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Abstract
In this paper,we study the non-asymptotic convergence rate of theDCA (difference-of-
convex algorithm), also known as the convex–concave procedure, with two different
termination criteria that are suitable for smooth and non-smooth decompositions,
respectively. The DCA is a popular algorithm for difference-of-convex (DC) problems
and known to converge to a stationary point of the objective under some assump-
tions. We derive a worst-case convergence rate of O(1/

√
N ) after N iterations of the

objective gradient norm for certain classes of DC problems, without assuming strong
convexity in the DC decomposition and give an example which shows the convergence
rate is exact. We also provide a new convergence rate of O(1/N ) for the DCA with
the second termination criterion. Moreover, we derive a new linear convergence rate
result for the DCA under the assumption of the Polyak–Łojasiewicz inequality. The
novel aspect of our analysis is that it employs semidefinite programming performance
estimation.

Keywords Convex–concave procedure · Difference-of-convex problems ·
Performance estimation · Worst-case convergence · Semidefinite programming

1 Introduction

In this paper, we consider the general difference-of-convex (DC) optimization prob-
lem,
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inf f (x) := f1(x) − f2(x)

s.t. x ∈ R
n, (1)

where f1, f2 are extended convex functions on R
n and f is an extended lower-

semicontinuous function on R
n . Throughout the paper, we assume that the infimum

in problem (1) is finite, and denote by f � a lower bound of f on R
n .

DC problems appear naturally inmany applications, e.g., power allocation in digital
communication systems [4], production-transportation planning [22], location plan-
ning [13], image processing [31], sparse signal recovering [17], cluster analysis [7, 8],
and supervised data classification [6, 29], to name but a few.

This wide range of applications is to be expected, since some important classes
of non-convex functions may be represented as DC functions. For instance, twice
continuously differentiable functions on any convex subset ofRn [20] and continuous
piece-wise linear functions [34] may be written as DC functions. Furthermore, every
continuous function on a compact and convex set can be approximated by a DC
function [23, 44]. We refer the interested reader to Hiriart–Urruty [21] and Tuy [44]
for more information on DC representable functions.

The celebrated difference-of-convex algorithm (DCA), also known as the convex–
concave procedure, has been applied extensively to problem (1); see [28, 30, 40] and
the references therein. Algorithm 1 presents the basic form of the DCA.

Algorithm 1 DCA
Pick x1 ∈ R

n .
For k = 1, 2, . . . perform the following steps:

1. Choose gk
2 ∈ ∂ f2(xk ).

2. Choose

xk+1 ∈ argminx∈Rn f1(x) − f2(xk ) − 〈gk
2 , x − xk 〉. (2)

3. If the termination criteria are satisfied, then stop.

In the description of the DCA in Algorithm 1, (sub)gradients of f1 and f2 are
assumed to be available at given points, the so-called black-box formulation. The
DCA is sometimes also presented as a primal-dual method, where a dual sub-problem
is solved to obtain the required (sub)gradients; see [28, 30] for further discussions of
this topic. In recent years, some scholars have also extended the DCA and proposed
some new variations; see [19, 32, 33, 36, 39].

The first convergence results forAlgorithm1were given in [40, Theorem3(iv)]. The
authors showed that, if the sequence of iterates {xk} is bounded, then each accumulation
point of this sequence is a critical point of f .

Le Thi et al. [27] established an asymptotic linear convergence rate of {xk} under
some conditions, in particular under the assumption that f satisfies the Łojasiewicz
gradient inequality at all stationary points. Recall that a differentiable function f is said
to satisfy this inequality at a stationary point a (∇ f (a) = 0), if there exist constants
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θ ∈ (0, 1), C > 0 and ε > 0 such that

| f (x) − f (a)|θ ≤ C‖∇ f (x)‖ if ‖x − a‖ ≤ ε, (3)

where the constant θ is called the Łojasiewicz exponent. This inequality is known to
hold, for example, for real analytic functions, but has been extended to include classes
of non-smooth functions as well by considering general sub-differentials instead of
gradients; see [10, 11] and the references therein.

The convergence rates established by Le Thi et al. [27] depend on the value of the
Łojasiewicz exponent, as the following theorem shows. The theorem stated here is a
special case of Theorems 3.4 and 3.5 in [27], to give a flavor of the convergence results
in [27].

Theorem 1.1 (Theorems 3.4 and 3.5 in Le Thi et al. [27]) Let f1 and f2 be proper
convex functions and let the domain of f be closed. Also assume that at least one
of f1 and f2 is strongly convex, and f1 or f2 is differentiable with locally Lipschitz
gradient in every critical point of the DC problem. Finally, assume the sequence {xk}
is bounded, and let x∞ be a limit point of {xk}. Then x∞ is also a stationary point.
Moreover, if f satisfies the Łojasiewicz gradient inequality (3) at all stationary points,
then

1. if θ ∈ (1/2, 1), then ‖xk − x∞‖ ≤ ck
1−θ
1−2θ for some c > 0.

2. if θ ∈ (0, 1/2], then ‖xk − x∞‖ ≤ cqk for some c > 0 and q ∈ (0, 1).

In particular, item 2 shows a linear convergence rate when θ ∈ (0, 1/2]. Yen et al. [45]
had already shown linear convergence earlier for amuch smaller class ofDC functions.
We will present a complementary result to this theorem (see Theorem 5.1), for the
case θ = 1/2, where we show linear convergence of the objective function values and
give explicit expressions for the constants that determine the linear convergence rate.
Moreover, we will relax the assumption of a bounded sequence of iterates, and the
assumption of strong convexity.

In the absence of conditions like the Łojasiewicz gradient inequality (3), only
weaker convergence rates are known for the DCA. In particular, Tao and An [40,

Proposition 2] and Le Thi et al. [26, Corollary 1] have shown an O
(

1√
N

)
convergence

rate after N iterations under suitable assumptions, as given in the next theorem.

Theorem 1.2 (Corollary 1 in [26], Proposition 2 in [40]) If x∞ is a limit point of the
iteration sequence generated by the DCA, and at least one of f1 and f2 is strongly
convex, i.e. for some μ1, μ2 ≥ 0 such that μ1 + μ2 > 0,

x �→ fi (x) − μi

2
‖x‖2 is convex for i ∈ {1, 2},

then the series ‖xk+1 − xk‖ converges, and, after N + 1 iterations,

N∑
k=1

‖xk+1 − xk‖2 ≤ 2( f (x1)− f (x N+1))
μ1+μ2

,
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and, consequently,

min
1≤k≤N

‖xk+1 − xk‖ ≤
√
2( f (x1) − f �)

(μ1 + μ2)N
= O

(
1√
N

)
.

