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Abstract
In this paper, we discuss a general multidimensional linear convex stochastic control
problem with nondifferentiable objective function, control constraints, and random
coefficients. We formulate an equivalent dual problem, prove the dual stochastic max-
imum principle and the relation of the optimal control, optimal state, and adjoint
processes between primal and dual problems, and illustrate the usefulness of the dual
approach with some examples.

Keywords Linear convex stochastic control · Random coefficients · Control
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1 Introduction

There has been extensive research in both stochastic control and convex optimiza-
tion, see, for example, books [9, 16, 24] for stochastic control and [2, 8, 19] for
convex optimization for excellent exposition in theory, computation, and application.
Linear convex (LC) stochastic control has the state process satisfying a controlled
linear stochastic differential equation (SDE) and the objective function being convex
in state and control variables. Due to the nature of convexity, any optimal solution
is a global solution. LC stochastic control covers many applications, for example,
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aggregate production and work-force planning [13], stochastic inventory control [3],
consumption–investment problem [5], reinforcement learning [10], etc.

If the objective function is a quadratic function and the control set is the whole
space, then the optimal control is an affine function of the state variable and its form
can be determined by the solution of some fully coupled linear forward backward SDE
(FBSDE) and stochastic Riccati equation (SRE), see [21, 24]. There are many exten-
sions with additional constraints and other conditions, for example, [11] introduces
the extended SRE and provides the explicit characterization of the optimal control
of a stochastic linear quadratic (LQ) control problem with random coefficients and
cone control constraints and scalar state variable. [12] derives the stochastic maximum
principle (SMP) for LQ problem with nonconvex control domain.

There are many references in the literature on solving LC problems. For example,
[3] identifies some specific LC problems whose solution can be obtained by solving
appropriate equivalent deterministic optimal control. [4] uses conjugate functions for
LC problem. [5] derives the SMP for LC problem with multidimensional state process
and control constraints. [7] studies a discrete-time LC problem with scalar control and
describes explicit solutions for suitable Bellman equations.

The standard methods for stochastic control can be used to characterize the optimal
control and state processes for LC problems, in the form of the Hamilton–Jacobi–
Bellman (HJB) equation for models with deterministic coefficients or the FBSDE
and the maximum condition, but it is in general difficult to solve these equations in
the presence of control constraints and non-quadratic objective functions. The HJB
equation is a fully nonlinear multidimensional partial differential equation (PDE) and
the FBSDE is a fully coupled nonlinear FBSDE. Since LC problems are convex, one
may use the ideas andmethodologies developed for convex optimization to solve them.
One approach is to convert the dynamic model into a static convex optimization in
some abstract space, then derive the dual problem and establish the relations of primal
and dual optimal solutions, and finally convert the results back to the dynamic model.
The main advantage of solving a static convex optimization problem is that all known
results for conjugate duality in [19] can be applied, but it is highly difficult to solve an
infinite-dimensional constrained convex optimization problem, see [14] for details.

Themodel setting of this paper is largely the same as that of [5]without the condition
that the running objective function is continuously differentiable in control variables,
whereas [5] includes an additional state constraint. The SMP in [5] still holds and
can be proven essentially in the same way. [14, 20] are close to our paper in the
sense of dual control formulation and relation of primal and dual optimal solutions.
[14] discusses the quadratic risk minimization of a controlled wealth process (a scalar
stochastic process in mathematical finance), formulates the dual problem, and proves
the existence of dual solution for amean-variance problem. [20] studies a deterministic
LCcontrol problemwithout control constraints in the framework of duality for calculus
of variations problems and proves some regularity properties of value function and
optimal control.

The main contribution of this paper is to solve the LC stochastic control problem
via the convex duality theory and derive the relation of the primal and dual optimal
solutions,whichhas not beendiscussed in [5, 14, 20] nor anywhere else in the literature,
to the best knowledge of the authors. Instead of converting the LC problem into an
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abstract convex optimization as in [14], we use the supermartingale approach as in [15]
that gives the necessary and sufficient optimality conditions for a scalar LQ problem
with control constraints. One complication is that the dual running objective function
may be nondifferentiable and the resulting backward SDE (BSDE) for the dual adjoint
process is not well defined in the usual BSDE sense. We need to transform the dual
problem with some new dual control variable to resolve the issue.

The usefulness of the dual formulation is highlightedwith someexamples, including
ones with nonsmooth running cost and bounded/unbounded control constraint set and
random coefficients, where the primal problem is difficult to solve using the standard
well-known methods such as maximizing the Hamiltonian function and solving the
FBSDE or finding the value function via the HJB equation. The presence of nondiffer-
entiability or control constraint makes the standard methods difficult and ineffective.
In contrast, the dual problem of these examples can be solved and the primal optimal
solution can be constructed via the primal–dual relation.

The paper is organized as follows: Sect. 2 states the model, the SMP (Theorem 1),
and the dual problem. Section3 discusses the transformed dual problem, the dual SMP
(Theorem 2), and the primal–dual relation (Theorems 3 and 4). Section4 solves some
examples. Section5 concludes. Appendix gives the proof of Theorem 2.

2 Primal and Dual Problems

We assume a complete probability space (�,F ,F, P), where F := {Ft }t∈[0,T ] is the
P-augmentation of the natural filtration {FW

t }t∈[0,T ] generated by d-dimensional inde-
pendent standardBrownianmotions {(W1(t), . . . ,Wd(t))}t∈[0,T ]. Denote byRn×m the
space of n × m matrices, Rn the space of n-dimensional vectors, M� the transpose
of matrix M , tr(M) the trace of a square matrix M ,|M | = √tr(M�M) the Frobenius
norm of matrix M , P(0, T ;Rn) the set of Rn-valued progressively measurable pro-
cesses on [0, T ] × �, H(0, T ;Rn) the set of processes x in P(0, T ;Rn) such that
E[∫ T0 |x(t)|2dt] < ∞, and S(0, T ;Rn) the set of processes x in P(0, T ;Rn) such
that E[sup0≤t≤T |x(t)|2] < ∞.

Define the set of admissible controls by

A := {u ∈ H(0, T ;Rm) : u(t) ∈ K fort ∈ [0, T ], a.e.} ,

where K ⊆ R
m is a nonempty closed convex set.

Given any u ∈ A, consider the state process X satisfying the following SDE:

dX(t) = [A(t)X(t) + B(t)u(t)] dt +
d∑

i=1

[Ci (t)X(t) + Di (t)u(t)] dWi (t),

X(0) = x0 ∈ R
n, (1)

where processes A,Ci : � × [0, T ] → R
n×n and B, Di : � × [0, T ] → R

n×m ,
i = 1, . . . , d, areF-progressivelymeasurable and uniformly bounded. The pair (X , u)

is admissible if X is a solution to SDE (1) with control u ∈ A.
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Consider the functional J : A → R, defined by

J (u) := E

[∫ T

0
f (t, X(t), u(t))dt + g(X(T ))

]
, (2)

where f : � × [0, T ] × R
n × R

m → R and g : � × R
n → R are measurable

functions, f is F-progressively measurable for fixed (x, u), convex in (x, u), C1 in
x , continuous in u, and g is FT -measurable for fixed x , convex and C1 in x . f , g
are sufficiently general to cover many common objective functions such as quadratic
functions, discounted cost functions with f (t, x, u) = e−r t f̃ (x, u), etc. We denote
by fx (t, x, u) the partial derivative of f with respect to x and use similar notations
for other derivatives.

The optimization problem is the following:

MinimizeJ (u)subject to (X , u) admissible. (3)

An admissible pair (X̂ , û) is optimal if J (û) ≤ J (u) for all u ∈ A. To shorten
notations, we will omit time variable t in expressions in the rest of the paper if no
confusion may be caused, for example, write A instead of A(t),

∫ T
0 f (t, X , u)dt

instead of
∫ T
0 f (t, X(t), u(t))dt .

Problem (3) is studied in [5] which proves the SMP and applies the results to the
consumption–investment problem and the square-integrable controls.

