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Abstract
Given two finite sets A and B of points in the Euclidean plane, a minimum multi-
source multi-sink Steiner network in the plane, or a minimum (A, B)-network, is a
directed graph embedded in the plane with a dipath from every node in A to every node
in B such that the total length of all arcs in the network is minimised. Such a network
may contain Steiner points—nodes appearing in the solution that are neither in A nor
B. We show that for any finite point sets A, B in the plane, there exists a minimum
(A, B)-network that is constructible by straightedge and compass (this was claimed
in a paper by Maxwell and Swanepoel, but their argument is incorrect). We use this
property to formulate an algorithmic framework for exactly finding minimum (A, B)-
networks in the Euclidean plane. We also present several new structural and geometric
properties of minimum (A, B)-networks. In particular, we resolve a conjecture of
Alfaro by proving that, for any terminal set A, adding an appropriate orientation to
the edges of a minimum 2-edge-connected Steiner network on A yields a minimum
(A, A)-network.

Keywords Directed Steiner networks · Steiner trees · Exact algorithm · Alfaro’s
conjecture · Geometric networks

1 Introduction

The Euclidean Steiner tree problem is an optimal interconnection problem, requiring
a finite set of points in the plane known as terminals to be connected by a minimum
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Fig. 1 An example of an
(A, B)-network, with sources in
red, and sinks in blue

length tree embedded in the plane. Solutions to this problem are known as minimum
Steiner trees, and may include nodes that are not in the set of terminals and can lie
anywhere in the plane. These additional nodes are known as Steiner points. Solutions
to this problem are well understood, and the history of the progress in this area is
detailed by Brazil et al. in [2]. Notably, in a minimum Steiner tree all Steiner points
are of degree 3, with edges separated by 120◦. This result and several other structural
and geometric properties of optimal trees have been used to develop powerful pruning
conditions, culminating in the flagship GeoSteiner exact algorithm, which is able to
efficiently construct minimum Steiner trees on thousands of terminals, despite the
problem being NP-hard [6].

Many types of optimal interconnection problems exist, including ones with directed
connectivity requirements. One such problem is the directed Steiner network problem
on graphs, also known as the point to point connection problem. Given a weighted
directed graph G and a set of source sink pairs {(s1, t1), . . . , (sn, tn)}, the problem
requires the minimum weight subgraph of G containing a directed path from si to ti
for all i . Variations on this problem also exist where the objective is to minimise the
number of nodes, or the number of edges [8]. The directed Steiner network problem
has been studied primarily in terms of approximation algorithms [9], but also in the
context of exact solutions when the number of source-sink pairs is fixed [8].

Not many papers have considered directed Steiner network problems in the plane.
One such paper, byMaxwell and Swanepoel [13], and related papers study the follow-
ing problem. Given a pair of sets A, B of points in the plane, find a shortest embedded
directed network N on A ∪ B such there exists a directed path in N from a to b
for every a ∈ A (the set of sources) and every b ∈ B (the set of sinks). A network
satisfying this connectivity requirement is referred to as an (A, B)-network. A simple
example is given in Fig. 1. For clarity, in this article we will refer to the problem of
finding a minimum (A, B)-network as the Minimum Multi-source Multi-sink Steiner
Network Problem in the plane.

Similarly to the classical Steiner tree problem, nodes of an (A, B)-network that are
neither in A nor B may form part of the solution and are known as Steiner points.
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The existence of a minimum (A, B)-network for every A, B in the plane is a non-
trivial result. It is plausible that for a network with some fixed number of Steiner
points, there always exists some perturbation leading to a shorter network, with the
length of the networks approaching but never reaching a limit. Alternatively a similar
situation could possibly arise by allowing greater numbers of Steiner points to be used:
one could possibly always shorten some network by introducing more Steiner points,
again approaching but never reaching a limit. However Alfaro proved that neither
possibility is realised, and indeed there is some minimum (A, B)-network for every
A, B in the plane [1]. In fact, similarly to how the undirected Steiner tree problem can
be solved in spaces other than the Euclidean plane [11], a minimum (A, B)-network
exists in any finitely compact metric space in which geodesics exist [14].

A number of structural results regarding solutions to the minimum multi-source
multi-sink Steiner network problem have been established in the literature. For exam-
ple, the number of Steiner points that can appear in a minimum (A, B)-network is
bounded above by 13 · |A ∪ B|; see [1]. In [13], Maxwell and Swanepoel provide
certain necessary conditions on the local geometry and connectivity of Steiner points
in minimum (A, B)-networks. In contrast to the classical Steiner tree problem, Steiner
points in a minimum (A, B)-network can be of degree 3, 4, 5 or 6. It is also claimed in
[13] that any minimum (A, B)-network is constructible by straightedge and compass,
and consequent to this the existence of an algorithm to construct minimum (A, B)-
networks is inferred. However, the proof of the claim of algebraic constructibility is
flawed, as we prove in Sect. 2, and therefore the existence of an exact algorithm for
constructing minimum (A, B)-networks is currently an open problem.

In this article we firstly provide a proof that given terminal sets A and B, some
minimum (A, B)-network is constructible by straightedge and compass, resolving the
issues presented by the incorrect claim regarding constructibility in [13]. We do this
by proving that, for any A, B, there exists a minimum (A, B)-network that does not
contain any cycles consisting solely of degree-3 Steiner points. Then, we use this
property to present the first algorithmic framework to construct minimum (A, B)-
networks. We subsequently provide several new structural properties of minimum
(A, B)-networks by restricting the structure of minimum (A, B)-networks containing
multiple Steiner points of degree at least 4, and improving the upper bound given in
given in [1] on the number of Steiner points that can be present in a minimum (A, B)-
network. Finally we disprove an open conjecture of Alfaro given in [13] by showing a
minimum (A, B)-network where A = B – i.e. where every terminal is both a source
and a sink – can be obtained from a minimum 2-edge-connected Steiner network in
the plane on terminal set A by adding appropriate orientation to edges.

The remainder of this article is structured as follows. Section2 outlines preliminary
definitions and results. Sections3 and 4 together prove the straightedge and compass
constructibility of some (A, B)-network, given A and B. An outline of an algorithm
for the construction of a minimum (A, B)-network is presented in Sect. 5. Section6
presents several structural results and Sect. 7 gives the new bound on the number of
Steiner points. Finally in Sect. 8 we disprove the open conjecture given in [13].
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2 Preliminaries

In this article we consider digraphs G = (VG , AG) without self loops. We refer to
elements of VG as nodes, and elements of AG arcs. An arc that has its head at node u
is an in-arc of u. An arc that has its tail at u is an out-arc of u. We denote by deg−(u)

and deg+(u) the number of in-arcs and out-arcs of u respectively. The degree of u is
the total number of arcs incident to u. We define deg(u) := (deg−(u), deg+(u)). We
denote the arc with tail at u and head at v by (u, v).

A geometric digraph is an embedding of a digraph G = (VG, AG) into a normed
space. In this article, we consider the Euclidean plane. This embedding assigns each
node in VG to a point in the plane, and arcs in AG are the straight line segments from
the node at the tail to the node at the head of each arc. Throughout this article, we take
| · | to represent length under the Euclidean norm. Given nodes (equivalently points
in the plane) u and v, we define uv to be the line segment in the plane between u
and v, and thus |uv| is the Euclidean distance between u and v. The length of an arc
a = (u, v) from node u to node v is |a| := |uv| = |vu|.

A dipath between nodes u0 and un in G is a finite sequence of distinct nodes
u0, u1 . . . un such that (ui , ui+1) ∈ AG for 0 ≤ i ≤ n − 1. We include a dipath
from a node to itself. Given terminal sets A and B, assumed to be finite sets of distinct
points in the plane (not necessarily disjoint), an (A, B)-network is a geometric digraph
H = (VH , AH ) where A∪ B ⊆ VH , and there is a dipath from every terminal in A to
every terminal in B. We call this connectivity property (A, B)-connectivity. The nodes
in A are known as sources, the nodes in B as sinks, and the nodes in VH \ A ∪ B as
Steiner points. The length of an (A, B)-network is defined to be |H | := ∑

a∈AH
|a|.

Definition 2.1 Given terminal sets A and B, aminimum (A, B)-network is an (A, B)-
network H with the least value of |H | amongst all (A, B)-networks.

The existence of a minimum (A, B)-network, given terminal sets A and B, was
proven by Alfaro [1].

Definition 2.2 Given terminal sets A and B, the Minimum Multi-source Multi-sink
Steiner Network Problem (MMMSNP) is to find a minimum (A, B)-network.

Throughout the remainder of this article we let A and B denote arbitrary terminal
sets, and N = (VN , AN ) an arbitrary minimum (A, B)-network.

Having defined the problem, we establish some definitions that are used throughout
the article. We define a path between nodes u0 and un in N to be a finite sequence of
nodesu0, u1, . . . , un , such that (ui , ui+1) ∈ AN or (ui+1, ui ) ∈ AN , for 1 ≤ i ≤ n−1.
That is, a dipath in N must only use arcs in the correct orientation, and a path in N is
able to use arcs regardless of direction. Note also that a dipath is a path.

We make a similar distinction between cycles depending on whether some ori-
entation of their arcs is required or not. A dicycle in N is finite a sequence of
distinct nodes u0, u1, . . . , un , such that (ui , ui+1) ∈ AN for 0 ≤ i ≤ n − 1, and
(un, u0) ∈ AN . A cycle in N is finite a sequence of distinct nodes u0, u1, . . . , un ,
such that (ui , ui+1) ∈ AN or (ui+1, ui ) ∈ AN , for 1 ≤ i ≤ n, and (un, u0) ∈ AN or
(u0, un) ∈ AN .
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Fig. 2 Basic networks, with only the network on the right being simply embedded

A double arc of N is a pair of arcs (u, v) and (v, u) between two nodes u and v of
N . We call the 2-cycle they form a trivial cycle. We note that the location of two arcs
comprising a double arc coincide in the plane. The topology of N is the underlying
digraph of N .

Aminimum (A, B)-network is simple if for every Steiner point s in N , deg−(s) ≥ 1,
deg+(s) ≥ 1, the degree of s is at least 3, and no degree-4 Steiner point s has two
incident double arcs. Any (A, B)-network can be made simple without increasing its
length so we consider only simple (A, B)-networks. This is shown for all but the last
property in [13], and is true for the last property as one can replace any such s and
incident arcs with a single double arc. The resultant network is no longer than N by
the triangle inequality, and (A, B)-connectivity is maintained.

Definition 2.3 An (A, B)-network is simply embedded if every arc intersecting a node
in the plane is incident to that node, and for every pair of arcs intersecting only at a
single point p, there is a node at point p.

