2 = ( f ′′
1 + f ′′

2 )[δξ, δξτ ]2
= −2g−3(g′δξ)2(ξTτ w) + g−2(δξTg′′δξ)(ξTτ w)

+ 2g−2(g′δξ)(ξTτ wxδξ) − g−1wxx [ξτ , δξ, δξ ]
+ 2g−2(g′δξ)(δξTτ w) − 2g−1(δξTτ wxδξ),

+ 2g−3(g′δξ)2F1/2 − g−2(δξTg′′δξ)F1/2

− g−2(g′δξ)F−1/2F ′[δξ, δξτ ] + 1

2
g−1F−1/2F ′′[δξ, δξτ ]2

− 1

4
g−1F−3/2(F ′[δξ, δξτ ])2,

which is bounded by

| f ′′(ξ, ξτ )[δξ, δξτ ]2| ≤ L

[
c21
v3

⎛
⎝1 + 6

c0
v

+ 2

√
v2 + c20

v
+ 6

c20
v2

+ 8
c30
v3

+ 8
c20

√
v2 + c20
v3

⎞
⎠

+ c2
v2

⎛
⎝1 + 2

c0
v

+ 2
c20
v2

+ 2
c0
√

v2 + c20
v2

⎞
⎠
]
‖δξ‖2

+ c1
v2

[
2 + 8

c0
v

+ 4
c20
v2

+ 8
c30
v3

]
‖δξ‖‖δξτ ‖
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+ 1

vL

[
1 + 3

c20
v2

]
‖δξτ ‖2.

��
Since the claim of Theorem A.1 is rather unwieldy, we simplify it, finally proving
Lemma 3.1.

Lemma A.1 For any p ∈ Ω let c0(p) = ‖w(p)‖, c1(p) = ‖wx (p)‖, and c2(p) =
‖wxx (p)‖, and assume c0 ≤ v/

√
5. Moreover, let ξ ∈ X̂ , L := ξτ > 0 and v2(p) :=

v2 − c20(p). Then

α0(p) ≤ L

v3(p)

(
12c21(p) + 4c2(p)v(p)

)
,

α1(p) ≤ 8c1(p)

v2(p)
,

α2(p) ≤ 2

Lv(p)

hold in Theorem A.1.

Proof Let s := c0/v be the relative wind speed. Then

c0
v

= sv√
v2 − s2v2

= s√
1 − s2

≤ 1

2
,

1 ≤
√
c20 + v2

v
≤
√
3

2
,

and

v

v
= v√

v2 − s2v2
= 1√

1 − s2
≤

√
5

2
,

which allows to bound

α0 := L

[
c21
v3

⎛
⎝1 + 6

c0
v

+ 2

√
v2 + c20

v
+ 6

c20
v2

+ 8
c30
v3

+ 8
c20

√
v2 + c20
v3

⎞
⎠

+ c2
v2

⎛
⎝1 + 2

c0
v

+ 2
c20
v2

+ 2
c0
√

v2 + c20
v2

⎞
⎠
]

≤
[
c21
v3

(
13

2
+ 4

√
3

2

)
+ c2

v2

(
5

2
+
√
3

2

)]
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≤ L

(
12

c21
v3

+ 4
c2
v2

)

as well as

α1 := c1
v2

[
2 + 8

c0
v

+ 4
c20
v2

+ 8
c30
v3

]
≤ 8c1

v2

and

α2 := 1

vL

[
1 + 3

c20
v2

]
≤ 7

4vL
≤ 2

Lv
.

��
Lemma A.2 Let ξC ∈ X̂ be a minimizer of (7). Further, let ‖w(p)‖ ≤ c0 and
‖wx (p)‖ ≤ c1 ∀p ∈ Ω . Then, it is twice continuously differentiable and its sec-
ond derivative is bounded by

‖(ξC )ττ‖ ≤ σ := 2vc1L2

(v − c0)3

(
(1 + √

2)v + c0
)

. (24)

For c0 ≤ v/
√
5 this simplifies to σ ≤ 17 c1L2

v
.

Proof The optimal control problem (2) has originally been formulated by Zermelo
[24] in terms of the heading angle ϕ in unscaled time t instead of the airspeed v in
scaled time τ , which are related by

v(t) = v

[
cosϕ(t)
sin ϕ(t)

]
. (25)

The Hamiltonian formalism yields an expression for the heading angle rate of an
optimal trajectory,

ϕt = wx : B, B :=
[
cosϕ sin ϕ − cos2 ϕ

sin2 ϕ − cosϕ sin ϕ

]
,

with “:” denoting tensor contraction, and confirms the regularity of ξ . Note that
‖B‖F = √

2, where ‖ · ‖F denotes the Frobenius norm. By the chain rule, (25)
yields

vt = v

[− sin ϕ

cosϕ

]
ϕt

and the bound

‖vt‖ = v|ϕt | ≤ v‖wx‖F‖B‖F ≤ √
2 v c1. (26)
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For the ground speed xt (t) =
(1)

v(t) + w(x(t)) we thus obtain

v − c0 ≤ ‖xt‖ ≤ v + c0 (27)

and

‖xtt‖ ≤ ‖vt + wx xt‖ ≤
(26)
(27)

c1
(
(1 + √

2)v + c0
)

. (28)

The flight path ξC (omitting the subscript C in the following) with constant ground
speed ‖ξτ‖ = L is related to the actual flight path x by ξ(τ ) = x(t(τ )) with t :
[0, T ] → [0, 1] being a monotone bijection. Therefore,

ξτ = xt (t)tτ (29)

yields

L = ‖ξτ‖ = ‖xt‖ tτ ≥
(27)

(v − c0)tτ ⇒ tτ ≤ L

v − c0
. (30)

For the second derivative, we note that

0 = (L2)τ = (ξTτ ξτ )τ = 2ξTττ ξτ ,

which means that the curvature vector ξττ is orthogonal to the path and the ground
velocity ξτ (and xt ). Consequently, we obtain

0 = (ξTτ ξτ )τ =
(29)

(ξTτ xt tτ )τ = ξTττ xτ︸ ︷︷ ︸
=0

tτ + ξTτ xττ t
2
τ + ξTτ xτ tττ =

(29)
ξTτ xττ t

2
τ + L2

tτ
tττ

and therefore

|tττ | ≤ tτ
L2 ‖ξτ‖ ‖xττ‖ t2τ ≤

(28)

c1t3τ
L

(
(1 + √

2)v + c0
)

. (31)

Now we can bound

‖ξττ‖ =
(29)

‖xtt t2τ + xt tττ‖
≤ ‖xtt‖ t2τ + ‖xt‖ |tττ |

≤
(27)
(28)
(31)

c1
(
(1 + √

2)v + c0
)
t2τ + (v + c0)

c1t3τ
L

(
(1 + √

2)v + c0
)

123



Journal of Optimization Theory and Applications (2023) 198:830–856 855

= c1t
2
τ

(
(1 + √

2)v + c0
)(

1 + (v + c0)
tτ
L

)

≤
(30)

c1L2

(v − c0)2

(
(1 + √

2)v + c0
)(

1 + v + c0
v − c0

)

= 2vc1L2

(v − c0)3

(
(1 + √

2)v + c0
)

,

which completes the proof. ��
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