Wewill derive some variants on this O
(

1√
N

)
convergence result in Corollary 3.1 and

in Sect. 3.2, where we improve the constants in the O
(

1√
N

)
bounds. We also show

that we obtain the best possible constants, by demonstrating an example where our
bound in Corollary 3.1 is tight.

Outline and Further Contributions of this Paper

The novel aspect of the analysis in this paper is that we will apply performance
estimation to derive convergence rates. Drori and Teboulle, in the seminal paper [16],
introduced performance estimation as a strong tool for the worst-case analysis of first-
order methods. The underlying idea of performance estimation is that the worst-case
complexity may be cast as an optimization problem. Furthermore, this optimization
problem can often be reformulated as a semidefinite programming problem. It is worth
noting that performance estimation has been employed extensively for the analysis of
worst-case convergence rates of first-order methods, see, e.g. [1, 14–16, 41, 42], and
the references therein.

This paper is organized as follows: In Sect. 2, we review some definitions and
notions from convex analysis, which will be used in the following sections. We study
the DCA for sufficiently smooth DC decompositions in Sect. 3. By using performance
estimation, we give a convergence rate of O(1/

√
N ) in Corollary 3.1, without any

strong convexity assumption, thus extending and complementing Le Thi et al. [26,
Corollary 1]. We construct an example that shows this O(1/

√
N ) bound is tight.

Since the first termination criterion is not suitable for the analysis of non-smooth DC
compositions, we investigate the DCA with another stopping criterion in Sect. 4, and
we show a convergence rate of O(1/N ). This result is completely new to the best of
our knowledge.

In Sect. 5, we study the DCA when the objective function satisfies the Polyak–
Łojasiewicz inequality, andwederive a linear convergence rate inTheorem5.1, thereby
refining some linear convergence results in Le Thi et al. [27] as described above.

2 Basic Definitions and Preliminaries

In this section, we recall some notions and definitions from convex analysis. Through-
out the paper, ‖·‖ and 〈·, ·〉 denote theEuclidean normand the dot product, respectively.
IR+ stands for the indicator function on R+ ∪ {∞}, i.e.,

IR+(x) =
{
1 x ≥ 0 ∪ {∞}
0 x < 0 ∪ {−∞}.
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Let f : R
n → [−∞,∞] be an extended convex function. The domain of f is

denoted and defined as dom( f ) := {x : f (x) < ∞}. The function f is called proper
if it does not attain the value −∞, and its domain is non-empty. We call f closed
if its epi-graph is closed, that is {(x, r) : f (x) ≤ r} is a closed subset of Rn+1. We
denote the convex hull of X ⊆ R

n by co(X). We adopt the conventions that, for
a, b, c, d ∈ R with c �= d and a �= 0, b

∞ = 0, 0 × ∞ = 0 and a∞+b
c∞−d∞ = a

c−d . For
the function f : Rn → [−∞,∞], the conjugate function f ∗ : Rn → R is defined as
f ∗(g) = maxx∈Rn 〈g, x〉 − f (x). Moreover, we denote the set of subgradients of f at
x ∈ dom( f ) by ∂ f (x),

∂ f (x) = {g : f (y) ≥ f (x) + 〈g, y − x〉,∀y ∈ R
n}.

Let L ∈ (0,∞] and μ ∈ (0,∞). We call an extended convex function f : Rn →
[−∞,∞] L-smooth if for any x1, x2 ∈ R

n ,

‖g1 − g2‖ ≤ L‖x1 − x2‖ ∀g1 ∈ ∂ f (x1), g2 ∈ ∂ f (x2).

Note that if L < ∞, then f must be differentiable on R
n . In addition, any extended

convex function is ∞-smooth. Also recall that the function f : R
n → [−∞,∞]

is called μ-strongly convex function if the function x �→ f (x) − μ
2 ‖x‖2 is convex.

Clearly, any convex function is 0-strongly convex. We denote the set of closed proper
convex functions which are L-smooth and μ-strongly convex by Fμ,L(Rn).

Let I be a finite index set and let {xi ; gi ; f i }i∈I ⊆ R
n × R

n × R. A set
{xi ; gi ; f i }i∈I is called Fμ,L -interpolable if there exists f ∈ Fμ,L(Rn) with

f (xi ) = f i , gi ∈ ∂ f (xi ) i ∈ I.

The next theorem gives necessary and sufficient conditions for Fμ,L -interpolablity.

Theorem 2.1 [41, Theorem 4] Let L ∈ (0,∞] and μ ∈ [0,∞) and let I be a finite
index set. The set {(xi ; gi ; f i )}i∈I ⊆ R

n × R
n × R is Fμ,L-interpolable if and only

if for any i, j ∈ I, we have

1
2(1−μ

L )

(
1
L

∥∥∥gi − g j
∥∥∥
2 + μ

∥∥∥xi − x j
∥∥∥
2 − 2μ

L

〈
g j − gi , x j − xi

〉)

≤ f i − f j −
〈
g j , xi − x j

〉
.

In the next lemma, we extend the descent lemma for DCA when L1 or L2 is finite.

Lemma 2.1 Let f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n) and let f = f1 − f2. If
g1 ∈ ∂ f1(x) and g2 ∈ ∂ f2(x), then

f � ≤ f (x) − 1
2(L1−μ2)

‖g1 − g2‖2.
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Proof If L1 = ∞, the proof is immediate. Let L1 < ∞. By L-smoothness and strong
convexity, we have

f1(y) ≤ f1(x) + 〈g1, y − x〉 + L1
2 ‖y − x‖2,

f2(y) ≥ f2(x) + 〈g2, y − x〉 + μ2
2 ‖y − x‖2,

for y ∈ R
n . By the above inequalities, we get

f (y) ≤ f (x) + 〈g1 − g2, y − x〉 + L1−μ2
2 ‖y − x‖2.

Hence, by taking minimum on both sides of the last inequality with respect to y for
fixed x , we get

f � ≤ f (x) − 1
2(L1−μ2)

‖g1 − g2‖2.

Since the DC optimization problem (1) may have a non-convex and non-smooth
objective function f , we will also need a more general notion of subgradients than in
the convex case.

Definition 2.1 Let f : Rn → R be lower semi-continuous and let f (x̄) be finite.

– The vector g is called regular subgradient of f at x̄ , written g ∈ ∂̂l f (x̄), if for all
x in some neighborhood of x̄

f (x) ≥ f (x̄) + 〈g, x − x̄〉 + o(‖x − x̄‖).

– The vector g is called general subgradient of f at x̄ , written g ∈ ∂l f (x̄), if there
exist sequences {xi } and {gi } with gi ∈ ∂̂l f (xi ) such that

xi → x̄, f (xi ) → f (x̄), gi → g.