We need the following assumption:

Assumption 1 Let (X̂ , û) be an admissible pair satisfying E[∫ T0 | fx (t, X̂ , û)|2dt] <

∞ and E[|gx (X̂(T ))|2] < ∞. There exist Z ∈ P(0, T ;R) and an FT -measurable
random variable Z̃ satisfying E[∫ T0 |Z(t)|dt] < ∞, E[|Z̃ |] < ∞ such that for any
admissible pair (X , u) and ε ∈ (0, 1],

Z(t) ≥ f (t, X̂ + εX , û + εu) − f (t, X̂ , û)

ε
,

Z̃ ≥ g(X̂(T ) + εX(T )) − g(X̂(T ))

ε

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ].
A sufficient condition for Assumption 1 to hold is that f , g are C1 in x, u and their

derivatives have linear growth, that is, | fx (t, x, u)| + | fu(t, x, u)| ≤ C(1+ |x | + |u|)
and |gx (x)| ≤ C(1+ |x |) for all t, x, u and some constant C , which covers quadratic
functions.

The Hamiltonian H : � × [0, T ] × R
n × R

m × R
n × R

nd → R is defined by

H(t, x, u, p1, q1) := x�A� p1 + u�B� p1 +
d∑

i=1

x�C�
i q1,i +

d∑

i=1

u�D�
i q1,i − f (t, x, u), (4)

where p1 ∈ R
n and q1 := (q1,1, . . . , q1,d) and q1,i ∈ R

n .
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The next theorem states the SMP for problem (3), see [5, Theorem 1.5].

Theorem 1 Let û ∈ A and Assumption 1 hold. Then, û is optimal for problem (3) if
and only if the solution (X̂ , p̂1, q̂1) of the FBSDE

d X̂ = [AX̂ + Bû]dt +
d∑

i=1

[Ci X̂ + Di û]dWi ,

X̂(0) = x0,

d p̂1 = −[A� p̂1 +
d∑

i=1

C�
i q̂1,i − fx (t, X̂ , û)]dt +

d∑

i=1

q̂1,i dWi ,

p̂1(T ) = −gx (X̂(T )), (5)

satisfies the condition

H(t, X̂(t), û(t), p̂1(t), q̂1(t)) = max
u∈K H(t, X̂(t), u, p̂1(t), q̂1(t)), (6)

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ]. Moreover, if fu exists, then (6) is equivalent
to

[û − u]�[B� p̂1 +
d∑

i=1

D�
i q̂1,i − fu(t, X̂ , û)] ≥ 0, ∀u ∈ K .

The processes p̂1 ∈ S(0, T ;Rn) and q̂1,i ∈ H(0, T ;Rn), i = 1, . . . , d, satisfy
a BSDE, called the adjoint equation associated with the admissible pair (X̂ , û). The
proof of Theorem 1 is standard and therefore omitted.

Remark 1 In [5], f is assumed to be C1 in u as well as in x , which simplifies Assump-
tion 1 with partial derivatives instead of difference quotient, but they are all used in
the proofs to ensure the monotone convergence theorem can be applied, while the key
ideas and proofs are largely the same, see [5] and [15] for details. Since f is contin-
uous, but not necessarily C1 in u, we need to use subdifferential in convex analysis
to characterize the optimal solution, instead of simple gradient if f is C1 in u, see
examples in Sect. 4. In [5], there is a state constraint X(t) ∈ V as well as control
constraint u(t) ∈ U for all t ∈ [0, T ]. For X satisfying a linear SDE (1), one cannot
in general ensure X(t) ∈ V for all t , additional conditions are needed for admissible
controls u, see (77), (79), etc., in [5]. In contrast, we assume f , g are well defined
on the whole space and there is no constraint on state process X , so we do not need
additional conditions. One drawback of our model is that we cannot deal with the
investment–consumption model discussed in [5] as utility functions are only defined
on the positive real line, not the whole space, and do not satisfy our assumptions.
However, the key objective of our paper is different from that of [5]: We aim to solve
the primal problem indirectly with the dual approach when it is too difficult or com-
plicated to solve it directly with the primal SMP, see examples in Sect. 4 where the
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dual method is used to find the optimal solution, which would otherwise be highly
difficult or impossible if one works directly with the primal problem.

We now formulate the dual problem. Since X is driven by Brownian motions Wi ,
i = 1, . . . , d, as well as control process u, the dual process Y should satisfy the
following SDE:

dY = α̃dt +
d∑

i=1

βi dWi

with the initial condition Y (0) = y, where α̃, βi ∈ H(0, T ;Rn) and y ∈ R
n are to be

determined. Since X satisfies SDE (1), using Ito’s lemma, we have

d(X�Y ) = [X�(A�Y + α̃ +
d∑

i=1

C�
i βi ) + u�(B�Y

+
d∑

i=1

D�
i βi )]dt +

d∑

i=1

[X�βi + Y�(Ci X + Diu)]dWi .

Let α = A�Y + α̃ +∑d
i=1 C

�
i βi . Then, the dual process Y satisfies the following

SDE:

dY = [α − A�Y −
d∑

i=1

C�
i βi ]dt +

d∑

i=1

βi dWi (7)

with Y (0) = y, where α, βi ∈ H(0, T ;Rn) and y ∈ R
n are to be determined. There is

a unique solution Y to SDE (7) for given (y, α, β1, . . . , βd). We call (α, β1, . . . , βd)

the admissible dual control and (Y , α, β1, . . . , βd) the admissible dual pair. Since

d(X�Y ) = [X�α + u�β]dt +
d∑

i=1

[X�βi + Y�(Ci X + Diu)]dWi ,

where

β = B�Y +
d∑

i=1

D�
i βi , (8)

the process X�(t)Y (t)−∫ t0
[
X�α + u�β

]
ds is a local martingale, and a supermartin-

gale if it is bounded below by an integrable process, which gives

E

[
X(T )�Y (T ) −

∫ T

0
(X�α + u�β)ds

]
≤ x�

0 y. (9)
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The Problem (3) can be written equivalently as

sup
u

E

[
−
∫ T

0
f̃ (t, X , u)dt − g(X(T ))

]
,

where f̃ (t, x, u) = f (t, x, u)+�K (u) and �K (u) = 0 if u ∈ K and +∞ otherwise.
Define dual functions φ : � × [0, T ] × R

n × R
m → R by

φ(t, α, β) := sup
x,u

{
x�α + u�β − f̃ (t, x, u)

}
(10)

and h : � × R
n → R by

h(y) := sup
x

{
−x�y − g(x)

}
. (11)

We have φ and h are proper closed convex functions [2, Proposition 1.1.6, Proposition
1.6.1].

Combining (9), (10), and (11) yields the following inequality

sup
u

E

[
−
∫ T

0
f̃ (t, X , u)dt − g(X(T ))

]
≤ inf

y,α,β1,...,βd

{
x�
0 y

+E

[∫ T

0
φ(t, α, β)dt + h(Y (T ))

]}
. (12)

The dual control problem is defined by

inf
y,α,β1,...,βd

{
x�
0 y + E

[∫ T

0
φ(t, α, β)dt + h(Y (T ))

]}
, (13)

where Y satisfies SDE (7) and β is given by (8). We can solve (13) in two steps: First,
for fixed y, solve a stochastic control problem:

V (y) := inf
α,β1,...,βd

E

[∫ T

0
φ(t, α, B�Y +

d∑

i=1

D�
i βi )dt + h(Y (T ))

]

,

and, second, solve a finite-dimensional optimization problem:

inf
y

{
x�
0 y + V (y)

}
. (14)

Remark 2 If inequality (12) holds as an equality, then there is noduality gap and solving
the dual problem is equivalent to solving the primal problem. The dual problem can
be more difficult as well as easier than the primal one. No matter the dual problem
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can be solved or not, it would always provide useful information on the bounds of the
value function. From (12), we have a lower bound

inf
u

E

[∫ T

0
f̃ (t, X , u)dt + g(X(T ))

]
≥ −

(
x�
0 y + E

[∫ T

0
φ(t, α, β)dt + h(Y (T ))

])

as well as an obvious upper bound

inf
u

E

[∫ T

0
f̃ (t, X , u)dt + g(X(T ))

]
≤ E

[∫ T

0
f̃ (t, X , u)dt + g(X(T ))

]

for all admissible controls u and y, α, β1, . . . βd . If one can make the gap between the
lower and upper bounds sufficiently small, then one has found a good approximation
to the value function and the optimal control. Note that it would be impossible to get
the lower bound without the dual formulation, see [15, 25] for detailed discussions
and applications in mathematical finance.

The Hamiltonian H̃ : � × [0, T ] ×R
n ×R

n ×R
nd ×R

n ×R
nd → R for the dual

problem is defined by

H̃(t, y, α, β1, . . . , βd , p2, q2) :=p�
2 (α − A�y −

d∑

i=1

C�
i βi )

+
d∑

i=1

q�
2,iβi − φ(t, α, B�y +

d∑

i=1

D�
i βi ), (15)

where p2 ∈ R
n and q2 := (q2,1, . . . , q2,d) and q2,i ∈ R

n .
To state the SMP for the dual problem, we need a similar assumption to that of the

primal problem.

