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Abstract
We study the shape differentiability of a general functional depending on the solution
of a bidimensional stationary Stokes–elasticity system with small loads, with respect
to the reference domain of the elastic structure immersed in a viscous fluid. The
differentiability with respect to reference elastic domain variations is considered under
shape perturbationswith diffeomorphisms. The shape derivative is then calculatedwith
the use of the velocity method. This derivative involves the material derivatives of the
solution of this fluid–structure interaction problem. The adjoint method is then used
to obtain a simplified expression for the shape derivative.

Keywords Fluid–structure system · Stokes and elasticity equations · Shape
optimisation · Shape sensitivity

1 Introduction

Fluid–structure interaction (FSI) problems model physical systems in which a solid
body (rigid or deformable) interacts with a fluid (internal or external to the body). In
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this work, we consider an elastic body in plain strain, clamped to a rigid support in its
interior and immersed in a viscous incompressible fluid. The system is infinite in the
anti-plane dimension. From the mathematical point of view, we consider a system of
bidimensional stationaryPDEswhich involves on the onehand theStokes equations for
the fluid flow and, on the other hand, incompressible linearised elasticity equations
for the deformation of the structure. These two sub-systems are coupled through a
boundary condition on the interface between the solid and the fluid, by imposing the
force continuity across the interface.

In this paper, we are interested in a shape optimisation issue for this fluid–structure
interaction problem.We aim to study the shape sensibility with respect to the reference
domain Ω0 of the elastic body, also called the reference configuration (i.e. the domain
at rest, before deformation) of a given shape functional. This functional depends on
the elastic reference domain Ω0 as well as on the corresponding solution of the full
PDE system. We point out that in this context, we do not directly control the shape of
the deformed elastic body which actually interacts with the fluid.

The goal of this paper is to show the differentiability of a broad family of shape
functionals (e.g. energy functional, drag functional) in which the shape is the refer-
ence configuration Ω0 of the elastic body, and also to calculate the associated shape
derivatives. The differentiability is tackled with respect to the reference configuration
Ω0 by considering a class of perturbations of Ω0, obtained by diffeomorphism. We
also provide formulas for the associated shape derivatives.

These derivatives would be useful in a numerical shape optimisation procedure
(as, for example, steepest descent methods) to determine an optimal elastic reference
domain that minimises a given shape functional (see, e.g. [2, 25, 34, 45]).

Dealing with an FSI problem, the first mathematical issue is proving existence of
solutions. Early important contributions can be found in [4, 16, 17] inwhich the authors
study stationary flows in nonlinear elastic shells and also nonlinear elastic tubes and
shells under external flow for which the velocity is prescribed. In the early 2000,
mathematicians started to investigate more intensively the interaction of a viscous
liquid with elastic bodies in steady and unsteady regimes. For steady-state problems,
one can cite [6, 24, 26, 38, 41] and for the unsteady case, we refer for example to [8, 9,
14, 19, 27, 35].One of the difficulties in the study of this kind of FSI problems is that the
fluid, described in Eulerian coordinates, turns out to be defined on a domain depending
on the structure displacement, which is instead described in Lagrangian coordinates.
For the FSI problem under consideration in this paper, we will first establish the
existence and uniqueness of the solution.

The second issue in FSI problems is to find optimal structures which optimise a
suitable desired efficiency in fluid dynamics, possibly under constraint. Great interest
has been shown in the minimisation of the drag in fluid mechanics optimisation (see,
e.g. [5, 25, 34]), in the shape minimisation of the dissipated energy in a pipe (see,
e.g. [7, 30]) or in the optimisation of fluid flow with or without body forces (see, e.g.
[18]). In all these mentioned works, the shape or the geometry in which PDEs lie, are
fixed and known. Shape optimisation applied to FSI problems, where the geometry
is one of the unknowns, is more recent. One can cite [3, 31, 32, 44, 45] where level-
set methods are used to characterise the fluid and the structure domains, and also
[33, 36, 37] in which the FSI problem is relaxed by a density design variable. The
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work presented in this paper is an extension of what is done in [39], where the shape
differentiability of a simplified free-boundary one-dimensional problem is studied, and
for which it is proved that the shape optimisation problem is well-posed. In the recent
papers [21, 22], the shape and topological optimisation of a multiphysics thermal–
fluid–structure interaction problem is studied with a velocity and adjoint method, for
which the structure domain is assumed to be fixed. In [43], differentiability results
are shown for the solutions of a stationary fluid–structure interaction problem in an
ALE framework. The differentiability is considered with respect to variations of the
given data (volume forces and boundary values) but not with respect to the reference
domain of the elastic structure, as it is done in this present paper. Finally, we mention
the work of Haubner et al. [28] where the method of mappings is used for proving
differentiability results with respect to domain variations, for unsteady fluid–structure
interaction problems that couple the Navier–Stokes equations and the Lamé system.

The paper is organised as follows: we start, in Sect. 2, with a presentation of the FSI
problem under study. In Sect. 3, we prove an existence and uniqueness result for the
FSI problem for small data, first by analysing separately the fluid equations and the
structure problem, and finally by coupling the two sub-systems through a fixed-point
procedure. Then, in Sect. 4, after an introduction to the calculus of shape derivatives by
the velocitymethod, we apply this approach to our FSI problem: the sensitivity analysis
allowsus to show that the solutions of theFSI systemare shape-differentiable. Section5
is devoted to the calculation of the shape derivative of an abstract shape functional.
Using the adjoint method, we also give a simplified expression of the shape derivative,
not depending on the material derivatives of the solutions of the FSI problem but
involving the solutions of adjoint problems. Our results, together with possible future
research lines, are discussed in Sect. 6.

2 A Two-Dimensional FSI Model with a Shape Optimisation Problem

In this section, we first present the FSI model under study and then the related shape
optimisation problem that will be addressed in this paper. The FSI model couples the
Stokes equations with the elasticity equation and follows essentially [26] and [39].
The difference with respect to the literature is the assumption of linear incompress-
ible elasticity for the structure, which results in a divergence-free condition for the
structure’s displacement.

2.1 Notations

In this preliminary paragraph, we fix the notations that will be used throughout the
paper. Let {e1, e2} be the canonical orthogonal basis ofR2. Let u and v be two vectors
of R2, A and B be two second-order tensors of R2. Using the Einstein summation
convention, we set:

AB = Aik Bk j ei ⊗ e j , Au = Ai j u j ei ,

A : B = Ai j Bi j , u · v = uivi ,
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Fig. 1 Geometry of the FSI system, before (left) and after (right) deformation induced by the interaction
between the fluid and the structure

where {ei ⊗ e j }1≤i, j≤2 forms the canonical basis of the second-order tensors on R
2.

Denoting by I the identity matrix, we, respectively, define the trace tr(A) of a matrix
A, its symmetric part As , and its norm |A| by:

tr(A) = I : A, As := 1

2

(
A + A�)

, |A| = (A : A)1/2. (1)

Moreover, if A is an invertible matrix, we define the cofactor matrix of A by:

cof(A) = det(A)A−�.

Let Ω be an open subset of R2. The functions involved in the equations we study
in this paper belong to Sobolev spaces Wm,p(Ω), for m ≥ 0 a positive integer, and
1 ≤ p ≤ +∞. With this convention,W 0,p(Ω) stands for the Lebesgue space L p(Ω).
The norm in Wm,p(Ω) is denoted by ‖·‖m,p,Ω , or, when no ambiguity may arise,
simply by ‖·‖m,p. Finally, the space Wm,2(Ω) will simply be denoted by Hm(Ω).

2.2 The Fluid–Structure InteractionModel

We consider a two-dimensional elastic body (the structure) immersed in an incom-
pressible viscous fluid and clamped from a part of its boundary, while applying volume
forces to both fluid and elastic parts. This results in the deformation of the free bound-
ary of the elastic body, which is the interface where the interaction between the elastic
body and the fluid takes place (see Fig. 1).

In order to describe this setting, we fix three simply connected bounded open sets
ω, D0, D ⊂ R

2, such that ω ⊂⊂ D0 ⊂⊂ D. We denote by Γ0 and Γω the boundaries
of D0 and ω, respectively. The annular domain:

Ω0 := D0 \ ω, (2)
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represents the region occupied by the elastic body, that we assume to be clamped
on the boundary part Γω. The complementary set in the box D, namely the annular
domain:

Ωc
0 := D \ D0, (3)

is the region occupied by the fluid, that we take incompressible. The elastic body and
the fluid interact through the interface Γ0, which is deformable.

Thefluid and the structure are subject to volume forceswhich result in a deformation
of the elastic part. In our analysis, we assume that the system is at equilibrium, in
particular, the time variable will not appear in the model.

The deformed elastic body, denoted byΩS , is described in Lagrangian coordinates,
that is, through a function defined in the reference configuration:

ΩS := T (w)(Ω0),

with:

T (w) : Ω0 → D \ ω, T (w) = idR2 + w, (4)

where idR2 is the identity in R
2 and w is the elastic displacement field in Ω0.

Accordingly, the deformed fluid–structure interface is:

ΓFS := T (w)(Γ0) = (idR2 + w)(Γ0). (5)

On the other hand, the fluid is described in Eulerian coordinates, namely through
functions defined in the region surrounding the deformed elastic body:

ΩF := D \ ΩS ∪ ω.

The functions describing the fluid are the velocity field u : ΩF → R
2 and the pressure

field p : ΩF → R.
In the following paragraphs, we will specify the PDEs governing the two phases of

the system, and their interaction.

2.2.1 Fluid Equations

In the framework of incompressibility, the velocity field u and the pressure field p are
governed by Stokes equations:

−divς( u, p) = f in ΩF ,

divu = 0 in ΩF ,

u = 0 on ∂ΩF .
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In the system, f : R2 → R
2 is the applied force, defined in the whole space, whereas

ς is the Cauchy stress tensor, defined by:

ς( u, p) := 2ν∇su − pI,

with ν > 0 the viscosity of the fluid. We recall that the superscript s stands for the
symmetrization operator (see (1)).

2.2.2 Structure Equations

We suppose that the elastic body is attached to the rigid supportω via its boundary Γω.
This assumption results in a Dirichlet boundary condition for the elastic displacement
w:

w = 0 on Γω.

A given volume force g is applied to the structure in Ω0 and the elastic displacement
w satisfies the elasticity equation:

− divσ(w) = g in Ω0, (6)

where σ is the linearised stress tensor (also called the second Piola–Kirchoff stress
tensor) or simply stress tensor:

σ(w) := 2μ∇sw + λ(div w)I.

Here, λ and μ are the so-called Lamé coefficients (see, e.g. [15]). Furthermore, we
impose the equilibrium of the surface forces on the free boundary Γ0 which reads as:

∫

Γ0

σ(w)n0 · (v ◦ (idR2 + w))dΓ0 =
∫

ΓFS

ς(u, p)nFS · v dΓFS, (7)

for all functions v defined on ΩF . In the above relation, ΓFS is defined in (5) and
denotes the boundary between the fluid domain ΩF and the deformed elastic body
ΩS , whereas dΓ0 and dΓFS are the length elements of the boundaries Γ0 and ΓFS ,
respectively, and finally n0 and nFS are the outer unit normal vectors to Γ0 and ΓFS ,
respectively. Recalling that ΓFS is the image of Γ0 via T (w) = idR2 +w, cf. (4)–(5),
we infer (see, e.g. [15]) that:

nFSdΓFS = [
det

(∇(T (w))
)∇(T (w))−Tn0

]
dΓ0. (8)

Thus, using T (w) for a change of variables in (7) togetherwith (8),we get the following
boundary condition:

σ(w)n0 = (
ς( u, p) ◦ T

)
cof(∇T )n0 on Γ0, (9)
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where:

cof(∇T ) = det(∇T )(∇T )−T ,

is the cofactor matrix of the Jacobian matrix of T := T (w).
In this paper, we consider the special case of linear incompressible elasticity for

the structure, by imposing the following equation for the displacement:

div w = 0. (10)

We introduce a Lagrange multiplier function s associated with the incompressibility
constraint (10). Then, the structure equation (6) together with the continuity condition
of forces (9), for (w, s), becomes:

−divσ(w) + ∇s = g in Ω0,

(σ (w) − sI) n0 = (
ς(u, p) ◦ T

)
cof(∇T )n0 on Γ0.

