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Abstract
This work proposes a non-penalization Smooth-Edged Material Distribution for
Optimizing Topology (SEMDOT) algorithm, which is a typical elemental volume
fraction-based topology optimization method, by adopting discrete variable sensi-
tivities for solid, void, and assumed boundary elements instead of the continuous
variable sensitivities used in the penalization one. In the proposed non-penalized
SEMDOT algorithm, the material penalization scheme is eliminated. The efficiency,
effectiveness, and general applicability of the proposed non-penalized algorithm are
demonstrated in three case studies containing compliance minimization, compliant
mechanism design, and heat conduction problems, as well as thorough compar-
isons with the penalized algorithm. In addition, the length scale control approach
is used to solve the discontinuous boundary issue observed in thin and long struc-
tural features. The numerical results show that the convergency of the newly proposed
non-penalization algorithm is stronger than the penalization algorithm, and improved
results can be obtained by the non-penalized algorithm.
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1 Introduction

Topology optimization is a light-weight design tool that can find the optimal material
layout within a design domain subjected to given set of loads and boundary conditions
[48]. One of the main issues associated with topology optimization is that the bound-
aries are not smooth because they are based on the edges of the finite element mesh.
The challenge is to develop an efficient topology optimization method that can utilize
a smooth boundary during the optimization.

Structural topology optimization can be traced back to the work by Cheng and
Olhoff [8] and has been widely investigated since the pioneering paper regarding the
homogenization method by Bendsøe and Kikuchi [5]. Some representative algorithms
were developed, including the Solid Isotropic Material with Penalization (SIMP)
[49], Evolutionary Structural Optimization (ESO) [60], Bi-directional Evolutionary
StructuralOptimization (BESO) [23], level-setmethod [57],MovingMorphableCom-
ponent (MMC)-based method [20], and floating projection topology optimization
algorithm [21, 24]. These algorithms are widely used in solving different optimization
problems, including large-scale problems [1, 44], fluid and heat transfer problems [2],
thermoelastic problems [19], multi-material problems [40], failure problems [39], and
design for additive manufacturing [6, 15, 25]. In addition, articles regarding topology
optimization algorithms with open access codes are comprehensively discussed and
summarized by Wang et al. [55] for educational and academic purposes.

Despite their easy implementation and ability to remove materials freely across the
design domain, element-based topology optimization algorithms will inevitably gen-
erate zigzag (discrete methods, such as BESO) or both zigzag and fuzzy boundaries
(continuum methods, such as SIMP). Hence, post-processing smoothing methods are
generally required to form smooth part surfaces after topology optimization to enable
fabrication [29]. The post-processing methods will not only require extra effort, but it
will increase the structural volume andmass when themaximum smooth part envelope
is created from the topology optimization boundary [36, 47]. Strategies that enable
the formation of smooth topological boundaries in existing element-based algorithms
have attracted a lot of research attention. Early works on smooth topological design
were presented by Maute and Ramm [42], where a method that uses cubic or Bézier
splines to generate smooth boundaries. Nguyen et al. [43] proposed a multi-resolution
topology optimization algorithm that can form smooth boundaries via three distinct
meshes (the displacement mesh, density mesh, and design variable mesh). Wang et al.
[56] combined an adaptive mesh-adjustment method with SIMP to represent irregular
boundaries using isoparametric elements. Using the BESO framework, Da et al. [9]
developed an Evolutionary Topology Optimization (ETO) algorithm where smooth
boundaries were generated based on the solid/void design of the grid points assigned
to each element. This ETO method was extended by Liu et al. [35] to solve stress-
based optimization problems. The effectiveness of the proposed algorithm was further
verified by Chen et al. [7] and Li et al. [27] through implementing topology optimiza-
tion of photonic crystals. Andreasen et al. [3] merged the level-set method into the
density-based method where a cut element method is used to facilitate the generation
of clear boundaries. Rodriguez et al. [46] incorporated Non-Uniform Rational Basis
Spline (NURBS) hyper-surfaces into SIMP through which smooth topologies can be
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obtained. Very recently, Li et al. [28] proposed a boundary density evolution method
without penalization where smooth boundaries are generated using the element refine-
ment and level-set values based on the nodal strain energy. Qiu et al. [45] combined
BESO and isogeometric analysis to obtain smooth topological designs by intersect-
ing NURBS hyper-surfaces, describing the global sensitivity function, with suitable
hyper-planes. Zhuang et al. [67] integrated a body-fitted triangular/tetrahedral mesh
generation algorithm into BESO tomatch the dynamically updated boundaries exactly
and form smooth topological boundaries.

Following the smooth-edged material distribution strategy presented in the ETO
method and Huang’s idea on smooth topological design [7, 27], Fu et al. [11, 12]
proposed a new topology optimization tool named Smooth-Edged Material Distribu-
tion for Optimizing Topology (SEMDOT) based on the SIMP framework. SEMDOT
performs at two levels: grid-points and elements. The grid-point values represent the
solids, voids, and boundaries of the part(s) in the design envelope. A smooth boundary
can be constructed from the grid-point data. There are afixednumber of grid-points that
are associated with each element. The elements are used in the optimization analysis.
It should be noted that SEMDOT is a relatively new topology optimization method in
contrast to the pioneering algorithms of SIMP and BESO. The obvious advantages of
SEMDOT are that it can be easily used with some existing methods developed based
on SIMP and is able to form smooth boundaries in topology optimization without
requiring any post-processing methods. The advantage of using smooth boundaries
within the topology optimization method is that manufacturing and production con-
straints can be considered, implying that the SEMDOT method can be used for more
than the initial design/prototyping concept stage. Fu et al. [10, 13, 14] integrated the
additive manufacturing filter proposed by Langelaar [25] into SEMDOT to obtain 2D
and 3D smooth self-supporting topologies. The algorithm mechanism of SEMDOT
and its applications for additive manufacturing are systematically presented in the
work by Fu [16].

In recent years, the SEMDOT method has broadened its range of applications to
solve a wide range of optimization problems. Zhang et al. [65] adopted SEMDOT to
solve natural convection heat transfer problems based on the reduced-order model. Yi
et al. [63, 64] usedSEMDOT to generate smooth topologies for the research on improv-
ing energy performance in product designs for additive manufacturing. Gonçalves et
al. [18] took advantage of SEMDOT to obtain smooth boundaries for the design of
mechanical heterogeneous specimens by solving the compliant mechanism design
problem.