Assumption 2 Let (Ŷ , α̂, β̂1, . . . , β̂d) be a given admissible dual pair. There exist Z ∈
P(0, T ;R) and an FT -measurable random variable Z̃ satisfying E[∫ T0 |Z(t)|dt] <

∞, E[|Z̃ |] < ∞ such that for any admissible dual pair (Y , α, β1, . . . , βd),

Z(t) ≥ φ(t, α̂ + εα, β̂ + εβ) − φ(t, α̂, β̂)

ε
,

Z̃ ≥ h(Ŷ (T ) + εY (T )) − h(Ŷ (T ))

ε

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ] and ε ∈ (0, 1]. Furthermore, h is C1 and
satisfies E[|hy(Y (T ))|2] < ∞.

A sufficient condition for Assumption 2 to hold is that φ, h are C1 and |φα(t, α, β)|+
|φβ(t, α, β)| ≤ C(1+ |α| + |β|) and |hy(y)| ≤ C(1+ |y|) for all t, α, β, y and some
constant C .
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Remark 3 Assumptions 1 and 2 are equivalent and can be derived from each other
if we impose some additional conditions. For example, if f , g are C2 with bounded
second derivatives and K is the whole space and

(
fxx fxu
fux fuu

)
(t, x, u) ≥ cIn+m, gxx (x) ≥ cIn

for all t, x, u and some positive constant c, where In, In+m are identity matrices, then
bothAssumptions 1 and 2 are satisfied. It is easy to see Assumption 1 holds as bounded
second derivatives imply first order derivatives have linear growth. To see Assumption
2 holds, note that by definition, h(y) = −x̄�y − g(x̄), where x̄ is the maximum
point of −x�y − g(x) over all x and satisfies the equation −y − gx (x̄) = 0, which
gives hy(y) = −x̄ . Furthermore, we have −In − gxx (x̄)

∂ x̄
∂ y = 0; combining with

gxx (x) ≥ cIn for all x , we have ∂ x̄
∂ y = −gxx (x̄)−1, a strictly negative definite matrix

with bounded norm, which implies hy has linear growth. The linear growth property
of φα, φβ can be proved similarly. For general functions f , g and set K , it is less clear
if Assumptions 1 and 2 are equivalent, but they are clearly related as φ, f and h, g are
conjugate functions to each other.

If φ is C1 in β, and under Assumption 2, then the adjoint equation associated with
the dual problem is given by

dp2 = −H̃y(t,Y , α, β1, . . . , βd , p2, q2)dt +
d∑

i=1

q2,i dWi ,

= [Ap2 + Bφβ(t, α, B�Y +
d∑

i=1

D�
i βi )]dt +

d∑

i=1

q2,i dWi ,

p2(T ) = −hy(Y (T )). (16)

We can characterize the dual optimal control (α̂, β̂1, . . . , β̂d)with SDE (7) and BSDE
(16) and the maximum condition

H̃(t, Ŷ (t), α̂(t), β̂1(t), . . . , β̂d(t), p̂2(t), q̂2(t))

= max
α,β1,...,βd

H̃(t, Ŷ (t), α, β1, . . . , βd , p̂2(t), q̂2(t))

and ŷ is determined from (14).

Remark 4 If f , g in (2) are strictly convex quadratic functions and K is the whole
space, then φ, h are also strictly convex quadratic functions. The optimal primal and
dual controls can be expressed as affine functions of their corresponding state and
adjoint processes, and the primal and dual FBSDEs can be simplified to fully cou-
pled linear FBSDEs with random coefficients and the relation of their solutions can
be explicitly specified, see [23] for details on solvability of linear FBSDEs. If all
coefficients of the model are deterministic, then these linear FBSDEs can be further
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reduced to equivalent Riccati ordinary differential equations and their solutions can
be recovered from each other.

3 Transformed Dual Problem and Primal–Dual Relation

The BSDE (16) for the dual problem requires φ to be differentiable in β. If that
condition is not satisfied, then (16) is not well defined in the usual sense of BSDEs.One
may try to extend the definition of BSDE and replace the derivative with a set-valued
mapping as commonly used in deterministic nonsmooth control and optimization,
see [6, 22], and also [1] for some recent work on set-valued BSDE, but this is far
beyond the scope of this paper. We instead to focus on solving the dual problem with
a transformation method for nonsmooth function φ.

The key reason we need φ to be differentiable in β is that β defined in (8) depends
on Y and the adjoint equation (16) involves the differentiation of the dual Hamiltonian
H̃ in (15) with respect to state variable y. If we can change β to a control variable,
independent of Y , then the differentiability issue of φ would disappear. This simple
idea leads us to reformulate the dual problem to an equivalent one with different dual
controls.

We replace one of dual controls βi by β and need a condition on Di (t) ∈ R
n×m

to do that. Without loss of generality, we choose i = d and assume the following
condition:

Assumption 3 n ≤ m, rank(Dd(t)) = n, and D†
d(t) := D�

d (t)(Dd(t)D�
d (t))−1 is

uniformly bounded for 0 ≤ t ≤ T .

D†
d ∈ R

m×n is theMoore–Penrose inverse of Dd and satisfies DdD
†
d = In . From (8),

we then obtain

βd = (D†
d)

�(β − B�Y −
d−1∑

i=1

D�
i βi ). (17)

Using (7) and (17), the dual process Y satisfies the following SDE:

dY = [α − A�Y −
d−1∑

i=1

C�
i βi − C�

d (D†
d)

�(β − B�Y −
d−1∑

i=1

D�
i βi )]dt

+
d−1∑

i=1

βi dWi + (D†
d)

�(β − B�Y −
d−1∑

i=1

D�
i βi )dWd , Y (0) = y. (18)

Due to Assumption 3 and the uniform boundedness of the primal-state coefficients,
there exists a unique solution Y ∈ S(0, T ;Rn), see [24, Theorem 1.6.16]. The dual
problem (13) is equivalent to
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Minimize �̃(y, α, β1, . . . , βd−1, β) := x�
0 y + E

[∫ T

0
φ(t, α, β)dt + h(Y (T ))

]
.

(19)

The adjoint equation associated with (y, α, β1, . . . , βd−1, β) and Y in (18) is given
by

dp2 = [(A − BD†
dCd)p2 + BD†

dq2,d ]dt +
d∑

i=1

q2,i dWi ,

p2(T ) = −hy(Y (T )).

Due to Assumption 2 and the uniform boundedness of the primal-state coefficients,
there exists a unique solution p2 ∈ S(0, T ;Rn), q2,i ∈ H(0, T ;Rn), i = 1, . . . , d,
see [24, Theorem 7.2.2].

The next theorem states the SMP for the transformed dual problem (19).

Theorem 2 Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be admissible dual controls. Then,
(ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem (19) if and only if the solution
(Ŷ , p̂2, q̂2) of the FBSDE

dŶ = [α̂ − A�Ŷ −
d−1∑

i=1

C�
i β̂i − C�

d (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i )]dt

+
d−1∑

i=1

β̂i dWi + (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i )dWd ,

Ŷ (0) = ŷ,

d p̂2 = [(A − BD†
dCd) p̂2 + BD†

d q̂2,d ]dt +
d∑

i=1

q̂2,i dWi ,

p̂2(T ) = −hy(Ŷ (T )) (20)

satisfies the conditions

p̂2(0) = x0,

( p̂2, D
†
d q̂2,d − D†

dCd p̂2) ∈ ∂φ(t, α̂, β̂),

D†
d q̂2,d − D†

dCd p̂2 ∈ K ,

Di D
†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d = 0, ∀i = 1, . . . , d − 1, (21)

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ], where ∂φ(t, α̂, β̂) is the subdifferential of
φ(t, ·, ·) at (α̂(t), β̂(t)).

Proof See Appendix. ��
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We next state the results on primal–dual relation. We first make the following
assumption:

Assumption 4 The function gx (ω, ·) : Rn → R
n is a bijection for any ω such that

z = −gx (x) if and only if x = −hy(z); that is, the inverse function of −gx is −hy .

We can recover the primal optimal solution from that of the dual problem.