It is worth mentioning that ∂̂l f (x̄) is a closed convex set. In addition, ∂l f (x̄) is also
closed but not necessarily convex. Note that when f is closed proper convex, then
∂ f (x) = ∂̂l f (x) = ∂l f (x) for x ∈ dom( f ). We refer the interested reader to Rock-
afellar and Wets [38] for more discussions on regular and general subdifferentials.

Definition 2.2 Let f1, f2 be closed proper convex functions, and let f be lower semi-
continuous.

– The point x̄ ∈ dom( f ) is called a critical point of problem (1) if

∂ f1(x̄) ∩ ∂ f2(x̄) �= ∅. (4)

– The point x̄ ∈ dom( f ) is called a stationary point of problem (1) if

0 ∈ ∂l f (x̄). (5)
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Obviously, the stationarity condition is stronger than criticality.We recall that a convex
function will be locally Lipschitz around x̄ providing it takes finite values in a neigh-
borhood of x̄ ; see Theorem 35.1 in [37]. Consequently, if f1 or f2 takes finite values
around a neighborhood of a stationary point x̄ , then x̄ is a critical point; see Corollary
10.9 in [38]. However, its converse does not hold in general. For instance, consider
f : R → R given as f (x) = x . The function f may be written as f = f1 − f2 where
f1(x) = max(x, 0) and f2(x) = max(−x, 0). Suppose that x̄ = 0. It is readily seen
that ∂ f1(x̄) ∩ ∂ f2(x̄) �= ∅, but x̄ = 0 is not a stationary point of f . It is worth noting
that, if f2 is strictly differentiable at x̄ , these definitions are equivalent; see Example
10.10 in [38]. Recall that function f is strictly differentiable at x̄ , if

lim
(x,x ′)→(x̄,x̄)

x �=x ′

f (x) − f (x ′) − 〈∇ f (x̄), x − x ′〉
‖x − x ′‖ = 0.

We refer the interested reader to An and Tao [5], Joki et al. [24] and Pang et al. [36] and
references therein for more discussions on optimality conditions for DC problems.

2.1 The DC Problem

In this section, we consider

min f (x) = f1(x) − f2(x)

s.t. x ∈ R
n, (6)

where f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n). Here, we assume that L1, L2 ∈ (0,∞]
andμ1, μ2 ∈ [0,∞), and consequently, f may be non-differentiable.Wemay assume
without loss of generality that f1 and f2 satisfy the following assumptions:

L1 > μ2, L2 > μ1. (7)

Indeed, if L1 ≤ μ2, then for x, y ∈ R
n and λ ∈ [0, 1], we have

λ f1(x) + (1 − λ) f1(y) ≤ f1(λx + (1 − λ)y) + λ(1 − λ) L1
2 ‖x − y‖2

− λ f2(x) − (1 − λ) f2(y) ≤ − f2(λx + (1 − λ)y) − λ(1 − λ)
μ2
2 ‖x − y‖2;

see Theorem 2.15 and Theorem 2.19 in [35]. By summing the above inequalities, we
obtain

λ f (x) + (1 − λ) f (y) ≤ f (λx + (1 − λ)y) + λ(1 − λ)
L1−μ2

2 ‖x − y‖2,

which implies concavity of f onRn . In this case, problem (6) will be unbounded from
below. This follows from the fact that a concave function on R

n is unbounded from
below unless it is constant. Likewise, one can show that problem (6) will be convex
providing L2 ≤ μ1.
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The Toland dual [43] of problem (6) may be written as

min f ∗
2 (x) − f ∗

1 (x) (8)

s.t. x ∈ R
n .

It is known that problems (6) and (8) share the same optimal value [43].
In what follows, we investigate the convergence rate of Algorithm 1 with the

termination criterion ‖gk
1 − gk

2‖ ≤ ε. As a motivation of this criterion, recall that
‖gk

1 − gk
2‖ = 0 implies that xk is a critical point of (1) in the non-smooth case, and

a stationary point of f if f2 is strictly differentiable; see our discussion following
Definition 2.2. In Sect. 3, we will derive results for the case that at least one of f1 or
f2 is differentiable, and we will consider the more general situation in Sect. 4.
For well-definedness of the DCA (Algorithm 1), throughout the paper, we assume

that

xk ∈ dom(∂ f1) ∩ dom(∂ f2) k = 1, 2, . . . ,

where dom(∂ f1) = {x : ∂ f1(x) �= ∅}. It is worth noting that similar algorithm has
been developed for the dual problem in [28] and (2) is equivalent to xk+1 ∈ ∂ f ∗

1 (gk
2).

3 Performance Analysis of the DCA for Smooth f1 or f2

In this subsection, we apply performance estimation for the analysis of Algorithm 1
for the case that at least one of f1 or f2 is L-smooth for some finite L > 0. The
worst-case convergence rate of Algorithm 1 can be obtained by solving the following
abstract optimization problem:

max

(
min

1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥
2
)

gN+1
1 , gN+1

2 , x N+1, . . . , x2 are generated by Algorithm 1 w.r.t. f1, f2, x1

f (x) ≥ f � ∀x ∈ R
n

f1 ∈ Fμ1,L1(R
n), f2 ∈ Fμ2,L2(R

n)

f1(x1) − f2(x1) − f � ≤ �

x1 ∈ R
n, (9)

where � ≥ 0 denote the difference between the optimal value and the value of f at
the starting point. Here, f1, f2 and xk , gk

1 and gk
2 (k ∈ {1, ..., N + 1}) are decision

variables, and �,μ1, L1, μ2, L2 and N are fixed parameters.
Problem (9) is an intractable infinite-dimensional optimization problem with an

infinite number of constraints. Inwhat follows,weprovide a semidefinite programming
relaxation of the problem.
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By Theorem 2.1, problem (9) can be written as,

max

(
min

1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥
2
)

s.t. 1
2(1−μ1

L1
)

(
1

L1

∥∥∥gi
1 − g j

1

∥∥∥
2 + μ1

∥∥∥xi − x j
∥∥∥
2 − 2μ1

L1

〈
g j
1 − gi

1, x j − xi
〉)

≤ f i
1 − f j

1 −
〈
g j
1 , xi − x j

〉
i, j ∈ {1, . . . , N + 1}

1
2(1−μ2

L2
)

(
1

L2

∥∥∥gi
2 − g j

2

∥∥∥
2 + μ2

∥∥∥xi − x j
∥∥∥
2 − 2μ2

L2

〈
g j
2 − gi

2, x j − xi
〉)

≤ f i
2 − f j

2 −
〈
g j
2 , xi − x j

〉
i, j ∈ {1, . . . , N + 1}

gk+1
1 = gk

2 k ∈ {1, . . . , N }
f k
1 − f k

2 − 1

2(L1 − μ2)
‖gk

1 − gk
2‖2 ≥ f � k ∈ {1, . . . , N + 1}

f 11 − f 12 − f � ≤ �. (10)