Note that this definition does not preclude arcs intersecting along a line segment as
a double arc. If a minimum (A, B)-network is not simply embedded, we canmake it so
without increasing the length of the network, nor disrupting (A, B)-connectivity. If an
arc a = (u, v) intersects a node w without being incident to w, we can replace a with
two arcs: (u, w) and (w, v). The sum of the lengths of these two arcs is the same as the
length of a, and any dipath using a can now use the two arcs sequentially. If we have
two arcs intersecting only at a single point that is not the location of a node, we place
a Steiner point at that point, and apply the previous transformation. In that way, any
non-simply embedded network can be transformed into a simply embedded network
without increasing its length nor disrupting (A, B)-connectivity. This is illustrated in
Fig. 2.

Henceforth all (A, B)-networks are assumed to be simple and simply embedded,
notably including our arbitrary minimum (A, B)-network N .

We now present a definition regarding incident nodes located at the same geomet-
rical point in the plane.

Definition 2.4 A minimum (A, B)-network is degenerate if it has an arc of length 0
incident to a Steiner point.We refer to such an arc as a degenerate arc. The rectification
of a degenerate network is the network obtained by the following iterative process: for
each Steiner point s incident to a zero length arc a of the form (u, s) or (s, u), replace
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Fig. 3 Four graphs depicting a network before rectification (top two figures) and after rectification (bottom
two figures). The embedding is given on the left and its topology on the right

Fig. 4 A shortening of a network
with two in-arcs meeting at less
than 120◦ at a node

< 120◦ 120◦

each arc of the form (v, s) with an arc (v, u), and replace each arc of the form (s, v)

with an arc (u, v). Then remove s and a.

An example of rectification is given in Fig. 3. The iterative process must terminate,
as (A, B)-networks are finite and an arc is removed at each iteration. A rectification
of a degenerate network does not increase the length of the network as no new arcs are
created, and existing arcs are either removed or remain connecting the same two points
in the plane, although they may be incident to different nodes. Additionally, (A, B)-
connectivity is maintained, as any dipath through a removed node can be rerouted
through a node in the same location in the plane, with the equivalent arcs now incident
to this node in the same orientation. We assume that all arbitrary (A, B)-networks that
we reference are non-degenerate, noting that this does not exclude the explicit creation
of a degenerate network.

We now outline key structural results from existing literature on the MMMSNP,
and as well as relevant results from related problems. The first result is an immediate
generalisation of the equivalent result for Euclidean Steiner trees [10], and is illustrated
in Fig. 4.

Lemma 2.5 In aminimum (A, B)-network, no pair of in-arcs nor pair of out-arcs meet
at less than 120◦ at a node.

A solution to the Euclidean Steiner tree problem is a minimum Steiner tree. A
topology of a non-degenerateminimumSteiner tree inwhich every terminal has degree
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120◦

120◦

s

(a) A Steiner point where deg(s) = (1, 2)

120◦

120◦

s

(b) A Steiner point where deg(s) = (2, 1)

Fig. 5 Possible local geometry of a degree-3 Steiner point

1 is called a full Steiner topology. A non-degenerate shortest possible embedding for
a full Steiner topology is called a full Steiner tree. Given a full Steiner topology, the
corresponding full Steiner tree is unique, and is characterised by every Steiner point
having degree 3, with incident edges separated at 120◦ (see [6]).

Lemma 2.6 A full Steiner tree is constructible by straightedge and compass.

This result follows immediately from the process of the Melzak-Hwang algorithm.
The algorithm recursively constructs a full Steiner tree from its topology in linear
time, exploiting the geometric structure of minimum Steiner trees [6].

Theorem 2.7 (Maxwell and Swanepoel [13]) The following is a complete list of all
possibilities for the local geometric structure of a Steiner point s in aminimum (A, B)-
network in the Euclidean plane.

1. deg(s) = (1, 2) or (2, 1). The three arcs incident to s are pairwise at 120◦ angles.
See Fig. 5.

2. deg(s) = (2, 2). One of the following two cases:

(a) Opposite pairs of arcs lie on two straight lines, with arcs alternating between
in-arcs and out-arcs. See Fig. 6a.

(b) Opposite pairs of arcs lie on two straight lines, arcs do not alternate between
in-arcs and out-arcs, and the angles between the two in-arcs and between the
two out-arcs are ≥ 120◦. See Fig. 6b.

3. deg(s) = (2, 3), (3, 2). In the case (2, 3), the three out-arcs are pairwise at 120◦
degrees, and the two in-arcs lie on a straight line. The case (3, 2) is exactly opposite:
the three in-arcs are pairwise at 120◦ degrees, and the two out-arcs lie on a straight
line. See Fig. 7.

4. deg(s) = (3, 3). The in-arcs and out-arcs alternate, with consecutive arcs at 60◦
angles. See Fig. 8.

It has been demonstrated that cycles may be present in a minimum (A, B)-network,
and that these cycles may consist solely of Steiner points, solely of terminals, or both
types of nodes. This is a notable difference to the Steiner tree problem in which
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α

θ
s

(a) 0◦ ≤ θ, α ≤ 180◦, α + θ = 180◦

α

θ
s

(b) 120◦ ≤ θ ≤ 180◦, α + θ = 180◦

Fig. 6 Possible local geometry of a degree-4 Steiner point, where deg(s) = (2, 2)

120◦

s180◦

θ

(a) A Steiner point where deg(s) = (2, 3). 0◦ ≤ θ ≤ 120◦

120◦

s180◦

θ

(b) A Steiner point where deg(s) = (3, 2). 0◦ ≤ θ ≤ 120◦

Fig. 7 Possible local geometry of a degree-5 Steiner point

Fig. 8 Local geometry of a
degree-6 Steiner point s, where
deg(s) = (3, 3)

s60◦

solutions are always trees, and increases the number of possible optimal topologies
significantly. Aminimum (A, B)-network containing a cycle of Steiner points is given
in Fig. 9a; a minimum (A, B)-network containing a cycle of terminals is given in
Fig. 9b; and a minimum (A, B)-network containing a cycle with both a terminal and
a Steiner point can be obtained by replacing a Steiner point with a terminal in Fig. 9a
– minimality follows as a shorter network on that terminal set would contradict the
minimality of the original, as the modified node can be restored to a Steiner point.

Maxwell and Swanepoel also claim to prove that any minimum (A, B)-network
is constructible by straightedge and compass in [13], by suggesting that each such
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(a) (b)

Fig. 9 Two minimum (A, B)-networks on the same set of terminals, both exhibiting cycles

network decomposes into a union of full Steiner trees, each of which is constructible
by straightedge and compass by theMelzak-Hwang algorithm.However, theminimum
(A, B)-network presented in Fig. 9a is a counterexample to their proof, as the cycle of
degree-3 Steiner points remains a cycle after decomposing the degree-4 and degree-
5 Steiner points as in their procedure. This is not a union of full Steiner trees as
claimed, and exposes a flaw in the presented proof. Since a cycle of degree-3 Steiner
points cannot be decomposed into a union of full Steiner trees, either some procedure
to construct them from straightedge and compass must be found, or they must be
excluded from necessary consideration in constructing a minimum (A, B)-network.

Given the incorrect straightedge and compass result, the subsequent claim of the
existence of an algorithm for constructingminimum (A, B)-networks in [13] is invalid,
and leaves the existence of such an algorithm as an open problem. In Sect. 3 we show
that there exists some minimum (A, B)-network with no cycles of only degree-3
Steiner points, and we use this fact in Sect. 4 to show that some minimum (A, B)-
network has a straightedge and compass construction. We then present the first exact
algorithm for the construction of a minimum (A, B)-network in Sect. 5.

We now briefly discuss the complexity of the MMMSNP. If |A| = 1, a mini-
mum (A, B)-network is a minimum Steiner tree [13]. Since the minimum Steiner tree
problem is NP-hard [3], it follows that the minimum multi-source multi-sink Steiner
network problem is NP-hard.

We also give an upper bound on the length of a minimum (A, B)-network. Given
terminal sets A, B and a minimum (A, B)-network N we have that the minimum
Steiner tree T on A ∪ B, where each edge is duplicated and then directed to form a
double arc, is an (A, B)-network. Therefore 2|T | is an upper bound for |N |.

In general |T | is difficult to determine for large instances, so we use that |T | ≤ |T̄ |,
where T̄ is a minimum spanning tree on A∪ B. Thus 2|T̄ | is an easily computed upper
bound on the length of a minimum (A, B)-network. Both of the bounds presented
are tight, shown by considering terminal sets where A = B and all points of A are
colinear.
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This upper bound may be used in evaluating approximation algorithms for solving
the problem. However in this article we primarily concern ourselves with exact solu-
tions, and properties of minimum (A, B)-networks that may be used to create efficient
exact algorithms.

3 Flexible Steiner cycles

A significant obstacle to proving the straightedge and compass constructibility of
a minimum (A, B)-network is the potential for such a network to contain a cycle
consisting of only degree-3 Steiner points. As discussed in Sect. 2, such cycles do not
yield a decomposition into full Steiner trees allowing for theMelzak-Hwang procedure
to be used. In this section we show that the Steiner points of such a cycle can always
be perturbed in a manner so that length and (A, B)-connectivity are maintained until
a degenerate arc is obtained. This allows us to show that for any A, B there exists
a minimum (A, B)-network that does not contain such cycles. This property will
be used in Sect. 4 to prove straightedge and compass constructibility of a minimum
(A, B)-network.

Definition 3.1 A degree-3 Steiner cycle in N is a cycle C in N where every node on
C is a degree-3 Steiner point. A node adjacent to a node on C , but not on C itself, is
a C-adjacent node.

Definition 3.2 Let C denote a non-trivial cycle in N . The arcs composing C form a
simple polygon in the plane. Let a and a′ denote a pair of consecutive arcs on this
polygon, both incident to a node v. The angle formed by a and a′ which is interior to
the polygon is called the internal angle of C at v. If C is a degree-3 Steiner cycle, the
cycle angle of a C-adjacent node u is the internal angle of C at the Steiner point on C
adjacent to u.

Throughout this section we let N∗ denote a minimum (A, B)-network which con-
tains at least one degree-3 Steiner cycle.We letC∗ denote an arbitrary degree-3 Steiner
cycle of N∗. We note that since nodes on C∗ are of degree 3, there is a one to one
correspondence between nodes on C∗ and C∗-adjacent nodes.

An immediate consequence of Theorem 2.7 is that each internal angles of a degree-
3 Steiner cycle in a minimum (A, B)-network is either 120◦ or 240◦. Note that in N∗,
a C∗-adjacent node is in the interior of the cycle if it has a cycle angle of 240◦. It is in
the exterior of the cycle if it has a cycle angle of 120◦. We now establish a relationship
between the number of each of these angles.