2.2.3 Full FSI Coupled System

Using the fact that both the velocity u and the displacement w are divergence free, the
FSI system for (u, p) and (w,s) that we consider in this paper is the following:

−νdiv(∇u) + ∇p = f in ΩF ,

divu = 0 in ΩF ,

u = 0 on ∂ΩF ,

−μdiv(∇w) + ∇s = g in Ω0,

div w = 0 in Ω0,

w = 0 on Γω,

(μ∇w − sI) n0 = ((ν∇u − p I) ◦ T )cof(∇T )n0 on Γ0.

(11)

Remark 1 In view of the incompressibility of the fluid, we consider the case where
|ΩF | is conserved, |ΩF | denoting the Lebesguemeasure ofΩF . For this, the following
constraint can be considered:

|ΩS| =
∫

Ω0

det(I + ∇w) dx = |Ω0|. (12)

In our case, we have that:

det (I + ∇w) = 1 + div(w) + det(∇w) = 1 + div(w) + O
(
‖∇w‖2∞

)
. (13)

So, under the condition that div w = 0 and neglecting the second-order terms in (13),
we obtain that the area constraint (12) is satisfied. This implies that the volume of the
fluid is conserved, since, by definition, |ΩF | := |D| − |ΩS| − |ω|.
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We can observe that the coupling of the FSI problem (11) is twofold:

• the structure displacement w affects and defines the domainΩF on which the fluid
equations are posed and where the velocity u and the pressure p are defined,

• the velocity u and the pressure p of the fluid give rise to a surface force which
influences the calculation of the displacement w.

One of the main difficulties lies in the fact that there are two kinds of variables under
consideration. On the one hand, the FSI problem involves Eulerian variables with the
fluid velocity u and pressure p, and on the other hand, the elastic displacement w and
the multiplier s are Lagrangian variables.

Moreover, the domain ΩF on which the fluid equations are written is unknown. To
overcome these difficulties, we need to transport the fluid equations into a reference
domain matching with the elastic reference domain Ω0. This domain transformation
technique is also known as the ALE method (Arbitrary Eulerian Lagrangian). It is
commonly used for computing the numerical solution (with a finite element method)
of coupled Eulerian–Lagrangian systems or for free-boundary problems involving a
time derivative (see [20]).

2.3 Fixed Domain Formulation of the FSI Problem

In order to tackle the FSI problem (11), we transpose the fluid equations posed on the
fluid domain ΩF onto the fixed domain Ωc

0 defined by:

Ωc
0 := D \ Ω0 ∪ ω. (14)

Thus, we need a C1-diffeomorphism which maps Ωc
0 to ΩF . To this aim, we consider

an extension of the map T , initially defined on Ω0 in (4), to the whole box D. With a
slight abuse of notation, we use the same letter T and we set:

T (w) = idR2 + P(w), (15)

where w is a displacement field defined in the initial elastic body domain Ω0, and P
is an extension operator from Ω0 to D, such that P(w) is defined in D and T (w) is
one to one in D. This allows us to consider the fluid domain ΩF defined as:

ΩF = T (w)(Ωc
0),

where Ωc
0 is defined in (14) (see also Fig. 1). We will go through this extension

procedure in details later on, to give a rigorous definition of T .
In the same way as in [26], we can define the transported velocity and pressure

fields:

v := u ◦ T (w), and q := p ◦ T (w).

With these new variables, we can write the fluid equations transported onto the refer-
ence domain Ωc

0 (e.g. by using the variational formulation as in [12, Sect. 3.2.2]), and
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the complete FSI problem reads as:

−νdiv((∇v)F(w)) + G(w)∇q = ( f ◦ T (w))J (w) in Ωc
0 ,

div(G(w)�v) = 0 in Ωc
0 ,

v = 0 on ∂Ωc
0 ,

−μdiv(∇w) + ∇s = g in Ω0,

div w = 0 in Ω0,

w = 0 on Γω,

(μ∇w − s I)n0 = ν(∇v)F(w)n0
− qG(w)n0 on Γ0,

(16)

where we have set:

J (w) := det(∇T (w)), G(w) := cof(∇T (w)), F(w) := (∇T (w))−1cof (∇T (w)) .

The boundary condition on Γ0 appearing in (16) comes from the computation of the
surface force applied on the structure, given in (9) by (ς( u, p) ◦ T )cof(∇T )n0, in
terms of the new variables v and q:

(ς(u, p) ◦ T )cof(∇T )n0 = (ν(∇v)F(w) − qG(w))n0.

We point out that the FSI problem (16) is a sort of hybrid model compared to [26],
coming from the linearisation of the equilibrium equation of the structure (that is to
say the Piola–Kirchhoff stress tensor) and the area constraint (12). This has been done
in order to simplify the shape optimisation analysis performed in this paper. Moreover,
we do not have linearised the terms arising from the fluid equations change of variables,
i.e. J (w), G(w), and F(w), because we want to compute shape derivatives by keeping
as much information as possible, for possible further applications and calculation
purposes for a general system.

2.4 Optimisation of the FSI System

The shape sensitivity analysis of the FSI model (16) carried out in this article is
motivated by a shape optimisation problem. This problem consists in seeking for
an optimal shape of the elastic reference domain Ω0 that minimises a functional
depending on the solution of the FSI system associated to Ω0. The shape optimisation
problem we consider is of the following form:

min
Ω0∈Uad

J (Ω0), (17)
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where J (Ω0) is a quite general shape functional depending on the initial elastic
domain, defined by:

J (Ω0) =
∫

Ω0

jS(Y ,w(Y ),∇w(Y )) dY +
∫

ΩF

jF (x, u(x),∇u(x)) dx,

where jF and jS are smooth functions depending, respectively, on u = v ◦ T (w)−1

and w. The fields v and w are the velocity and the displacement solutions of the FSI
problem (16) posed on Ω0 ∪ Ωc

0 . The domain Ω0 ∈ Uad belongs to a class Uad of
smooth domains admissible for the FSI problem. For example, we can consider:

Uad := {A ⊂ R
2, A = B \ ω with B smooth,

simply connected, ω ⊂ B ⊂ D and |A| = |Ω0|}.

In this paper, we do not go as far as to solve the complete optimisation problem (17).
We will restrict our study to the shape sensitivity analysis of the FSI model (16).

3 Existence and Uniqueness Result for the FSI Problem

In this section, we establish an existence and uniqueness result written in Theorem 1
for the FSI problem (16). In [26], an existence result is obtained for the Navier–
Stokes equations coupled with a St. Venant–Kirchhoff material in 3D with a volume
constraint, for small enough volume forces. Existence and uniqueness for small data
are achieved in [43] for a 3D Stokes and linear elasticity system, without volume
constraint, and with small data not affected by the ALE change of variable. For our
purpose, the existence and the uniqueness of the solution are required to address the
associated optimisation problem and its shape sensitivity analysis. Moreover, since
the body force f ◦ T (w) applied to the fluid is affected by the change of variable, we
need higher regularity of the data. Indeed, from [29, Lemma 5.3.9], we need f ∈ H2

in order to have that the map W 1,∞ � θ �→ f ◦ (idR2 + θ) ∈ H1, is of class C1 in the
vicinity of 0 (see (48)). The existence and uniqueness result for our semi-linearised
model is obtained by adapting what is done in [26].

Theorem 1 Let D, Ω0, Ωc
0 and ω be domains of the form (2)–(3) with boundary

components ∂D and Γω of class C3 and Γ0 of class C3,1. Let f ∈ (
H2(R2)

)2
and

g ∈ (
H1(Ω0)

)2
. There exists a positive constant C such that if ‖ f ‖2,2 ≤ C and

‖g‖1,2 ≤ C, then there exists a unique solution:

(v, q,w, s) ∈ (H1
0 (Ωc

0) ∩ H3(Ωc
0))

2 × (L2
0(Ω

c
0) ∩ H2(Ωc

0))

×(H1
0,Γω

(Ω0) ∩ H3(Ω0))
2 × H2(Ω0)

to the FSI problem (16). Furthermore, there exists a positive constant CFS such that:

‖v‖3,2,Ωc
0

+ ‖q‖2,2,Ωc
0

+ ‖w‖3,2,Ω0 + ‖s‖2,2,Ω0 ≤ CFS(‖ f ‖2,2,R2 + ‖g‖1,2,Ω0 ). (18)
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Before going through the proof of Theorem 1, let us introduce some preliminary
elements that allow to well define the bijective map T introduced in (15).

3.1 Preliminaries

Letb be a vector field belonging to (H3(Ω0))
2.We define the following transformation

map:

T : (H3(Ω0))
2 −→ (H3(Ωc

0))
2

b �−→ idR2 + R(γ (b)),
(19)

where γ is the trace operator on Γ0 and R is a lifting operator from Γ0 to Ωc
0 :

γ : H3(Ω0) → H3−1/2(Γ0), and R : H3−1/2(Γ0) → H3(Ωc
0). (20)

We note that γ and R are continuous linear operators. The extension operator P =
R ◦ γ can then be used to define the transformation map T (w) introduced in (15).
This map has to be a C1-diffeomorphism, which requires some regularity property of
the displacement field w. The following lemma ensures that for a function b regular
enough, the map T (b) defined in (19) can be used as a change of variable in the Stokes
equations. A proof of this result can be found in [26].

Lemma 1 There exists a positive constant M such that if b ∈ (H3(Ω0))
2 satisfies:

‖b‖H3(Ω0)
≤ M,

then the following properties hold true:

(i) ∇(idR2 + R(γ (b))) = I + ∇R(γ (b)) is an invertible matrix in (H2(Ωc
0))

2×2,
(ii) T (b) = idR2 + R(γ (b)) is one to one on Ωc

0 ,
(iii) T (b) is a C1-diffeomorphism from Ωc

0 onto T (b)(Ωc
0).

Note that the change of variables in the Stokes equations shows up some terms such
as (∇v)F(w) or G(w)∇q, see (16). If we want them to be well defined, we still
need higher regularity for w, and we need an algebra structure allowing products
of functions. This is done with the following result offering an algebra structure for
Sobolev spaces (see [1, Theorem 4.39, p. 106]).

Lemma 2 Let Ω be a bounded domain of R2 of class C1. There exists a positive
constant Ca such that for all u, v ∈ H2(Ω), we have uv ∈ H2(Ω) and:

‖uv‖2,2,Ω ≤ Ca ‖u‖2,2,Ω ‖v‖2,2,Ω . (21)

Furthermore, for all w ∈ H1(Ω) and u ∈ H2(Ω), we have uw ∈ H1(Ω) and:

‖uw‖1,2,Ω ≤ Ca ‖u‖2,2,Ω ‖w‖1,2,Ω . (22)
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Now, we define the set:

BM := {b ∈ (H3(Ω0))
2 | ‖b‖3,2 ≤ M}. (23)

Then, from the twopreceding lemmas, the followingmaps J : (H3(Ω0))
2 → H2(Ωc

0)

and G, F : BM → (H2(Ωc
0))

2×2 are well defined by:

J (b) = det(∇T (b)), G(b) = cof(∇T (b)), F(b) = (∇T (b))−1cof(∇T (b)).

(24)

Now we give a result concerning the regularity of J , G, F (see [26]).

Lemma 3 The maps J , G and F are of class C∞ in BM defined in (23).

We conclude the paragraph with some remarks which will turn out useful in
Sects. 3.3 and 4.4. From Lemmas 2 and 3, we have that J defined from BM into
H2(Ωc

0) and G and F defined from BM into (H2(Ωc
0))

2×2 are of class C∞, and the
norms of their derivatives are bounded on BM. We set:

‖DJ‖M := sup
b∈BM

‖DJ (b)‖L(H3(Ω0),H2(Ωc
0 ))

,

‖DG‖M := sup
b∈BM

‖DG(b)‖L(H3(Ω0),(H2(Ωc
0 ))

2×2),

‖DF‖M := sup
b∈BM

‖DF(b)‖L(H3(Ω0),(H2(Ωc
0 ))

2×2). (25)

noting that J (0) ≡ 1, ∇T (0) ≡ I, and that from Sobolev injection theorem, H2(Ωc
0)

is continuously embedded into L∞(Ωc
0), we can choose M small enough in (23), so

that there exist two positive constants 0 < C1 < C2, such that for all b ∈ BM we
have:

C1 ≤ ‖J (b)‖2,2, ‖J (b)−1‖2,2, ‖∇T (b)‖2,2, ‖∇T (b)−1‖2,2 ≤ C2, (26)

and:

C1 ≤ ‖J (b)‖0,∞, |J (b)−1‖0,∞, ‖∇T (b)‖0,∞, ‖∇T (b)−1‖0,∞ ≤ C2. (27)

Finally, let η ∈ H1(R2). In view of Lemma 1, T (b) is a C1-diffeomorphism. Thus,
we have η ◦T (b) ∈ H1(Ωc

0) and ∇(η ◦T (b)) = (
(∇η)◦T (b)

)∇T (b), where ∇T (b)

is bounded in H2(Ωc
0) and then in L∞(Ωc

0). It follows that for all b ∈ BM:

‖η ◦ T (b)‖1,2,Ωc
0

≤ C‖η‖1,2,R2 , (28)

for all η ∈ H1(R2), where C is a positive constant depending on Ω0, C1, and C2.
Furthermore, we recall a useful calculus property called Piola’s identity (see, e.g.