The SEMDOT method is being continuously improved in the current version of
SEMDOT [11] where the penalty coefficient of 1.5 is used instead of the “magic"
coefficient of 3 used inSIMP.This is because the power-lawmodel, amaterial penaliza-
tion scheme, is applied to grid points in SEMDOT; however, SIMP uses the power-law
model on elements to force the separation between solids and voids. SEMDOTpursues
the solid/void separation at the grid point level based on both the power-law model
and a Heaviside smooth function. Therefore, there is the potential to obtain solid/void
grid points entirely based on using the Heaviside smooth function in SEMDOT. One
large advantage of non-penalization topology optimization is that instead of using
an artificial power-law relation, the physically meaningful relationship between the
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elemental value and its material properties can be implemented. Hence, the original
optimization problem is not artificially changed to avoid imprecise solutions. The
use of the material penalization scheme increases the nonlinearity and non-convexity
of the objective functional or constraint function, which may cause the optimization
algorithm to easily run into local optima [52]. The material penalization scheme may
cause the overestimation of structural stiffness in density-based methods [59], and in
terms of new optimization problems, the physical meaning of thematerial penalization
model needs to be investigated and understood, because of the nonlinear scaling of the
material and its effect on the multi-material structural design [21, 26]. If the material
penalization scheme can be removed from the algorithm, improved solutions can be
expected, andmulti-material optimization problems can be attempted. In addition, one
parameter (the penalty coefficient) can be removed to reduce the algorithm complex-
ity, and therefore, the discussion on the selection of a proper penalty parameter is not
required in non-penalized algorithms. To date, no study has investigated the removal
of thematerial penalization scheme from elemental volume fraction-based algorithms.

This motivates the presented work on developing the non-penalization SEMDOT
method. The aim of this work is to further improve the capabilities of SEMDOT in
structural performance and convergency for different topology optimization problems.
Thisworkwill utilize discrete variable sensitivities for solid, void, and assumed bound-
ary elements to replace the continuous variable sensitivities (based on the power-law
model in SIMP) to realize the non-penalization strategy. Compared to some existing
non-penalization strategies using specific filters [17, 28], the non-penalization method
here is proposed by slightly modifying the form of the sensitivity analysis, which
enables SEMDOT to use more filters for various optimization purposes. As previ-
ous works regarding SEMDOT only gave the sensitivity analysis equations without
detailed explanations [11, 12], this work will present the details on the reason for
using the assumed linear combination form for the sensitivity analysis. This work will
take into account various representative topology optimization problems, including
compliance minimization, compliant mechanism design, and heat conduction cases,
to show the advantages of the non-penalized algorithm, and most of numerical cases
presented here have not been discussed in previous works.

2 Algorithm Framework

The development of the SEMDOT algorithm takes full advantage of the benefits of
the smooth representation in the ETO algorithm and element-based optimization in
the SIMP algorithm. Despite being developed based on the ETO algorithm, SEMDOT
is able to use both the optimality criteria method and Method of Moving Asymptote
(MMA) as optimizers instead of the optimality criteria-based optimizer in the ETO,
which enables SEMDOT to obtain the improved structural performance.

SEMDOT operates at two levels, grid-points and elements. The grid-point values
represent the material distribution and the boundaries within the design volume. The
elements are used to perform the optimization analysis, such as compliance mini-
mization. SEMDOT generates a smooth topological boundary based on the solid/void
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(a)

Smooth topology within design domain

Solid element Xe = 1 Void element Xe = ρmin Boundary element Xe = 0.5

(b) (c)

Solid grid point ρe,g = 1

Void grid point ρe,g = ρmin

(d)

Fig. 1 Illustration of smooth topology, solid, void, and boundary elements

design of the grid points that are independently assigned to each element [11], as illus-
trated in Fig. 1a. Unlike the SIMP algorithm that pursues the separation between solid
and void elements, the basic idea of SEMDOT is to pursue the separation between
solid and void at the grid-point level. Element properties are determined by whether
they are closest to being solid, boundary, or void, as shown in Fig. 1b–d. This study
focuses on the use of the structured finite element mesh to demonstrate the algorith-
mic mechanism of SEMDOT, and how the solid, void, and boundary elements are
generated is based on the fixed-mesh finite element analysis.

In the penalized SEMDOT method [16], the power-law model in SIMP is applied
to grid points, and hence, the Young’s modulus of a grid point can be expressed by:

Ee(ρe,g) = ρ
p
e,gE

1, (1)

where Ee(ρe,g) is the function of the Young’s modulus with respect to grid point
densities, E1 is the Young’s modulus of the solid material, ρe,g is the scaling value of
the gth grid point assigned to the eth element, which is named the grid point density
from here on (see Fig. 1) rather than the physical density, and ρmin is a small artificial
value (e.g., 0.001). It is noted that ρe,g is assigned 1 to represent a solid grid point
or ρmin to represent a void grid point. In topology optimization, the exponent in the
power-law function (i.e., p in Eq. (1)) is defined as the penalty coefficient.
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In the new non-penalized SEMDOT method, the material penalization scheme is
removed from the calculation of Young’s moduli, and hence, Eq. (1) can be rewritten
as:

Ee(ρe,g) = ρe,gE
1. (2)

Because of using the SIMP framework at the element level, element-based variables
are needed in SEMDOT to conduct finite element analysis. Elemental volume fractions
that depend on grid point densities are defined as surrogate design variables such that

Xe = 1

N

N∑

g=1

ρe,g, (3)

where Xe is the volume fraction of the eth element and N is the total number of grid
points in each element. The function of Eq. (3) is to convert discrete variables (grid
point densities ρe,g ∈ {ρmin, 1}) to continuous variables (elemental volume fractions
Xe ∈ [ρmin, 1]).

As shown in Fig. 1b, c, grid point densities are homogeneously distributed across
solid (with a relative value of Xe = 1) or void (with a relative value of Xe = ρmin)
elements. Based on Eqs. (1) and (3), the Young’s modulus of a solid or void element
in penalized SEMDOT [16] is expressed by:

Ee(Xe) = X p
e E

1.

Using the same form, the stiffness matrix of a solid or void element in penalized
SEMDOT is:

Ke(Xe) = X p
e K1

e , (4)

where K1
e is the stiffness matrix of the solid element.

Based on Eqs. (2) and (3), the Young’s modulus of a solid or void element in
non-penalized SEMDOT is

Ee(Xe) = XeE
1.

The stiffness matrix of a solid or void element in non-penalized SEMDOT is
therefore given by:

Ke(Xe) = XeK1
e . (5)

Compared to the artificial relationship defined in Eq. (4), Eq. (5) establishes a
physically meaningful relationship between the elemental volume fraction and its
material property.