Theorem 3 Suppose (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem (19). Let
(Ŷ , p̂2, q̂2) be the associated state and adjoint processes in Theorem 2. Define

û(t) := D†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t), t ∈ [0, T ]. (22)

Then, û is the optimal control for the primal problem (3). For t ∈ [0, T ], the optimal
state and associated adjoint processes satisfy

X̂(t) = p̂2(t),

p̂1(t) = Ŷ (t),

q̂1,i (t) = β̂i (t), ∀i = 1, . . . , d − 1,

q̂1,d(t) = (D†
d)

�(t)(β̂(t) − B�(t)Ŷ (t) −
d−1∑

i=1

D�
i (t)β̂i (t)). (23)

Proof Suppose that (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem. By
Theorem 2, the process (Ŷ , p̂2, q̂2) solves FBSDE (20) and satisfies conditions (21).

Define û(t) and (X̂(t), p̂1(t), q̂1(t)) as in (22) and (23), respectively. FromTheorem
2 and conditions (21),

û(t) = D†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t) ∈ K , P-a.s.

and

(X̂(t), û(t)) = ( p̂2(t), D
†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t)) ∈ ∂φ(t, α̂(t), β̂(t)),

which is equivalent to

(α̂(t), β̂(t)) ∈ ∂ f̃ (t, X̂(t), û(t)).

Since f̃ (t, x, u) = f (t, x, u) + �K (u) and f is C1 in x , we have

α̂ = fx (t, X̂ , û), β̂ ∈ ∂u f (t, X̂ , û) + NK (û) (24)

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ], where ∂u f (t, X̂ , û) is the subdifferential of
f with respect to u at (t, X̂(t), û(t)) and NK (û(t)) = {p ∈ R

m : p�(u − û(t)) ≤
0,∀u ∈ K } is the normal cone of K at û(t).
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Using the last condition in (21) and (22) yields

q̂2,i = Di D
†
d q̂2,d − Di D

†
dCd p̂2 + Ci p̂2 = Di û + Ci p̂2. (25)

Combining (22), (23), (24), and (25) yields

d X̂ = d p̂2

= [(A − BD†
dCd) p̂2 + BD†

d q̂2,d ]dt +
d∑

i=1

q̂2,i dWi

= [AX̂ + Bû]dt +
d∑

i=1

[Ci X̂ + Di û]dWi

and

d p̂1 = dŶ

= [α̂ − A�Ŷ −
d−1∑

i=1

C�
i β̂i − C�

d (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i )]dt

+
d−1∑

i=1

β̂i dWi + (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i )dWd

= [ fx (t, X̂ , û) − A� p̂1 −
d∑

i=1

C�
i q̂1,i ]dt +

d∑

i=1

q̂1,i dWi .

We check whether the initial condition X̂(0) = x0 and terminal condition p̂1(T ) =
−gx (X̂(T )) are satisfied. From the first condition in (21), p̂2(0) = x0. Since the
inverse function of −gx is −hy via Assumption 4, then

−hy(Ŷ (T )) = p̂2(T ) = X̂(T ),

which implies that Ŷ (T ) = −gx (X̂(T )). Hence, (X̂ , p̂1, q̂1) solves the primal FBSDE
(5).

Combining (23) and (24) yields

B� p̂1 +
d∑

i=1

D�
i q̂1,i = B�Ŷ +

d−1∑

i=1

D�
i β̂i + D�

d q̂1,d = β̂ ∈ ∂u f̃ (t, X̂ , û),

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ], that is,

0 ∈ −(B� p̂1 +
d∑

i=1

D�
i q̂1,i ) + ∂u f (t, X̂ , û) + NK (û),
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which shows û is the minimum point of −H(t, X̂ , u, p̂1, q̂1) over u ∈ K . Hence,
condition (6) is satisfied. Using Theorem 1, û is optimal for the primal problem. ��

We can also recover the dual optimal solution from that of the primal problem.

Theorem 4 Suppose that û ∈ A is optimal for the primal problem (3). Let (X̂ , p̂1, q̂1)
be the associated state and adjoint processes in Theorem 1. Define

ŷ = p̂1(0),

α̂(t) = fx (t, X̂(t), û(t)),

β̂i (t) = q̂1,i (t), ∀i = 1, . . . , d − 1,

β̂(t) = B�(t) p̂1(t) +
d∑

i=1

D�
i (t)q̂1,i (t). (26)

Then, (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is the optimal control of the dual problem (19). For
t ∈ [0, T ], the optimal dual-state process and associated adjoint processes satisfy

Ŷ (t) = p̂1(t),

p̂2(t) = X̂(t),

q̂2,i (t) = Di (t)û(t) + Ci (t)X̂(t), ∀i = 1, . . . , d − 1,

D†
d(t)q̂2,d(t) = û(t) + D†

d(t)Cd(t)X̂(t). (27)

Proof Suppose that û ∈ A is optimal for the primal problem. By Theorem 1, the
process (X̂ , p̂1, q̂1) solves the primal FBSDE (5) and satisfies condition (6).

Define (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) and (Ŷ , p̂2, q̂2) as in (26) and (27), respectively.
Then,

dŶ = d p̂1

= −[A� p̂1 +
d∑

i=1

C�
i q̂1,i − fx (t, X̂ , û)]dt +

d∑

i=1

q̂1,i dWi

= −[A�Ŷ +
d−1∑

i=1

C�
i β̂i + C�

d (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i ) − α̂]dt

+
d−1∑

i=1

β̂i dWi + (D†
d)

�(β̂ − B�Ŷ −
d−1∑

i=1

D�
i β̂i )dWd

and

d p̂2 = d X̂

= [AX̂ + Bû]dt +
d∑

i=1

[Ci X̂ + Di û]dWi
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= [A p̂2 − BD†
dCd p̂2 + BD†

d q̂2,d ]dt +
d∑

i=1

q̂2,i dWi .

Wecheckwhether the initial condition Ŷ (0) = ŷ and terminal condition p̂2(T ) = −hy

(Ŷ (T )) are satisfied. From the first definition in (26), ŷ = p̂1(0). Since−gx (X̂(T )) =
p̂1(T ) = Ŷ (T ), from Assumption 4, X̂(T ) = −hy(Ŷ (T )). Hence, (Ŷ , p̂2, q̂2) solves
the dual FBSDE (20).

From (27),

p̂2(0) = X̂(0) = x0

and

D†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t) = û(t) ∈ K ,

which are the first two conditions of (21). Using condition (6), the concavity of H
defined in (4) and (26), we have,

0 ∈ ∂u(−H(t, X̂ , u, p̂1, q̂1)) = −(B� p̂1 +
d∑

i=1

D�
i q̂1,i ) + ∂u f̃ (t, X̂ , û),

which implies that β̂ ∈ ∂u f̃ (X̂(t), û(t)). Consequently, from the second definition in
(26),

(α̂(t), β̂(t)) ∈ ∂ f̃ (t, X̂(t), û(t)),

which, due to f̃ being a proper closed convex function, is equivalent to

( p̂2(t), D
†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t)) ∈ ∂φ(t, α̂(t), β̂(t)),

the third condition of (21). The fourth condition of (21) is immediate from the
definition of q̂2,i (t) and q̂2,d(t) in (27). ��

4 Examples

In this section, we construct somemultidimensional examples to show that solving the
primal problem via its dual formulation is easier than solving it directly. Each example
has at least one of the following features: control constraint, nonsmooth running cost,
and random coefficients.

Assume 2 ≤ n < m, d = 1, rank(D(t)) = n, the Moore–Penrose inverse of
D(t) is given by D†(t) = D(t)�(D(t)D(t)�)−1, B, D, D† are uniformly bounded
processes, and X satisfies the SDE

dX = [AX + Bu] dt + [CX + Du] dW , t ∈ [0, T ]
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X(0) = x0 ∈ R
n, (28)

where A = − 1
2 BD

†(D†)�B�, C = −(D†)�B�, u(t) ∈ K , a closed convex set in
R
m . Consider the following problem

Minimize J (u) := E

[∫ T

0
f (u(t))dt + 1

2
X(T )�X(T )

]
. (29)

We suppress the time variable t from now on for simplicity of notation. This is a special
case of model (1) with Cd = C , Dd = D, D†

d = D†, Wd = W , g(x) = 1
2 x

�x , and f
is a convex function.

We assume the following condition for the coefficients of SDE (28):

Assumption 5 The matrix B satisfies B − BD†D = 0.

Remark 5 Assumption 5 implies that B = D as otherwise B − BD†D = 0 from the
property of the Moore–Penrose inverse. Since D has full row rank n, DD† = In . We
also know that D†D = Im , which can be easily proved as follows: Since n < m, the
columns of D are linearly dependent and there exists a nonzero vector z ∈ R

m such
that Dz = 0. Now, assume D†D = Im , then z = D†Dz = 0, a contradiction, and
therefore, D†D = Im .