[15]). For 1 ≤ n < p, and Ψ ∈ (W 2,p)n , we have:

div (cof∇Ψ ) = 0. (29)
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3.2 Fixed-Point Procedure

The proof of Theorem 1 for the existence and uniqueness of the solution of the FSI
problem (16) relies on a fixed-point argument that we present in this subsection, by
first considering the two following problems.

1. Let f ∈ (H2(R2))2 and let (v(b), q(b)) be the solution of the system:

−νdiv((∇v(b))F(b)) + G(b)∇q(b) = J (b)( f ◦ T (b)) in Ωc
0 ,

div(G(b)T v(b)) = 0 in Ωc
0 ,

v(b) = 0 on ∂Ωc
0 ,

(30)

where the maps J , G and F are defined by (24).
2. Let g ∈ (H1(Ω0))

2 and let (w(b), s(b)) be the solution of the system:

−μdiv(∇w(b)) + ∇s(b) = g in Ω0,

div w(b) = 0 in Ω0,

w(b) = 0 on Γω,

(μ∇w(b) − s(b)I)n0 = (ν∇v(b)F(b) − q(b)G(b))n0 on Γ0.

(31)

For a fixed b small enough, we will show that the problem (30) admits a unique
solution (v(b), q(b)), and then that the problem (31) depending on (v(b), q(b)) admits
also a unique solution denoted by (w(b), s(b)). In particular, we will see that w(b)

belongs to H3(Ω0). Thus, we will be able to define a map:

S : BM −→ (H3(Ω0))
2

b �−→ w(b),
(32)

and we will show in Sect. 3.3 that this map is actually a contraction, so that we can
apply the Banach fixed-point theorem, and deduce that the solution we search for the
FSI problem is unique and is given by the fixed point of S.

Problem (30) is a slightly perturbed incompressible Stokes problem with non-slip
boundary condition, having a solution for which the pressure field is defined up to a
constant. For this, we introduce the null mean-value pressure space:

L2
0(Ω

c
0) :=

{
q ∈ L2(Ωc

0)

∣∣∣
∫

Ωc
0

qdx = 0

}
.

In the case of the structure problem (31) with mixed boundary conditions, the velocity
together with the pressure are completely determined, and no zero mean value has
to be imposed for the pressure. Recalling that Ω0 is defined by (2) with boundary
components Γ0 and Γω (see Fig. 1), we set:

H1
0,Γω

(Ω0) := {u ∈ H1(Ω0) | u = 0 on Γω}.
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We give existence, uniqueness, and regularity results for the solutions to the fluid and
the structure problems (30) and (31), compiled in the following theorem.

Theorem 2 Let D, Ω0, Ωc
0 and ω be domains of the form (2)–(3) with boundary

components ∂D andΓω of class C3 andΓ0 of class C3,1. Let ( fF , hF ) ∈ (H1(Ωc
0))

2×
H2(Ωc

0) and (g, hS, fb) ∈ (H1(Ω0))
2 × H2(Ω0) × (H3/2(Γ ))2 be such that:

∫

Ωc
0

hFdx = 0. (33)

Let A,B ∈ (H2(Ωc
0))

2×2 and C, D ∈ (H2(Ω0))
2×2 be matrix fields such that there

exist ψF ∈ (H3(Ωc
0))

2 and ψS ∈ (H3(Ω0))
2 satisfying:

B = cof(∇ψF ) and D = cof(∇ψS).

There exists a positive constant Cpert such that, if:

‖I − A‖(H2(Ω0))2×2 ≤ Cpert, ‖I − B‖(H2(Ω0))2×2 ≤ Cpert, (34)

‖(H2(Ω0))2×2 ≤ Cpert, ‖I − D‖(H2(Ω0))2×2 ≤ Cpert, (35)

then there exists a unique solution (v, p) ∈ (H1
0 (Ωc

0) ∩ H3(Ωc
0))

2 × (L2
0(Ω

c
0) ∩

H2(Ωc
0)) of the perturbed Stokes system:

−νdiv((∇v)A) + B∇ p = fF in Ωc
0 ,

div(B�v) = hF in Ωc
0 ,

v = 0 on ∂Ωc
0 ,

(36)

and there exists a unique solution (w, s) ∈ (H1
0,Γω

(Ω0)∩ H3(Ω0))
2 × H2(Ω0) of the

problem:

−μdiv((∇w)C) + D∇s = g in Ω0,

div(D�w) = hS in Ω0,

w = 0 on Γω,

(μ(∇w)C − sD)n = fb on Γ ,

(37)

where n is the outward normal vector to Γ . Furthermore, there exists a positive
constant Cfs such that:

‖v‖3,2,Ωc
0
+ ‖p‖2,2,Ωc

0
≤ Cfs(‖ fF‖1,2,Ωc

0
+ ‖hF‖2,2,Ωc

0
)

and

‖w‖3,2,Ω0 + ‖s‖2,2,Ω0 ≤ Cfs(‖g‖1,2,Ω0 + ‖hS‖2,2,Ω0 + ‖ fb‖H3/2(Γ )).
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We refer the reader to [26], where the proof of this result for Problem (36) is entirely
given. The demonstration relies on a fixed-point argument leading to conditions (34),
and on the classical regularity result of Stokes problem (see, e.g. [10]). For a complete
proof of well-posedness and regularity for Stokes problem, we may refer to [13] for
the three-dimensional case, and to [42, Proposition 2.3 p. 35] for the two-dimensional
case. A complete development on these questions is carried out in [23].

Problem (37) involves non-standard boundary conditions of different types. In the
case where C = D = I, a proof of the existence and uniqueness of a weak solution
is given in [12, Sect. 3.3.3], and the regularity result can be obtained following the
approach presented in [10, Sect. IV.7] in the case where the stress boundary condition
lies on the whole boundary ∂Ω0. From there, the result dealing with Problem (37) can
be proved in the very same way as for Problem (36), with a fixed-point argument.

3.3 Proof of Theorem 1

Now,we turn to the proof of Theorem1 for the existence and uniqueness of the solution
of the FSI problem (16) by means of the fixed-point procedure introduced in Sect. 3.2.
From now on, we will denote by C any generic positive constant depending only on
Ω0 and on the constants C1 and C2 appearing in inequalities (26) and (27). The proof
is divided into 3 steps.
• Step 1: continuity of the fluid problem. We start by proving that Problem (30) pos-
sesses a unique solution. We have that G(0) = F(0) = I. For b ∈ BM (see (23)), we
deduce from Lemma 3 that ifM is small enough, then ‖I− F(b)‖(H2(Ω))2×2 ≤ Cpert
and ‖I − G(b)‖(H2(Ω))2×2 ≤ Cpert, where Cpert > 0 is the positive constant from
inequalities (34) of Theorem 2. Moreover, from Lemma 1 we know that T (b) is a C1-
diffeomorphism and consequently f ◦ T (b) ∈ (

H1(Ωc
0)

)2
. Since J (b) ∈ H2(Ωc

0),

we deduce from (21) in Lemma 2 that J (b)( f ◦ T (b)) ∈ (
H1(Ωc

0)
)2
. Thus, we

can apply Theorem 2 with fF = J (b) f ◦ T (b) and hF ≡ 0 for Problem (30):
for all b ∈ BM with M small enough, Problem (30) admits a unique solution
(v(b), q(b)) ∈ (H1

0 (Ωc
0)∩H3(Ωc

0))
2×(L2

0(Ω
c
0)∩H2(Ωc

0)), satisfying the following
estimate:

‖v(b)‖3,2,Ω + ‖q(b)‖2,2,Ω ≤ Cfs‖J (b)( f ◦ T (b))‖1,2,Ω . (38)

Now, we prove a continuity property for the solutions of Problem (30). Let then
(v(b1), q(b1)) and (v(b2), q(b2)) be the solutions of Problem (30) for, respectively,
b1 and b2 in BM. We set δv := v(b1) − v(b2) and δq := q(b1) − q(b2). We want to
estimate ‖δv‖3,2,Ωc

0
and ‖δq‖2,2,Ωc

0
with respect to the difference ‖b1 − b2‖3,2,Ω0 . In

view of (30), by difference, we infer that the pair (δv, δq) solves:

−νdiv(∇(δv)F(b1)) + G(b1)∇δq = fF in Ωc
0 ,

div(G(b1)�δv) = hF in Ωc
0 ,

δv = 0 on ∂Ωc
0 ,

(39)
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where now fF and hF are defined by:

fF := J (b1) f ◦ T (b1) − J (b2) f ◦ T (b2) + νdiv(∇(v(b2))(F(b1) − F(b2)))

− (G(b1) − G(b2))∇q(b2),

hF := −div((G(b1) − G(b2))�v(b2)). (40)

The compatibility condition (33) forhF is valid because of the homogeneousDirich-
let condition satisfied by v(b2). In view of the regularity of b1, b2, v(b2) and q(b2),
we can apply Theorem 2 to Problem (39). Indeed, from Piola’s identity (29), we
have that hF = −div((G(b1) − G(b2))�v(b2)) = −(G(b1) − G(b2)) · ∇v(b2),
which belongs to H2(Ωc

0) thanks to Lemma 2. Still from Lemma 2, we directly
have that div(∇(v(b2))(F(b1) − F(b2))) is in H1(Ωc

0). From the second part (22)
of Lemma 2, (G(b1) − G(b2))∇q(b2) belongs to H1(Ωc

0). As a result from (40),
we deduce that fF ∈ (H1(Ωc

0))
2 and we can apply Theorem 2 to Problem (39).

Thus, for all b1, b2 in BM, the solution (δv, δq) of Problem (39) belongs to
(H1

0 (Ωc
0) ∩ H3(Ωc

0))
2 × (L2

0(Ω
c
0) ∩ H2(Ωc

0)) and satisfies:

‖δv‖3,2,Ωc
0
+ ‖δq‖2,2,Ωc

0
≤ Cfs

(
‖ fF‖1,2,Ωc

0
+ ‖hF‖2,2,Ωc

0

)
. (41)

Let us first estimate the term fF , starting by considering the terms depending on
v(b2) and q(b2) in (40). From Theorem 2 applied to Problem (30) written for b2, we
have the estimate:

‖∇v(b2)‖2,2,Ωc
0 ,

+ ‖∇q(b2)‖1,2,Ωc
0

≤ Cfs‖J (b2)( f ◦ T (b2))‖1,2,Ωc
0
. (42)

In view of Lemma 2, and inequalities (26) and (28), we have, up to taking a smaller
M:

‖J (b2)( f ◦ T (b2))‖1,2,Ωc
0

≤ CCa‖ f ‖1,2,R2 . (43)

From Lemma 2 with (42), (43) and (25), we deduce:

‖∇v(b2)(F(b1) − F(b2))‖2,2,Ωc
0

≤ Ca‖∇v(b2)‖2,2,Ωc
0
‖F(b1) − F(b2)‖2,2,Ωc

0

≤ CC2
aCfs‖ f ‖1,2,R2‖DF‖M‖b1 − b2‖3,2,Ω0 ,

(44)

and similarly we find:

‖(G(b1) − G(b2))∇q(b2)‖1,2,Ωc
0

≤ CC2
aCfs‖ f ‖1,2,R2‖DG‖M‖b1 − b2‖3,2,Ω0 .

(45)

In order to obtain a bound for fF , we also need to treat the first two terms in the
right-hand side of (40), which we rewrite as follows:
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‖J (b1) f ◦ T (b1) − J (b2) f ◦ T (b2)‖1,2,Ωc
0

≤ ‖(J (b1) − J (b2)) f ◦ T (b1)‖1,2,Ωc
0

+ ‖J (b2)( f ◦ T (b1) − f ◦ T (b2))‖1,2,Ωc
0
. (46)

For the first term of the right-hand side of (46), we have from Lemma 2 and (28):

‖(J (b1) − J (b2)) f ◦ T (b1)‖1,2,Ωc
0

≤ CCa‖ f ‖1,2,R2‖DJ‖M‖b1 − b2‖3,2,Ω0 .