In problem (10), f � and xk, gk
1, gk

2, f k
1 , f k

2 , k ∈ {1, . . . , N + 1}, are decision
variables. By virtue of Lemma2.1, constraints f (x) ≥ f � for each x ∈ R

n are replaced
by f k

1 − f k
2 − 1

2(L1−μ2)
‖gk

1 − gk
2‖2 ≥ f �, k ∈ {1, . . . , N + 1}. Due to the necessary

and sufficient optimality conditions for convex problems, xk+1 ∈ argminx∈Rn f1(x)−
f2(xk)−〈gk

2, x −xk〉, k ∈ {1, . . . , N } implies gk+1
1 = gk

2 for some gk+1
1 ∈ ∂ f (xk+1);

see Theorem 3.63 in [9]. By substituting gk
2 = gk+1

1 , k ∈ {1, . . . , N }, the above
formulation may be written as:

max �

s.t.
∥∥∥gi

1 − gi+1
1

∥∥∥2 ≥ � i ∈ {1, . . . , N }
∥∥∥gN+1

1 − gN+1
2

∥∥∥2 ≥ �

1
2(1− μ1

L1
)

(
1

L1

∥∥∥gi
1 − g j

1

∥∥∥2 + μ1

∥∥∥xi − x j
∥∥∥2 − 2μ1

L1

〈
g j
1 − gi

1, x j − xi
〉)

≤ f i
1 − f j

1 −
〈
g j
1 , xi − x j

〉
i, j ∈ {1, . . . , N + 1}

1
2(1− μ2

L2
)

(
1

L2

∥∥∥gi+1
1 − g j+1

1

∥∥∥2 + μ2

∥∥∥xi − x j
∥∥∥2 − 2μ2

L2

〈
g j+1
1 − gi+1

1 , x j − xi
〉)

≤ f i
2 − f j

2 −
〈
g j+1
1 , xi − x j

〉
i, j ∈ {1, . . . , N }

1

2
(
1− μ2

L2

)
(

1
L2

∥∥∥gN+1
2 − g j+1

1

∥∥∥2 + μ2

∥∥∥x N+1 − x j
∥∥∥2 − 2μ2

L2

〈
g j+1
1 − gN+1

2 , x j − x N+1
〉)

≤ f N+1
2 − f j

2 −
〈
g j+1
1 , x N+1 − x j

〉
j ∈ {1, . . . , N }

1

2
(
1− μ2

L2

)
(

1
L2

∥∥∥gi+1
1 − gN+1

2

∥∥∥2 + μ2

∥∥∥xi − x N+1
∥∥∥2 − 2μ2

L2

〈
gN+1
2 − gi+1

1 , x N+1 − xi
〉)

≤ f i
2 − f N+1

2 −
〈
gN+1
2 , xi − x N+1

〉
i ∈ {1, . . . , N }
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f k
1 − f k

2 − 1

2(L1 − μ2)
‖gk

1 − gk+1
1 ‖2 ≥ f � k ∈ {1, . . . , N }

f N+1
1 − f N+1

2 − 1

2(L1 − μ2)
‖gN+1

1 − gN+1
2 ‖2 ≥ f �

f 11 − f 12 − f � ≤ �. (11)

By using this formulation, the next result (Theorem 3.1) provides a convergence
rate for Algorithm 1. Since the proof is quite technical, a few remarks are in order.
The proof uses the performance estimation technique of Drori and Teboulle [16] that
consists of the following steps:

1. Observe that problem (11) may be rewritten as a semidefinite programming (SDP)
problem (for sufficiently large N ) by replacing all inner products by the entries of
an unknown Gram matrix.

2. Use weak duality of SDP to bound the optimal value of (11) by constructing a
dual feasible solution.

3. The dual feasible solution is constructed empirically, by first doing numerical
experiments with fixed values of the parameters�, N , μ1, L1, μ2, L2, and noting
the dual multipliers.

4. Subsequently, the analytical expressions of the dual multipliers are guessed, based
on the numerical values, and the guess is verified analytically.

5. In the proof of Theorem 3.1, the conjectured dual multipliers are simply stated and
then shown to provide the required bound on the optimal value of (11) through
the corresponding aggregation of the constraints of (11).

Theorem 3.1 Let f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n) and let f (x1) − f � = �.
Suppose that L1 or L2 is finite. Then after N iterations of Algorithm 1, one has:

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤
√ A�

BN + C , (12)

where

A = 2
(
L1L2 − μ1L2 IR+(L1 − L2) − μ2L1 IR+(L2 − L1)

)
,

B = L1 + L2 + μ1

(
L1
L2

− 3
)

IR+ (L1 − L2) + μ2

(
L2
L1

− 3
)

IR+ (L2 − L1) ,

and

C = L1L2 − μ1L2 IR+ (L1 − L2) − μ2L1 IR+ (L2 − L1)

L1 − μ2
.

Proof We investigate two cases L1 ≥ L2 and L1 < L2. Suppose that U denote the
square of the right side of inequality (12) and let B = U

�
. To prove this bound, we

show that U is an upper bound for problem (11). First, we consider L1 ≥ L2. Let

λ̄ = 2 (L1L2 − μ1(2L2 − L1))

N
(

L1 + L2 + μ1

(
L1
L2

− 3
))

+ L2(L1−μ1)
L1−μ2
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η̄1 = L2 − μ1(
L1 + L2 + μ1(

L1
L2

− 3)
)

N + L2(L1−μ1)
L1−μ2

η̄k =
L1μ1

L2
+ (L1 + L2 − 3μ1)(

L1 + L2 + μ1(
L1
L2

− 3)
)

N + L2(L1−μ1)
L1−μ2

, k ∈ {2, . . . , N }

η̄N+1 = 1 − η̄1 −
N∑

k=2

η̄k =
L1μ1

L2
+ L1 − 2μ1 + L2(L1−μ1)

L1−μ2(
L1 + L2 + μ1(

L1
L2

− 3)
)

N + L2(L1−μ1)
L1−μ2

.