Lemma 3.3 Let x and y denote the number of 120◦ and 240◦ internal angles of C∗
respectively. Then x = y + 6.

Proof Consider the cycle C∗ as a simple polygon formed by its arcs. This polygon
has x + y vertices as each internal angle corresponds to a single node on C∗. The sum
of internal angles of a simple polygon with k vertices is 180(k − 2)◦. Thus, we have
120x + 240y = 180(x + y − 2), and x = y + 6 follows immediately. 
�
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We now develop the notion of flexing C∗ safely, which represents a modification
of the embedding of N∗ by simultaneously translating all Steiner points on C∗ (while
fixing all other nodes of N∗) such that the local geometry of each Steiner point is
maintained (or a degenerate arc is introduced). We show that such a flex preserves
length and (A, B)-connectivity. We then use these properties to prove that there exists
a minimum (A, B)-network with no degree-3 Steiner cycles.

We first define a general flex, which will not maintain the length of the network in
all cases.

Definition 3.4 Let s1, . . . , sn denote the Steiner points onC∗. For each i ∈ {1, . . . , n},
let ui denote theC∗-adjacent node adjacent to si , and let �i denote the line in the plane
through ui and si . To flex C∗ a distance of d units, d ≥ 0, is to modify the embedding
of N by simultaneously translating every node si a distance of d units along �i ; for
each i this translation is towards ui if the internal angle of C∗ at si is 120◦, or away
from ui if the internal angle of C∗ at si is 240◦.

Note that the topology of N∗ is maintained when flexing C∗ – it is only the embed-
ding that is modified. Crucially, however, a degenerate arc may be present after a
flex. We will show that it is always possible to obtain a degenerate arc by flexing C∗
appropriately, whilst maintaining length and (A, B)-connectivity.

Definition 3.5 The value δC∗ is defined to be the minimum value of d ∈ R, where
d ≥ 0, such that flexing C∗ a distance of d units results in a degenerate arc.

For the remainder of this section we let s denote a Steiner point on C∗, s′ denote
the neighbour of s on C∗ in the anticlockwise direction, and u and u′ denote the
C∗-adjacent nodes adjacent to s and s′ respectively.

Lemma 3.6 The value δC∗ is finite.

Proof By Lemma 3.3, there is at least one 120◦ internal angle on C∗, so we may
assume that the internal angle of C∗ at s is 120◦. Then flexing C∗ a distance of |us|
units results in a degenerate arc between u and s, so δC∗ ≤ |us| < ∞. 
�

Note that in the proof of the previous lemma, the local geometry of nodes on C∗
may not have been maintained, for example at s′ if its internal angle on C∗ is also
120◦, and |u′s′| < |us|. Thus flexing in general may result in a network that is no
longer a minimum (A, B)-network, and so we restrict how we may flex suitably in the
following definition.

Definition 3.7 To flex C∗ safely is to flex C∗ at most δC∗ units.

By Lemma 3.6 δC∗ is finite, so it is always possible to flex C∗ safely exactly δC∗
units.

Definition 3.8 The contribution of uwith respect toC∗ is |us|+|ss′|. This is illustrated
in Fig. 10.

123



Journal of Optimization Theory and Applications (2023) 197:1104–1139 1115

Fig. 10 In this network, the
contribution of the C-adjacent
node u is |a1| + |a2|

u

a1

a2

C

s
s′

u′

Fig. 11 The C-adjacent node u
is triangular, with relevant
angles displayed

u u′

s s′

120◦ 120◦

C

We now establish a series of lemmas to show that flexing C∗ safely results in a
network of equal length to N∗. We first note that the length of N∗ can be decomposed
into three parts: the lengths of the arcs on C∗; the lengths of the arcs between C∗-
adjacent nodes and C∗; and the lengths of any other arcs in the network. However,
when flexing, only the arcs on C∗ and the arcs between C∗-adjacent nodes and C∗
are modified. Therefore, in determining the change in the length of the network after
flexing, we only need to consider the sum of the lengths of these arcs in N∗ and
the resultant network. We note that each arc on C∗ is involved in the contribution of
exactly one C∗-adjacent node. Similarly, each arc between a C∗-adjacent node and
C∗ is involved in the contribution of exactly one C∗-adjacent node. Thus the sum of
the lengths of the arcs on C∗ and the arcs between C∗-adjacent nodes and C∗ is equal
to the sum of the contributions of all C∗-adjacent nodes. Hence, to prove that after
flexing safely the length of the network is unchanged, we show that the sum of the
contributions of the C∗-adjacent nodes remains the same in the resultant network. We
use this to obtain our desired result: that some minimum (A, B)-network does not
contain a degree-3 Steiner cycle.

Definition 3.9 If the internal angle of C∗ at s is equal to the internal angle of C∗ at
s′ then u is said to be triangular. This case is illustrated in Fig. 11. Otherwise, if the
angles differ, u is quadrangular. This case is illustrated in Fig. 12.
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Fig. 12 The C-adjacent node u
is quadrangular, with relevant
angles displayed

u

s

s′

120◦
u′

240◦

C

u

u′

s s′

p
�1 �2

u

u′

s s′

p

�1 �2

Fig. 13 A cycle before and after flexing safely, where the contribution of the triangular node u has not
changed, remaining equal to the distance |up|. The contribution of u is the sum of the lengths of the bold
arcs

Lemma 3.10 Let u denote a triangular C∗-adjacent node. Then, flexing C∗ safely does
not change the contribution of u.

Proof Let p denote the point of intersection of the line �1 passing through u and s, and
the line �2 passing through u′ and s′. Since u is triangular, s, s′ and p are the vertices
of an equilateral triangle in the plane, as in Fig. 13 (left). Hence, the contribution of u
is |up|.

The effect of flexingC∗ safely to obtain a network N ′ is to translate s to some point
on �1 between u and s in N , and s′ to some point on �2 between u′ and s′ in N . Since
s and s′ are both translated by the same distance, it follows that after translation s, s′,
and p still form an equilateral triangle in the embedding of N ′, with p at the same
location in the plane. Thus flexing C∗ safely does not change the contribution of u.
This case is illustrated in Fig. 13. 
�
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u

s

s′

u′

u

s
s′

u′
� �

Fig. 14 A cycle before and after flexing safely by d units, where the contribution of the quadrangular node
u on the exterior of the cycle has decreased by d, with |ss′| remaining unchanged. The contribution of u is
the sum of the lengths of the bold arcs

s

u

s′

u′

�

s

u

s′

u′

�

Fig. 15 A cycle before and after flexing safely by d units, where the contribution of the quadrangular node
u on the interior of the cycle has increased by d, with |ss′| remaining unchanged. The contribution of u is
the sum of the lengths of the bold arcs. Note the right most Steiner point in the initial cycle is coincident
with a node in the resultant network, with a degenerate arc between them

Lemma 3.11 Suppose u is a quadrangular C∗-adjacent node. If u is in the exterior of
C∗, then flexing C∗ safely d units decreases the contribution of u by d. If u is in the
interior of C∗, then flexing C∗ safely d units increases the contribution of u by d.

Proof Note thatu being quadrangular implies thatus and s′u′ are parallel.Hence, aswe
flex C∗ safely, |ss′| does not change. Therefore, the only variation to the contribution
of u comes from changes in |us|. Let � denote the line passing through u and s. Flexing
C∗ safely translates s either away from or towards u a distance of d units along �,
depending on whether u is in the interior or exterior ofC∗ respectively. Since d ≤ δC∗ ,
s is not moved beyond u. The result follows, and is illustrated in Fig. 14 and 15. 
�
Lemma 3.12 There are an equal number of quadrangular C∗-adjacent nodes in the
interior of C∗ and the exterior of C∗.

Proof Suppose u is a quadrangular C∗-adjacent node. Since u is quadrangular, it is in
the interior of C∗ if and only if it has a cycle angle of 240◦, and u′ has a cycle angle of
120◦. Similarly, u is in the exterior ofC∗ if and only if it has a cycle angle of 120◦, and
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u′ has a cycle angle of 240◦. Therefore it suffices to show that in a tour of the nodes
of C∗, there are an equal number of steps from a node with a corresponding interior
angle of 240◦ to a node with a corresponding interior of 120◦ as there are from a node
with a corresponding interior angle of 120◦ to a node with a corresponding interior
angle of 240◦.

In order to simplify our argument, we construct a new graph G and then map an
anticlockwise tour of C∗ to a tour in G. Let G denote the graph with exactly two
vertices x, y and four arcs (x, x), (x, y), (y, x), (y, y). We think of the nodes x and
y of G as corresponding to angles of 120◦ and 240◦ respectively in C∗. We start the
tour of C∗ at a node with a corresponding internal angle of 120◦. Such a node exists
as there are more 120◦ angles than 240◦ angles on C∗ by Lemma 3.3. So the tour in
G starts at node x .

As we tourC∗ in an anticlockwise direction, if wemove from a node corresponding
to an internal angle of 120◦ to an adjacent node that also corresponds to an internal
angle of 120◦, then in G we move along the arc (x, x). If we move from a node
corresponding to an internal angle of 120◦ to an adjacent node that corresponds to an
internal angle of 240◦, then in G we move along the arc (x, y). Analogous properties
holds for the other two possibilities. Therefore, in the tour of C∗, whenever a node
corresponding to an internal angle of 120◦ is reached then the corresponding tour in
G passes through node x , and vice-versa. In G, the tour must start and end at x , as we
started and finished at a 120◦ internal angle of C∗. Thus in the tour in G the number of
times we use the arc (x, y) must be equal to the number of times we use the arc (y, x).
But arcs (x, y) and (y, x) correspond exactly to quadrangularC∗-adjacent nodes in the
exterior and interior of C∗ respectively. So there are an equal number of quadrangular
C∗-adjacent nodes in the exterior and interior of C∗. 
�
Lemma 3.13 Let N ′ denote a network obtained from N∗ by flexing C∗ safely d units.
Then, N ′ is a minimum (A, B)-network.

Proof We have that N ′ is (A, B)-connected as N ′ has the same topology as N∗, so it
remains to show |N ′| = |N∗|. The contribution of triangularC∗-adjacent nodes has not
changed from N∗ to N ′ by Lemma 3.10. There are an equal number of quadrangular
C∗-adjacent nodes in the interior and exterior of C∗ by Lemma 3.12. By Lemma 3.11,
the contributions in |N ′| of the quadrangular C∗-adjacent nodes in the interior of
C∗ are d units more than the contributions in N∗, and the contributions in |N ′| of
the quadrangular C∗-adjacent nodes in the exterior of C∗ are d units less than the
contributions in N∗. Thus, the sum of the contributions of the C∗-adjacent nodes in
N ′ is equal to the sum of the contributions of the C∗-adjacent nodes in N∗. Since no
other part of the network changes under flexing C∗, |N∗| = |N ′|. 
�
Theorem 3.14 There exists a minimum (A, B)-network that does not contain any
degree-3 Steiner cycles.