(47)

For the second term of the right-hand side of (46), we rely on [29, Lemma 5.3.9]. Let
us remark that it is at this stage, i.e. for the application of this Lemma, that we need
more regularity for f when normally H1-regularity would have been enough to solve
the fluid problem. Indeed, this lemma states that if f ∈ H2(R2), then the map:

(W 1,∞(R2))2 � θ �→ f ◦ (idR2 + θ) ∈ H1(R2) (48)

is of classC1 in the vicinity of 0, and the differential is given by D( f ◦ (idR2 +θ))ξ =
(∇ f )◦(idR2+θ)·ξ for all ξ in (W 1,∞(R2))2. Yetwe have that T (b) defined in (19) can
in fact be defined as T (b) = idR2 + R(γ (b)) with BM � b �→ R(γ (b)) ∈ H3(R2).
From Sobolev embedding, we have that (H3(R2))2 is continuously embedded into
(W 1,∞(R2))2, and we denote by C∞ the embedding constant. We also note that
b �→ T (b) is continuously affine and then smooth. As a consequence we have that the
map:

BM � b �→ f ◦ T (b) ∈ (H1(R2))2

is well defined and is of class C1 in the vicinity of 0. Its differential is given by
Db( f ◦ T (b))ξ = (∇ f ) ◦ T (b) ·R(γ (ξ)) for all ξ in (H3(Ω0))

2. In view of Lemma
2 with f ∈ (

H2(R2)
)2
, Db( f ◦ T (b))ξ is indeed in (H1(R2))2 and:

‖Db( f ◦ T (b))‖L((H3(Ω0))2,(H1(R2))2×2) ≤ CCRγC∞‖(∇ f ) ◦ T (b)‖1,2,R2 ,

where CRγ stands for the continuity constant of the operator R ◦ γ . Thus, for f ∈
(H2(R2))2, we have:

‖ f ◦ T (b1) − f ◦ T (b2)‖1,2,Ωc
0

≤ CCRγC∞ sup
b∈BM

{‖(∇ f ) ◦ T (b)‖1,2,R2
} ‖b1 − b2‖3,2,Ω0 .

In the light of (28), we have similarly for all b ∈ BM:

‖(∇ f ) ◦ T (b)‖1,2,R2 ≤ C‖ f ‖2,2,R2 ,

and then by arguing in the same way as for (43) we have:

‖J (b2)( f ◦ T (b1) − f ◦ T (b2))‖1,2,Ωc
0

≤ CCaCRγC∞‖ f ‖2,2,R2‖b1 − b2‖3,2,Ω0 . (49)
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We recall that fF is given by (40). We have completely estimated ‖ fF‖1,2 by
combining (44), (45), (47), and (49). We obtain:

‖ fF‖1,2,Ωc
0

≤ ‖ f ‖1,2,R2

(
CC2

aCfs(ν‖DF‖M + ‖DG‖M) + CCa‖DJ‖M
)

‖b1 − b2‖3,2,Ω0 + CCaCRγC∞‖ f ‖2,2,R2‖b1 − b2‖3,2,Ω0 ,

and finally we have a constant C1 = C1(Cfs,Ca,C∞,CRγ ,M) such that:

‖ fF‖1,2,Ωc
0

≤ C1‖ f ‖2,2,R2‖b1 − b2‖3,2,Ω0 . (50)

Let us now pass to the estimate for ‖hF‖2,2.We recall that in view of Piola’s identity
(29) we can write:

hF = −div((G(b1) − G(b2))�v(b2)) = −(G(b1) − G(b2)) : ∇v(b2),

so that in a same manner as for (44), we have:

‖hF‖2,2,Ωc
0

≤ Ca‖G(b1) − G(b2)‖2,2,Ωc
0
‖∇v(b2)‖2,2,Ωc

0

≤ CC2
aCfs‖ f ‖1,2,R2‖DG‖M‖b1 − b2‖3,2,Ω0 . (51)

At this point, we have computed two upper bounds for the norms of fF and hF .
Thus, by combining (41), (50), and (51), we finally obtain that there exists a constant
CF = CF(Cfs,Ca,C∞,CRγ ,M) such that for all b1, b2 in BM:

‖δv‖3,2,Ωc
0
+ ‖δq‖2,2,Ωc

0
≤ CF‖ f ‖2,2,R2‖b1 − b2‖3,2,Ω0 . (52)

•Step 2: continuity of the structure problem. We first prove that Problem (31) has a
unique solution. For b ∈ BM, Problem (31) involves the source term on Γ0:

fb = [
ν∇v(b)F(b) − q(b)G(b)

]
n0, (53)

where (v(b), q(b)) is the unique solution of the fluid equations (30) studied in Step 1. In
view of the regularity of the fields involved in the expression (53) and from Lemma 2,
we have that:

ν∇v(b)F(b) − q(b)G(b) ∈ H2(Ωc
0). (54)

Thus, fb belongs to (H3/2(Γ0))
2 and Theorem 2 for C = D = I can be applied: for

all b ∈ BM, there exists a unique solution (w(b), s(b)) ∈ (H1
0,Γω

(Ω0)∩ H2(Ω0))
2 ×

H2(Ω0) of Problem (31) and there exists a positive constant Cfs such that:

‖w(b)‖3,2,Ω0 + ‖s(b)‖2,2,Ω0 ≤ Cfs
(‖g‖1,2,Ω0 + ‖ fb‖H3/2(Γ0)

)
. (55)
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Now, we establish a continuity property for Problem (31). Let (w(b1), s(b1)) and
(w(b2), s(b2)) be the solutions of Problem (31) for, respectively, b1 and b2 in BM
(note that in the system v(bi ) are given and they solve the fluid equation studied in
Step 1). We set δw := w(b1) − w(b2) and δs := s(b1) − s(b2). In view of (31), by
difference, we infer that the pair (δw, δs) solves:

−μdiv(∇sδw) + ∇δs = 0 in Ω0,

divδw = 0 in Ω0,

δw = 0 on Γω,

(μ∇δw − δs I)n0 = fb on Γ0,

with fb the surface force on Γ0:

fb = [ν∇v(b1)F(b1) − ν∇v(b2)F(b2) − q(b1)G(b1) + q(b2)G(b2)]n0. (56)

In view of (54), fb ∈ (H3/2(Γ0))
2 and Theorem 2 applies giving the a priori estimate:

‖δw‖3,2 + ‖δs‖2,2 ≤ Cfs‖ fb‖H3/2(Γ0)
. (57)

Let us furtherly bound from above the right-hand side, in order to make the norm of
the difference b1 − b2 appear. The first two terms of fb (see expression (56)) satisfy:

‖(∇v(b1)F(b1) − ∇v(b2)F(b2)) n0‖3/2,2,Γ0

≤ C
(
‖∇v(b2)(F(b1) − F(b2))‖2,2,Ωc

0
+‖(∇v(b1) − ∇v(b2))F(b1)‖2,2,Ωc

0

)
.

(58)

We bound the two terms of the right-hand side of (58) by using, respectively, (44)
and (52), and noting that H2 norm of F(b) is bounded in BM by a positive constant
C2 = C2(M). This gives:

ν‖(∇v(b1)F(b1) − ∇v(b2)F(b2))n0‖3/2,2,Γ0

≤ ν
(
CC2

aCfs‖DF‖M + CaCFC2

)
‖ f ‖2,2,R2‖b1 − b2‖3,2.

(59)

In a same manner, exploiting (45), (52), and a bound C3 = C3(M) of the H2 norm
of G(b) for b in BM, we get:

‖(q(b1)G(b1) − q(b2)G(b2))n0‖3/2,2,Γ0

≤ (CC2
aCfs‖DG‖M + CaCFC3)‖ f ‖2,2,R2‖b1 − b2‖3,2.

(60)
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By combining (57), (59), and (60), we conclude that there exists a positive constant
CM = CM(Cfs,Ca,C∞,CRγ ,M) such that:

‖w(b1) − w(b2)‖3,2 + ‖s(b1) − s(b2)‖2,2 ≤ CfsCM‖ f ‖2,2,R2‖b1 − b2‖3,2.(61)

• Step 3: contraction property. In the sequel, we prove that the map S : b �→ w(b)

defined in (32) is a contraction. From estimate (61), we have the existence of a positive
constant CI with CICfsCM < 1 such that if ‖ f ‖2,2,R2 < CI , then S is a contraction
in BM. From (55), we deduce that there exists a constantCI I such that if ‖ f ‖1,2,R2 <

CI I and ‖g‖1,2,Ω0 < CI I , then:

‖w(b)‖3,2 + ‖s(b)‖2,2 ≤ M. (62)

By defining:

CS = min(CI ,CI I ),

we have that if ‖ f ‖2,2,R2 < CS and ‖g‖1,2,Ω0 < CS, then the map S is a con-
traction which maps BM onto BM. Thus, the Banach fixed-point theorem ensures
that S admits a unique fixed point in BM denoted by w. It results that the solution
(v(w), q(w),w, s(w)) is the unique solution to the fluid–structure interaction problem
(16). Finally, combining (38), (53), (55), and (62), we obtain estimate (18). The proof
of Theorem 1 is then complete.

4 Velocity Method and Shape Differentiability of the FSI System

After having proved the existence of solutions of the FSI system for a prescribed
reference configuration, we now address the so-called shape sensitivity analysis: we
analyse the behaviour of the solutions with respect to infinitesimal perturbations of
the reference configuration. The section is organized as follows: we start, in Sect. 4.1,
by introducing the classical velocity method, applied to the FSI problem in Sect. 4.2,
and we show its uniform well-posedness in Sect. 4.3. We end with the main result
of this section establishing in Sect. 4.4, Theorem 3, the shape differentiability of the
solutions of the FSI problem.

4.1 Presentation of theMethod

Weare interested in the study of the behaviour of a shape functionalJ (Ω)with respect
to infinitesimal variations of its argument, the set Ω . This topic, referred to as shape
derivative or shape sensitivity analysis, is now a standard tool in shape optimisation.
See, e.g. [40, Chapter 2], [29, Sect. 5.1], or [2, Chapter 6].

Let us present the classical approach: the velocity method. Given an admissible
domain Ω0 for J , we consider a 1-parameter family of shapes (Ω0,t )t of the form:

Ω0,t := Φt (Ω0), (63)
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where (Φt )t is a family of diffeomorphisms, chosen with the following properties:

– at t = 0 there holds Φ0 = idR2 ;
– the map t �→ Φt is of class C1;
– each diffeomorphism Φt preserves the imposed geometrical constraints on Ω0, so
that every Ω0,t is admissible for J .

If the function t �→ J (Ω0,t ) is differentiable at t = 0, then it admits the following
development in t :

J (Ω0,t ) = J (Ω0) + tJ ′(Ω0) + o(t).

The coefficient J ′(Ω0) of t is the so-called shape derivative of J at Ω0 with respect
to the deformations (Φt )t . In the literature, it is classical to take diffeomorphisms of
the form:

Φt = idR2 + tV ,

for a suitable vector field V , representing the velocity (when t is seen as the time) of
Φt at t = 0.

In order to write the expression of J ′(Ω0), it is useful to introduce the notion of
material derivative of a family of functions (ϕt )t defined on the family of transformed
domains (Ω0,t )t≥0 given by (63). By definition, ϕt ◦ Φt are all defined in the fixed
domain Ω0. If the map t �→ ϕt ◦ Φt is differentiable at t = 0, we define the material
derivative ϕ̇ of ϕt at t = 0 as the coefficient of t in the expansion:

ϕt ◦ Φt = ϕ0 + t ϕ̇ + o(t).

Note that ϕ0 and ϕ̇ do not depend on t .

4.2 Shape Transformation of the FSI Problem

In order to apply the velocity method in our framework, let us start by specifying the
transformations Φt that we choose. We consider t ≥ 0 small (the threshold will be
specified later) and:

Φt := idR2 + tV . (64)

Here V is taken in the space:

Θ :=
{
V ∈ H3(R2,R2)

∣∣ suppV ⊂⊂ D \ ω
}

. (65)

Let Ω0 be defined as in Sect. 2, namely the reference configuration of an elastic
body contained into D and attached to the rigid support ω. For t ≥ 0 (small), we set:

Ω0,t := Φt (Ω0), Ωc
0,t := Φt (Ω

c
0), and Γ0,t = Φt (Γ0). (66)
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Fig. 2 Geometries of the fluid–elasticity system submitted to the transformation Φt and the resolution of
the coupled problems, characterised by Tt

We recall thatΩc
0 is the open complementary ofΩ0 in D \ω (see Fig. 2). The assump-

tions on Θ ensure that every Ω0,t is contained into D and its boundary is the union of
Γ0,t and Γω. Let (ut , pt ,wt , st ) be the solution of the coupled FSI problem (see (11))
posed on the perturbed elastic body Ω0,t and on the perturbed fluid domain ΩF,t ,
defined by:

ΩF,t := D \ (ΩS,t ∪ ω),

ΩS,t := (idR2 + wt )(Ω0,t ).