By direct calculation, one can verify that

� − U + η̄1

(∥∥∥g11 − g21

∥∥∥2 − �

)
+

N∑

k=2

η̄k

(∥∥∥gk
1 − gk+1

1

∥∥∥2 − �

)
+ η̄N+1

(∥∥∥gN+1
1 − gN+1

2

∥∥∥2 − �

)

+ B
(

f � − f 11 + f 12 + �
)

+ B

(
f N+1
1 − f N+1

2 − 1

2(L1 − μ2)
‖gN+1

1 − gN+1
2 ‖2 − f �

)

+ B
N∑

k=1

(
f k
1 − f k+1

1 −
〈
gk+1
1 , xk − xk+1

〉
− 1

2(1− μ1
L1

)

(
1

L1

∥∥∥gk
1 − gk+1

1

∥∥∥2 + μ1

∥∥∥xk − xk+1
∥∥∥2

− 2μ1
L1

〈
gk+1
1 − gk

1 , xk+1 − xk
〉 ))

+ λ̄

N−1∑

k=1

(
f k+1
2 − f k

2 −
〈
gk+1
1 , xk+1 − xk

〉

− 1
2(1− μ2

L2
)

(
1

L2

∥∥∥gk+1
1 − gk+2

1

∥∥∥2 + μ2

∥∥∥xk − xk+1
∥∥∥2 − 2μ2

L2
〈gk+2

1 − gk+1
1 , xk+1 − xk 〉

) )

+ (λ̄ − B)

N−1∑

k=1

(
f k
2 − f k+1

2 −
〈
gk+2
1 , xk − xk+1

〉
− 1

2(1− μ2
L2

)
( 1

L2

∥∥∥gk+1
1 − gk+2

1

∥∥∥2

+ μ2

∥∥∥xk − xk+1
∥∥∥2 − 2μ2

L2
〈gk+2

1 − gk+1
1 , xk+1 − xk 〉

)
+ (λ̄ − B)

(
f N
2 − f N+1

2 −
〈
gN+1
2 , x N − x N+1

〉

− 1
2(1− μ2

L2
)

(
1

L2

∥∥∥gN+1
1 − gN+1

2

∥∥∥2 + μ2

∥∥∥x N − x N+1
∥∥∥2 − 2μ2

L2
〈gN+1

2 − gN+1
1 , x N+1 − x N 〉

) )

+ λ̄

(
f N+1
2 − f N

2 −
〈
gN+1
1 , x N+1 − x N

〉
− 1

2(1− μ2
L2

)

(
1

L2

∥∥∥gN+1
1 − gN+1

2

∥∥∥2 + μ2

∥∥∥x N − x N+1
∥∥∥2

− 2μ2
L2

〈gN+1
2 − gN+1

1 , x N+1 − x N 〉
))

= −β̄−1
1

N∑

i=1

∥∥∥β̄1gi
1 − β̄1gi+1

1 − ᾱ1xi + ᾱ1xi+1
∥∥∥2 − ᾱ−1

2

N−1∑

i=1

∥∥∥ᾱ2xi − ᾱ2xi+1 − β̄2gi+1
1 + β̄2gi+2

1

∥∥∥2

− ᾱ−1
2

∥∥∥ᾱ2x N − ᾱ2x N+1 − β̄2gN+1
1 + β̄2gN+1

2

∥∥∥2 ≤ 0,

where

ᾱ1 = μ1B

2(L1 − μ1)
, β̄1 = μ1B

2L2(L1 − μ1)
,

ᾱ2 = (−μ1L2
2 − 2μ1μ2L2 + μ1L1L2 + μ1μ2L1 + μ2L1L2)B

2(L1 − μ1)(L2 − μ2)
,

β̄2 = (L1L2μ2 − 2μ1μ2L2 + μ1μ2L1 − μ1L2
2 + μ1L1L2)B

2L2(L1 − μ1)(L2 − μ2)
.
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It is readily seen that λ̄, η̄k (k ∈ {1, . . . , N + 1}), λ̄ − B, β̄1, ᾱ2 ≥ 0. Thus, we have
� ≤ U for any feasible point of problem (11). Now, we consider L1 < L2. In this
case, because bound (12) does not depend on μ1, we may assume μ1 = 0 in problem
(11). Let

λ̂ = 2 (L1L2 − μ2(2L1 − L2))(
L1 + L2 + μ2

(
L2
L1

− 3
))

N + L1(L2−μ2)
L1−μ2

η̂1 =
L2(L1+μ2)

L1
− 2μ2(

L1 + L2 + μ2(
L2
L1

− 3)
)

N + L1(L2−μ2)
L1−μ2

η̂k =
L2(L1+μ2)

L1
+ (L1 − 3μ2)(

L1 + L2 + μ2(
L2
L1

− 3)
)

N + L1(L2−μ2)
L1−μ2

, k ∈ {2, . . . , N }

η̂N+1 = 1 − η̂1 −
N∑

k=2

η̂k =
L1(L2−μ2)

L1−μ2
+ L1 − μ2(

L1 + L2 + μ2(
L2
L1

− 3)
)

N + L1(L2−μ2)
L1−μ2

.

With some calculation, one can establish that

� − U + η̂1

(∥∥∥g11 − g21

∥∥∥2 − �

)
+

N∑

k=2

η̂k

(∥∥∥gk
1 − gk+1

1

∥∥∥2 − �

)
+ η̂N+1

(∥∥∥gN+1
1 − gN+1

2

∥∥∥2 − �

)

+ B
(

f � − f 11 + f 12 + �
)

+ B

(
f N+1
1 − f N+1

2 − 1

2(L1 − μ2)
‖gN+1

1 − gN+1
2 ‖2 − f �

)

+ (λ̂ − B)

N∑

k=1

(
f k+1
1 − f k

1 −
〈
gk
1 , xk+1 − xk

〉
− 1

2L1

∥∥∥gk+1
1 − gk

1

∥∥∥2
)

+ λ̂

N∑

k=1

(
f k
1 − f k+1

1 −
〈
gk+1
1 , xk − xk+1

〉
− 1

2L1

∥∥∥gk
1 − gk+1

1

∥∥∥2
)

+ B
N−1∑

k=1

(
f k+1
2 − f k

2 −
〈
gk+1
1 , xk+1 − xk

〉

− 1
2(1− μ2

L2
)

(
1

L2

∥∥∥gk+1
1 − gk+2

1

∥∥∥2 + μ2

∥∥∥xk − xk+1
∥∥∥2 − 2μ2

L2

〈
gk+2
1 − gk+1

1 , xk+1 − xk
〉) )

+ B

(
f N+1
2 − f N

2 −
〈
gN+1
1 , x N+1 − x N

〉

− 1
2(1− μ2

L2
)

(
1

L2

∥∥∥gN+1
1 − gN+1

2

∥∥∥2 + μ2

∥∥∥x N − x N+1
∥∥∥2 − 2μ2

L2

〈
gN+1
2 − gN+1

1 , x N+1 − x N
〉) )

= −β̂−1
1

N∑

i=1

∥∥∥β̂1gi
1 − β̂1gi+1

1 − α̂1xi
1 + α̂1xi+1

∥∥∥2 − α̂−1
2

N−1∑

i=1

∥∥∥α̂2xi − α̂2xi+1 − β̂2gi+1
1 + β̂2gi+2

1

∥∥∥2

− α̂−1
2

∥∥∥α̂2x N − α̂2x N+1 − β̂2gN+1
1 + β̂2gN+1

2

∥∥∥2 ≤ 0,

where

α̂1 = μ2B(1− L1
L2

)

2L1(1−μ2
L2

)
, α̂2 = μ2L1B

2(L2−μ2)
, β̂1 = μ2B(1− L1

L2
)

2L2
1(1−

μ2
L2

)
, β̂2 = μ2B

2(L2−μ2)
.
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It is readily seen that λ̂, η̂k (k ∈ {1, . . . , N + 1}), λ̂− B, β̂1, α̂2 ≥ 0. The rest of proof
is similar to that of the former case, and the proof is complete.