The difference between SIMP and SEMDOT is the intermediate elements. In
SEMDOT, the boundary elements are artificially defined as the non-homogenized
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Single elements of Xe = 0.5

3

1

4

2

SIMP

(a)

SEMDOT

3

1

4

2

(b)

Fig. 2 Representations of single intermediate elements in a SIMP and b SEMDOT with Xe = 0.5

combination of solid and void materials, as demonstrated in Fig. 1d. Representations
of intermediate elements with a relative value of Xe = 0.5 in the two algorithms are
shown in Fig. 2. Areas 1 to 4 in an element with an elemental density of 0.5 (Fig. 2a)
have the identical material properties in SIMP; however, the same areas in an element
with an elemental volume fraction of 0.5 (Fig. 2b) have different material properties
in SEMDOT. In Fig. 2b, the diagonal boundary across one element of Xe = 0.5 is
only for simplicity. During optimization, the arbitrary boundary associated with solid
grid points can be formed across one element. Here, elemental stiffness matrices are
estimated using a linear interpolation between the two phases of solid and void:

Ke(Xe) = (1 − Xe)K0
e + XeK1

e

= (1 − Xe)ρminK1
e + XeK1

e ,
(6)

where K0
e is the stiffness matrix of the void element.

The filter used for elemental volume fractions Xe is

X̃e =
∑Ne

l=1 ωel Xl
∑Ne

l=1 ωel

,

where X̃e is the filtered elemental volume fraction, Ne is the neighborhood set of
elements within the filter domain for the eth element that is a circle centered at the
centroid of this element with a predefined filter radius rmin, and ωel is a linear weight
factor defined as

ωel = max(0, rmin − �(e, l)),

where�(e, l) is the center-to-center distance of the lth elementwithin the filter domain
to the eth element.
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Fig. 3 Relative positions of a
grid point o(ζo, ηo) and four
nodes

ζ

η

(ζ1, η1) (ζ2, η2)

(ζ3, η3)(ζ4, η4)

(ζo, ηo)

o

Nodal densities are obtained via a heuristic filter [23]:

ρn =
∑M

e=1 ωne X̃e∑M
e=1 ωne

, (7)

where ρn is the density of the nth node, M is the total number of elements, and ωne is
the weight factor defined as

ωne = max(0, ϒmin − �(n, e)),

where �(n, e) is the distance between the nth node and the center of the eth element
and ϒmin is the heuristic filter radius. It should be noted that the values of elemental
volume fractions can be directly assigned to grid points without using the heuristic
filter in Eq. (7). Given that the original aim of developing SEMDOT is to provide an
easy-to-use and flexible design tool for the topology optimization community, it is
recommended that the users keep the heuristic filter in Eq. (7) to yield a larger range
of topological designs.

Considering a four-node element, densities of grid points ρ(ζ, η) are calculated
using the linear interpolation of nodal densities ρn which has the form:

ρ(ζ, η) =
4∑

γ=1

N γ (ζ, η)ρ
γ
n , ρ(ζ, η) ∈ ρ(x, y),

where (ζ, η) is the local coordinate of the grid point, ργ
n is the density for the γ th node

of the element, and N γ (ζ, η) is an appropriate shape function which is expressed as
[9]:

N γ (ζ, η) = 1

4
((1 + ζoζγ ) + (1 + ηoηγ )),

where ζγ and ηγ are the local coordinates of the γ th node and ζo and ηo are the
non-dimensional coordinates of the grid point o, as illustrated in Fig. 3.
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The Heaviside smooth function is used to obtain solid/void grid points, which is

ρe,g = tanh(β · 
) + tanh[β · (ρ(x, y) − 
)]
tanh(β · 
) + tanh[β · (1.0 − 
)] , (8)

where 
 is a threshold value, (x, y) is the global coordinate of grid points, ρ(x, y) is
the density of the grid point at (x, y), and β is a scaling parameter that controls the
steepness and is updated by:

βk = βk−1 + �,

where k is the current iteration number and � is the evolution rate for β. In addi-
tion to the Heaviside smooth function in Eq. (8), other strategies that are capable of
yielding solid/void grid points, for example, the Heaviside step function, can also be
used. The thorough comparison between Heaviside smooth and step functions was
presented in [11] where the advantages of using the Heaviside smooth function were
comprehensively discussed.

The smooth topological boundary is implicitly represented via a level-set function
�(x, y):

�(x, y) =

⎧
⎪⎨

⎪⎩

ρ(x, y) − 
 > 0 for solid region,

ρ(x, y) − 
 = 0 for boundary,

ρ(x, y) − 
 < 0 for void region,

(9)

where �(x, y) is the level-set function for grid points. The threshold value 
 in the
level-set function (Eq. (9)) is determined in the Heaviside smooth function (Eq. (8)).
It is noted that the value of 
 is floating to meet the volume constraint during the
optimization procedure.

For the next round of finite element analysis, filtered elemental volume fractions
are updated by assembling grid points for their corresponding elements:

X̃new
e = 1

N

N∑

g=1

ρnew
e,g ,

where ρnew
e,g is the updated density of the grid point obtained by the Heaviside smooth

function.
In SEMDOT, there are two convergence criteria (i.e., the overall topological alter-

ation and topological boundary error) used to terminate the optimization procedure.
The overall topological alteration is defined as:

∑M
e=1 | Xk

e − Xk−1
e |

∑M
e=1 X

k
e

≤ τ,

where τ is the tolerance value for the overall topological alteration.
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Solid element (14)

Void element (4)

Intermediate element on the boundary (5)

Intermediate element not on the boundary (Nv=2)

Topological boundary

Total number of elements M=25

ε =
Nv

M
=

2
25

Fig. 4 Illustration of topological boundary error

The topological boundary error convergence criterion is defined as:

ε = Nv

M
≤ ε, (10)

where ε is the topological boundary error, Nv is the number of intermediate elements
that are not along boundaries, and ε is the tolerance value for the topological boundary
error. The defined topological boundary error ε is schematically illustrated in Fig. 4
where a design domain with 25 elements is taken as an example. Equation (10) is an
indicator used to assess the accuracy of the smooth topological boundary formed by
the level-set function (Eq. (9)). Generally, increasing the number of elements within
the design domain or grid points within each element is a simple way to improve the
boundary accuracy, whereas the computational cost will be increased.

The smooth-edged material distribution strategy proposed in SEMDOT could be
wrongly applied to the final topology obtained bySIMPas the post-processingmethod.
The formation of accurate smooth boundaries in SEMDOT requires a process of reduc-
ing the boundary deviation iteratively, which is assessed by the topological boundary
error ε (Eq. (10)). A high boundary deviation related to Eq. (10) or discontinuous
features could be caused if the smooth boundary strategy in SEMDOT is directly used
as the post-processing method for SIMP. More details on the SEMDOT algorithm can
be found in the works by Fu et al. [11, 12].