Wemay attempt several methods to solve (29). The first one is to solve (29) directly
via the cost functional. Using Itô’s formula to X�X yields

d[X�X ] = [2X�(B − BD†D)u + u�D�Du]dt + martingale.

Hence,

J (u) = 1

2
x�
0 x0 + E

[∫ T

0
[ f (u) + X�(B − BD†D)u + 1

2
u�D�Du]dt

]
.

The second one is to use the SMP and maximize the Hamiltonian over u ∈ K .
Write q1 := q1,d . The Hamiltonian H : � × [0, T ] × R

n × R
m × R

n × R
n → R for

the primal problem is given by

H(ω, t, x, u, p1, q1) := [Ax + Bu]� p1 + [Cx + Du]�q1 − f (u), (30)

where (p1, q1) satisfies the adjoint equation, given by

dp1 = −[A� p1 + C�q1]dt + q1dW ,

p1(T ) = −X(T ). (31)

The control û ∈ K is optimal if and only if

H(t, X̂ , û, p1, q1) = max
u∈K H(t, X̂ , u, p1, q1). (32)
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The third one is to apply the dynamic programming principle when all coefficients
are deterministic. Define the value function v as

v(t, x) = inf
u∈A[t,T ]

E

[∫ T

t
f (u(s))ds + 1

2
X(T )�X(T )

∣∣∣X(t) = x

]
,

(t, x) ∈ [0, T ) × R
n,

where A[t, T ] := {u ∈ H(t, T ;Rm) : u(s) ∈ K for s ∈ [t, T ], a.e.}. The HJB
equation is given by

vt (t, x) + inf
u∈K

{
vx (t, x)

�(Ax + Bu) + 1

2
(Cx + Du)�vxx (t, x)(Cx + Du) + f (u)

}
= 0,

v(T , x) = g(x). (33)

The fourth one is to solve the reformulated dual problem (19). The dual functions
φ(t, α, β) and h(y), defined in (10) and (11), are given by

φ(t, α, β) = sup
x,u∈K

{
x�α + u�β − f (u)

}
,

and

h(y) = sup
x

{
−x�y − 1

2
x�x

}
= 1

2
y�y.

Since there are no constraints on the state process and the running cost is free of the
state variable, the function φ(t, α, β) = +∞ if α = 0. To make the dual objective
function finite, we must have α = 0. We then write

φ(β) := φ(t, 0, β) = sup
u

{
u�β − f̃ (u)

}
.

The dual-state process Y satisfies the SDE (see (18))

dY =
[
−A�Y − C�(D†)�(β − B�Y )

]
dt + (D†)�[β − B�Y ]dW ,

Y (0) = y, (34)

and the dual problem is defined by (see (19))

Minimize �̃(y, β) = x�
0 y + E

[∫ T

0
φ(β(t))dt + 1

2
Y (T )�Y (T )

]
.

Using Itô’s formula to Y�Y yields

d[Y�Y ] = β�D†(D†)�βdt + martingale.
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The dual objective function �̃ can then be written as

�̃(y, β) = x�
0 y + 1

2
y�y + E

[∫ T

0
(φ(β) + 1

2
β�D†(D†)�β)dt

]
. (35)

We next discuss different forms of f and K and show the usefulness of the dual
formulation in finding the optimal solutions. Denote by u = (u1, . . . , um)� ∈ R

m

and y+ = max(0, y).

4.1 Zero Running Cost and Control Constraint

Assume f (u) = 0 and K = [−1, 1]m . There is no running cost, but there is a bounded
control constraint set.

We first use the cost functional method. Combining n < m, D†D = Im , and
Assumption 5 implies that we cannot immediately infer that the minimum of the cost
functional J in (29) can be attained at u = 0 due to the presence of the cross term.

We next use the primal SMP method. Since f = 0, the Hamiltonian H is a linear
function of u. From K = [−1, 1]m and (32), the optimal control û = sgn(B� p1 +
D�q1), a bang–bang control. Substituting û into SDE (28) and BSDE (31), we then
need to solve a fully coupled nonlinear FBSDE. Moreover, if B� p1 + D�q1 = 0,
then the Hamiltonian H is free of u and does not provide any information for the form
of û.

We then use theHJBmethod.However, solving the PDE (33)with an ansatz solution
is difficult since it is multidimensional and there is a control constraint. The ansatz
method may work if the control does not have any constraint. In the presence of the
running cost function f that is not quadratic, the ansatz method is still difficult even
if there is no control constraint.

We now try the dual method. The dual function φ has the following form

φ(β) = sup
u∈[−1,1]m

{u�β} =
m∑

i=1

sup
ui∈[−1,1]

{uiβi } =
m∑

i=1

|βi |.

Note that h, φ satisfy Assumption 2. The minimum of the dual objective function �̃

in (35) is clearly attained uniquely at y = −x0 and β = 0. Hence, (ŷ, β̂) = (−x0, 0)
is the dual optimal control. By Theorem 2, the solution (Ŷ , p̂2, q̂2) to the following
dual FBSDE

dŶ = −1

2
BD†(D†)�B�Ŷ dt − (D†)�B�Ŷ dW ,

Ŷ (0) = ŷ,

d p̂2 = [1
2
BD†(D†)�B� p̂2 + BD†q̂2]dt + q̂2dW ,

p̂2(T ) = −Ŷ (T ), (36)
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satisfies the conditions

p̂2(0) = x0,

D†q̂2 + D†(D†)�B� p̂2 ∈ ∂φ(0) = [−1, 1]m . (37)

The solution to the SDE in (36) is given by (see [24, Theorem 1.6.14])

Ŷ (t) = 
1(t)ŷ = −
1(t)x0,

where 
1(t) ∈ R
n×n is the unique solution of the following matrix-valued SDE

d
1 = −1

2
BD†(D†)�B�
1dt − (D†)�B�
1dW ,


1(0) = In . (38)

Define 
2(t) ∈ R
n×n that satisfies

d
2 = [1
2
BD†(D†)�B�
2 + (BD†)2
2]dt + BD†
2dW ,


2(0) = In .

Since the primal-state coefficients are uniformly bounded, 
1,
2 ∈ S(0, T ;Rn×n).
The solution to the BSDE in (36) is given by (see [24, Theorem 7.2.2])

p̂2(t) = −
2(t)E[
�
1 (T )Ŷ (T )|Ft ] = 
2(t)E[
�

1 (T )
1(T )|Ft ]x0.

Using Itô’s formula to 
�
1 
1 yields

d[
�
1 
1] = −[
�

1 (D†)�B�
1 + 
�
1 BD

†
1]dW .

Since 
1 ∈ S(0, T ;Rn) and B and D† are uniformly bounded,

E

[
(

∫ T

0

∣∣∣
�
1 (D†)�B�
1 + 
�

1 BD
†
1

∣∣∣
2
ds)

1
2

]
< ∞.

By the BDG inequality,

∫ t

0
[
�

1 (D†)�B�
1 + 
�
1 BD

†
1]dW (s), 0 ≤ t ≤ T

is a uniformly integrable martingale, so 
�
1 
1 is a martingale. Using Itô’s formula

to 
�
1 
2 yields d[
�

1 
2] = 0; therefore, 
�
1 (t)
2(t) = 
�

1 (0)
2(0) = In and

2(t) = [
�

1 (t)]−1 for all t ∈ [0, T ], P-a.s. We then obtain

p̂2(t) = 
2(t)

�
1 (t)
1(t)x0 = 
1(t)x0,
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which implies that p̂2 satisfies the following SDE

d p̂2 = −1

2
BD†(D†)�B� p̂2dt − (D†)�B� p̂2dW ,

p̂2(0) = x0.

Note that the initial condition p̂2(0) = x0 is exactly the first condition in (37). Compar-
ing the dynamics above with that of the BSDE in (36), we have q̂2 = −(D†)�B� p̂2.
Hence,

D†q̂2 + D†(D†)�B� p̂2 = 0 ∈ [−1, 1]m,

which satisfies the second condition in (37). By Theorem 3, the optimal control for
the primal problem is given by

û = D†q̂2 + D†(D†)�B� p̂2 = 0

and the corresponding state process X̂ = p̂2, that is, X̂(t) = 
1(t)x0 for t ∈ [0, T ].
Remark 6 Suppose n < m and B = D. This does not satisfy Assumption 5. We can
immediately infer that the minimum of the cost functional (29) can be attained at
û = 0. The corresponding primal-state process satisfies

d X̂ = −1

2
X̂dt − X̂dW ,

X̂(0) = x0.