Proof Let Nmin denote a minimum (A, B)-network, such that it contains the minimum
number of Steiner points amongst all minimum (A, B)-networks. Such an Nmin exists
as all (simple) minimum (A, B)-networks contain a finite number of Steiner points
[1].
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Suppose, by contradiction, that Nmin contains a degree-3 Steiner cycle C , and let
N ′ denote the minimum (A, B)-network obtained by flexing C safely δC units. By
construction, N ′ necessarily contains a degenerate arc. Let N0 denote the rectification
of N ′. This is an (A, B)-network of equal length to N ′ and N , as rectification preserves
length and (A, B)-connectivity. However the number of Steiner points in N0 is strictly
less than the number of Steiner points in Nmin, as rectifying a degenerate network
removes at least one Steiner point. This contradicts our choice of Nmin. So Nmin
cannot contain any degree-3 Steiner cycles. 
�

4 Straightedge and Compass Constructibility

In this section we show that given sets of terminals A and B, there is a minimum
(A, B) network which has a straightedge and compass construction. We do this by
showing that minimum (A, B)-networks containing no degree-3 Steiner cycles can
be decomposed into components each constructible by straightedge and compass, and
that the decomposition can be reversed.

We first establish a useful proposition, allowing us to reorient the arcs in any cycle.

Definition 4.1 Let N ′ = (VN ′ , AN ′) denote a (not necessarily minimum) directed
network such that A ∪ B ⊆ VN ′ . Then we define X(N ′) to be the set

X(N ′) = {(u, v) | u ∈ A, v ∈ B, and there is a dipath fromu tov inN ′}

Recall every node is considered to have a dipath to itself, so if a node u in N ′ is both
a source and a sink then (u, u) ∈ X(N ′). We note that N ′ is (A, B)-connected iff
X(N ′) = A × B.

Lemma 4.2 Let N ′ = (VN ′ , AN ′) denote a (not necessarily minimum) directed net-
work containing a cycle C ′ where A ∪ B ⊆ VN ′ . Let N ′′ be obtained from N ′ by
orienting all arcs of C ′ to form a dicycle C ′′. Then X(N ′) ⊆ X(N ′′).

Proof In the case where X(N ′) = ∅ we are done, so we suppose that X(N ′) is non-
empty. Let (u, v) ∈ X(N ′). In N ′′ there is a dipath between any two nodes of C ′′, as
it is a dicycle. Now, every arc in N ′ is also in N ′′, except possibly arcs of N ′ which
are on C ′. However, if (w, x) is an arc of C ′ in N ′ but not of C ′′ in N ′′ then there is a
dipath in N ′′ from w to x on C ′′. It follows that for any dipath from u to v in N ′ there
exists a dipath from u to v in N ′′. So (u, v) ∈ X(N ′′). Thus X(N ′) ⊆ X(N ′′). 
�
Proposition 4.3 Suppose N has a cycle C. Let N ′ be obtained from N by orienting all
arcs of C to form a dicycle. Then, N ′ is a minimum (A, B)-network.

Proof Since N is an (A, B)-network, X(N ) = A × B. By Lemma 4.2, A × B =
X(N ) ⊆ X(N ′). So X(N ′) = A × B. Clearly |N ′| = |N |, hence N ′ is a minimum
(A, B)-network. 
�

Having developed this cycle orientation tool, we now proceed to show that Steiner
points of degree at least four are greatly restricted in how they can appear on cycles,
if they can at all.
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Proposition 4.4 Suppose N has a cycle C. Then, there is no degree-6 Steiner point on
C.

Proof Suppose, by contradiction, thatC has a degree-6 Steiner point s. Then deg(s) =
(3, 3), with incident in-arcs 120◦ apart, incident out-arcs 120◦ apart, and all incident
arcs 60◦ apart, by Theorem 2.7. Let a1 and a2 denote the arcs incident to s that are on
C . We have three cases: both a1 and a2 are in-arcs of s, both are out-arcs of s, or one
is an in-arc and the other an out-arc of s.

If a1 and a2 are both in-arcs of s, orient C such that it is a dicycle to obtain
a minimum (A, B)-network N ′ by Proposition 4.3. Then deg(s) = (2, 4) in N ′,
contradicting Theorem 2.7. The case where a1 and a2 are both out-arcs of s is similarly
contradictory.

Thus suppose without loss of generality that a1 is an in-arc of s, and a2 is an out-arc
of s. Orienting the arcs of C to form a dicycle such that a1 becomes an out-arc of s
results in a minimum (A, B)-network N ′ by Proposition 4.3. But in N ′ the arc a1 is
60◦ separated from another out-arc of s. This contradicts Theorem 2.7. So a degree-6
Steiner point is not on a cycle in a minimum (A, B)-network. 
�
Proposition 4.5 Suppose N has a non-trivial cycle C. Then, there is no degree-5
Steiner point on C.

Proof Suppose, by contradiction, thatC has a degree-5 Steiner point s. Then deg(s) =
(2, 3) or deg(s) = (3, 2), with the two arcs of the same orientation 180◦ apart, and
the three arcs of the same orientation 120◦ apart by Theorem 2.7. Call the arcs on C
incident to s a1 and a2.

If a1 and a2 differ in orientation with respect to s they must not be coincident,
as N is simply embedded, and C is a non-trivial cycle. Let a3, a4 and a5 denote the
remaining arcs incident to s. Suppose without loss of generality that a1 and a3 have
the same orientation to s, and a2, a4 and a5 the other orientation. So a2, a4 and a5 are
pairwise 120◦ apart, and a1 is not 120◦ apart from both a4 and a5 as it is not coincident
with a2. If we orient C such that a1 and a2 switch orientation, we have a1, a4 and
a5 with the same orientation to s. But a1 not being 120◦ apart from both a4 and a5
contradicts Theorem 2.7. So a1 and a2 cannot alternate in orientation to s.

If a1 and a2 have the same orientation to s, orienting C results in one of them
changing direction. If they are the only two of that orientation, orienting C results in
either deg(s) = (1, 4) or deg(s) = (4, 1), contradicting Theorem 2.7.

If a1 and a2 are two of three arcs incident to s with some orientation, we similarly
consider orienting C . Call the third arc of the same orientation to s (not on C) a3.
We have that a1, a2 and a3 are all 120◦ apart from one other. Orienting C results in
exactly one of a1 and a2, say a1, reversing orientation. Then a2 and a3 are the only
two arcs of their orientation to s. But they are 120◦ apart, not 180◦ apart, contradicting
Theorem 2.7. Therefore there can be no degree-5 Steiner point on C . 
�

Lemma 4.6 Suppose s is a degree-4 Steiner point in N. Then neither a pair of in-arcs
nor a pair of out-arcs incident to s are on a common cycle.
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α

θ
s

ab

dc

(a) 0◦ < α < 180◦, α + θ = 180◦

α

θ
s

ab

dc

(b) 0 < α ≤ 60◦, α + θ = 180◦

Fig. 16 Possible orientation of arcs around a degree-4 Steiner point, from Theorem 2.7. Alternating arcs
are always 180◦ apart

Proof Suppose, by contradiction, two in-arcs (out-arcs) incident to s are on a cycle C .
Then, by Proposition 4.3, orienting the arcs of C to form a dicycle gives us a Steiner
point s in a minimum (A, B)-network where deg(s) = (1, 3) (deg(s) = (3, 1)). This
contradicts Theorem 2.7. 
�
Proposition 4.7 Suppose that N has a degree-4 Steiner point s on a cycle C. Then, the
internal angle of C at s is either less than or equal to 60◦, or greater than or equal to
300◦.

Proof We suppose that the internal angle of C at s is greater than 60◦ and less than
300◦. By Lemma 4.6, it cannot be that a pair of in-arcs nor a pair of out-arcs of s are
on C .

We start with cases where in-arcs and out-arcs of s alternate around s, as in Fig. 16a.
There are four relevant ways in which s can be involved in a cycle. We reference
a, b, c, d, s, α, θ in Fig. 16a. We define θ ′ = 360◦ − θ , and α′ = 360◦ − α.

If the arcs (a, s) and (s, b) are on C , α or α′ is the internal angle and thus α > 60◦.
Then θ < 120◦. We orient C to form a dicycle with arcs (b, s) and (s, a), resulting
in a new minimum (A, B)-network by Proposition 4.3. But (b, s) and (c, s) are both
in-arcs of s, with∠bsc = θ < 120◦, contradicting Theorem 2.7. Thus (a, s) and (s, b)
are not on C in N .

If (c, s) and (s, b) are on C , θ or θ ′ is the internal angle and thus θ > 60◦. Then
α < 120◦. We orient C to form a dicycle with arcs (b, s) and (s, c), resulting in a
new minimum (A, B)-network. But now (a, s) and (b, s) are both in-arcs of s, and
∠asb = α < 120◦, contradicting Theorem 2.7. Thus (a, s) and (s, d) are not on C in
N .

For the cases where (a, s) and (s, d) are on C , or where (c, s) and (s, d) are on C ,
equivalent arguments apply.

We now consider to the cases where in-arcs and out-arcs of s do not alternate around
s, as in Fig. 16b. We have again four relevant ways in which s can be involved in a
cycle, however some are contrary to our assumption that the internal angle is greater
than 60◦ and less than 300◦. We reference a, b, c, d, s, α, θ in Fig. 16b, and again let
θ ′ = 360◦ − θ , and α′ = 360◦ − α.
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ab
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Fig. 17 An illustration of a shortening of a network containing two arc disjoint cycles sharing a degree-4
Steiner point, as used in the proof of Lemma 4.9

Since ∠asb = ∠csd = α ≤ 60◦, we can immediately eliminate the cases where
(s, a) and (b, s) are on C , or (c, s) and (s, d) are on C .

If (s, a) and (c, s) are onC , we orientC to form a dicycle with arcs (a, s) and (c, s).
Then (a, s) and (b, s) are both in-arcs of s in the resulting minimum (A, B)-network,
and∠asb = α ≤ 60◦ < 120◦, contradicting Theorem 2.7. A similar argument applies
if (b, s) and (s, d) are on C . we orient C to form a dicycle with arcs (s, b) and (d, s)
and call the resultant minimum (A, B)-network N ′ by Proposition 4.3. We conclude
that the internal angle of C at s cannot be greater than 60◦ and less than 300◦. 
�
Lemma 4.8 Suppose that N has a degree-4 Steiner point s on a cycle C. Then, the
arcs on C incident to s occur consecutively around s.