3 Sensitivity Analysis

Sensitivity analysis, the derivative of the objective function with respect to the design
variables, is required to determine the optimization direction when using gradient-
based optimizers, and efficient and accurate sensitivity analysis is able to improve the
convergency and efficiency of the algorithm [51]. Here, theMethod ofMovingAsymp-
tote (MMA) proposed by Svanberg [54], a mathematical programming algorithm, is
used as the default optimizer for SEMDOT to update the topological design iteratively
as the effectiveness and efficiency of MMA in solving different topology optimization
problems are fully validated. The MMA approximation of an objective functional C
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with M design variables (elemental volume fractions X = (X1, . . . , XM )) subjected
to a given iteration point X0 is expressed by:

C(X) ≈ C(X0) +
M∑

e=1

(
re

Ue − Xe
+ se

Xe − Le

)
,

where Le andUe are lower and uppermoving asymptotes that are updated iteratively to
mitigate oscillation or improve convergency, and the parameters re and se are defined
as:

if
∂C

∂Xe
(X0) > 0 then re = (Ue − X0

e )
2 ∂C

∂Xe
(X0) and se = 0,

if
∂C

∂Xe
(X0) < 0 then re = 0 and se = −(X0

e − Le)
2 ∂C

∂Xe
(X0).

Assuming compliance as the objective functionwhich has the formofC(Xe) = fTu

where f = K(Xe)u andK =
M∑
e=1

Ke(Xe), for solid and void elements, the sensitivities

with respect to Xe in the penalization SEMDOT approach can be directly calculated
based on Eq. (4):

∂C(Xe)

∂Xe
= −uTe

∂(X p
e K1

e )

∂Xe
ue =

{
−puTe K

1
eue if Xe = 1,

−pρ p−1
min uTe K

1
eue if Xe = ρmin,

(11)

where C is the objective function and ue is the displacement vector of the eth element.
Sensitivities of solid and void elements in SEMDOT (Eq. (11)) are calculated based
on the idea of continuous variable sensitivities.

An intermediate element (e.g., Xe = 0.5) in SIMP is equivalent to an element
with uniformly distributed intermediate grid points (i.e., ρe,g = 0.5) in SEMDOT,
as illustrated in Fig. 5 . Based on Eq. (4), the sensitivities of intermediate elements
(ρmin < Xe < 1) in SIMP are [4]:

∂C(Xe)

∂Xe
= −uTe

∂(X p
e K1

e )

∂Xe
ue = −pX p−1

e uTe K
1
eue. (12)

However, in SEMDOT, an intermediate element is artificially defined as a bi-
material boundary element by assembling solid (ρe,g = 1) and void (ρe,g = ρmin)
grid points (see Fig. 1d), and there are no intermediate grid points (0 < ρe,g < 1)
defined in boundary elements. That is, the sensitivity analysis in SIMP is based on
the change of elements, whereas the sensitivity analysis in SEMDOT depends on the
overall change of grid points (from 1 to 0 or from 0 to 1) across an element.

Based on the above discussion, Eq. (12) cannot be directly used to represent the
sensitivities of boundary (intermediate) elements in SEMDOT.Here, physicallymean-
ingful sensitivities of boundary elements are calculated using a linear combination of
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Single elements of Xe = 0.5

Intermediate element in SIMP Equivalent in SEMDOT

(a) (b)

Intermediate grid point ρe,g = 0.5

Fig. 5 Representations of a single intermediate element of Xe = 0.5 in SIMP and b its equivalent with
uniformly distributed intermediate grid points of ρe,g = 0.5 in SEMDOT

the sensitivities of void elements with a weighting factor of (1− Xe) and sensitivities
of solid elements with a weighting factor of Xe, which has the form

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= −p[(1 − Xe)ρ
p−1
min + Xe]uTe K1

eue.

(13)

When the penalty coefficient p is set to 1 in Eqs. (11) and (13), we obtain
∂C(Xe)/∂Xe = −uTe K

1
eue for the sensitivities of all elements, which causes the

difficulty in distinguishing solid, void, and boundary elements during the optimiza-
tion process. Numerous intermediate elements will exist in topologies obtained by
SEMDOT when using p = 1, and then, the optimization problem becomes the well-
known “variable-thickness-sheet” problem. The “variable-thickness-sheet” problem
is a convex optimization problem, and therefore, the global optimum solution can be
guaranteed [47]. However, SEMDOTdoes not establish the “variable-thickness-sheet”
problem except for distinct structural designs.

To overcome the above issue caused when p = 1, the discrete variable sensitivity
strategy presented in [30–34] is adopted through which sensitivities with respect to
Xe can be recalculated as:

∂C(Xe)

∂Xe
=

⎧
⎪⎨

⎪⎩

C(Xe = 1) − C(Xe = 0)

1
≈ −uTe K

1
eue if Xe = 1,

C(Xe = 0) − C(Xe = 1)

−1
≈ −ρminuTe K

1
eue if Xe = ρmin.

(14)

In Eq. (14), the effect of the penalty parameter p is completely removed, and hence,
the non-penalization strategy is realized. The sensitivity analysis of void elements in
Eq. (14) is a heuristic method. Discrete variable sensitivities, as shown in Eq. (14), are
able to facilitate the distinction of solid and void elements based on their contribution
to structural performance during optimization. The efficiency and effectiveness of the
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Fig. 6 Schematic illustration of sensitivities of boundary elements in non-penalized SEMDOT

discrete variable sensitivity strategy are analytically and numerically validated in [34]
by solving different topology optimization problems.

Unlike continuous variable sensitivities, discrete variable sensitivities are origi-
nally used in the sequential approximate integer programming algorithm, a discrete
approach, and hence, there is no fixed form to calculate the sensitivities of intermediate
elements. Based on discrete variable sensitivities in Eq. (14) and the linear combina-
tion in Eq. (13), the sensitivities of boundary elements in non-penalization SEMDOT
can be written as:

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= −[(1 − Xe)ρmin + Xe]uTe K1
eue.

(15)

Equation (15) can be schematically illustrated by a plate with two different thick-
nesses (t1 = 1 and t2 = ρmin) shown in Fig. 6, which is inspired by Sun et al. [53]. In
Fig. 6, the whole plate (�) is the combination of the plate with the thickness of t1 = 1
(�1) and the plate with the thickness of t2 = ρmin (�2).