One can easily check with Itô’s formula that the solution is X̂(t) = exp(−t−W (t))x0.
Solving the primal problem via the dual problem also yields the same solution.

Remark 7 Suppose n = m and B = kD, k ∈ R. Since D is a square matrix with full
row rank, we have D is nonsingular and D† = D−1. This does not satisfy Assumption
5 since B(Im − D†D) = 0. We can also immediately infer that the optimal control of
the primal problem is û = 0. The corresponding primal-state process is then

d X̂ = −1

2
BD†(D†)�B� X̂dt − (D†)�B� X̂dW ,

X̂(0) = x0,

or equivalently, X̂(t) = 
1(t)x0, which is the same solution obtained via the dual
problem.

4.2 Nonsmooth Running Cost and No Control Constraint

Assume f (u) =∑m
i=1[(ui − 1)+ + (−ui − 1)+] and K = R

m . The running cost is a
convex nonsmooth function, and there are no control constraints.
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Similar to the example in Sect. 4.1, the first method does not work since we cannot
immediately infer that the minimum of the cost functional J can be attained at u = 0.

From (32), the optimal control û ∈ R
m satisfies

max
u∈Rm

H(t, X̂ , u, p1, q1) = [−1

2
BD†(D†)�B� X̂ + Bû]� p1

+ [−(D†)�B� X̂ + Dû]�q1 − f (û).

Since H is not differentiable in u everywhere, the usual gradient method to find the
maximum point does not work here. For each i = 1, . . . ,m, three cases should be
dealt with: ui < −1, ui ∈ [−1, 1], and ui > 1. This implies that the maximization of
the Hamiltonian via a combinatorial approach deals with 3m cases in total.

Although there are no constraints imposed on the control variable, solving the PDE
(33) using an ansatz would still be difficult since it is multidimensional and the last
term inside the infimum is not differentiable with respect to u.

We now solve the primal problem via its dual problem. Function φ has the following
form:

φ(β) = sup
u

{u�β − f (u)} =
m∑

i=1

sup
ui

{
uiβi − (ui − 1)+ − (−ui − 1)+

}
.

Write θi = {uiβi − (ui − 1)+ − (−ui − 1)+
}
. We deal with three cases.

Case I: Suppose −1 ≤ ui ≤ 1. Then,

sup
−1≤ui≤1

θi = sup
−1≤ui≤1

{uiβi } = |βi |.

Case II: Suppose ui > 1. Then,

sup
ui>1

θi = sup
ui>1

{ui (βi − 1) + 1} =
{
0, if βi ≤ 1,

∞, otherwise.

Case III: Suppose ui < −1. Then,

sup
ui<−1

θi = sup
ui<−1

{ui (βi + 1) + 1} =
{
0, if βi ≥ −1,

∞, otherwise.

Taking the maximum over all cases yields

sup
ui

θi =
{

|βi |, if − 1 ≤ βi ≤ 1,

∞, otherwise.
= |βi | + �[−1,1](βi ).
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Therefore,

φ(β) =
m∑

i=1

[|βi | + �[−1,1](βi )
]
.

The function φ satisfies Assumption 2. The dual function �̃ can then be written as

�̃(y, β) = x�
0 y + 1

2
y�y + 1

2
E

⎡

⎣
∫ T

0
[β�D†(D†)�β + 2

m∑

i=1

(|βi | + �[−1,1](βi ))]dt
⎤

⎦ .

Similar to the example in Sect. 4.1, (ŷ, β̂) = (−x0, 0) is the dual optimal control,
and the primal optimal control is û = 0 with the corresponding state process X̂(t) =

1(t)x0.

4.3 Random Coefficients

Assume the same state process (28), but with the following specifications:

B(t) = sinW (t)

[
1 1 1
1 1 1

]
and D(t) = 1

3

[
2 −1 1

−1 2 1

]
.

This implies that B is random, D is deterministic, and

D† =
⎡

⎣
1 0
0 1
1 1

⎤

⎦ and B(Im − D†D) = 1

3
sinW (t)

[
1 1 −1
1 1 −1

]
.

Although sinW (t) = 0 for allW (t) = kπ , k ∈ R, the set on which B(Im −D†D) = 0
has measure zero. Hence, Assumption 5 is satisfied. We can then rewrite the SDE (28)
as

dX(t) = [−4J sin2 W (t)X(t) + B(t)u(t)]dt + [−2J sinW (t)X(t) + D(t)u(t)] dW (t),

X(0) = x0 ∈ R
2,

where J is the 2 × 2 matrix of ones. Assume f (u) = 0 and K = [−1, 1]3. The
corresponding solution (Ŷ , p̂2, q̂2) to the dual optimal control (ŷ, β̂) = (−x0, 0)
satisfies the FBSDE (36). The solution to the SDE in (36) is given by Ŷ (t) = 
3(t)ŷ,
where 
3 is the 2 × 2 fundamental matrix satisfying

d
3(t) = −4J sin2 W (t)
3(t)dt − 2J sinW (t)
3(t)dW (t)


3(0) = I2. (39)

Due to the randomness in both coefficients, we cannot use the result in [17, page 101]
where we immediately obtain an explicit solution to the above SDE. However, the
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condition of having constant and commuting coefficients is not a necessary condition.
Write


̂3(t) := exp(−2JZ(t)) =
∞∑

k=0

1

k! (−2J)k Z(t)k,

where

dZ(t) = 4 sin2 W (t)dt + sinW (t)dW (t),

Z(0) = 0.

We can further simplify the infinite series by diagonalisation of matrix J. The eigen-
values of J are 0 and 2 with respective eigenvectors v1 = (1,−1)� and v2 = (1, 1)�.
We can decompose J as J = PDP−1, where

P =
[
1 1

−1 1

]
, D =

[
0 0
0 2

]
, P−1 = 1

2

[
1 −1
1 1

]
.

Hence,


̂3(t) =
∞∑

k=0

1

k! (−2Z(t))k PDk P−1 = P

[
0 0
0 e−4Z(t)

]
P−1 = 1

2
e−4Z(t)

J.

We want to show that 
̂3 is the solution of (39). Using Itô’s formula to 
̂3 yields

d
̂3(t) = 1

2
J[e−4Z(t)(−4dZ(t)) + 1

2
e−4Z(t)(16 sin2 W (t))dt]

= 
̂3(t)
[
−4 sin2 W (t)dt − 2 sinW (t)dW (t)

]
,

which proves that 
̂3 is indeed the solution of (39). We obtain û = 0 and X̂(t) =

3(t)x0.

4.4 Nonsmooth Running Cost and Control Constraint

In all previous examples, we have the optimal control û = 0. We now construct an
example with nonzero optimal control û. Assume that the state process X satisfies
(28) with A = − 1

2 BD
†(D†)�B�, C = −(D†)�B� and K = [−1, 1]m . Choose a

vector κ ∈ R
m satisfying |(D†)�κ| > ‖(D†)�‖|e|, where e ∈ R

m is a vector with all
components equal to 1 and ‖(D†)�‖ is the matrix norm of (D†)�. (The existence of
such a κ is guaranteed, for example, we may choose κ = λe with λ a sufficiently large
number.) The objective function is given by

J (u) := E

[∫ T

0
f (u(t))dt + 1

2
X(T )�X(T ) + X0(T )�X(T )

]
, (40)
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where f (u) =∑m
i=1 |ui | and X0 is the solution of the linear SDE

dX0 = [AX0 + C�(D†)�κ]dt + [CX0 − (D†)�κ]dW

with the initial condition X0(0) = 0. The solution X0 is given by

X0(t) = 
1(t)
∫ t

0

1(s)

−1(C� + C)(D†)�κ)ds − 
1(t)
∫ t

0

1(s)

−1(D†)�κdW (s),

0 ≤ t ≤ T ,

and
1(t) is the n×n matrix solution of SDE (38) at time t , see [24, Theorem 1.6.14].
Since X0(T ) is a randomvariable, the terminal cost function g(x) = 1

2 x
�x+X0(T )�x

is not a deterministic function and the HJB approach is not applicable unless one
considers a new state variable Y := (X , X0), the resulting HJB equation might not
be solvable due to the dimension, even though X0 is not controlled. We may use the
SMP to solve the problem. The adjoint equation is given by

dp1 = −[A� p1 + C�q1]dt + q1dW ,

p1(T ) = −(X(T ) + X0(T )). (41)

The optimal control û(t) is the maximum point of H(t, X(t), u, p(t), q(t)) over
u ∈ K , where H is the Hamiltonian function, defined by (30). We need to solve
a constrained optimization problem to find û(t) that depends on X(t), p(t), q(t) but
has no closed-form expression in the presence of nondifferentiable function f and
constraint set K . SDE (28), BSDE (41), and the maximum condition (32) form a fully
coupled nonlinear FBSDE, highly difficult to solve and inconceivable to ansatz the
optimal control û.