Proof Supposing otherwise, the arcs are 180◦ apart by Theorem 2.7, contradicting
Proposition 4.7. 
�

Lemma 4.9 No two arc disjoint cycles in N have a common degree-4 Steiner point.

Proof Suppose that in N we have two arc disjoint cycles sharing a degree-4 Steiner
point s. By Lemma 4.8 neither cycle uses non-consecutive arcs around s, so s and
the cycles are as in Fig. 17a (after reorientation, if required). We refer to a, b, c, d, s
as in Fig. 17, where each of a, b, c, d can be a Steiner point or a terminal. We can
shorten N as in figure 17b: removing s and incident arcs, and adding arcs a1 = (c, b)
and a2 = (a, d). This network is strictly shorter than N by the triangle inequality:
|cs|+|sb| > |a1| and |ds|+|sa| > |a2|, since∠cdb = ∠dsa < 180◦ by Theorem 2.7.
If we then orient the new cycle in 17b, (A, B)-connectivity is maintained, as every
node on the cycle has a dipath to every other node on the cycle, so dipaths in N
from sources to sinks can be rerouted appropriately. Hence the minimality of N is
contradicted. 
�
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Definition 4.10 Suppose that N contains no degree-3 Steiner cycles. The constructible
decomposition of N is the network Nd obtained with the following adjustments,
applied sequentially.

• Two arcs of all degree-5 Steiner points 180◦ separated are removed, and replaced
by a single arc directed arbitrarily (overlapping the now degree-3 Steiner point in
the plane).

• All arcs become undirected edges (with any double arc becoming a single edge).
• All degree-4 Steiner points and their incident edges are removed, with two edges
added replacing the two pairs of 180◦ separated edges (crossing at the location of
the removed Steiner point).

• All degree-6 Steiner points are duplicated, with the three former in-arcs incident
only to one copy, and the three former out-arcs incident only to the other copy, so
that each copy has degree 3.

• For every terminal of degree greater than one in our modified network, we make
a copy of this terminal at the same location in the plane for each incident edge to
the terminal, and modify the connectivity of the network so that every instance of
this terminal has degree 1 (i.e. we assign to each of the instances exactly one edge
incident to the original terminal).

The resulting network is the constructible decomposition of N .

We now show that the constructible decomposition of a minimum (A, B)-network
is a forest, where each connected component is a full Steiner tree.

Lemma 4.11 Suppose that N contains no degree-3 Steiner cycles. Let Nd denote the
constructible decomposition of N . Then, Nd contains no cycles.

Proof Suppose that there is a cycle C in Nd . Note that all nodes of C are degree-3
Steiner points. We have two cases: either C self-intersects in the plane, or it does not.

Suppose C self-intersects in the plane. Then, in N there is a node u of degree at
least four at the point of intersection. Then u is not a terminal, as otherwise C would
be disconnected in Nd . Since C is a cycle in Nd , u is on two cycles in N . These two
cycles must be arc disjoint, as otherwise C would contain a repeated node, and thus
would not be a cycle. By Proposition 4.4, u is not a degree-6 Steiner point, and by
Proposition 4.5, u is not a degree-5 Steiner point. By Lemma 4.9, u is not a degree-4
Steiner point. Since u has at least 4 incident arcs, it is not a degree-3 Steiner point.
Thus, no such u exists, and we cannot be in the first case.

Therefore, C does not self-intersect in the plane. Hence there is a cycle in N
corresponding to C , possibly subdivided. Let C ′ denote such a cycle in N . Then C ′ is
not a degree-3 Steiner cycle, and so contains a terminal, or a Steiner point of degree at
least 4. IfC ′ contains a terminal, it is disconnected in Nd , as the terminal is duplicated.
ByProposition 4.4 a degree-6 Steiner point is not onC ′. By Proposition 4.5, if a degree-
5 Steiner point is on C ′ the cycle is trivial, and so disconnected by the decomposition
of a degree-5 Steiner point. If a degree-4 Steiner point s is on C ′, by Proposition 4.7
the arcs of s on C ′ are not 180◦ separated, and so the cycle is disconnected in Nd . We
have a contradiction, and conclude that there is no cycle in Nd . 
�

The following is a corrected version of Corollary 2 in [13].
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Theorem 4.12 (Straightedge and compass) For any sets of sources and sinks A and
B, there exists a minimum (A, B)-network that can be constructed from A and B by
straightedge and compass.

Proof By Theorem 3.14 there exists a minimum (A, B)-network N ′ containing no
degree-3 Steiner cycles. We show that we can construct N ′ by straightedge and com-
pass.

Let Nd denote the constructible decomposition of N ′. By Lemma 4.11, Nd does
not contain a cycle and hence is a forest. We note that every connected component
of Nd satisfies the properties of a full Steiner tree, as every terminal is of degree 1,
every Steiner point in Nd is of degree 3, and all angles around Steiner points are 120◦.
Some components of Nd may be self-intersecting or self-overlapping, but this does
not violate the definition of a full Steiner tree.

It follows that each connected component of Nd is independently constructible
by straightedge and compass, uniquely given the topology of the component, by
Lemma 2.6. To obtain N ′ from Nd , the process of constructible decomposition is
reversed: all single points of intersection between two edges in Nd are replaced by
Steiner points in N ′; an edge whose interior intersects with a node is replaced by two
edges, increasing the degree of the node; and coincident nodes are replaced by a single
terminal (if at least one of the coincident nodes is a terminal), or by a Steiner point
(otherwise). Finally, edges are replaced by appropriately oriented arcs. 
�

5 An Algorithm for ConstructingMinimum (A, B)-networks

Having established a proof of the straightedge and compass constructibility of some
minimum (A, B)-network, for any set of sources and sinks, we now present an exact
algorithm for solving the MMMSNP. In short, the algorithm first generates all undi-
rected full Steiner trees on two copies of the terminal set. These FSTs are overlaid upon
one another, with Steiner points added at single points of intersection of edges, and
with coincident nodes consolidated. The resulting undirected graph is made directed
by replacing each edge with a double arc. The problem of selecting the optimal subset
of arcs from this constructed directed graph is thenmodeled as amulti-commodity flow
problem with an integer programming formulation. We now present a more detailed
overview of the process.

Given sets of sources and sinks A and B, let C = (A ∪ B) � (A ∪ B), where �
is the disjoint union, so that C is a set containing two copies of each terminal. Let
S denote the set of (undirected) full Steiner trees on terminal set C . This is achieved
by constructing an optimal embedding (using the Melzak procedure) of every full
Steiner topology on every subset of terminals in C . Note that S may include trees self-
intersecting in the plane, intersections being at a point or along a line. The disjoint
union of the original terminal sets allows for two distinct terminals lying in the same
location in the plane to be part of the same full Steiner tree, forming what appears to
be an embedded cycle in the plane.

Let G∗ denote the planar overlay of graphs in S. In other words, G∗ does not have
any crossing edges. Any vertex of G∗ that is coincident to some terminal of a graph
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in S is considered a terminal of G∗. Every other vertex of G∗ is considered a Steiner
point. Note that the terminal set of G∗ is precisely A ∪ B and the set of Steiner points
of G∗ is a superset of the set of all Steiner points contained in a tree in S.

What follows is an integer programflow formulation for finding aminimum (A, B)-
network, using G∗ as input. This is a modified formulation of the multi-commodity
flow formulation for Steiner trees in graphs in [6].

Consider D = (VD, AD), the geometric digraph constructed from G∗ =
(VG∗ , EG∗) by creating two arcs in AD for each edge in EG∗ – one in each direc-
tion. Let c(a) denote the length of arc a ∈ AD . Let w denote a |AD|-dimensional
vector of binary variables indexed by the arcs, where wa = 1 indicates that we are
using arc a ∈ AD , and wa = 0 indicates we are not using arc a ∈ AD . Let δ−(v)

denote the set of arcs with heads at node v ∈ VD , and δ+(v) denote the set of arcs with
tails at node v ∈ VD . For each source-sink pair (x, y) with x ∈ A, y ∈ B, x �= y,
we seek to send one unit of flow from x to y. We let f (x,y) denote the flow vector
from x to y, such that f (x,y)

a is the flow on arc a ∈ AD . For any A′
D ⊆ AD , define

f (x,y)(A′
D) = ∑

a∈A′
D
f (x,y)
a . The integer program is then:

Minimise
∑

a∈AD

c(a)wa (5.1)

Subject to f (x,y)(δ+(v)) − f (x,y)(δ−(v)) =
⎧
⎪⎨

⎪⎩

1, v = x

−1, v = y

0, v ∈ VD \ {x, y}
, v ∈ VD, x ∈ A, y ∈ B, x �= y (5.2)

f (x,y)
a ≤ wa, a ∈ AD, x ∈ A, y ∈ B, x �= y (5.3)

wa ∈ {0, 1}, a ∈ AD (5.4)

f (x,y)
a ∈ {0, 1}, a ∈ AD, x ∈ A, y ∈ B, x �= y (5.5)

A vector w minimising this integer program can be used to obtain a mini-
mum (A, B)-network. Let A′ = {a ∈ AD | wa = 1}. Let V ′ = {v ∈
VD | v is incident to some a ∈ A′}. Let N ′ = (V ′, A′). By the constraints of the integer
program, N ′ is (A, B)-connected. By Theorem 4.12, some minimum (A, B)-network
N ′′ decomposes into full Steiner trees constructible by straightedge and compass, and
so nodes and equivalent arcs (perhaps subdivided) appearing in N ′′ are present in D.
Thus |N ′| is no longer than |N ′′|. Therefore N ′ is a shortest (A, B)-network, albeit
not necessarily simple or simply embedded.

The above formulation is not the only formulation that is possible. For example,
the directed cut formulation in [6] could also be modified in a comparable manner.

We now briefly discuss the practicality of this algorithm. On a given input, it con-
structs every possible full Steiner tree on every subset of two copies of the terminal
set. There are a superexponential number of full Steiner topologies on n terminals
[6], which leads to the possibility of a superexponential number of Steiner points in
G∗, and thus a superexponential number of constraints and variables in our integer
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program. As such, this algorithm is currently impractical for any instance containing
more than a handful of terminals.

6 Structural Properties of Minimum (A, B)-Networks

The infeasibility of considering all full Steiner topologies as in our algorithm in Sect. 5
also features in the classical Euclidean Steiner tree problem. However here is dealt
with by the flagship exact algorithm (GeoSteiner [12, 15]) through the use of pruning
conditions, which are based on strong structural and geometric constraints on optimal
trees. This has resulted in an algorithm capable of solving instances of many thousands
of terminals in reasonable time, notwithstanding the NP-hardness of the problem. The
benefit of pruning conditions based on structural constraints has also been demon-
strated for related problems such the minimum 2-edge-connected Steiner network
problem in the Euclidean plane [4, 5]. This shows that research into the properties of
optimal networks is crucial to efficient exact algorithm design for our problem.