Based on Fig. 6, sensitivities of boundary elements in non-penalized SEMDOT can
be estimated by:

∂C(Xe)

∂Xe
≈

(
V�1 + V�2

Vt

)
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

=
(
A�1 t1 + A�2 t2

A�t1

)
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= −[(1 − Xe)ρmin + Xe]uTe K1
eue,

(16)

where V�1 and V�2 are the volumes of domains �1 and �2, respectively; Vt is the
volume of the plate with only one thickness of t1 = 1; and A�1 , A�2 , and A� are the
areas of domains �1, �2, and �, respectively.

In Eq. (16), ∂C(Xe)/∂Xe|Xe=1 represents the sensitivity of the plate with only one
thickness of t1 = 1. Figure6 can also be used to demonstrate the Young’s moduli and
stiffness matrices of boundary elements in non-penalized SEMDOT. By contrast, Eq.
(13) in penalized SEMDOT cannot be schematically demonstrated by the plate shown
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in Fig. 6. Therefore, the newly developed non-penalized SEMDOT has more physical
meaning than penalized SEMDOT.

If the sensitivities of boundary elements (ρmin < Xe < 1) are calculated directly
based on the assumed stiffnessmatrices of boundary elements related to Eq. (6) instead
of using the linear combination, we obtain that

∂C(Xe)

∂Xe
≈ −uTe

∂((1 − Xe)ρminK1
e + XeK1

e )

∂Xe
ue = −(1 − ρmin)uTe K

1
eue. (17)

As ρmin is a small value of 0.001, Eq. (17) is equivalent to ∂C(Xe)/∂Xe =
−uTe K

1
eue. As previously discussed, Eq. (17)will cause the difficulty in forming proper

topological layouts, and a large volume of intermediate elements will exist within the
design domain. Therefore, it is not recommended to use Eq. (17) to calculate the
sensitivities of boundary elements in SEMDOT.

Despite Eqs. (13) and (15) having the similar form, they are formulated based on
two different ideas: continuous and discrete variable sensitivities. Equation (13) is
calculated based on sensitivities of void and solid elements related to the power-law
model in SIMP (Eq. (4)). By contrast, Eq. (15) is calculated based on discrete variable
sensitivities of void and solid elements. It should be noted that material properties and
sensitivity analysis of the boundary elements are not limited to the linear combination.
Some nonlinear combinations or other strategies (for example, high-order sensitivity
analysis) can also be considered to pursue more accurate sensitivities. Here, we only
present the simplest form to reduce the algorithm complexity and to make it easy for
potential users to understand the algorithm mechanism of SEMDOT.

It is admitted that the same form,� = (1−Xe)�Void+Xe�Solid, for the assumption
of material properties and sensitivities of boundary elements causes a less rigorous
mathematical expression. Mathematically, sensitivities are calculated based on the
derivative of the function of the stiffness matrix with respect to the design variable.
Compared to traditional element-based algorithms, the SEMDOT approach provides a
newway to explore different topological designs. The effectiveness of the assumptions
of sensitivity analysis in Eqs. (13) and (15) will be validated in the next section through
assessing obtained topologies and objective function values.

4 Case Studies

This section will demonstrate the effectiveness and general applicability of the SEM-
DOT method using discrete variable sensitivities in three case studies containing
compliance minimization, compliant mechanism design, and heat conduction cases.
Comparisons of SEMDOT with existing element-based topology optimization algo-
rithms were comprehensively conducted by Fu et al. [11, 12], and the effects of the
parameters in SEMDOT on the results of optimization were thoroughly discussed by
Fu et al. [11, 12]. This study focuses on the comparison between non-penalization
and penalization algorithms subjected to the same set of parameters. Unless otherwise
stated, the parameters of SEMDOT in [11, 12] and default MMA parameters are used.
It is noted that the default penalty coefficient p is 1.5 in the penalized algorithm.
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Fig. 7 Deep cantilever beam
optimization problem

L/2

L

F

4.1 Compliance Minimization Case

The deep cantilever beam case depicted in Fig. 7 is applied to the compliance
minimization or stiffness maximization optimization problem, which is stated as

min :C(Xe) = fTu

subject to : K(Xe)u = f
∑M

e=1 XeVe∑M
e=1 Ve

− V ∗ ≤ 0

0 < ρmin ≤ Xe ≤ 1; e = 1, 2, . . . , M,

where f and u are global force and displacement vectors, respectively; K(Xe) is the
global stiffness matrix; Ve is the volume of the eth element; and V ∗ is the target
volume. In Fig. 7, L represents the length of the design domain, and F represents a
unit vertical load. It is noted that L = 200, F = −1, rmin = 3, and V ∗ = 0.5 are used
in this optimization case.

As shown in Fig. 8a, the optimization process of non-penalized SEMDOT related to
Eq. (15) converges after 140 iterations, which is more efficient than that of penalized
SEMDOT related to Eq. (13) (154 iterations). Although the structural compliance of
penalized SEMDOT (60.8786) is slightly lower than that of non-penalized SEMDOT
(60.9246), it cannot be concluded that non-penalized SEMDOT sacrifices the perfor-
mance to improve the efficiency. For the fairness of comparison, the penalty parameter
p should be removed from the calculation of the objective function value in penalized
SEMDOT. The corrected objective function value of penalized SEMDOT C∗(Xe) is
60.9651, which is slightly higher than that of non-penalized SEMDOT (60.9246).
Two different smooth topological designs obtained by non-penalized and penalized
SEMDOT are shown in Fig. 8b, c.

The numerical investigation on penalization SEMDOT with p = 1 is conducted
to explain the reason of proposing a separate non-penalization version of SEMDOT
using the optimization case presented in Fig. 7. Figure9a shows that the optimization
process of penalized SEMDOT with p = 1 cannot converge after 300 iterations, with
a structural compliance value of 55.9821 and a high topological boundary error value
of 0.6836. In addition, the improper smooth topological design in Fig. 9b is caused by
numerous intermediate elements shown in Fig. 9c. This demonstrates the high value of
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Fig. 8 Convergence processes and optimized topologies of cantilever beam case obtained by non-penalized
and penalized SEMDOT

topological boundary error at the 300th iteration. Although the structural compliance
of penalized SEMDOT with p = 1 is the lowest because of being the “variable-
thickness-sheet” problem, the smooth topological design is not obtained (see Fig. 9b).
Therefore, the penalty parameter p should be greater than 1 (p > 1) in penalized
SEMDOT for convergency and reasonable topologies.