We now try to solve the problem with the dual method. Simple calculus shows that
the dual functions of f and g are given by

φ(β) =
m∑

i=1

[(βi − 1)+ + (−βi − 1)+]

and

h(y) = 1

2
(y + X0(T ))�(y + X0(T )).

The dual-state process Y satisfies SDE (34), and the dual problem is given by

Minimize �̃(y, β) = x�
0 y + E

[∫ T

0
φ(β(t))dt + h(Y (T ))

]
.
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Define Ȳ (t) = Y (t) + X0(t) for t ∈ [0, T ]. Then, Ȳ satisfies SDE

dȲ = [−1

2
BD†(D†)�B�Ȳ + BD†(D†)�(β − κ)]dt + [−(D†)�B�Ȳ

+(D†)�(β − κ)]dW .

Using Itô’s formula to Ȳ�Ȳ yields

d[Ȳ�Ȳ ] = (β − κ)�D†(D†)�(β − κ)dt + martingale.

Noting that h(Y (T )) = 1
2 Ȳ (T )�Ȳ (T ), we can write the dual objective function

equivalently as

�̃(y, β) = x�
0 y + 1

2
y�y + E

[∫ T

0
(φ(β) + 1

2
(β − κ)�D†(D†)�(β − κ))dt

]
.

The dual optimal solution is given by ŷ = −x0 and β̂(t) that is the minimum point of
the convex function φ(β) + 1

2 (β − κ)�D†(D†)�(β − κ) over β ∈ R
m for t ∈ [0, T ].

A necessary and sufficient optimality condition for β̂(t) is

0 ∈ ∂φ(β̂) + D†(D†)�(β̂ − κ),

where ∂φ(β̂) is the subdifferential of φ at β̂, given by

∂φ(β̂) =
m∏

i=1

∂[(β̂i − 1)+ + (−β̂i − 1)+]

and

∂[(β̂i − 1)+ + (−β̂i − 1)+] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{−1}, β̂i < −1

[ − 1, 0], β̂i = −1

{0}, β̂i ∈ (−1, 1)

[0, 1], β̂i = 1

{1}, β̂i > 1.

Wenow show D†(D†)�(β̂−κ) = 0. Assume the contrary, that is, D†(D†)�(β̂−κ) =
0, then 0 ∈ ∂φ(β̂), which implies |β̂i | ≤ 1 for i = 1, . . . ,m. On the other hand,
from DD† = In , we have (D†)�(β̂ − κ) = 0, that is, (D†)�β̂ = (D†)�κ , which
implies |(D†)�β̂| = |(D†)�κ|, however, |(D†)�β̂| ≤ ‖(D†)�‖|β̂| ≤ ‖(D†)�‖|e|
and |(D†)�κ| > ‖(D†)�‖|e| by the choice of κ . This is a contradiction, therefore, we
must have D†(D†)�(β̂ − κ) = 0.

From Theorem 2, the solution (Ŷ , p̂2, q̂2) of the FBSDE

dŶ = [−1

2
BD†(D†)�B�Ŷ + BD†(D†)�β̂]dt + [−(D†)�B�Ŷ + (D†)�β̂]dW ,
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Ŷ (0) = ŷ,

d p̂2 = [1
2
BD†(D†)�B� p̂2 + BD†q̂2]dt + q̂2dW ,

p̂2(T ) = −(Ŷ (T ) + X0(T )) (42)

satisfies the conditions

p̂2(0) = x0,

D†q̂2 + D†(D†)�B� p̂2 ∈ ∂φ(β̂),

D†q̂2 + D†(D†)�B� p̂2 ∈ K .

Similar to the derivation of solution to FBSDE (36), we have

p̂2(t) = −
2(t)E[
�
1 (T )(Ŷ (T ) + X0(T ))|Ft ].

Using Itô’s formula, we can check that 
�
1 (t)(Ŷ (t) + X0(t)) is a martingale and get

p̂2(t) = −
2(t)

�
1 (t)(Ŷ (t) + X0(t)) = −(Ŷ (t) + X0(t)), t ∈ [0, T ].

Here we have used 
2(t) = [
�
1 (t)]−1. Therefore,

d p̂2 = −dŶ − dX0

= [−1

2
BD†(D†)�B� p̂2 − BD†(D†)�(β̂ − κ)]dt

+ [−(D†)�B� p̂2 − (D†)�(β̂ − κ)]dW .

Comparing the diffusion coefficient of the above equation with that of BSDE in (42),
we must have

q̂2 = −(D†)�B� p̂2 − (D†)�(β̂ − κ).

From Theorem 3, the optimal control for the primal problem is given by

û(t) = D†q̂2(t) + D†(D†)�B� p̂2(t) = −D†(D†)�(β̂ − κ),

which is nonzero for all t ∈ [0, T ].
Remark 8 Since û(t) ∈ ∂φ(β̂(t)), components of optimal control û(t) take values in
the set {−1, 0, 1}, depending on the dual optimal control β̂(t). There is no closed-
form solution β̂ for the dual problem; however, it is much easier to solve the dual
problem than to solve the primal problem. The reason is that finding the dual optimal
control β̂ is independent of the dual-state and adjoint processes Ŷ , p̂2, q̂2, a standard
finite-dimensional convex optimization problem, which is in sharp contrast to finding
the primal optimal control û directly from the primal problem as û depends on the
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primal-state and adjoint processes X̂ , p̂1, q̂1 and one has to solve a fully coupled
nonlinear FBSDE, a highly difficult infinite-dimensional problem, not to mention
there is no closed-form solution û(t) in terms of X̂ , p̂1, q̂1. This example illustrates
the usefulness of the dual formulation in solving the primal problem. We thank the
anonymous reviewer whose suggestion of finding a nonzero optimal control motivated
us in constructing this nontrivial example.

5 Conclusions

In this paper, we have discussed a general multidimensional linear convex stochastic
control problem with nondifferentiable objective function, control constraints, and
random coefficients. We have formulated an equivalent dual problem, proved the dual
stochastic maximum principle and the relation of the optimal control, optimal state,
and adjoint processes between primal and dual problems, and illustrated the usefulness
of the dual approach with some examples. There remain many open questions, for
example, the duality theory for Markov modulated LC problems with control and
terminal state constraints, pathwise state constraints as in [5], and other more general
frameworks. We leave these and other questions for future research.
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Appendix: Proof of Theorem 2

The proof follows the same idea of the proof of [15, Theorem 7] with some changes
due to multidimensional transformed dual problem and general convex function g.
For the convenience of the reader, we give a full a proof here.

Proof Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be optimal for the dual problem (19) with
(Ŷ , p̂2, q̂2) satisfying FBSDE (2), and (y, α, β1, . . . , βd−1, β) be any admissible dual
control with associated process Y . Using Itô’s formula to p̂2(t)�Y (t) and simplifying
the resulting expression, we have

d( p̂�
2 Y ) = [ p̂�

2 α + (D†
d q̂2,d − D†

dCd p̂2)
�β
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+
d−1∑

i=1

(Di D
†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d)

�βi ]dt

+
d−1∑

i=1

p̂�
2 βi dWi + p̂�

2 (D†
d)

�(β − B�Y −
d−1∑

i=1

D�
i βi )dWd +

d∑

i=1

Y�q̂2,i dWi .

Since p̂2 ∈ S(0, T ;Rn), q̂2,i ∈ H(0, T ;Rn), βi ∈ H(0, T ;Rn), for each i =
1, . . . , d, we obtain

E

[
(

∫ T

0
[| p̂�

2 βi |2 + |Y�q̂2,i |2]ds) 1
2

]
< ∞,

which implies that

d−1∑

i=1

∫ t

0
p̂�
2 βi dWi +

∫ t

0
p̂�
2 (D†

d)
�(β − B�Y −

d−1∑

i=1

D�
i βi )dWd +

d∑

i=1

∫ t

0
Y�q̂2,i dWi

is a true martingale on [0, T ]. Taking expectation yields

E[ p̂2(T )�Y (T )] − p̂2(0)
�y

= E

[∫ T

0
[ p̂�

2 α + (D†
d q̂2,d − D†

dCd p̂2)
�β +

d−1∑

i=1

(
Di D

†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d

)�
βi ]dt

]

.