The theorem implies that Algorithm 1 is convergent when at least one of the Lips-
chitz constants is finite. In the following corollary, we simplify the inequality (12) for
some special cases of L1, L2, μ1, and μ2.

Corollary 3.1 Suppose that f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n). Then, after N
iterations of Algorithm 1, one has:

(i) If L1 = ∞, L2 < ∞, then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤
√
2L2

2

(
f (x1) − f �

)

N (L2 + μ1)
.

(ii) If L2 = ∞, L1 < ∞, then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤
√
2L2

1 (L1 − μ2)
(

f (x1) − f �
)

(
L2
1 − μ2

2

)
N + L2

1

. (13)

(iii) If L1, L2 < ∞, and μ1 = μ2 = 0 then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤
√
2L1L2

(
f (x1) − f �

)

(L1 + L2) N + L2
.

One can compare the results in Corollary 3.1 to that of Le Thi et al. [26] as reviewed
earlier in Theorem 1.2. First of all, Corollary 3.1 part i i i) does not assume strict
convexity of f1 or f2, and in this sense it is more general than the result in Theorem
1.2. If we do assume μ1 + μ2 > 0, then, for example, if L1 < ∞, Theorem 1.2
implies,

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤ L1

√
2

(
f (x1) − f �

)

(μ1 + μ2) N
,

which is weaker than our bound (13) since μ1 ≤ L1, although the O(1/
√

N ) depen-
dence on N is the same. We will do a further, more direct, comparison of Theorem 1.2
and Corollary 3.1 in Sect. 3.2, where we consider the convergence rate of the sequence
‖xk+1 − xk‖.

3.1 An Example to Prove Tightness

In what follows, we give a class of functions for which the bound in Corollary 3.1,
part i i), is attained, implying that the O(1/

√
N ) convergence rate is tight. This result

is new to the best of our knowledge.
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Example 3.1 Let L1 ∈ (0,∞). Suppose that N is selected such thatU :=
√

2
L1(N+1) <

1. Let f1 : R → R be given as follows,

f1(x) =

⎧⎪⎨
⎪⎩

L1
2 (x − i(1 − U ))2 + L1Ui(i−1)(1−U )

2 x ∈ [
αi , βi+1)

L1Uβi (x − βi ) + βi L1U2

2 + βi (βi −1)L1U
2 x ∈ [βi , αi )

L1
2 x2 x ∈ (−∞, 0) ,

where for i ∈ {1, . . . , N + 1}, αi = i − U , βi = i − 1, and βN+2 = ∞. Note that
f1 ∈ F0,L1(R). Suppose that f2 : R → R is given by

f2(x) = max
1≤i≤N+1

{
L1U (i − 1)(x − i) + i(i−1)L1U

2

}
.

An easy computation shows that

{
∂ f2(i) = [L1U (i − 1), L1Ui] i ∈ {1, . . . , N , }
∂ f2(N + 1) = L1U N .

Note that f2 ∈ F0,∞(R). One can check that, at x1 = N+1, one has f1(x1)− f2(x1) =
1, minx∈R f1(x) − f2(x) = 0 and argminx∈R f1(x) − f2(x) = [0, 1 − U ]. By taking
x1 as a starting point, Algorithm 1 can generate the following iterates:

xk = N + 2 − k, k ∈ {1, . . . , N + 1}.

Here at iteration, k ∈ {1, . . . , N + 1}, we set gk
2 = L1U (N + 1 − k). It follows that

|∇ f1(xk) − gk
2 | =

√
2L1
N+1 , k ∈ {1, . . . , N + 1}. Hence,

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ =
√

2L1
N+1 ,

which shows bound (13) in Corollary 3.1 is exact for this example.

3.2 Convergence Rates for the Iterates

In this section, we investigate the implications of our results so far on convergence
rates of the iterates {xk}.
Proposition 3.1 Let f1 ∈ Fμ1,L1(R

n) and f2 ∈ Fμ2,L2(R
n) and let f (x1)− f � ≤ �.

If μ1 or μ2 is strictly positive, then after N iterations of Algorithm 1, one has:

min
1≤k≤N

∥∥∥xk+1 − xk
∥∥∥ ≤

( A
BN + C · �

) 1
2

,
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where

A = 2
(
μ−1
2 μ−1

1 − L−1
2 μ−1

1 IR+ (μ−1
2 − μ−1

1 ) − L−1
1 μ−1

2 IR+ (μ−1
1 − μ−1

2 )
)

,

B = μ−1
2 + μ−1

1 + L−1
2

(
μ1
μ2

− 3
)

IR+
(
μ−1
2 − μ−1

1

)
+ L−1

1

(
μ2
μ1

− 3
)

IR+
(
μ−1
1 − μ−1

2

)
,

and

C =
μ−1
2 μ−1

1 − L−1
2 μ−1

1 IR+
(
μ−1
2 − μ−1

1

)
− L−1

1 μ−1
2 IR+

(
μ−1
1 − μ−1

2

)

μ−1
2 − L−1

1

.

Proof The proof is based on the computation of the worst-case convergence rate of
DCA for problem (8) by applying Theorem 3.1. By Toland duality, f � is also a
lower bound of problem (8). By virtue of conjugate function properties, it follows that
f ∗
2 (g1

2)− f ∗
1 (g1

2)− f � ≤ � and f ∗
2 ∈ FL−1

2 ,μ−1
2

(Rn) and f ∗
1 ∈ FL−1

1 ,μ−1
1

(Rn). In addi-

tion, xk+1 ∈ ∂ f ∗
1 (gk

2) and xk ∈ ∂ f ∗
2 (gk

2) for k ∈ {1, . . . , N }. Hence, all assumptions
of Theorem 3.1 hold, and subsequently the bound follows from Theorem 3.1.

Recall the known result from Theorem 1.2:

min
1≤k≤N

∥∥∥xk+1 − xk
∥∥∥ ≤

(
2( f (x1) − f �)

N (μ1 + μ2)

) 1
2

. (14)

By employing Theorem 3.1, we get

min
1≤k≤N

∥∥∥xk+1 − xk
∥∥∥ ≤

(
2( f (x1) − f �)

N (μ1 + μ2) + μ1

) 1
2

,

which is tighter than the bound (14). Moreover, the bound given in Proposition 3.1
provides more information concerning the worst-case convergence rate of the DCA
when L1 < ∞ or L2 < ∞.