The porous structure design problem is a suitable test case to evaluate the capability
of SEMDOT in the aspect of forming smooth boundaries as numerous holes will be
formed in this case [58]. Here, the porous structure constraint proposed by Wu et al.
[58] is formulated by

g(Xe) =

(
1

M

∑M
e=1 X̄

q
e

) 1

q

�
− 1 < 0,

where � is the targeted local volume fraction, q is the parameter that controls the
accuracy of per-element constraints, and X̄e is defined as
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Fig. 9 Convergence process and optimized smooth and element-based topologies obtained by penalized
SEMDOT with p = 1

X̄e =
∑

i∈Ne
Xe∑

i∈Ne
1

,

where Ne is the set of all surrounding elements with a centroid that is closer than a
predefined radius R to the centroid of the eth element (Xe), which has the form:

Ne = {i | ‖Xi − Xe‖2 ≤ R}.

A finite element mesh of 400 × 200 (L = 400), q = 16, rmin = 4, R = 28,
V ∗ = 0.5, and α̂ = 0.65 are used in the porous structure design problem. Figure10
a shows that there are obvious fluctuations at the first 150 iterations in both non-
penalized and penalized SEMDOT, and then, both the optimization processes reach
steady state. The optimization process of non-penalized SEMDOT converges at the
number of iterations of 337, which is 34.69% faster than that of penalized SEMDOT
(516 iterations). The structural compliance of penalized SEMDOT is 65.4996, and its
corrected value is 65.6269, which is 0.49% lower than that of non-penalized SEMDOT
(65.9492). The difference of the objective function values between non-penalized and
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Fig. 10 Convergence processes and porous structures obtained by non-penalized and penalized SEMDOT

penalized SEMDOT can be ignored. The intact porous structure obtained by non-
penalized SEMDOT is shown in Fig. 10b. By contrast, penalized SEMDOT obtains
a porous structure with broken thin features, as shown in Fig. 10c. It is noted that
the broken thin features shown in Fig. 10c have slight contribution to the stiffness
of the structure but will cause difficulties in manufacturing. For a more sophisticated
optimizationproblem, non-penalizedSEMDOTcan lead to amore reasonable solution.

4.2 Compliant Mechanism Design Case

The second optimization case is the compliant mechanism design shown in Fig. 11
where a single-piece flexible structure transfers an input force to another point through
the elastic deformation [22, 50]. In Fig. 11, fin represents the input force; kin and
kout represent input and output spring stiffnesses, respectively; and uout represents the
output displacement. A mesh of 60 × 30 (L=60), fin = 1, kin = 0.1, kout = 0.1,
rmin = 1.5, and V ∗ = 0.3 are applied to this case. In addition, the move limit in
MMA is set to 0.5 to stabilize convergence. The objective of this optimization case is
to achieve the maximum output displacement uout . The corresponding optimization
problem is stated as:
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Fig. 11 Force inverter design problem

min :C(Xe) = −uout = −LTu= ũTKu

subject to : K(Xe)u = fin
∑M

e=1 XeVe∑M
e=1 Ve

− V ∗ ≤ 0

0 < ρmin ≤ Xe ≤ 1; e = 1, 2, . . . , M,

whereL is a unit length vector with zeros at all degrees of freedom except at the output
point where it is one, ũ is the dummy load displacement vector calculated by solving
the adjoint problem Kũ = −L, and fin is the input force vector.

Sensitivities of the solid and void elements for compliant mechanism design in
penalized SEMDOT are [50]:

∂C(Xe)

∂Xe
= ũTe

∂(X p
e K1

e )

∂Xe
ue =

{
pũTe K

1
eue if Xe = 1,

pρ p−1
min ũTe K

1
eue if Xe = ρmin,

where ũe is the dummy load displacement vector of the eth element.
Sensitivities of the boundary elements in penalized SEMDOT are therefore

estimated as:

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= p[(1 − Xe)ρ
p−1
min + Xe]ũTe K1

eue.

(18)

Sensitivities of the solid and void elements for compliant mechanism design in
non-penalized SEMDOT are [32]

∂C(Xe)

∂Xe
=

⎧
⎪⎨

⎪⎩

C(Xe = 1) − C(Xe = 0)

1
≈ ũTe K

1
eue if Xe = 1,

C(Xe = 0) − C(Xe = 1)

−1
≈ ρminũTe K

1
eue if Xe = ρmin.
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Fig. 12 Convergence processes and optimized topologies of force inverter design problem obtained by
non-penalized and penalized SEMDOT

Sensitivities of the boundary elements in non-penalized SEMDOT are therefore
approximated as:

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= [(1 − Xe)ρmin + Xe]ũTe K1
eue.

(19)

Figure12a shows that the optimization process of non-penalized SEMDOT related
to Eq. (19) converges at the output displacement of 0.9988 after 107 iterations, and the
optimization process of penalized SEMDOT related to Eq. (18) converges at the output
displacement of 1.0502 after 93 iterations. The corrected objective function value
(u∗

out ) of penalized SEMDOT is 0.9944, which is lower than that of non-penalized
SEMDOT (0.9988). In contrast to the performance, the convergency of penalized
SEMDOT is slightly stronger than that of non-penalized SEMDOT in terms of this
case. Smooth topologies obtained by non-penalized and penalized SEMDOT can be
found in Fig. 12b, c where the main difference of these two structures is the size of the
enclosed void area (hole).
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Table 1 Output displacement and convergency of force inverter design problem obtained by non-penalized
SEMDOT under different evolution rates

Algorithm evaluation Evolution rate � in Heaviside smooth function
0.125 0.25 0.75 1 1.5 2

Output displacement 1.0031 1.0016 0.9992 1.003 1.0023 1.0016

Number of iterations 408 192 98 129 100 86

(a) Λ = 0.125 (b) Λ = 0.25 (c) Λ = 0.75

(d) Λ = 1 (e) Λ = 1.5 (f) Λ = 2

Fig. 13 Resulting smooth topologies of force inverter design problem obtained by non-penalized SEMDOT
under different evolution rates

In non-penalized SEMDOT, the Heaviside smooth function (Eq. (8)) is the only
scheme used to facilitate the generation of solid/void elements, and therefore, the
evolution rate � in the Heaviside smooth function has effect on convergency, per-
formance, and topological layout. Performance and convergency of non-penalized
SEMDOT under six different evolution rates (i.e., � = 0.125, 0.25, 0.75, 1, 1.5, and
2) are summarized in Table 1 . It is noted that the default evolution rate � is 0.5 in
SEMDOT. Although it is hard to identify the relation between the evolution rate and
output displacement, a relatively small value of the evolution rate can lead to a better
solution, for example, the output displacement of 1.0031 at � = 0.125 in Table 1. As
outlined in Table 1, increasing the evolution rate is able to accelerate the convergence
process. The resulting smooth topologies under different evolution rates are shown in
Fig. 13where no sharp or slender hinges are observed.