(43)For ε > 0, define (yε, αε, βε
1 , . . . , β

ε
d−1, β

ε) by

(yε, αε, βε
1 , . . . , β

ε
d−1, β

ε) := (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) + ε(y, α, β1, . . . , βd−1, β).

Then, by the linearity of the dual SDE (18),

Y ε(t) := Y (yε ,αε,βε
1 ,...,βε

d−1,β
ε)(t) = Ŷ (t) + εY (t).

Since (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal,

1

ε
[�̃(yε, αε, βε

1 , . . . , β
ε
d−1, β

ε) − �̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)] ≥ 0.

Since h is C1 in y,

lim
ε↓0

h(Y ε(T )) − h(Ŷ (T ))

ε
= hy(Ŷ (T ))�Y (T ).

By convexity of h, 1
ε
[h(Y ε(T )) − h(Ŷ (T ))] is a nondecreasing function of ε. Hence,

by Assumption 2 and the monotone convergence theorem,

lim
ε↓0

1

ε
E[h(Y ε(T )) − h(Ŷ (T ))] = E[hy(Ŷ (T ))�Y (T )] = E[− p̂2(T )�Y (T )].
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Noting that x�
0 yε − x�

0 ŷ = εx�
0 y, then from (19),

0 ≤ 1

ε
[�̃(yε, αε, βε

1 , . . . , β
ε
d−1, β

ε) − �̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)]

= 1

ε

{
εx�

0 y + E

[∫ T

0
[φ(t, αε(t), βε(t)) − φ(t, α̂(t), β̂(t))]dt + [h(Y ε(T )) − h(Ŷ (T ))]

]}
.

(44)

Combining (43) and (44) and letting ε ↓ 0 yield

0 ≤ y� (x0 − p̂2(0)
)+ lim

ε↓0 E
[∫ T

0
[g̃(t, ε) − ( p̂�

2 α + (D†
d q̂2,d − D†

dCd p̂2)
�β

+
d−1∑

i=1

(Di D
†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d)

�βi )]dt
]

,

where

g̃(ω, t, ε) := 1

ε
[φ(t, αε(t), βε(t)) − φ(t, α̂(t), β̂(t))].

Letting α(t) = β1(t) = · · · = βd−1(t) = 0 and β(t) = 0 for t ∈ [0, T ] yields

y� (x0 − p̂2(0)
) ≥ 0 ∀y ∈ R

n,

which implies that x0 = p̂2(0).
Recall that the function f and the set K are both convex. According to [18, Theorem

26.3], φ has a directional derivative at (α̂, β̂) in any direction (P ⊗Leb)-a.e. (ω, t) ∈
� × [0, T ]. By the convexity of φ, g̃(ω, t, ε) is a nondecreasing function of ε. Using
Assumption 2 and the monotone convergence theorem then yields

0 ≤ E

[∫ T

0
[φo(t, α̂, β̂;α, β)

−( p̂�
2 α

+(D†
d q̂2,d − D†

dCd p̂2)
�β +

d−1∑

i=1

(Di D
†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d )

�βi )]dt
]

,

where

φo(ω, t, α̂, β̂;α, β) := lim
ε↓0

φ(t, α̂ + εα, β̂ + εβ) − φ(t, α̂, β̂)

ε
.

For (α, β1, . . . , βd−1, β) ∈ R
dn+m , define

B
(α,β1,...,βd−1,β)
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:= {(ω, t) ∈ � × [0, T ] : φo(t, α̂, β̂;α, β) − ( p̂�
2 α + (D†

d q̂2,d − D†
dCd p̂2)

�β

+
d−1∑

i=1

(Di D
†
dCd p̂2 − Ci p̂2 + q̂2,i − Di D

†
d q̂2,d)

�βi ) < 0}.

It can be shown that B
(α,β1,...,βd−1,β)
t ∈ Ft for t ∈ [0, T ] and (P ⊗

Leb)(B(α,β1,...,βd−1,β)) = 0 for all (α, β1, . . . , βd−1, β) ∈ R
dn+m . Since R

dn+m is
separable, we have

0 ≤ φo(α̂, β̂;α, β) − p̂�
2 α − [D†

d q̂2,d − D†
dCd p̂2]�β

−
d−1∑

i=1

[(Di D
†
dCd − Ci ) p̂2 + q̂2,i − Di D

†
d q̂2,d ]�βi ,

for all (α, β1, . . . , βd−1, β) ∈ R
dn+m , (P ⊗Leb)-a.e. (ω, t) ∈ �×[0, T ]. Therefore,

we have

(Di D
†
dCd − Ci ) p̂2 + q̂2,i − Di D

†
d q̂2,d = 0, i = 1, . . . , d − 1,

and

0 ≤ φo(α̂, β̂;α, β) − p̂�
2 α − [D†

d q̂2,d − D†
dCd p̂2]�β, ∀(α, β) ∈ R

n+m,

which implies

( p̂2, D
†
d q̂2,d − D†

dCd p̂2) ∈ ∂φ(α̂, β̂). (45)

Since φ is a proper closed convex function, by [2, Proposition 5.4.3], (45) is equivalent
to

(α̂, β̂) ∈ ∂ f̃ ( p̂2, D
†
d q̂2,d − D†

dCd p̂2).

According to [18, Theorem23.5], x�α̂(t)+u�β̂(t)− f̃ (t, x, u) achieves its supremum
at (x, u) = ( p̂2, D

†
d q̂2,d − D†

dCd p̂2) for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ]. Thus, it
must be the case that

D†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t) ∈ K ,

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ]. This completes the proof for the necessary
condition.

We nowprove the sufficient condition. Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be an admissible
control to the dual problem with processes (Ŷ , p̂2, q̂2) satisfying the FBSDE (20) and
conditions (21). Define the Hamiltonian function H : �×[0, T ]×R

n ×R
m → R as

H(ω, t, α, β) := p̂�
2 (t)α + [D†

d(t)q̂2,d(t) − D†
d(t)Cd(t) p̂2(t)]�β − φ(t, α, β).

(46)
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Using the second condition in (21), the Hamiltonian H achieves its supremum at
(α̂, β̂). Then, by [6, Proposition 2.3.2],

(0, 0) ∈ ∂(−H)(α̂(t), β̂(t)) (47)

for (P ⊗ Leb)-a.e. (ω, t) ∈ � × [0, T ]. Given any admissible control
(y, α, β1, . . . , βd−1, β), define

y̆ = y − ŷ, ᾰ = α − α̂, β̆ = β − β̂, β̆i = βi − β̂i .

Let Y and Y̆ be the associated state processes satisfying SDE (18). Since h is convex,
by [2, Proposition 1.1.7(a)],

h(Y (T )) − h(Ŷ (T )) ≥ hy(Ŷ (T ))�(Y (T ) − Ŷ (T )) = − p̂2(T )�Y̆ (T ).

Noting that x�
0 y − x�

0 ŷ = x�
0 y̆, then

�̃(y, α, β1, . . . , βd−1, β) − �̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)

≥ x�
0 y̆ − E[Y̆ (T )� p̂2(T )] + E

[∫ T

0
[φ(t, α(t), β(t)) − φ(t, α̂(t), β̂(t))]dt

]
.

Moreover, using the fourth condition in (21), we have

E[ p̂2(T )�Y̆ (T )] = p̂2(0)
� y̆ + E

[∫ T

0
[ p̂�

2 ᾰ + [D†
d q̂2,d − D†

dCd p̂2]�β̆]dt
]

.

Hence, since x0 = p̂2(0),

�̃(y, α, β1, . . . , βd−1, β) − �̃(α̂, β̂1, . . . , β̂d−1, β̂)

≥ −E

[∫ T

0
[ p̂�

2 (t)ᾰ(t) + [D†
d(t)q̂2,d(t) − D†

d(t)Cd(t) p̂2(t)]�β̆(t)

−φ(t, α(t), β(t)) + φ(t, α̂(t), β̂(t))]dt
]

= −E

[∫ T

0
[H(t, α(t), β(t)) − H(t, α̂(t), β̂(t))]dt

]
.

Using (47) yields

�̃(y, α, β1, . . . , βd−1, β) − �̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂) ≥ 0.

We have proved (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem. ��
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