The map idR2 + wt is one to one from Ω0,t to ΩS,t for a wt small enough (see
Lemma 1). Thus, ΩS,t and ΩF,t represent, respectively, the shape of the elastic body
and the incompressible fluid after resolution of the coupled problem. In the same way
as in Sect. 2.3, we can transport the fluid equations on the reference domain Ωc

0,t .
In principle, we could repeat the very same steps, by replacing Ω0 with Ω0,t and
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by introducing suitable lifting and trace operators which depend on t . An alternative
approach, that we follow here, consists in exploiting the change of variablesΦt , which
allows to use the lifting and trace operators defined in (20) constructed starting from
Ω0, which of course do not depend on t :

R : H3−1/2(Γ0) −→ H3(Ωc
0) and γ : H3(Ω0) −→ H3−1/2(Γ0).

We set:

Tt := idR2 + R(γ (wt ◦ Φt )) ◦ Φ−1
t , (67)

where wt ∈ H3(Ω0,t ) is the displacement solving the fluid–structure problem and
Φt is defined in (64). The transformation Tt maps the domain Ω0,t onto ΩS,t and the
domain Ωc

0,t onto ΩF,t (see Fig. 2).
Now we can define the Lagrangian fluid velocity and pressure variables:

vt := ut ◦ Tt , qt := pt ◦ Tt , (68)

and we find that the transported FSI problem for (vt , qt ,wt , st ) can be written as
follows (see (16)):

−νdiv((∇vt )F(Tt )) + G(Tt )∇qt = ( f ◦ Tt )J (Tt ) in Ωc
0,t ,

div(G(Tt )
�vt ) = 0 in Ωc

0,t ,

vt = 0 on ∂Ωc
0,t ,

−μdiv(∇wt ) + ∇st = g in Ω0,t ,

div wt = 0 in Ω0,t ,

wt = 0 on Γω,

(μ∇wt − st I)n0,t = ν(∇vt )F(Tt )n0,t − qt G(Tt )n0,t on Γ0,t ,

(69)

where we formally define for any vector field ϕ:

J (ϕ) = det(∇ϕ), G(ϕ) = cof(∇ϕ), F(ϕ) = (∇ϕ)−1cof(∇ϕ). (70)

It has to be noted that these maps, which will be used in the rest of the article, differ
from the ones defined in (24) and used in Sect. 3. Nevertheless, we still denote them
by F , G, and J for the sake of readability.

Before investigating in Sect. 4.4 the differentiability in the t variable at 0 of the
solutions to the FSI problems (69), we transport these problems, which are defined on
the t-dependent domains Ω0,t and Ωc

0,t , onto the fixed reference domains Ω0 and Ωc
0 .

We briefly explain how to obtain the transported system of equations. For details,
we refer to [12, Sect. 3.4.4] (see also [26]). The main idea is to write the variational
formulation of Problem (69) with test functions (v ◦Φ−1

t , q ◦Φ−1
t ) and (w ◦Φ−1

t , s ◦
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Φ−1
t ), for any (v, q) ∈ (H1

0 (Ωc
0))

2 × L2
0(Ω

c
0) and (w, s) ∈ (H1

0,Γω
(Ω0))

2 × L2(Ω0),
recalling that Φt is defined in (64). It can be shown that the compositions

vt := vt ◦ Φt , qt := qt ◦ Φt , wt := wt ◦ Φt , st := st ◦ Φt , (71)

of the solutions (vt , qt ,wt , st ) of the transformed FSI problem (69) with the change
of variable x = Φt (X), solve the following problem:

−νdiv((∇vt )F(Tt ◦ Φt )) + G(Tt ◦ Φt )∇qt = ( f ◦ Tt ◦ Φt )J (Tt ◦ Φt ) in Ωc
0 ,

div(G(Tt ◦ Φt )
�vt ) = 0 in Ωc

0 ,

vt = 0 on ∂Ωc
0 ,

−μdiv((∇wt )F(Φt )) + G(Φt )∇st = (g ◦ Φt )J (Φt ) in Ω0,

div(G(Φt )
�wt ) = 0 in Ω0,

wt = 0 on Γω,

(μ(∇wt )F(Φt ) − stG(Φt ))n0 = ν(∇vt )F(Tt ◦ Φt )n0
− qtG(Tt ◦ Φt )n0 on Γ0,

(72)

where we recall that Tt is defined above in (67), whereas J , G, and F are given in
(70).

4.3 UniformWell-Posedness for Small t

By directly applying Theorem 1 to Problem (69), we can obtain a solution to Prob-
lem (69) and consequently to Problem (72). However, the constants C and CFS in
Theorem 1, the former controlling the data and the latter appearing in the a priori
estimate, should depend on t . In order to make this resolution uniform with respect to
t , we have the following result.

Proposition 1 Let f ∈ (H2(R2))2 and g ∈ (H1(R2))2. There exist three positive
constants tM, CS and CFS such that if ‖ f ‖2,2 ≤ CS and ‖g‖1,2 ≤ CS then for
all t ∈ [0, tM), Problem (72) admits a unique solution (vt , qt ,wt , st ) ∈ (H1

0 (Ωc
0) ∩

H3(Ωc
0))

2×(L2
0(Ω

c
0)∩H2(Ωc

0))×(H1
0,Γω

(Ω0)∩H3(Ω0))
2×H2(Ω0). Furthermore,

there exists a positive constant CFS which does not depend on t, such that:

‖vt‖3,2,Ωc
0
+ ‖qt‖2,2,Ωc

0
+ ‖wt‖3,2,Ω0 + ‖st‖2,2,Ω0 ≤ CFS(‖ f ‖2,2,R2 + ‖g‖1,2,R2).

Proof To solve Problem (72), we copy the fixed point procedure built in Sect. 3.2,
applied this time to wt . With the new definition of the transformation Tt in (67), and
from (71), we have then that Tt := idR2 +R(γ (wt )) ◦Φ−1

t . This suggests to consider
the adapted transformation:

T (b) = idR2 + R (γ (b)) ◦ Φ−1
t ,
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for b ∈ H3(Ω0)
2 and to introduce the following version of Problem (72), for which

the change of variable is given by b:

−νdiv((∇vt (b))F(T (b) ◦ Φt ))

+G(T (b) ◦ Φt )∇qt (b) = ( f ◦ T (b) ◦ Φt )J (T (b) ◦ Φt ) in Ωc
0 ,

div(G(T (b) ◦ Φt )
�vt (b)) = 0 in Ωc

0 ,

vt (b) = 0 on ∂Ωc
0 ,

−μdiv((∇wt (b))F(Φt )) + G(Φt )∇st (b) = (g ◦ Φt )J (Φt ) in Ω0,

div(G(Φt )
�wt (b)) = 0 in Ω0,

wt = 0 on Γω,

(μ(∇wt (b))F(Φt ) − st (b)G(Φt ))n0 = ν(∇vt (b))F(T (b) ◦ Φt )n0

− qt (b)G(T (b) ◦ Φt )n0 on Γ0.

(73)

We can adapt the proof of Theorem 1 in Sect. 3 to prove that the map:

St : (H3(Ω0))
2 −→ (H3(Ω0))

2

b �−→ wt (b),

has a unique fixed point wt such that
(
vt (wt ), qt (wt ),wt , st (wt )

)
corresponds to the

solution of Problem (72).
We recall that Φt = idR2 + tV and we have T (b) ◦ Φt = idR2 + ηt (b) with:

ηt (b) := tV + R (γ (b)) .

We know that ‖R (γ (b))‖3,2,D ≤ CRγ ‖b‖3,2,Ω0 . Then, let tM > 0 be such that
tM‖V ‖3,2 ≤ CRγM/2. Thus, we have that:

‖ηt (b)‖3,2,D ≤ CRγM,

for all t ∈ [0, tM) and for all b ∈ BM/2 := {b ∈ (H3(Ω0))
2 | ‖b‖3,2,Ω0 ≤ M/2}.

Now, we can choose the constantM > 0 independent of t such that for all u ∈ H3(D)

with ‖u‖3,2,D ≤ CRγM, then (idR2 +u) satisfies all the properties required in Sect. 3.
In particular, we have that, for all t ∈ [0, tM) and for all b ∈ BM/2:

– Lemma 1 and inequalities (26) and (27) are satisfied for both Φt and T (b) ◦ Φt ,
– Conditions (34) are satisfied for A = F(T (b) ◦ Φt ), B = G(T (b) ◦ Φt ), and (35)
are satisfied for C = F(Φt ), D = G(Φt ).

As a consequence, we can proceed as in Sect. 3.3 by applying Theorem 2 in order to
solve Problem (73). Thereafter, we show that there exists a constant CS which depend
only on M and Ω0—and not on t—such that if ‖ f ‖2,2 ≤ CS and ‖g‖1,2 ≤ CS, then
St is a contraction and St (BM/2) ⊂ BM/2. ��
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4.4 Differentiability with Respect to the Domain

We want to analyse the shape sensitivity of these solutions, namely their behaviour
with respect to small variations of t , which amounts to study the differentiability of
(vt , qt ,wt , st ) ◦ Φt . For this, we apply the classical method presented in [29, Sects.
5.3.3 and 5.3.4]. The main result of this section is the following.

Theorem 3 Under the assumptions of Proposition 1, let (vt , qt ,wt , st ) be the unique
solution to the FSI problem (72) for all t ∈ [0, tM). In addition, assume that g belongs
to (H2(R2))2. Then the map:

t ∈ [0, tM) �→ (vt , qt ,wt , st ),

is differentiable in the vicinity of 0 in:

(H1
0 (Ωc

0) ∩ H3(Ωc
0))

2 × L2
0(Ω

c
0) ∩ H2(Ωc

0) × (H1
0,Γω

(Ω0) ∩ H3(Ω0))
2 × H2(Ω0).

Proof The key argument is the implicit function theorem, that will be applied to an
adequate operator characterising the problem, and which depends on both t and the
state variables representing the solution.

Let us set:

H1 := (H1
0 (Ωc

0) ∩ H3(Ωc
0))

2, H2 := L2
0(Ω

c
0) ∩ H2(Ωc

0),

H3 := (H1
0,Γω

(Ω0) ∩ H3(Ω0))
2, H4 := H2(Ω0),

K1 := (H1(Ωc
0))

2, K3 := (H1(Ω0))
2,

K4 := H1(Ω0), K5 := H3/2(Γ0),

and:

K2 :=
{
h ∈ H1(Ωc

0)

∣∣∣
∫

Ωc
0

h = 0

}
.

From this, we define the following sets:

H := H1 × H2 × H3 × H4,

K := K1 × K2 × K3 × K4 × K5.

Before defining the adequate operator we want to study, we can remark that the map Tt
defined in (67) and involved in the FSI problem, depends on the parameter t through
the map Φt given by (64) and through the field wt . To make a distinction between
these two dependencies, we introduce the following map defined from R+ × H3 to
(H3(Ωc

0))
2 by:

T t
w := Φt + Rγ (w), ∀t ≥ 0, ∀w ∈ H3. (74)
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In this manner, the map T t
w depends on functions w belonging to the fixed space H3,

and we have furthermore that:

Tt ◦ Φt = T t
wt .

Let us denote by X t the vector of H solution of the FSI problem defined for all t ≥ 0
by:

X t := (vt , qt ,wt , st ),

while:

X = (v, q, w, s)

stands for an arbitrary vector of H. The FSI coupling problem (72) leads us to define
the following operator. Let:

F : R × H → K

be the map defined by:

F1(t,X ) := −νdiv((∇v)F(T t
w)) + G(T t

w)∇q − ( f ◦ T t
w)J (T t

w),

F2(t,X ) := div(G(T t
w)�v),

F3(t,X ) := −μdiv((∇w)F(Φt )) + G(Φt )∇s − J (Φt )(g ◦ Φt ),

F4(t,X ) := div(G(Φt )
�w),

F5(t,X ) := [
μ(∇w)F(Φt ) − sG(Φt ) − ν(∇v)F(T t

w) + qG(T t
w)

]
n0,

(75)

where we recall that F(T t
w), G(T t

w), and J (T t
w) are given by the expressions in (70).