4 Performance Estimation using a Convergence Criterion for Critical
Points in the Non-smooth Case

Theorem3.1 addresses the case that f1 or f2 is L-smoothwith L < ∞. Inwhat follows,
we investigate the case that f1 and f2 are proper convex functions and where both
may be non-smooth. For this general case, we need to adopt a different termination
criterion to obtain results, since the termination criterion ‖gk

1 − gk
2‖ ≤ ε may be of no

use in this case. For example, suppose that a DC function f : R → R ∪ {∞} is given
by

f (x) =
{

f1(x) − f2(x) x ≥ 0

∞ x < 0,
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where

f1(x) = max
n∈N∪{0}{−n(x − 2−n) + 2 − 21−n − n2−n},

f2(x) = max
n∈N∪{0}{−(n + 1)(x − 2−n) + 2 − 3(2−n) − n2−n}.

With x1 = 1 and the given DC decomposition, Algorithm 1 may generate

xk = 2−k, gk
1 = −(k − 1), gk

2 = −k, k ∈ {1, 2, ...}.

As |gk
1−gk

2 | = 1,Algorithm1never stops by employing the given termination criterion
while it is convergent to global minimum x̄ = 0. We therefore will use the termination
criterion of the following value being sufficiently small:

T (xk+1) := f1(xk) − f2(xk) − min
x∈Rn

(
f1(x) − f2(xk) −

〈
gk
2, x − xk

〉)

= f1(xk) − f1(xk+1) −
〈
gk
2, xk − xk+1

〉
. (15)

Note that T (xk+1) ≥ 0. It follows that if T (xk+1) = 0 then f (xk) = f (xk+1), and
xk ∈ argminx∈Rn f1(x) − f2(xk) − 〈gk

2, x − xk〉. Indeed, by the optimality conditions
for convex problems, we have ∂ f1(xk) ∩ ∂ f2(xk) �= ∅. Consequently, T (xk+1) = 0
implies that xk is a critical point of problem (6). The aforementioned stopping criterion
has also been employed for the analysis of the Frank–Wolfe method for non-convex
problems; see Eq. (2.6) in [18].

In what follows, we investigate Algorithm 1 with the termination criterion
T (xk+1) < ε for the given accuracy ε > 0. The performance estimation problem
with termination criterion (15) may be written as follows,

max �

s.t. f1(xk) − f1(xk+1) −
〈
gk+1
1 , xk − xk+1

〉
≥ � i ∈ {1, . . . , N }

1
2(1− μ1

L1
)

(
1

L1

∥∥∥gi
1 − g j

1

∥∥∥
2 + μ1

∥∥∥xi − x j
∥∥∥
2 − 2μ1

L1

〈
g j
1 − gi

1, x j − xi
〉)

≤ f i
1 − f j

1 −
〈
g j
1 , xi − x j

〉
i, j ∈ {1, . . . , N + 1}

1
2(1− μ2

L2
)

(
1

L2

∥∥∥gi+1
1 − g j+1

1

∥∥∥
2 + μ2

∥∥∥xi − x j
∥∥∥
2 − 2μ2

L2

〈
g j+1
1 − gi+1

1 , x j − xi
〉)

≤ f i
2 − f j

2 −
〈
g j+1
1 , xi − x j

〉
i, j ∈ {1, . . . , N }

1
2(1− μ2

L2
)

(
1

L2

∥∥∥gN+1
2 − g j+1

1

∥∥∥
2 + μ2

∥∥∥x N+1 − x j
∥∥∥
2 − 2μ2

L2

〈
g j+1
1 − gN+1

2 , x j − x N+1
〉)

≤ f N+1
2 − f j

2 −
〈
g j+1
1 , x N+1 − x j

〉
j ∈ {1, . . . , N }

1
2(1− μ2

L2
)

(
1

L2

∥∥∥gi+1
1 − gN+1

2

∥∥∥
2 + μ2

∥∥∥xi − x N+1
∥∥∥
2 − 2μ2

L2

〈
gN+1
2 − gi+1

1 , x N+1 − xi
〉)
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≤ f i
2 − f N+1

2 −
〈
gN+1
2 , xi − x j

〉
i ∈ {1, . . . , N }

f k
1 − f k

2 ≥ f � k ∈ {1, . . . , N + 1}
f 11 − f 12 − f � ≤ �. (16)

Note that we do not employ Lemma 2.1 in this formulation because we consider a
general DC problem. Using the performance estimation procedure as described before
the proof of Theorem 3.1 once more, we obtain the following result.

Theorem 4.1 Let f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n). Then, after N iterations of
Algorithm 1, one has

min
1≤k≤N

f1(xk) − f1(xk+1) − 〈gk
2, xk − xk+1〉

≤ min

{
L1

N (L1 + μ2)
,

L2

N (L2 + μ1) − μ1

} (
f (x1) − f �

)
. (17)

Proof We show separately that L1( f (x1)− f �)
N (L1+μ2)

and L2( f (x1)− f �)
N (L2+μ1)−μ1

are upper bounds for
problem (16). The proof is analogous to that of Theorem 3.1. First, consider the bound
L1( f (x1)− f �)

N (L1+μ2)
. Since the given bound does not depend on μ1 and L2, we may assume

without loss of generality that L2 = ∞ and μ1 = 0. Suppose that B1 = L1
N (L1+μ2)

.
With some algebra, one can show that

� − B1� + 1
N

N∑

k=1

(
f k
1 − f k+1

1 − 〈gk+1
1 , xk − xk+1〉 − �

)
+ B1

(
f N+1
1 − f N+1

2 − f �
)

+ B1
(

f � − f 11 + f 12 + �
)

+ ( 1
N − B1)

N∑

k=1

(
f k+1
1 − f k

1 −
〈
gk
1 , xk+1 − xk

〉
− 1

2L1

∥∥∥gk+1
1 − gk

1

∥∥∥2
)

+ B1

N∑

k=1

(
f k+1
2 − f k

2 −
〈
gk+1
1 , xk+1 − xk

〉
− μ2

2

∥∥∥xk+1 − xk
∥∥∥2

)

= − B1μ2
2

N∑

k=1

∥∥∥xk − xk+1 − 1
L1

(gk
1 − gk+1

1 )

∥∥∥2 ≤ 0.