In this section we therefore present a number of constraints on the topology and
geometric structure of minimum (A, B)-networks. The results include that there is a
minimum (A, B)-network with no degree-3 Steiner cycle, where every Steiner point
is of degree at most 5 and there are at most two degree-5 Steiner points; and that
no minimum (A, B)-network contains both a degree-4 Steiner point and a degree-5
Steiner point.

Lemma 6.1 Suppose that N contains a Steiner point s of degree at least 4. Let a1, a2
denote a pair of in-arcs or a pair of out-arcs incident to s. Then a1 and a2 do not lie
on a common cycle of N .

Proof If s has degree 6 then a1 and a2 are not on a cycle by Proposition 4.4. If s has
degree 5 then a1 and a2 cannot overlap in the plane by Theorem 2.7. Therefore, any
common cycle containing a1 and a2 must contain more than two arcs. But no such
cycle exists, by Proposition 4.5. Finally, if s has degree 4 then a1 and a2 are not on a
common cycle by Lemma 4.6. 
�
Lemma 6.2 Suppose that in N we have distinct nodes u and u′ such that there are two
paths from u to u′, P1 and P2, where the first arc of each path is distinct. Then, u lies
on a cycle C, where the first arc of P1 and the first arc of P2 are on C.

Proof Let v denote the first node after u on P1 that is on P2. Such a node exists, as u′
is on both paths. Since the subpaths from u to v of P1 and P2 respectively are disjoint
except at their endpoints, it follows that there exists a cycle in N containing u, v, and
the first arcs of both P1 and P2. 
�
Lemma 6.3 Suppose that s is a Steiner point of degree at least 4 in N. Then each
out-arc of s lies on a dipath from s to a sink, and any two dipaths from s that use
distinct out-arcs of s are disjoint (except at s).

Proof Each out-arc of s must be on some dipath to some sink, otherwise we could
remove the arc and shorten the network without disconnecting any source from any
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sink. Now suppose that in N there exists a node u and two dipaths from s to u,
where these dipaths have distinct starting arcs which are out-arcs of s. But then, by
Lemma 6.2, the two out-arcs lie on a common cycle, contradicting Lemma 6.1. The
result follows. 
�

Observe that the analogous result for in-arcs of s follows from a symmetrical argu-
ment.

We define a bridge of a digraph D as an arc whose removal increases the number
of components in the underlying graph of D.

Lemma 6.4 Suppose that a is an arc in N that is a bridge, and K1 and K2 are the
two disjoint connected components separated by a. Then at most one of K1 and K2
contains both a source and a sink. Furthermore, such a component not containing
both a source and a sink is a tree.

Proof Suppose by contradiction that both K1 and K2 contain both a source and a
sink, and suppose without loss of generality that a is directed from K1 to K2 in N .
Since N is (A, B)-connected, there is a dipath P from a source in K2 to a sink in K1,
which necessarily uses a, since a is a bridge between K1 and K2. But a has the wrong
direction for P . Thus at most one of K1 and K2 contains both a source and a sink.
Suppose K1 does. Let u denote the node in K2 incident to a. If there is a cycle in K2,
we repeatedly remove arcs on cycles until we are left with a tree. We can then form
an arborescence rooted at u, with directed paths from u to every terminal in K2 (or to
u from every terminal if we have sources in K2). Applying this operation on the same
arcs in N would contradict the minimality of N , and so there are no cycles in K2. 
�
Lemma 6.5 Suppose that N has at least two Steiner points of degree at least 4. Then,
each such Steiner point lies on a cycle.

Proof Let s and s′ denote Steiner points of degree at least 4 in N . Suppose that s is not
on a cycle. Then, every arc incident to s is a bridge. Removing all of these arcs gives at
least four connected components not containing s, call four of them K1, K2, K3, and
K4. Suppose without loss of generality that s′ is in K1, and that in N the arc between
s and K1 is directed from s to K1. By Lemma 6.3, since s has at least two out-arcs,
at least two of the Ki ’s contain sinks, so we assume without loss of generality that,
besides K1, component K2 also contains a sink, say u. By Lemma 6.4, at most one of
K1, . . . , K4 contains both a source and a sink.

As a result of Lemma 6.3, there are two distinct sources in N with disjoint dipaths
(except at s′) to s′. Since these dipaths are disjoint, they do not both use the arc between
s and K1. Thus there is a source w in K1. Since N is (A, B)-connected, there is a
directed path from w in K1 to u in K2. But this contradicts the assumptions that that
every arc incident to s is a bridge, and the arc between s and K1 is directed from s to
K1. So s lies on a cycle. 
�

We now present a collection of structural theorems that follow from the above
lemmas.
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Theorem 6.6 Suppose that there is a degree-6 Steiner point s in N. Then, every other
Steiner point in N is of degree 3.

Proof Let s′ denote a distinct Steiner point in N . Suppose s′ is of degree at least 4.
Then, by Lemma 6.5 s lies on a cycle, contradicting Proposition 4.4. So s′ is of degree
3. 
�
Theorem 6.7 Suppose that N has a degree-5 Steiner point s, and another Steiner point
of degree at least 4. Then, there is a double arc incident to s.

Proof By Lemma 6.5, s lies on a cycle C . By Proposition 4.5, C must be a trivial
cycle. So C is a double arc incident to s. 
�
Theorem 6.8 Suppose that N has a degree-4 Steiner point s, and another Steiner point
of degree at least 4. Then, the smallest angle between arcs incident to s is at most 60◦.

Proof By Lemma 6.5, s lies on a cycle C . By Proposition 4.7, the internal angle of C
at s is less than or equal to 60◦, or greater than or equal to 300◦. Hence, the smallest
angle between arcs incident to s is at most 60◦. 
�
Theorem 6.9 There exists a minimum (A, B)-network with no degree-3 Steiner cycles,
and no degree-6 Steiner points.

Proof By Theorem 3.14, there exists a minimum (A, B)-network N ′ with no degree-3
Steiner cycles. If there is no degree-6 Steiner point in N ′ we are done, so suppose N ′
has a degree-6 Steiner point s. Then by Theorem 6.6 every other Steiner point in N ′ is
of degree 3. Let u0, . . . , u5 denote the nodes adjacent to s in anticlockwise order, and
suppose without loss of generality that the arcs between u0, u2, u4 and s are in-arcs
of s, and the arcs between u1, u3, u5 and s are out-arcs of s, as illustrated in Fig. 18
(left). Let d = min{|sui | | 0 ≤ i ≤ 5}.

Denote by N ′′ the network obtained from N ′ with the following changes.
Place a Steiner point si along the line segment sui a distance of d away from
s for 0 ≤ i ≤ 5. Remove arcs (u0, s), (s, u1), (u2, s), . . . , (s, u5). Add arcs
(u0, s0), (s1, u1), (u2, s2) . . . , (s5, u5), and add arcs (s0, s1), . . . , (s4, s5), (s5, s0).
Finally remove s, and rectify the intermediate network. An example of the result
of such an operation is given in Fig. 18.

For each dipath in N ′ from ui to u j via s, there is a dipath in N ′′ from ui to si ,
from si to s j around the dicycle, and from s j to u j (in the case where sk and uk were
coincident before rectification, uk is already on the dicycle). Hence N ′′ is an (A, B)-
network. We also have |N ′| = |N ′′|, as |sui | = |si ui | + d, and d = |si si+1 (mod 6)|
as arcs incident to s are 60◦ separated by Theorem 2.7. Hence, N ′′ is a minimum
(A, B)-network.

Finally, there are no degree-6 Steiner points in N ′′, as we removed the only degree-6
Steiner point in N ′, and at most two Steiner points of degree 3 were coincident in the
plane before rectification (in the case where argmin{|sui | | 0 ≤ i ≤ 5} contains a
Steiner point). In this case any coincident Steiner points are adjacent to each other,
meaning that rectification could not have resulted in a degree-6 Steiner point. There
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are also no degree-3 Steiner cycles in N ′′, as there are no degree-3 Steiner cycles in
N ′ and rectification destroys any such cycle that we constructed, due to the necessary
occurrence of coincident nodes argmin{|sui | | 0 ≤ i ≤ 5} and the corresponding si .
Thus, the theorem follows. 
�

We now extend some of these results by considering properties of double arcs in
minimum (A, B)-networks. This further restricts the structure of minimum (A, B)-
networks containing multiple Steiner points of degree at least 4.

Lemma 6.10 Suppose that two cycles C1 and C2 in N share a node u, and share no
arc incident to u. Then, the two cycles are trivial, separated by 180◦ at u, and u is a
degree-4 terminal.

Proof Let a1 and a2 denote the two arcs on C1 incident to u, and a3 and a4 the two
arcs on C2 incident to u. Suppose that either at least one of C1 and C2 is non-trivial,
or that both are trivial but separated by less than 180◦.

Then, without loss of generality a1 and a3 are separated by less than 180◦ at u.
Let v denote the end node of a1 that is not u, and w the end node of a3 that is not
u. Remove a1 and a3 from N , add an arc a5 from w to v. The consecutive traversal
of a5, the path from v to u (on C1 in N , not using a1), and the path from u to w (on
C2 in N , not using a3) gives a cycle C ′ containing a5, a4 and a2 (either directly, or
as a subpath of what is obtained if C1 and C2 are not disjoint). Orient C ′ to form a
dicycle in a network N ′. Since ∠vuw < 180◦, we have |N ′| < |N | by the triangle
inequality. We also note that N ′ is (A, B)-connected, as any dipath in N using a1 or
a3 can be modified to use the dicycle formed in the construction of N ′. We have thus
contradicted the minimality of N , and conclude that C1 and C2 are both trivial, and
separated by 180◦. An example of a shortening where both C1 and C2 are non-trivial
is given in Fig. 19.

Furthermore, Lemma 2.5 implies that no other arc is incident to u, as otherwise
it would be separated by less than 120◦ from an arc with the same orientation with
respect to u on one of the double arcs. Hence, u has degree 4. By Theorem 2.7, and
because N is simple, u must be a terminal. 
�

We now present the remaining structural theorems in this section that follow from
the above results.

Theorem 6.11 Suppose that there is a double arc incident to some node in N. Then
there is a sequence of distinct colinear nodes u0, u1, . . . , uk such that (ui , ui+1) ∈ AN

and (ui+1, ui ) ∈ AN for 0 ≤ i ≤ k−1. Furthermore, N contains no additional cycles
– neither trivial nor non-trivial.