As we said, for t = 0, the vector X 0 = (v0, q0,w0, s0) is the solution of the coupling
FSI problem (72) posed on Ω0 and Ωc

0 . Thus, by definition (75) of F, we have
F(0,X 0) = 0. From there, we want to apply the implicit functions theorem to F, by
showing that:

1. F is of class C1 in a neighbourhood of (0,X 0),
2. DX F(0,X 0) is a bi-continuous isomorphism.

In this case, by uniqueness of the FSI problem, we will have as a result that the map
t �→ X t is of class C1 in a neighbourhood of (0,X 0). ��

4.4.1 Step (1).

We first show that the map F is of class C1 in a neighbourhood of (0,X 0). Obviously,
F = F(t, v, q, w, s) is of class C1 with respect to v, q and s since it is linear in these
variables. So we only have to check that F is also of class C1 in t and w. We have
that the map (t, w) ∈ R+ × H3(Ω0) �→ ∇(Φt + Rγ (w)) ∈ H2(Ωc

0) is of class
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C∞. Indeed, w �→ Rγ (w) is linear and continuous and t �→ Φt is affine since Φt :=
idR2 + tV with V ∈ (H3(R2))2. We can also show that A ∈ (H2(Ωc

0))
2×2 �→ A−1 ∈

(H2(Ωc
0))

2×2 is of class C∞ in a neighbourhood of the identity matrix I. Thus, the
maps t �→ J (Φt ) ∈ H2(Ωc

0) and t �→ (∇Φt )
−1 ∈ (H2(Ωc

0))
2×2 are C∞. Moreover,

from Lemma 3, we have that the three maps (t, w) ∈ R+ × H3(Ω0) �→ F(T t
w),

G(T t
w) ∈ (H2(Ωc

0))
2×2, and J (T t

w) ∈ H2(Ωc
0) are of class C∞. Finally, because

of the regularity of f ∈ (H2(R2))2 and g ∈ (H2(R2))2, we have from [29, Lemma
5.3.9] that (t, w) �→ ( f ◦T t

w)J (T t
w) and (t, w) �→ J (Φt )(g◦Φt ) areC1 in the vicinity

of 0.

4.4.2 Step (2).

For a X = (v, q, w, s) in H, we calculate the following element of K:

DX F(0,X 0)X =

⎛
⎜⎜⎜⎜⎝

DX F1(0,X 0)X
DX F2(0,X 0)X
DX F3(0,X 0)X
DX F4(0,X 0)X
DX F5(0,X 0)X

⎞
⎟⎟⎟⎟⎠

�

,

whose components are given by:

DX F1(0,X 0)X = −νdiv((∇v)F(T 0)) − νdiv((∇v0)DwF(T 0)w)

+ G(T 0)∇q + (DwG(T 0)w)∇q0 − Dw(J (T 0) f ◦T 0)w,

DX F2(0,X 0)X = div(G(T 0)�v) + div((DwG(T 0)w)v0),

DX F3(0,X 0)X = −μdiv(∇w) + ∇s,

DX F4(0,X 0)X = div(w),

DX F5(0,X 0)X = [μ∇w − sI − ν(∇v)F(T 0) − ν(∇v0)(DwF(T 0)w)]n0
− [qG(T 0) + q0(DwG(T 0)w)]n0.

Here, T 0 := idR2+Rγ (w0),whereas the expressions of (Dw J (T 0)w), (DwG(T 0)w),
and (DwF(T 0)w) are given in the Appendix (cf. (105)–(107)). Moreover, we set:

Dw(J (T 0) f ◦T 0)w := (Dw J (T 0)w)( f ◦ T 0) + J (T 0)(∇ f ◦ T 0)∇T 0.

Given F = (F1,F2,F3,F4,F5) ∈ K, we want to show that there exists a
unique X = (v, q, w, s) ∈ H such that:

DX F(0,X 0)X = F . (76)
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This amounts to solving the following problem: find (v, q, w, s) ∈ H such that:

−νdiv((∇v)F(T 0)) + G(T 0)∇q = f1(w) + F1 in Ωc
0 ,

div(G(T 0)�v) = f2(w) + F2 in Ωc
0 ,

v = 0 on ∂Ωc
0 ,

−μdiv(∇w) + ∇s = f3(w) + F3 in Ω0,

divw = f4(w) + F4 in Ω0,

w = 0 on Γω,(
μ∇w − sI − ν(∇v)F(T 0) + qG(T 0)

)
n0 = f5(w) + F5 on Γ0,

(77)

where the maps f j for j = 1, · · · , 5, are, respectively, linear forms from H3 to K j ,
given by f3 ≡ f4 ≡ 0, and:

f1(w) := νdiv((∇v0)DwF(T 0)w) − (DwG(T 0)w)∇q0 + Dw(J (T 0) f ◦T 0)w,

(78)

f2(w) := −div((DwG(T 0)w)v0), (79)

f5(w) := [ν(∇v0)(DwF(T 0)w) − q0(DwG(T 0)w)]n0. (80)

Let b ∈ H3(Ω0) be an arbitrary field. In order to prove that Problem (77) admits a
unique solution, we introduce the following parametrised problem, with parameter b:

−νdiv((∇v(b))F(T 0)) + G(T 0)∇q(b) = f1(b) + F1 in Ωc
0 ,

div(G(T 0)�v(b)) = f2(b) + F2 in Ωc
0 ,

v(b) = 0 on ∂Ωc
0 ,

−μdiv(∇w(b)) + ∇s(b) = F3 in Ω0,

divw(b) = F4 in Ω0,

w(b) = 0 on Γω,
(
μ∇w(b) − s(b)I − ν(∇v(b))F(T 0) + q(b)G(T 0)

)
n0 = f5(b) + F5 on Γ0.

(81)

In the same way as done in Sect. 3.3, we can prove that for any b ∈ (H3(Ω0))
2,

there exists a unique solution (v(b), q(b), w(b), s(b)) ∈ H to this problem, allowing
us to define the map b �→ S(b) := w(b). Indeed, the fields f1(w), f2(w), and f5(w)

have the required regularity to apply Theorem 2, and f2(w) together with F2 satisfy
the compatibility condition (33). Moreover, since w0 is the displacement solution of
the coupling FSI problem (72) for t = 0, we have that T 0 := idR2 + Rγ (w0) is
such that F(T 0) and G(T 0) satisfy the assumption (34) of Theorem 2. Thus, applying
Theorem 2, we obtain a unique solution (v(b), q(b), w(b), s(b)) ∈ H to Problem
(81).

Now we want to show that this map is a contraction for data f and g small enough.
Let b1 and b2 be in (H3(Ω0))

2. We set δv := v(b1) − v(b2), δq := q(b1) − q(b2),
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δw := w(b1) − w(b2), and δs := s(b1) − s(b2). By linearity of Problem (81), and
applying Theorem 2 for (δv, δq) and (δw, δs), we have:

‖δv‖3,2,Ωc
0
+ ‖δq‖2,2,Ωc

0
≤ Cfs(‖f1(b1 − b2)‖1,2,Ωc

0
+ ‖f2(b1 − b2)‖2,2,Ωc

0
),

and

‖δw‖3,2 + ‖δs‖2,2 ≤ Cfs(‖f5(b1 − b2)‖H3/2(Γ0)
+ C(‖δv‖3,2,Ωc

0
+ ‖δq‖2,2,Ωc

0
)),

where Cfs depends only on Ω0 and C1, C2 in (26), (27). We can see in expressions
(78), (79), and (80), by using Lemma 2 and the same kind of estimates written in
Sect. 3.3, that the norms of the linear maps f1, f2, and f5 are bounded by the norms of
v0, q0, and the volume force f . Yet, from Theorem 1, we have that:

‖v0‖3,2,Ωc
0
+ ‖q0‖2,2,Ωc

0
+ ‖w0‖3,2,Ω0 + ‖s0‖2,2,Ω0 ≤ CFS(‖ f ‖2,2,R2 + ‖g‖1,2,Ω0).

Then, we can choose the data f and g of our problem small enough so that S is a
contraction on (H3(Ω0))

2. Therefore, S admits a unique fixed point showing that
Problem (76) has a unique solution X = (v, q, w, s) ∈ H.

Finally, from Problem (77) we have the following estimates:

‖v‖3,2,Ωc
0
+ ‖q‖2,2,Ωc

0
+

≤ Cfs

[ 2∑
i=1

‖Fi‖Ki
+ (‖f1‖L(H3,K1) + ‖f2‖L(H3,K2))‖w‖3,2,Ω0

]
, (82)

and

‖w‖3,2,Ω0 + ‖s‖2,2,Ω0 ≤ Cfs

[ 5∑
i=3

‖Fi‖Ki
+ ‖f5‖L(H3,K5)‖w‖3,2,Ω0

+ C(‖v‖3,2,Ωc
0
+ ‖q‖2,2,Ωc

0
)
]
. (83)

Once again, ‖f1‖L(H3,K1), ‖f2‖L(H3,K2), and ‖f5‖L(H3,K5) can be chosen small enough
so that combining (82) and (83), we obtain that the solution X = (v, q, ws) ∈ H of
the linear elliptic system (76) (see also (77)), satisfies the following estimate:

‖v‖3,2,Ωc
0
+ ‖q‖2,2,Ωc

0
+ ‖w‖3,2,Ω0 + ‖s‖2,2,Ω0 ≤ C

5∑
i=1

‖Fi‖Ki

where C is a positive constant depending on the norms of (v0, q0,w0, s0), f and g.
Then, DX F(0,X 0) is a bi-continuous isomorphism.

123

Journal of Optimization Theory and Applications (2023) 199:36–79 65



5 Shape Derivative ofJ (Ä)

5.1 Direct Calculus

In this paragraph, we compute the shape derivative of functionals depending on the
FSI problem.

We consider a functional of the form:

J (Ω0) = JS(Ω0) + JF (Ω0)=
∫

Ω0

jS(Y ,w(Y ),∇w(Y )) dY

+
∫

ΩF

jF (x, u(x),∇u(x)) dx, (84)

where jS and jF are differentiable functions. As we have done in the previous section,
we consider a 1-parameter family of shapes Ω0,t defined in (66).

Computing the shape derivative of J with respect to the deformation chosen
amounts to evaluate the derivative of t �→ J (Ω0,t ) at t = 0. The shape functional
evaluated on the domain Ω0,t is given by:

J (Ω0,t ) = JS(Ω0,t ) + JF (Ω0,t ) =
∫

Ω0,t

jS(Y ,wt (Y ),∇wt (Y )) dY

+
∫

ΩF,t

jF (x, ut (x),∇ut (x)) dx .

where (wt , ut ) are the solution fields of the FSI problem (69).
Let us first compute the derivative ofJS(Ω0,t ). After transporting the integral from

Ω0,t to Ω0, we obtain:

JS(Ω0,t ) =
∫

Ω0

jS (Φt (Y ),wt ◦ Φt (Y ), (∇wt ) ◦ Φt (Y )) det(∇Φt ) dY .

Thus, the shape derivative of JS is given by:

J ′
S(Ω0) =

∫

Ω0

jS(Y ,w(Y ),∇w(Y ))divV dY

+
∫

Ω0

D1 jS(Y ,w(Y ),∇w(Y ))V dY

+
∫

Ω0

D2 jS(Y ,w(Y ),∇w(Y ))ẇ dY

+
∫

Ω0

D3 jS(Y ,w(Y ),∇w(Y ))(∇ẇ − ∇w∇V ) dY , (85)
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where ẇ is the material derivative of wt at t = 0, defined by:

ẇ := d

dt

∣∣∣
t=0

(wt ) = d

dt

∣∣∣
t=0

(wt ◦ Φt ),

and D1, D2, D3 stand for the differential on each argument of jS . In (85), we have
used the relation:

d

dt

∣∣∣
t=0

det(∇Φt ) = divV , (86)

with the definition (64) of Φt (see (101) in the Appendix). The term (∇ẇ − ∇w∇V )

comes from the differentiation of (∇wt ) ◦ Φt (Y ).
Secondly, we consider the shape derivative of JF with respect to t . We perform a

change of variable x = Tt ◦ Φt (X), in order to rewrite the integrals from ΩF,t to Ωc
0 .

This gives

JF (Ω0,t ) =
∫

Ωc
0

(
jF (Tt ◦ Φt (X), ut ◦ Tt ◦ Φt (X), (∇ut ) ◦ Tt ◦ Φt (X))

det(∇(Tt ◦ Φt (X)))
)
dX .