The rest of proof is similar to that of Theorem 3.1. Now, we consider the bound
L2( f (x1)− f �)
N (L2+μ1)−μ1

. Without loss generality, we may assume that L1 = ∞ and μ2 = 0. By
doing some calculus, one can show that

� − B2� + B2

(
f 11 − f 21 −

〈
g21 , x1 − x2

〉
− �

)
+ B2

(
f N+1
1 − f N+1

2 − f �
)

+ B2

(
f � − f 11 + f 12 + �

)
+ 1−B2

N−1

N∑
k=2

(
f k
1 − f k+1

1 −
〈
gk+1
1 , xk − xk+1

〉
− �

)

+ α

N∑
k=2

(
f k+1
1 − f k

1 −
〈
gk
1 , xk+1 − xk

〉
− μ1

2

∥∥∥xk+1 − xk
∥∥∥2

)

+ B2

N∑
k=1

(
f k+1
2 − f k

2 −
〈
gk+1
1 , xk+1 − xk

〉
− 1

2L2

∥∥∥gk+2
1 − gk+1

1

∥∥∥2
)
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+ B2

(
f N+1
2 − f N

2 −
〈
gN+1
1 , x N+1 − x N

〉
− 1

2L2

∥∥∥gN+1
2 − gN+1

1

∥∥∥2
)

= − B2
2L2

∥∥∥gN+1
2 − gN+1

1

∥∥∥2 − B2
2L2

N∑
k=2

∥∥∥gk
1 − gk+1

1 − αL2
B2

(xk − xk+1)
∥∥∥2 ≤ 0,

where B2 = L2
N (L2+μ1)−μ1

and α = 1−B2
N−1 − B2. Since we assume L2 > μ1, we have

B2, α ≥ 0. The rest of the proof runs as before. ��
The important point is that the last result provides a rate of convergence even if

neither L1 nor L2 is finite, and we therefore state it as a corollary.

Corollary 4.1 Let f1 ∈ Fμ1,∞(Rn) and f2 ∈ Fμ2,∞(Rn), i.e. consider any DC decom-
position in problem (1). Then, after N iterations of Algorithm 1, one has

min
1≤k≤N

f1(xk) − f1(xk+1) − 〈gk
2, xk − xk+1〉 ≤ 1

N

(
f (x1) − f �

)
.

This result is new to the best of our knowledge.

5 Linear Convergence of the DCA under the Polyak–Łojasiewicz
Inequality

In the section, we provide some sufficient conditions under which the DCA is linearly
convergent. Similar to the former sections, we employ the performance estimation for
obtaining convergence rate.

In recent years, the linear convergence of some optimization methods for non-
convex problems has been investigated under the Polyak–Łojasiewicz (PL) inequality;
see [2, 12, 25] and the reference therein. We say that f satisfies PL inequality on X if
there exists η > 0 such that

f (x) − f � ≤ 1
2η‖ξ‖2, ∀x ∈ X ,∀ξ ∈ co(∂l f (x)). (18)

Note thatwhen f is differentiable inequality (18) is a special case of (3)with θ = 1
2 and

different ground set. If f1 or f2 is strictly differentiable, we have co(∂l f ) = ∂ f1−∂ f2;
see Example 10.10 in [38]. Hence, the performance estimation problem with the PL
inequality may be formulated as follows:

max
( f 21 − f 22 ) − f �

( f 11 − f 12 ) − f �

s.t. 1
2(1−μ1

L1
)

(
1

L1

∥∥∥gi
1 − g j

1

∥∥∥
2 + μ1

∥∥∥xi − x j
∥∥∥
2 − 2μ1

L1

〈
g j
1 − gi

1, x j − xi
〉)

≤ f i
1 − f j

1 −
〈
g j
1 , xi − x j

〉
i, j ∈ {1, 2}

1
2(1−μ2

L2
)

(
1

L2

∥∥∥gi
2 − g j

2

∥∥∥
2 + μ2

∥∥∥xi − x j
∥∥∥
2 − 2μ2

L2

〈
g j
2 − gi

2, x j − xi
〉)
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≤ f i
2 − f j

2 −
〈
g j
2 , xi − x j

〉
i, j ∈ {1, 2}

f k
1 − f k

2 ≥ f � k ∈ {1, 2}
g1
2 = g2

1(
f k
1 − f k

2

)
− f � ≤ 1

2η‖gk
1 − gk

2‖2, k ∈ {1, 2} . (19)

By doing constraint aggregation in problem (19) as before (i.e. demonstrating a dual
feasible solution and using weak duality), we obtain the following linear convergence
rate for the DCA under the PL inequality.

Theorem 5.1 Let f1 ∈ Fμ1,L1(R
n) and f2 ∈ Fμ2,L2(R

n). If L1 or L2 is finite and if
f satisfies PL inequality on X = {x : f (x) ≤ f (x1)}, then for x2 from Algorithm 1,
we have

f (x2) − f �

f (x1) − f �
≤

(
1 − η

L1

1 + η
L2

)
. (20)

Proof Since the given bound is independent of μ1 and μ2, without loss of generality,
we assume that μ1 = μ2 = 0. In addition, we assume that f � = 0. Direct calculation
shows that

(
f 21 − f 22

)
− f � −

(
1 − η

L1

1 + η
L2

)((
f 11 − f 12

)
− f �

)
+

(
1

1 + η
L2

)

×
(

f 11 − f 21 −
〈
g2
1, x1 − x2

〉
− 1

2L1

∥∥∥g1
1 − g2

1

∥∥∥
2
)

+
(

1

1 + η
L2

)(
f 22 − f 12 −

〈
g2
1, x2 − x1

〉
− 1

2L2

∥∥∥g2
1 − g2

2

∥∥∥
2
)

+
(

η
L1

1 + η
L2

)

×
(

1

2η

∥∥∥g1
1 − g2

1

∥∥∥
2 − f 11 + f 12

)
+

(
η

L2

1 + η
L2

) (
1

2η

∥∥∥g2
1 − g2

2

∥∥∥
2 − f 21 + f 22

)
= 0.

As all the multipliers in the last expression are non-negative, for any feasible solution
of problem (11), we have

f (x2) − f � −
(
1 − η

L1

1 + η
L2

)(
f (x1) − f �

)
≤ 0,

completing the proof.

Note that Theorem 1.1 by Le Thi et al. [27] does not imply Theorem 5.1 if inequality
(3) holds on {x : f (x) ≤ f (x1)}with θ = 1

2 , sincewe assume neither strong convexity
of f1 or f2, nor boundedness of the sequence of iterates. Moreover, we give explicit
expressions for the constants that determine the linear convergence rate of the sequence
of objective values.
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6 Conclusion

We have shown that the performance estimation framework of Drori and Teboulle
[16] yields new insights into the convergence behavior of the difference-of-convex
algorithm (DCA). As future work, one may also consider the convergence of the
DCA on more restricted classes of DC problems, e.g. where f1 and f2 are convex
polynomials, as studied in [3]. For constrained problems, even the case where f1 and
f2 are quadratic polynomials is of interest, e.g. in the study of (extended) trust region
problems.
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