Generally, reducing the output spring stiffness kout will increase the difficulty in
solving the force inverter design problem [41]. A more challenging case with kin = 1
and kout = 0.001 is involved in the comparison between non-penalized and penalized
SEMDOT. In addition, amesh of 100×50 (L=100), fin = 1, rmin = 2.5, and V ∗ = 0.3
are adopted. Figure14a shows that the optimization process of non-penalized SEM-
DOTconverges at the output displacement of 1.4569 after 222 iterations, and penalized
SEMDOT converges at the output displacement of 1.0148 after 583 iterations. In
this challenging case, non-penalized SEMDOT performs much better than penalized
SEMDOT in both convergence and performance. More importantly, non-penalized
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Fig. 14 Convergence processes and optimized topologies obtained by non-penalized and penalized
SEMDOT subjected to kin = 1 and kout = 0.001

SEMDOT yields a correct smooth topology (see Fig. 14b), whereas penalized SEM-
DOT results in an improper topology (see Fig. 14c). Compared to penalized SEMDOT,
non-penalized SEMDOT can deal with more difficult optimization problems.

To further challenge non-penalized SEMDOT, a case with kin = 1 and kout =
1 × 10−9 is taken into account. When using kout = 1 × 10−9, a fine mesh that is
capable of increasing the accuracy of the sensitivity analysis related to Eq. (19) is
recommended in non-penalized SEMDOT. In this case, a mesh of 400×200 (L=400),
fin = 1, rmin = 5, and V ∗ = 0.3 are used. Figure15a shows that the optimization
process terminates at the number of iterations of 658 with the output displacement
of 2.2113, and the topological boundary error reaches 0 after 157 iterations. The
successfully optimized topology is shown in Fig. 15b.

4.3 Heat Conduction Case

The last case is the heat conduction problem, which is a challenge to the smooth
boundary formation in SEMDOTdue to the tree-likematerial distributionwith thin and
long features [38, 61]. The typical heat conduction optimization problem is depicted
in Fig. 16 where the square design domain is homogeneously heated, and a unique
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Fig. 15 Convergence process and optimized topology obtained by non-penalized SEMDOT subjected to
kin = 1 and kout = 1 × 10−9

Fig. 16 2D heat conduction
problem

L

L

Distributed heatingT=0

heat sink with the temperature of zero (T = 0) is placed in the middle of the left
edge. Two material phases with isotropic conductivities of 1 and 0.001 are taken into
account here. An outer move limit on the maximum design variable alternation at
each iteration is set to 0.01 to stabilize the optimization procedure of this 2D heat
conduction case. In this case, a mesh of 120 × 120 (L=120), rmin = 2, and V ∗ = 0.5
are adopted. The goal of the considered case is to minimize the thermal compliance,
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which is equivalent to minimizing the average temperature. The optimization problem
is mathematically described as:

min :C(Xe) = ϕ = PTU

subject to :
∑M

e=1 XeVe∑M
e=1 Ve

− V ∗ ≤ 0

0 < ρmin ≤ Xe ≤ 1; e = 1, 2, . . . , M,

where ϕ is the thermal compliance, U is the nodal temperature vector, and P is the
global thermal load vector which has the form of P = K̃U where K̃ is the thermal
conductivity matrix.

Sensitivities of the solid and void elements for the heat conduction problem in
penalized SEMDOT are [37]:

∂C(Xe)

∂Xe
= −UT

e
∂(X p

e K̃1
e )

∂Xe
Ue =

{
−pUT

e K̃
1
eUe if Xe = 1,

−pρ p−1
min UT

e K̃
1
eUe if Xe = ρmin,

where Ue is the temperature of the eth element and K̃1
e is the thermal conductivity

matrix of the solid element.
Sensitivities of the boundary elements in penalized SEMDOT are expressed by:

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= −p[(1 − Xe)ρ
p−1
min + Xe]UT

e K̃
1
eUe.

(20)

Sensitivities of the solid and void elements for the heat conduction problem in
non-penalized SEMDOT are [62]:

∂C(Xe)

∂Xe
=

⎧
⎪⎨

⎪⎩

C(Xe = 1) − C(Xe = 0)

1
≈ −UT

e K̃
1
eUe if Xe = 1,

C(Xe = 0) − C(Xe = 1)

−1
≈ −ρminUT

e K̃
1
eUe if Xe = ρmin.

Sensitivities of the boundary elements in non-penalized SEMDOT are calculated
as:

∂C(Xe)

∂Xe
≈ (1 − Xe)

∂C(Xe)

∂Xe

∣∣∣∣
Xe=ρmin

+ Xe
∂C(Xe)

∂Xe

∣∣∣∣
Xe=1

= −[(1 − Xe)ρmin + Xe]UT
e K̃

1
eUe.

(21)

Figure17a shows that the optimization process of non-penalized SEMDOT related
to Eq. (21) converges at the thermal compliance of 386.4578 after 375 iterations,
and the optimized smooth topology is shown in Fig. 17b. The obvious oscillation is
found in the optimization procedure of penalized SEMDOT related to Eq. (20), which
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Fig. 17 Convergence processes and optimized topologies of heat conduction problem obtained by non-
penalized and penalized SEMDOT

causes the difficulty in convergence. Therefore, the optimization process of penalized
SEMDOT is artificially terminated at the thermal compliance of 381.3003 after 1000
iterations. Due to the numerical instability, an improper topological design is obtained
by penalized SEMDOT, as shown in Fig. 17c.

The penalty coefficient p is increased from 1.5 to 3 to mitigate the aforementioned
issue in penalized SEMDOT. Figure18a shows that the optimization process of penal-
ized SEMDOT with p = 3 converges at the thermal compliance of 392.6831 after
451 iterations, and the topological boundary error reaches a value close to zero. The
corrected objective functional value of penalized SEMDOT with p = 3 is 411.8227,
which is 6.56% higher than that of non-penalized SEMDOT (386.4578). Compared
to the topology in Fig. 17c, an improved topology shown in Fig. 18b is obtained.

To demonstrate the generality of non-penalization SEMDOT in solving heat con-
duction problems, six different target volumes (i.e., V ∗ =0.1, 0.2, 0.3, 0.4, 0.6, and
0.7) are considered, and corresponding thermal compliance and numbers of iterations
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Fig. 18 Convergence process and optimized topology of heat conduction problem obtained by penalized
SEMDOT with p = 3

Table 2 Thermal compliance and convergency of heat conduction problem obtained by non-penalized
SEMDOT under different target volume fractions

Algorithm evaluation Target volume fraction V ∗
0.1 0.2 0.3 0.4 0.6 0.7

Thermal compliance 1632.02 720.02 516.83 426.26 365.16 353.68

Number of iterations 408 353 316 425 525 407

are listed in Table 2. As outlined in Table 2, increasing the target volume is a straight-
forward way to reduce the thermal compliance; however, more materials are required.
It is hard to identify the relation between the total number of iterations and target vol-
ume. Optimized smooth topologies under distinct target volume fractions are shown
in Fig. 19.