(87)

We compute the shape derivative of JF , setting: v = u ◦ T , where T = T0 =
idR2 + Rγ (w). This gives:

J ′
F (Ω0) =

∫

Ωc
0

jF (T , v,∇v(∇T )−1)tr(cof(∇T )�∇ Ṫ ) dX

+
∫

Ωc
0

D1 jF (T , v,∇v(∇T )−1)Ṫ det(∇T ) dX

+
∫

Ωc
0

D2 jF (T , v,∇v(∇T )−1)v̇ det(∇T ) dX

+
∫

Ωc
0

D3 jF (T , v,∇v(∇T )−1)
(
∇v̇ − ∇v(∇T )−1∇ Ṫ

)
cof(∇T )� dX ,

(88)

where we denote by v̇ and Ṫ the material derivatives of v and Tt , respectively, defined
by:

v̇ := d

dt

∣∣∣
t=0

(vt ) = d

dt

∣∣∣
t=0

(vt ◦ Φt ), and Ṫ := d

dt

∣∣∣
t=0

(Tt ◦ Φt ) .

From the definitions of Tt in (67) and of Ṫ , we have:

Ṫ = V + Rγ (ẇ).
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The term tr(cof(∇T )�∇ Ṫ ) in (88) comes from the differentiation of det(∇(Tt ◦
Φt (X))) in (87). The terms Ṫ and v̇ in (88) are, respectively, the results of the differen-
tiation through the chain rule of the terms Tt ◦Φt (X) and ut ◦Tt ◦Φt (X) in (87). For the
last term (∇v̇ − ∇v(∇T )−1∇ Ṫ )cof(∇T )� in (88) deriving from (∇ut ) ◦ Tt ◦ Φt (X)

in (87), we can write:

(∇ut ) ◦ Tt ◦ Φt (X) = (∇(ut ◦ Tt ◦ Φt ))(X)(∇(Tt ◦ Φt ))
−1(X),

= (∇(vt ◦ Φt ))(X)(∇(Tt ◦ Φt ))
−1(X),

with vt = ut ◦ Tt (see (68)). From there, we can write in the following proposition the
formula of the shape derivative J ′(Ω0).

Proposition 2 Let J be the shape functional defined by (84), where jS and jF are
differentiable functions. Let V be a velocity field belonging to the space Θ introduced
in (65). Then, the shape derivative of J in the direction V computed at Ω0 is given
by:

J ′(Ω0) =
∫

Ω0

jS(Y ,w,∇w)divV dY +
∫

Ω0

D1 jS(Y ,w,∇w)V dY

+
∫

Ω0

D2 jS(Y ,w,∇w)ẇ dY +
∫

Ω0

D3 jS(Y ,w,∇w)(∇ẇ − ∇w∇V ) dY

+
∫

Ωc
0

jF (T , v,∇v(∇T )−1)tr(cof(∇T )�∇ Ṫ ) dX

+
∫

Ωc
0

D1 jF (T , v,∇v(∇T )−1)Ṫ det(∇T ) dX

+
∫

Ωc
0

D2 jF (T , v,∇v(∇T )−1)v̇ det(∇T ) dX

+
∫

Ωc
0

D3 jF (T , v,∇v(∇T )−1)
(
∇v̇ − ∇v(∇T )−1∇ Ṫ

)
cof(∇T )� dX .

(89)

Notice that the expression (89) of J ′ depends on the material derivatives v̇ and ẇ
of the velocity and of the displacement. These material derivatives can be computed
as solutions of boundary value problems which depend on the direction V (see [12,
Sect. 3.4.4]). For a practical use of the shape derivative—within a shape optimisation
algorithm for example—it is suitable to find an expression which does not depend on
v̇ and ẇ. For this, we apply in the next section the classical adjoint method allowing
for a simplified expression of J ′.

5.2 Adjoint Method

The adjoint method allows to guess straightforwardly the adjoint states we need to
introduce in order to simplify the expression of the shape derivative formula (89). In
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this section, we use a mixed variational formulation method as presented in [21, Sect.
3.4.4].

5.2.1 Shape Functional and Its Related Lagrangian

We consider the shape functional defined by (84) written on a perturbed domain Ω0,t .
According to (87), we can rewrite it as follows:

J (Ω0,t ) =
∫

Ωc
0,t

jF (Tt , vt ,∇vt (∇Tt )
−1) det(∇Tt ) dXt +

∫

Ω0,t

jS(Yt ,wt ,∇wt ) dYt ,

(90)

where Tt is defined in (67), whereas vt ∈ (H1
0 (Ωc

0,t ))
2 and wt ∈ (H1

0,Γω
(Ω0,t ))

2

are, respectively, the velocity and the displacement solutions of Problem (69). To find
suitable adjoint states, we need to define a Lagrangian related toJ having independent
variables lying in the space (H1

0 (Ωc
0))

2×L2
0(Ω

c
0)×(H1

0,Γω
(Ω0)×H3(Ω0))

2×L2(Ω0)

independent of t . To this aim,we first transportJ (Ω0,t ) on the reference configuration,
as it is done in the previous section, by means of the change of variable x = Φt (X).
Then, we exploit the variational formulation of Problem (72), taking the same test
function y for both the equilibrium equation of the fluid (72)(i) and the equilibrium
equation of the structure (72)(iv). This suggests the following definition of Lagrangian,
for t ≥ 0, for all (v, q, w, s) in (H1

0 (Ωc
0))

2 × L2
0(Ω

c
0) × (H1

0,Γω
(Ω0) × H3(Ω0))

2 ×
L2(Ω0), and for all (y, q, s) in H1

0 (D\ω) × L2
0(Ω

c
0) × L2(Ω0):

L(t, (v, q,w, s), (y, q, s)) := J t (Ω0, v, w)

+
∫

Ωc
0

(
ν(∇v)F(T t

w) : ∇y − q(G(T t
w) : ∇y) − ( f ◦T t

w · y)J (T t
w)

)

+
∫

Ω0

(
μ(∇w)F(Φt ) : (∇y) − sG(Φt ) : ∇y − ((g ◦ Φt ) · y)J (Φt )

)

−
∫

Ωc
0

q(G(T t
w) : ∇v) −

∫

Ω0

sG(Φt ) : ∇w,

recalling that the transformation T t
w defined in (74) is given by T t

w = Φt + Rγ (w),

and setting:

J t (Ω0, v, w) :=
∫

Ωc
0

jF (T t
w, v, ∇v∇(T t

w)−1)J (T t
w) +

∫

Ω0

jS(Φt , w,∇w∇Φ−1
t )J (Φt ).

Recalling that (vt , qt ,wt , st ) defined in (71) are the transported solutions of the cou-
pling Problem (72), and that T t

wt = Tt ◦ Φt (see (67)), we have that the following
equality holds:

J t (Ω0, v
t ,wt ) = J (Ω0,t ),
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where J (Ω0,t ) is given by (90). Then, in view of Problem (72) multiplied by the
corresponding test functions y, q, s, and after integration by parts, we obtain that for
all (y, q, s) in H1

0 (D\ω) × L2
0(Ω

c
0) × L2(Ω0):

L(t, (vt , qt ,wt , st ), (y, q, s)) = J (Ω0,t ). (91)

5.2.2 Derivatives of the Lagrangian

In order to obtain the adjoint problems, we need to differentiate the Lagrangian L
with respect to the variables v, q, w, and s. The derivatives of L are evaluated at
t ≥ 0, (v, q, w, s) ∈ (H1

0 (Ωc
0))

2 × L2
0(Ω

c
0) × (H1

0,Γω
(Ω0) × H3(Ω0))

2 × L2(Ω0),

and (y, q, s) ∈ H1
0 (D\ω) × L2

0(Ω
c
0) × L2(Ω0). For the sake of readability, we group

the variables of the Lagrangian as follows, by setting:

X := (v, q, w, s) and Y := (y, q, s).

We first differentiate the Lagrangian with respect to the variables q and s. For d ∈
L2
0(Ω

c
0) and e ∈ L2(Ω0), we have:

〈∂L
∂q

(t, X ,Y), d
〉
= −

∫

Ωc
0

d(G(T t
w) : ∇y),

〈∂L
∂s

(t, X ,Y), e
〉
= −

∫

Ω0

eG(Φt ) : ∇y.

(92)

When differentiating the Lagrangian with respect to the variables v and w, we
shall simply write Dα jF and Dα jS instead of Dα jF (T t

w, v,∇v∇(T t
w)−1) and

Dα jS(Φt , w,∇w(∇Φt )
−1), respectively, for α = 1, 2, 3. For h ∈ (H1

0 (Ωc
0))

2 and
k ∈ (H1

0,Γω
(Ω0) × H3(Ω0))

2, we have:

〈∂L
∂v

(t, X ,Y), h
〉
=

∫

Ωc
0

((D2 jF )h + (D3 jF )∇h∇(T t
w)−1)J (T t

w)

+
∫

Ωc
0

(
ν(∇h)F(T t

w) : ∇y − qG(T t
w) : ∇h

)
, (93)

and:

〈 ∂L
∂w

(t, X ,Y), k
〉
=

∫

Ω0

(
(D2 jS)k J (Φt ) + (D3 jS)∇k∇Φ−1

t J (Φt )
)

+
∫

Ωc
0

(
( jF )Dw J (T t

w)k + [
(D1 jF )Dw(T t

w)k + (D3 jF )∇vDw(∇(T t
w)−1)k

]
J (T t

w)
)

+
∫

Ωc
0

(
[ν∇vDwF(T t

w)k − qDwG(T t
w)k] : ∇y − (DwG(T t

w)k : ∇v)q
)

−
∫

Ωc
0

(
(Dw( f ◦ T t

w)k · y)J (T t
w) + ( f ◦T t

w · y)Dw J (T t
w)k

)
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+
∫

Ω0

μ(∇k)F(Φt ) : ∇y −
∫

Ω0

sG(Φt ) : ∇k, (94)

where the derivatives Dw(·)with respect to the variablew are detailed in the Appendix
(cf. (104)–(107)), whereas Dw( f ◦ T t

w)k = (∇ f ) ◦ T t
w · R(γ (k)).

5.2.3 Definition of the adjoint states

Let us write the adjoint equations. For this, the partial derivatives of the Lagrangian
calculated in the previous section are evaluated at t = 0 and at X0 := (v0, q0,w0, s0),
solution to Problem (72) written at t = 0 (which is in fact Problem (16)). Because of
the terms written on Ωc

0 in (94) involvingR(γ (k)), it is not straightforward to write a
strong formulation of the adjoint problem, then we need to use an abstract weak form
result for which the test function k lies in H1. In view of the regularity of X0 given by
Theorem 1, all the terms in (94) are well defined. Then, the adjoint problem associated
to the shape functional J defined in (84) and to the FSI problem (16) is defined as
follows:

Find Y0 := (y0, q0, s0) ∈ H1
0 (D \ ω) × L2

0(Ω
c
0) × L2(Ω0) such that:〈∂L

∂v
(0, X0,Y0), h

〉
+

〈∂L
∂q

(0, X0,Y0), d
〉

+
〈 ∂L
∂w

(0, X0,Y0), k
〉
+

〈∂L
∂s

(0, X0,Y0), e
〉
= 0,

∀(h, d, k, e) ∈ (H1
0 (Ωc

0))
2 × L2

0(Ω
c
0) × (H1

0,Γω
(Ω0))

2 × L2(Ω0),

(95)

where the partial derivatives are given by expressions (92), (93), and (94).

Proposition 3 Let X0 := (v0, q0,w0, s0) be the solution of Problem (72) with f ∈
(H2(Ωc

0))
2 and g ∈ (H2(Ω0))

2. There exists a constant C > 0 such that if ‖ f ‖2,2 ≤
C and ‖g‖2,2 ≤ C, then the adjoint problem (95) admits a unique solution.

Proof Given y ∈ H1
0 (D\ω), we define the restrictions:

v := y|Ωc
0

and w := y|Ω0 .