Proof Let u denote a node with an incident double arc in N . We have two cases,
either there are multiple double arcs incident to u, or just one. In the first case, by
Lemma 6.10 there are exactly two double arcs incident to u 180◦ apart, and no other
incident arcs. Since N is finite, there exists a maximal sequence of distinct colinear
nodes u0, u1, . . . , uk , such that ui and ui+1, where 0 ≤ i ≤ k − 1, have a double arc
between them, and u1, . . . , uk−1 are degree-4 terminals. It remains to show that there
are no other cycles in N – trivial or non-trivial.

123



1130 Journal of Optimization Theory and Applications (2023) 197:1104–1139
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Fig. 18 An example of the operation on a network containing a degree-6 Steiner point used in the proof of
Theorem 6.9
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w

N ′ C ′

< 180◦ a5

Fig. 19 A shortening of a network N containing two arc disjoint non-trivial cycles sharing a common node
u

By Lemma 6.10, u0 is on no cycle other than the trivial cycle between it and u1.
Suppose a is an arc incident to u0 distinct from the arcs forming the double arc. Then a
is a bridge in N . Let K1 denote the connected component containing u0 after removing
a from N , and K2 the other connected component. The arc (u1, u0)must be on a dipath
in N from some source in K1, and the arc (u0, u1) must be on a dipath in N to some
sink in K1, so K1 contains both a source and a sink. Thus by Lemma 6.4 K2 is a tree.

Since a was arbitrary, and by the symmetry of u0 and uk , we conclude that there are
no cycles in N other than the trivial cycles between ui and ui+1, where 0 ≤ i ≤ k−1.


�
Theorem 6.12 There are at most two degree-5 Steiner points in N.

Proof By Lemma 6.5, each degree-5 Steiner point in N lies on a cycle. Thus, by
Proposition 4.5 each degree-5 Steiner point in N has an incident double arc. By
Theorem 2.7, each degree-5 Steiner point in N has at most one incident double arc.
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But by Theorem 6.11 at most two nodes in N have exactly one incident double arc.
Therefore there are at most two degree-5 Steiner points in N . 
�
Theorem 6.13 There is not both a degree-4 and a degree-5 Steiner point in N.

Proof Suppose that N contains a degree-4 Steiner point s and a degree-5 Steiner point
s′. By Lemma 6.5, both s and s′ lie on a cycle. Thus, by Proposition 4.5 s′ has an
incident double arc. Then, by Theorem 6.11 there is no non-trivial cycle in N . But s is
on a non-trivial cycle as it is on a cycle, and N is both simple and simply embedded.
Therefore, there is not both a degree-4 and a degree-5 Steiner point in N . 
�

7 An Improved Bound on the Number of Steiner Points

A tightened upper bound on the number of Steiner points in a minimum (A, B)-
network provides an additional tool for restricting the topologies of optimal solutions.
In this section we improve the bound provided by Alfaro in [1] by reducing it from
13 · |A ∪ B| to 2 · |A ∪ B| − 2, and in doing so we also provide further structural
properties of minimum (A, B)-networks.

Definition 7.1 Let G denote a directed planar graph. A region of G is the closure of a
face of G. A node in G that lies in exactly three regions of G is called tri-regional.

Lemma 7.2 Suppose that u is a node in at least three regions of N . Then, u is tri-
regional and has exactly three incident arcs 120◦ apart from one another, each pair
of which lies on a common cycle.

Proof We first show that every region of N has a single cycle in N composing its
boundary. Suppose otherwise, and let R denote such a region of N . Note that any
tree structures defining a face of N are irrelevant to the boundary of a region, due to
the taking of the closure of a face. By assumption N has more than one region, so
R has a boundary. So there are at least two arc disjoint non-trivial cycles composing
the boundary of R. By Lemma 6.10, these two cycles do not share a node. There is
at most one path (up to double arcs) between these cycles in N , otherwise R is not a
region. By Lemma 6.4, this path cannot contain a bridge, and so consists of double
arcs. However this contradicts Theorem 6.11. Thus, every region of N has a single
cycle in N composing its boundary.

We note that if two arcs incident to u are on the boundary of the same two distinct
regions, they must be the only arcs incident to u on a cycle. So if u is in at least three
regions, no pair of arcs incident to u bordering regions border the same two regions.
So u is on at least three cycles defining regions in N , each of which uses a pair of arcs
incident to u which differ from the pair for each other region-defining cycle. Each of
these cycles is non-trivial, so by Lemma 6.10, they pairwise share an arc incident to
u. Hence, there are at most three such cycles. Thus, u is in exactly three regions, and
so is tri-regional.

Furthermore, since each of the three region-defining cycles identified can indepen-
dently be reoriented in either direction by Proposition 4.3, u must have exactly three
incident arcs 120◦ separated, as otherwise a cycle could be reoriented to make two
arcs, separated by less than 120◦, both in-arcs or both out-arcs of u. 
�
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For clarity, we give the following definition of a chord path of a cycle in N .

Definition 7.3 A chord path of a cycle C of N is a path between two distinct nodes
on C , disjoint from C except at the endpoints.

Whilst the following proposition is an intermediate result for our eventual bound, it
may also have utility in increasing the efficiency of an algorithm solving MMMSNP,
in the vein of the main results in Sect. 6.

Proposition 7.4 Suppose that P is a chord path of a cycle C of N. Then, P has at
least three arcs.

Proof Suppose first that P is a single arc (u, v) between nodes u and v on C . By
Proposition 4.3, we can orient C to be a dicycle, and obtain a minimum (A, B)-
network N ′. Then, we have a dipath from u to v along C . So we can remove the arc
(u, v) and maintain (A, B)-connectivity, contradicting the minimality of N ′ and N .
So P is not a single arc.

Suppose now that P has two arcs. Let u and v be on both C and P , and w the
other node on P . Suppose that both arcs of P are in-arcs of w or out-arcs of w. Then,
after orienting C , we could remove one of these arcs without destroying (A, B)-
connectivity. Thus P must be a dipath. So suppose without loss of generality that P is
comprised of arcs a1 = (u, w) and a2 = (w, v). As before, we orientC to be a dicycle
to obtain a minimum (A, B)-network N ′. We have that |a1| = |a2|, for otherwise we
could remove the longer arc and make the shorter a double arc, which shortens the
network whilst maintaining (A, B)-connectivity with the dipath around C . We now
remove a1 and add an arc (v,w) to obtain the graph N ′′, with length and (A, B)-
connectivity maintained. But now u has an incident double arc and is on a non-trivial
cycle, contradicting Lemma 6.10. Hence P has at least three arcs. 
�

Lemma 7.5 Suppose that P is a chord path of a cycle of N . Then there are two
consecutive non-tri-regional nodes on P.

Proof Let Q denote the subpath of P with the least number of arcs that is itself a
chord path of some cycle C of N . By Proposition 7.4, Q has at least three arcs. Let u
denote the first node of Q. If the two nodes after u on Q are non-tri-regional we are
done, so suppose one is tri-regional, and call it v. Then, by Lemma 7.2 v is of degree
3, and each pair of arcs incident to v is on a common cycle. Let a1 denote the arc
incident to v that is not on P , and a2 and a3 denote the other two arcs incident to v.
Since a1 and a2 are on a common cycle, there is either a path PC from v to a node on
C without passing through a node on Q, or there is a path PQ from v to a node on Q
without passing through a node on C . The case where v is immediately after u on Q
is illustrated in Fig. 20.

In the first case, let w denote the node on C . Then, the path from u to v along Q
is a chord path to the cycle that is the consecutive traversal of the path from v to the
end of Q at node x , the path along C from x to w via u, and PC from w to v, as
illustrated in Fig. 20a. This chord path is shorter than Q as v is not an endpoint of Q,
so the minimality of Q is contradicted.
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Fig. 20 Possible connectivity of a tri-regional node v on a chord path Q (running from u to x using arcs
a2 and a3) to a cycle C , as referenced in the proof of Lemma 7.5. In the network on the left, the subpath of
Q from u to v is itself a chord path to a cycle. In the network on the right, the subpath of Q from v to w is
itself a chord path to a cycle

In the second case, letw denote the node on Q. Then, the path from v tow along Q
is a chord path to the cycle that is the consecutive traversal of the path from w to the
end of Q at node x , the path along C from x to u (anticlockwise say), the path from u
to v along Q, and PQ from v to w, as illustrated in Fig. 20b. This chord path is shorter
than Q as v is not an endpoint of Q, so again the minimality of Q is contradicted. We
conclude that the first two nodes of Q after u are non-tri-regional. Then, these nodes
are also on P , as Q is a subpath of P . So there are two consecutive non-tri-regional
nodes on P . 
�
Lemma 7.6 Suppose that C is a cycle of N . Then, there are two consecutive non-tri-
regional nodes on C.

Proof If no node on C is tri-regional, we are done. Otherwise, suppose node u on C
is tri-regional. Let a denote an arc on C incident to u. Then, by Lemma 7.2, u has
an incident arc a′ that is not on C , but is on some cycle C ′ such that a is also on C ′.
Consider the path P along C ′ beginning at u along arc a′, until the first node that is
on C . Call this node v. On C we have two paths from v to u: P ′ and P ′′. Then, P ′′ is a
chord-path to the cycle that is the consecutive traversal of P and P ′. By Lemma 7.5,
there are two consecutive non-tri-regional nodes on P ′′. So there are two consecutive
non-tri-regional nodes on C . 
�

Our method for bounding the number of Steiner points in N is to remove arcs
from N in such a way as to leave behind a tree where every leaf is a terminal of N .
We associate each removed arc with two distinct terminals of N , such that no pair
of removed arcs share an associated terminal. This bounds above the number of arcs
removed to form a tree. Further properties of trees allow us to bound the number of
Steiner points in the tree, thus bounding the number of Steiner points in N .
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Definition 7.7 Let N denote a minimum (A, B)-network, and let r denote the number
of regions of N . Define Tr (N ) to be the set {N }, and for 1 ≤ i ≤ r −1 define Ti (N ) to
be the set of graphs obtained from any G ∈ Ti+1(N ) by removing an arc a that lies on
the boundary of two regions of G, where neither of the endpoints of a is tri-regional
in N . Define such an arc of G ∈ Ti+1(N ), should one exist, to be safely disposable.

We note that removing an arc on the boundary of two regions of a planar graph
decreases the number of regions in that graph by one, so elements of Tk(N ) – should
they exist – have k regions.

We show that in fact we always have T1(N ) �= ∅, and that elements of T1(N ) are
trees where every leaf is a terminal of N . The existence of such a tree is non-trivial, as
a naive attempt to create a tree could remove two arcs incident to a tri-regional Steiner
point, leaving behind a leaf that is a Steiner point.

Lemma 7.8 Let r denote the number of regions of N . Then for 1 ≤ i ≤ r , Ti (N ) �= ∅.

Proof If r = 1 we are done, so suppose that there are multiple regions in N . Since
Tr (N ) = {N }, Tr (N ) �= ∅. Suppose Ti+1 �= ∅ for some 1 ≤ i ≤ r − 1. We show
Ti �= ∅.