The common issue of optimized topologies in Figs. 17b, c, 18b, and 19 is discon-
tinuous boundaries at the tips of the obtained tree-like structures. The element-based
topological design subjected to V ∗ = 0.3 shown in Fig. 20 is taken as an exam-
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Fig. 19 Resulting smooth topologies of heat conduction problem obtained by non-penalized SEMDOT
under different target volume fractions

Fig. 20 Element-based design of
heat conduction problem
subjected to V ∗ = 0.3

ple to illustrate the reason causing the discontinuity of the topological layout. As
shown in Fig. 20, intermediate elements with small values exist at the tips, resulting
in insufficient materials in the aspect of forming continuous boundaries.

The discontinuous boundary issue in the heat conduction problem cannot be simply
solved by increasing the number of elements or grid points. Although the two filters
in SEMDOT can implicitly control the feature size, the discontinuous boundary issue
still cannot be solved by increasing the two filter radii (i.e., rmin and ϒmin). Therefore,
an effective approach is required to explicitly control the minimum feature size with
the aim of overcoming the discontinuous boundary issue. The length-scale control
approach proposed by Zhang et al. [66], which is originally developed for SIMP, is
adopted here. In this method, the minimum length scale can be accurately measured
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based on the structural skeleton, which is identified by means of the image process-
ing technique. The minimum length-scale constraint incorporated into SEMDOT is
defined as:

g∗(Xe) =
∑

j∈Imin

(X j − 1)2 ≤ 0,

where

Imin =
⎧
⎨

⎩ j

∣∣∣∣∣∣
j ∈ {1, . . . , M},� j ∈

⋃

X∈SS(�)

B(X, d)

⎫
⎬

⎭ ,

where X j is the elemental volume fraction of the j th element, X is the vector of X j ,
� is a closed domain, � j is the domain occupied by the j th element, SS(�) is the
structural skeleton, d is the lower bound of the length scale, and B(X, d) is a closed
ball centered at X with a diameter of d. Here, d is set to 4 element widths.

Again, the heat conduction problem subjected to V ∗ = 0.3 is taken as an example
to demonstrate the effectiveness of the selected length-scale control approach. Fig-
ure21a shows that thermal compliance keeps increasing after 70 iterations, and hence,
there is no steady state during optimization. In this case, the topological boundary
error ε in Eq. (10) can be used to determine a proper topological design considering
the minimum length-scale constraint. Figure21b, c shows the structural skeleton and
topology at the 100th iteration when ε is 0, and the resemblance between the topolo-
gies in Figs. 21c and 19c can be found. Converged skeleton and topology are shown
in Fig. 21d, e, respectively. By contrast, the topology in Fig. 21e, which is obtained
after 293 iterations, is far from that in Fig. 19c. Due to the use of the length scale con-
straint, 12.77% performance needs to be sacrificed to yield the topology in Fig. 21c,
and 32.57% performance needs to sacrificed to obtain the topology in Fig. 21e. Solv-
ing the discontinuous boundary issue for SEMDOT is not the focus of this work, and
hence, only one example (Fig. 21) is presented here.

Following the 2D heat conduction case, a 3D case sketched in Fig. 22 is taken
into account to further show the advantage of non-penalized SEMDOT in solving 3D
optimization problems. Here, a mesh of 60×60×60, rmin = 4, V ∗ = 0.1, and the
move limit of 0.5 in MMA are utilized.

As discussed in the 2D case, increasing the value of the penalty parameter p can
mitigate the oscillation of the optimization process in penalized SEMDOT. Therefore,
the penalized SEMDOTmethod with p = 3 is used for comparison. Figure23a shows
that the optimization process of non-penalized SEMDOT converges at the thermal
compliance of 824,899.956 after 800 iterations. By contrast, the optimization process
of penalized SEMDOT with p = 3 is artificially terminated after 1500 iterations
at the thermal compliance of 968,386.807. The corrected thermal compliance of the
penalized SEMDOT with p = 3 is 1,382,263.89, which is 67.57% higher than that of
non-penalized SEMDOT (824,899.956). The resulting smooth 3D topologies obtained
by non-penalized and penalized SEMDOT are shown in Fig. 23b, c, respectively. Even
though the length-scale control approach is not applied to the 3D heat conduction case,
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Fig. 21 Convergence process, skeletons, and topologies obtained by length-scale control approach for heat
conduction problem

no discontinuous boundary issue is observed in Fig. 23b. This is because cutting an
element in a 3D space can alleviate the feature breakage. However, discontinuous
boundaries are observed in Fig. 23c. It is noted that the 3D smooth design in Fig. 23c
is not the converged result.

Based on the above discussion, it is concluded that, compared to penalized SEM-
DOT, non-penalized SEMDOT can converge faster and yield better solutions for both
2D and 3D heat conduction problems.
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Fig. 22 3D heat conduction
problem

Heat sink

x

y

z

5 Conclusions

The presented study developed a non-penalization SEMDOT algorithm without
significant modifications based on discrete variable sensitivities. The efficiency, effec-
tiveness, and general applicability of non-penalized SEMDOT are demonstrated via
three representative case studies: compliance minimization, compliant mechanism
design, and heat conduction problems. In addition, comparisons between penalized
and non-penalized SEMDOT were thoroughly discussed. For the fairness of compar-
ison, the objective function in penalized SEMDOT was corrected by removing the
penalty parameter.

The proposed non-penalized SEMDOTmethod enables designers to directly obtain
the smooth topologieswithout needing post-processingmethods for engineering appli-
cations, and discussions on effect of the penalty coefficient p on final results are not
required. Analytical and numerical discussions demonstrate that the assumed linear
combination form for the sensitivity analysis in SEMDOT has physical meaning and it
is effective. Thanks to discrete variable sensitivities, non-penalized SEMDOT can lead
to improved solutions, stronger convergency, more reasonable topologies compared to
penalized SEMDOT at least for the topology optimization problems presented in this
work. Porous structure design and length-scale control cases prove that the existing
methods developed based on SIMP can be easily incorporated into SEMDOT, which
facilitates the use of SEMDOT for different optimization problems.

Future work will use the newly proposed non-penalized SEMDOTmethod to solve
dynamic and wave propagation problems.
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