From expressions (92), (93), and (94), we can rewrite Problem (95) as follows: find
(y, q, s) ∈ H1

0 (D\ω) × L2
0(Ω

c
0) × L2(Ω0) such that:

aF (v, h) + bF (h, q) = cF (h), ∀h ∈ VF , VF := (H1
0 (Ωc

0))
2,

bF (v, d) = 0, ∀d ∈ WF , WF := L2
0(Ω

c
0),

v = w on Γ0, (96)

aS(w, k) + bS(k, s) = cS(k) + dS(v, q)(k), ∀k ∈ VS, VS := (H1
0,Γ ω(Ω0))

2,

bS(w, e) = 0, ∀e ∈ WS, WS . := L2
0(Ω0),
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where aF , bF , and cF are bilinear and linear forms defined in (93), aS , bS , cS are
bilinear and linear forms defined in (94), and dS is a continuous linear map from
(H1(Ω0))

2×L2
0(Ω0) to [(H1(Ω0))

2]′ defined in (94). To solve Problem (96),we apply
a fixed-point procedure by fixing (v, q) in the structure system, and homogenising the
Dirichlet condition in the fluid system. Given b := (vb, qb), we define the following
problem:

aF (ṽ(b), h) + bF (h, q(b)) = cF (h) − aF (Ew(b), h), ∀h ∈ VF ,

bF (ṽ(b), d) = 0, ∀d ∈ WF ,

ṽ(b) = 0 on ∂Ωc
0 ,

aS(w(b), k) + bS(k, s(b)) = cS(k) + dS(vb, qb)(k), ∀k ∈ VS,

bS(w(b), e) = 0, ∀e ∈ WS,

(97)

whose solution is (ṽ(b), q(b),w(b), s(b)). Here, E denotes an extension operator from
H1
0,Γω

(Ω0) to H1
0 (D\ω), which in particular fixes the trace zero on ∂D. We define:

v(b) := ṽ(b) + Ew(b). (98)

From what is done in [26], we have that aF , bF , aS , and aS satisfy the conditions
required to apply the abstract result from [11]. Namely, there exists M > 0 such that
for α = F, S, and for any ( fα, gα) ∈ V ′

α ×W ′
α , there exists a unique (v, q) ∈ Vα ×Wα

satisfying:

aα(v, h) + bα(h, q) = fα(h), ∀h ∈ Vα,

bα(v, d) = gα(d), ∀d ∈ Wα,

and:

‖v‖Vα + ‖q‖Wα ≤ M(‖ f ‖V ′
α

+ ‖g‖W ′
α
). (99)

Thus, we first obtain existence and uniqueness of a solution (w(b), s(b)) ∈
(H1

0,Γ ω(Ω0))
2 × L2

0(Ω0) to Problem (97)(iv)–(v), then we obtain existence and

uniqueness of a solution (ṽ(b), q(b)) in the space (H1
0 (Ωc

0))
2 × L2

0(Ω
c
0) to Prob-

lem (97)(i)–(ii). Let map S be the map from (H1
0,∂D(Ωc

0))
2 × L2

0(Ω
c
0) into itself

defined by:

S(b) := (v(b), q(b)).

It remains us to show thatS is a contraction. Take b1,b2 ∈ (H1
0,∂D(Ωc

0))
2 × L2

0(Ω
c
0).

By writing the difference of Problem (97) for b1 and b2, thanks to (98) and (99), we
infer that:

‖v(b1) − v(b2)‖1,2 + ‖q(b1) − q(b2)‖0,2
≤ (1 + ‖aF‖M)cM‖dS‖

(
‖vb1 − vb2‖1,2 + ‖qb1 − qb2‖0,2

)
,
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where c is the norm of the extension operator E depending only on Ω0 and D. From
the definition of dS in lines 3 and 4 of the right-hand side of (94), we infer that ‖dS‖
is controlled by the norms of v0, q0, and f , and, in the end, from Theorem 1, it is
controlled by the norms of f and g. This concludes the proof. ��

5.3 Simplified Formula for the Shape Derivative

We can simplify the formula of the shape derivativeJ ′(Ω0) obtained in (89), Sect. 5.1.
Indeed, in view of (91), we have that:

J ′(Ω0) = ∂L
∂t

(0, X0,Y) +
〈 ∂L
∂X

(0, X0,Y), Ẋ0
〉
,

for any Y ∈ H1
0 (D\ω) × L2

0(Ω
c
0) × L2(Ω0). Here X0 := (v0, q0,w0, s0) is the

solution of the FSI Problem (16) and Ẋ0 denotes its material derivative. Thus, by
definition of the adjoint state Y0 solution of Problem (95), we obtain:

J ′(Ω0) = ∂L
∂t

(0, X0,Y0).

Referring to the expressions (108)–(110) in the Appendix of the time derivatives
Dt (·) of J (T t

w), G(T t
w), and F(T t

w), and using (86), we write the expression of the
time derivative of the Lagrangian:

∂L
∂t

(t, X ,Y)

=
∫

Ωc
0

(
( jF )Dt J (T t

w) + (D1 jF )Dt (T
t
w)J (T t

w) + (D3 jF )∇vDt (∇(T t
w)−1)J (T t

w)
)

+
∫

Ω0

(
( jS)divV + (D1 jS)V J (Φt ) + (D3 jS)∇wDt∇Φ−1

t J (Φt )
)

+
∫

Ωc
0

(
[ν(∇v)Dt (F(T t

w)) − qDt (G(T t
w))] : ∇y − qDt (G(T t

w)) : ∇v
)

−
∫

Ωc
0

(
( f ◦T t

w · y)Dt J (T t
w) + (Dt ( f ◦T t

w) · y)J (T t
w)

)

+
∫

Ω0

(
[μ(∇w)Dt F(Φt ) − sDtG(Φt )] : ∇y − sDtG(Φt ) : ∇w

)
,

where we recall that T t
w = Φt + R(γ (w)) (see (74)). This formula can be simplified

by noticing that DtT t
w = Vt := DtΦt , and Dt ( f ◦ T t

w) = (∇ f ) ◦ T t
w · Vt . From this

expression evaluated at (t, X ,Y) = (0, X0,Y0), we have the following result.

Theorem 4 Let J (Ω0) be the shape functional defined by (84). Let (v, q,w, s) be
the solution of the FSI problem (16), and (y, q, s) be the adjoint state solution of the
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adjoint problem (95). Then the shape derivative of J (Ω0) can be written as follows:

J ′(Ω0)

=
∫

Ωc
0

jF (T , v,∇v(∇T )−1)DJ (V ) + D1 jF (T , v,∇v(∇T )−1)V J (T )

+
∫

Ωc
0

D3 jF (T , v,∇v(∇T )−1)∇v(−∇T−1∇V∇T−1)J (T )

+
∫

Ω0

(
jS(Y ,w,∇w)divV + D1 jS(Y ,w,∇w)V + D3 jS(Y ,w,∇w)∇w(−∇V )

)

+ A′(( u , q,w, s), (y, q, y, s), V
)
,

where A′ is given by:

A′(( u , q,w, s), (y, q, y, s), V
)

:=
∫

Ωc
0

(
[ν∇vDF(V ) − qDG(V )] : ∇y − qDG(V ) : ∇v

)

−
∫

Ωc
0

(
( f ◦T · y)DJ (V ) + (Dt ( f ◦T ) · y)J (T )

)

+
∫

Ω0

(
[μ(∇w)DF(V ) − sDG(V )] : ∇y − sDG(V ) : ∇w

)
,

and where T := T0 is given by (67), V is the velocity of the transformationΦt given by
(64), whereas DJ (V ), DG(V ), and DF(V ) denote, respectively, the time derivatives
of J (T t

w), G(T t
w), and F(T t

w), computed in (108)–(110) and evaluated at t = 0 and
w = w, and are given by:

DJ (V ) = tr(cof(∇T )�∇V ),

DG(V ) = cof(∇T )
[
tr

(
(∇T )−1∇V

)
I − [(∇T )−1∇V ]�

]
,

DF(V ) = cof(∇T )�
[
tr

(
(∇T )−1∇V

)
I − 2[∇V (∇T )−1]s

]
(∇T )−�.

6 Conclusions

In this paper, we have addressed a stationary 2DFSI problem. Themathematicalmodel
that we propose couples Stokes equations (for the fluid) and incompressible linearised
elasticity equations (for the structure), through a boundary condition (for the common
interface). This system of PDEs is shown to have a unique solution, when the applied
forces are small. Then, the shape differentiability of the solution is established, and
the shape derivative of a general functional is computed and simplified by showing
the existence of suitable adjoint states.

Among the possible extensions of this work, offering a simplified but rigorous
baseline, we can consider enriched models for the fluid (e.g. Navier–Stokes), the
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structure (e.g. compressible linear or nonlinear elasticity), and the boundary conditions
(e.g. slip conditions for the fluid). More general functionals could also be studied, such
as boundary integrals.

Finally, the shape derivative computed here allows to engage a numerical investi-
gation, for instance for an energy minimization problem with the functional J (Ω0) =∫
Ω0

|∇w|2 + ∫
ΩF

|∇u|2, taken into account by our study.
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Appendix

Let α : U ⊂ V �→ ϕα ∈ (H3(Ω))2 be a differentiable map, where V is a normed
vector space endowed with the norm ‖·‖V, and U is an open subset of V, and Ω is an
open subset of R2. Thus, α : U ⊂ V �→ ∇ϕα ∈ (H2(Ω))2×2 is differentiable, and
we denote by Dα(∇ϕα) the differential of α �→ ∇ϕα at α. Namely Dα(∇ϕα) is the
continuous linear map from V to (H2(R2))2×2 such that for all dα ∈ V:

∇ϕα+dα = ∇ϕα + Dα(∇ϕα)dα + o(‖dα‖V).

Assuming ∇ϕα being invertible, we define the following maps depending on ϕα:

J (ϕα) := det(∇ϕα), G(ϕα) := cof(∇ϕα), F(ϕα) := (∇ϕα)−1cof(∇ϕα),

(100)

where cof(∇ϕα) is the cofactor matrix of ∇ϕα defined by:

cof(∇ϕα) = det(∇ϕα)∇ϕ−T
α .

We recall that the determinant det(·), the inverse (·)−1, and the cofactor cof(·) matrix
are differentiable maps defined on the open set of invertible matrices, and their differ-
entials are given by the following expressions. Let A, B ∈ R

2×2, A being invertible,
and |B| sufficiently small so that A + B is invertible, where |B| is given in (1). We
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have:

det(A + B) = det(A) + tr(cof(A)�B) + o(|B|), (101)

(A + B)−1 = A−1 − A−1BA−1 + +o(|B|), (102)

cof(A + B) = cof(A) +
(
tr(cof(A)�B)I − cof(A)B�)

A−� + o(|B|). (103)

As it is shown in Sect. 3.1, the maps J , G, and F are well defined and differentiable
because of the Banach algebra structure of H2(Ω). From there, applying the chain
rule and using expressions (101), (102), and (103), we can compute the differentials
Dα J (ϕα), DαG(ϕα), and DαF(ϕα).Wegive their expressions in the casewhereα = t ,
α = w, and ϕα = T t

w.
We recall that Φt is the map defined in (64) in Sect. 4.2 by:

Φt := idRn + tV ,

and that we have defined in (74) the following H3(Ωc
0)-valued map for all (t, w) ∈

R+ × (H1
0,Γω

(Ω0) ∩ H3(Ω0))
2 by:

T t
w := Φt + Rγ (w).

This map is differentiable, and we have the following derivatives with respect to w:

Dw(T t
w)k = R(γ (k)), and Dw(∇T t

w)k = ∇R(γ (k)), (104)

for all k ∈ (H1
0,Γω

(Ω0)∩H3(Ω0))
2. Thus, from the definitions in (100), the expressions

(101), (102), (103) and (104) and in view of the chain rule, we can deduce the values
of the following differentials:

Dw J (T t
w)k = tr(cof(∇T t

w)�∇R(γ (k))), (105)

DwG(T t
w)k =

[
tr((∇T t

w)−1∇R(γ (k)))I − (∇T t
w)−�∇R(γ (k))�

]
cof(∇T t

w), (106)

DwF(T t
w)k = cof(∇T t

w)�
[
tr((∇T t

w)−1∇R(γ (k)))I − 2(∇R(γ (k))(∇T t
w)−1)s

]
(∇T t

w)−�.

(107)

Noting that the derivative of T t
w with respect to t is given by:

d

dt
T t

w = Vt := d

dt
Φt ,

we can also deduce the time derivatives of J (T t
w), G(T t

w), and F(T t
w), given by:

Dt J (T t
w) = tr(cof(∇T t

w)�∇Vt ), (108)

DtG(T t
w) = cof(∇T t

w)
[
tr

(
(∇T t

w)−1∇Vt
)
I − [(∇T t

w)−1∇Vt ]�
]
, (109)
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Dt F(T t
w) = cof(∇T t

w)�
[
tr

(
(∇T t

w)−1∇Vt
)
I − 2[∇Vt (∇T t

w)−1]s
]
(∇T t

w)−�.

(110)

By setting T t
w = T0 and Vt = V in these expressions, we retrieve the fields DJ (V ),

DG(V ), and DF(V ) involved in Theorem 4.
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