Let G ∈ Ti+1. Then G has more than one region, as i + 1 > 1. So there is a
cycle C in G. Since C is also a cycle in N , by Lemma 7.6 there are two consecutive
non-tri-regional nodes in N on C . So the arc a between them is safely disposable in
G. Thus, by removing a from G we obtain an element of Ti (N ). 
�
Lemma 7.9 If T ∈ T1(N ) and u is a node in N then at most one arc incident to u in
N is not present in T .

Proof Suppose that T ∈ T1(N ). Let u denote a node in N . Suppose in G ∈ Ti (N ),
1 < i ≤ r , u has an incident arc a that is safely disposable. The node u is not tri-
regional in N so, by Lemma 7.2, u is in at most two regions of N . However a lies
on the boundary of two regions of G, so u is in exactly two regions of N . If a were
to be removed from G to form G ′, the node u would lie in exactly one region of G ′.
No arc incident to u is safely disposable in G ′, since if u is in exactly one region no
arc incident to u can be on the boundary of two regions. This remains true in graphs
obtained by removing additional arcs from G ′, as no arc can be removed such that a
node in one region is subsequently in two regions after the removal of that arc. Hence,
in T , at most one arc is incident to u in N has been removed. 
�
Lemma 7.10 If T ∈ T1(N ), T is a tree where every leaf of T is a terminal of N .

Proof Suppose that T ∈ T1(N ). Every arc of N not present T is on a cycle in the
network it is removed from, so T is connected. Since T has one region, it is thus a
tree. By Lemma 7.9, every node in T has at most one additional incident arc in N . As
every Steiner point in N has degree at least three, every Steiner point has degree at
least two in T , and so no Steiner point in N is a leaf of T . 
�
Theorem 7.11 Let n = |A ∪ B|. Then, the number of Steiner points in N is bounded
above by 2n − 2.
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Proof Let r denote the number of regions of N . By Lemma 7.8, T1(N ) �= ∅, so let
T ∈ T1(N ). We seek to associate each arc of N removed in the process of forming
T with two distinct terminals, such that no pair of removed arcs shares an associated
terminal. We do this by associating each node incident to a removed arc with a single
unique terminal.

Let a denote an arc of N not present in T , and let u denote a node incident to a in
N . Then by the construction of T the node u is non-tri-regional in N , but u is on a
non-trivial cycle in N as a is on the boundary of two regions of N . By Lemma 7.9, a
is the only arc incident to u in N that is not in T .

If u is a terminal, we associate u to itself. If u is not a terminal, it is a Steiner point
and so has degree at least three in N . It thus has an incident arc a′ that is not on a
non-trivial cycle in N , as u is non-tri-regional in N . Furthermore, a′ is not on a trivial
cycle in N by Theorem 6.11. Suppose that a′ is an out-arc of u (the other case is a
symmetrical argument). Then, a′ is on a dipath in N from some source to some sink
v. We let v denote the terminal associated to u. Since a′ is not on a cycle it is a bridge.
Let K and K ′ denote the connected components containing v and u respectively after
removing the bridge a′ from N . Since u is on a cycle, there must be both a source and
a sink in K . Then by Lemma 6.4, every terminal in K ′ is of the same type, and so K ′
is a tree. Notably, every node on the dipath from u to v (with the exception of u) is not
on a cycle in N . Hence, no other node incident to an arc of N not present in T can be
associated with v by this process.

Thus, we have associated two distinct terminals with every arc of N removed to
form T , each of which is not associated in the same manner with any other such arc.
So at most n

2 arcs of N are removed to form T .
By Lemma 7.10, we have that T is a tree with at most n leaves, as every leaf of

T is a terminal. Hence, there are at most n − 2 Steiner points of degree at least 3 in
T . Additionally, there are at most 2 · n

2 = n degree 2 Steiner points in T that were
incident to one of the at most n

2 arcs of N removed to form T . So there are at most
2n − 2 Steiner points in T and thus there are at most 2n − 2 Steiner points in N . 
�

There is no known minimum (A, B)-network demonstrating that this bound is
tight, and so either finding such a network or improving the bound remains an open
problem. It is possible a tighter bound can be found by considering only networks
without degree-3 Steiner cycles. Known lower bounds on the maximum number of
Steiner points for the general case and the case without degree-3 Steiner cycles are
n and n − 1 respectively, with networks demonstrating this in Figs. 9a and 18 (right)
respectively.

8 Alfaro’s Conjecture

In this final section we resolve (in the negative) an open conjecture of Alfaro given in
[13], relating to (A, B)-networks where A = B (i.e. every terminal is both a source
and a sink). We call such networks (A, A)-networks.

Conjecture 8.1 (Alfaro) A minimum (A, A)-network does not have Steiner points and
is a union of cycles.
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We show that a solution to the undirected 2-connected Steiner network problem
in the plane can be used to obtain a minimum (A, A)-network by adding suitable
directions to the edges. Given that Steiner points may occur in these networks [16],
we have a counterexample to the conjecture. Such a network is given in Fig. 21. In
this section we assume all networks have at least three terminals (i.e., we assume
that |A| > 2). We also relax the assumption present since Sect. 2 that all minimum
(A, B)-networks are simply embedded.

We note that in the undirected 2-connected Steiner network problem, if an optimal
network SA is 2-edge-connected it is necessarily 2-node-connected [16].We thus refer
to SA simply as 2-connected.

Lemma 8.2 There exists a minimum (A, A)-network with no double arcs.

Proof Let NA denote aminimum (A, A)-network containing a double arc.Without loss
of generality we can assume that NA is simply embedded. Then by Theorem 6.11 there
is a sequence of distinct colinear nodes u0, u1, . . . , uk such that for all ui , u j ∈ VNA ,
both (ui , u j ) ∈ ANA and (u j , ui ) ∈ ANA if and only if 0 ≤ i ≤ k − 1 and j = i + 1.
We also have by the theorem that nodes other than u0, u1, . . . , uk do not lie on cycles.
By the (A, A)-connectivity of NA every terminal in A must lie on a cycle, and since
|A| > 2, we have that k > 2. We remove the arcs (ui , ui+1) for 0 ≤ i ≤ n − 1
and add an arc (u0, uk) to obtain a new network N ′

A. Since u0, . . . , uk are colinear,
|N ′

A| = |NA|. We have a dicycle around nodes u0, . . . , uk that is the traversal of the
dipath from uk to u0, and the arc (u0, uk), so (A, A)-connectivity is maintained. There
is no double arc in N ′

A, as k > 2. Hence, N ′
A is a minimum (A, A)-network with no

double arcs. 
�
For the remainder of this section, we let NA denote a minimum (A, A)-network

containing no double arcs. By Lemma 8.2, such a network exists.

Lemma 8.3 In the underlying undirected graph G of NA, there are two edge disjoint
paths between any two distinct nodes in A.

Proof Suppose, by contradiction, that a pair of distinct nodes in A do not have two
edge disjoint paths between them in G. Then by Menger’s Theorem [7, Chapter 3]
there is an edge that is a bridge in G. Thus there is an arc a that is a bridge in NA.
Let K1 and K2 denote the two connected components obtained by removing a from
NA. There must be at least one terminal in both K1 and K2, as otherwise a could
be removed to shorten NA without disrupting (A, A)-connectivity. By Lemma 6.4, at
most one of K1 and K2 contains both a source and a sink. But every terminal is both
a source and a sink, so we have a contradiction. 
�
Proposition 8.4 Let SA denote a minimum 2-connected Steiner network. Then, there
exists an orientation N ′ of SA such that N ′ is an (A, A)-network of length |SA|.
Proof We first show that adding appropriate directions to edges in SA gives an (A, A)-
network. Let N0 denote the directed network obtained from SA by assigning every edge
an arbitrary direction. Recall Definition 4.1 defining the set X(N ). If X(N0) = A× A,
we are done. Otherwise, we can find u, v ∈ A such that (u, v) /∈ X(N0). Since SA is
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Fig. 21 A minimum
2-connected Steiner network
containing two Steiner points,
from [16]

2-connected, in SA there are two node disjoint paths from u to v, P1 and P2. So in N0
we have a cycle C passing through u and v using the arcs corresponding to the edges
of P1 and P2. Let N1 be obtained from N0 by orienting C to form a directed cycle.
Then, in N1 there is a dipath from u to v.

By Lemma 4.2, X(N0) ⊆ X(N1). Since (u, v) ∈ X(N1) and (u, v) /∈ X(N0),
|X(N1)| > |X(N0)|. If X(N1) = A × A, we have an (A, A)-network. Otherwise,
we repeat this process. Since at every step the size of the set of connected terminals
strictly increases, it must become A × A after some finite number of iterations. So
we can obtain an (A, A)-network from SA. Furthermore, the resultant arcs correspond
exactly to the original edges in the embedding, so the length of the resultant network
is |SA|. 
�

Theorem 8.5 Let NA denote a minimum (A, A)-network with no double arcs. Then,
the underlying undirected graph of NA is a minimum 2-connected Steiner network on
A.

Proof Let SA denote the underlying graph of NA. Then, byLemma8.3weknow that SA
is 2-edge-connected. Suppose that SA is not a minimum 2-connected Steiner network
and let S′

A denote a minimum 2-connected Steiner network. By Proposition 8.4 we can
construct an (A, A)-network N ′

A of length |S′
A|. But then |N ′

A| = |S′
A| < |SA| = |NA|,

contradicting theminimality of NA. So SA is aminimum 2-connected Steiner network.

�

In [16], a terminal set was given such that a minimum 2-connected Steiner network
in the plane contains a Steiner point. The network is given in Fig. 21. This network in
conjunction with Lemma 8.2 and Theorem 8.5 shows that there is a minimum (A, A)-
network containing a Steiner point, providing a counterexample to Conjecture 8.1. An
example of a corresponding minimum (A, A)-network to the minimum 2-connected
Steiner network in Fig. 21 would form a clockwise dicycle around the external cycle
and have arcs on the chord path oriented downwards.
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9 Conclusions

In this article we have proven the straightedge and compass constructibility of some
minimum (A, B)-network, enabling us to present the first exact algorithmic framework
for the construction of minimum (A, B)-networks in the Euclidean plane. Addition-
ally,many structural and geometric properties ofminimum (A, B)-networks have been
established, including strengthening the bound on the number of Steiner points in a
minimum (A, B)-network, and resolving an open conjecture of Alfaro. The problem
of leveraging these properties in developing an efficient exact algorithm for the con-
struction ofminimum (A, B)-networks remains open, as does either further improving
the bound on the number of Steiner points in a minimum (A, B)-network, or showing
that our bound is tight.
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