CORRECTION

Correction to: Convexifactors, Generalized Convexity, and Optimality Condition

J. Dutta ${ }^{1} \cdot$ S. Chandra ${ }^{2} \cdot$ Rimpi $^{3} \cdot$ C. S. Lalitha ${ }^{4}$

Published online: 24 March 2023
© Springer Science+Business Media, LLC, part of Springer Nature 2023

Correction to: J Optim Theory Appl
https://doi.org/10.1023/A:1014853129484

In this article the below author names are included.
Rimpi and C.S. Lalitha

1 Introduction

We correct an error in the proof of Theorem 3.5 in [1].

The original article can be found online at https://doi.org/10.1023/A:1014853129484.
\boxtimes J. Dutta
jdutta@iitk.ac.in
\triangle S. Chandra
sureshiitdelhi@gmail.com
Rimpi
baloda.rimpi@gmail.com
C. S. Lalitha
cslalitha@maths.du.ac.in
1 Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India

2 Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India
3 Department of Mathematics, University of Delhi, New Delhi, Delhi 110007, India
4 Department of Mathematics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India

2 Mathematical Details

Theorem 3.5 in [1] says, if $\bar{x} \in S$ is a local minimum of (P) and f is locally Lipschitz which admits an USRC $\partial^{*} f(\bar{x})$ at \bar{x}, then

$$
\begin{equation*}
0 \in \operatorname{cl}\left(\overline{\mathrm{co}}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x})\right) \tag{1}
\end{equation*}
$$

The following example justifies that the above theorem fails to hold.
Example 2.1 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the feasible set S be defined as $f\left(x_{1}, x_{2}\right)=$ $-x_{1}+\left|x_{2}\right|$ and $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0 \leq x_{1} \leq\left|x_{2}\right|\right\}$. Clearly, $\bar{x}=(0,0)$ is a global minimum, $T(S, \bar{x})=S$ and $\operatorname{co}(T(S, \bar{x}))=\operatorname{co}(S)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right.$: $\left.x_{1} \geq 0\right\}$. Now, for any $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}, f_{d}^{+}(\bar{x}, v)=-v_{1}+\left|v_{2}\right|$. Also it can be seen that $\partial^{*} f(\bar{x})=\{(-1,1),(-1,-1)\}$ is an upper semi-regular convexificator of f at \bar{x}. As $T(S, \bar{x})=S$, it follows that $f_{d}^{+}(\bar{x}, v) \geq 0$, for all $v \in T(S, \bar{x})$. Thus
$\sup _{\zeta \in \partial^{*} f(\bar{x})}\langle\zeta, v\rangle \geq 0$, for all $v \in T(S, \bar{x})$. Clearly, $\sup _{\zeta \in \partial^{*} f(\bar{x})}\langle\zeta, \bar{v}\rangle=f_{d}^{+}(\bar{x}, \bar{v})=-1<0$ $\zeta \in \partial^{*} f(\bar{x})$
for $\bar{v}=(2,1) \in \operatorname{co}(T(S, \bar{x}))$. Moreover, $T^{\circ}(S, \bar{x})=\left\{(x, 0) \in \mathbb{R}^{2}: x \leq 0\right\}$ and $\overline{\operatorname{co}}\left(\partial^{*} f(\bar{x})\right)=\left\{(-1, t) \in \mathbb{R}^{2}:-1 \leq t \leq 1\right\}$. Hence $0 \notin \operatorname{cl}\left(\overline{\operatorname{co}}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x})\right)$. Thus Theorem 3.5 in [1] fails to hold for f at \bar{x}.

We rectify the error in the above theorem by assuming the tangent cone to be convex. For this we first recall the notion of support functions from [2]. The support function $\sigma_{A}(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ of a nonempty set $A \subseteq \mathbb{R}^{n}$ is defined as $\sigma_{A}(x):=\sup _{a \in A}\langle x, a\rangle$.

A correct statement of Theorem 3.5 in [1] should be as follows.
Theorem 2.1 If $\bar{x} \in S$ is a local minimum of $(\mathrm{P}), T(S, \bar{x})$ is a convex cone and f is locally Lipschitz which admits an $\operatorname{USRC} \partial^{*} f(\bar{x})$ at \bar{x}, then (1) holds. Further, if $\partial^{*} f(\bar{x})$ is bounded, then

$$
\begin{equation*}
0 \in \operatorname{co}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x}) \tag{2}
\end{equation*}
$$

Proof As \bar{x} is a local minimum of (P), there exists $\epsilon>0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in B(\bar{x}, \epsilon) \cap S$. For $v \in T(S, \bar{x})$, there exist sequences $\left(t_{k}\right)_{k \in \mathbb{N}}$ and $\left(v_{k}\right)_{k \in \mathbb{N}}$ with $t_{k} \downarrow 0$ and $v_{k} \rightarrow v$ such that $\bar{x}+t_{k} v_{k} \in S$. Thus there exists $k_{0} \in \mathbb{N}$ such that $\bar{x}+t_{k} v_{k} \in B(\bar{x}, \epsilon) \cap S$ for all $k \geq k_{0}$, which implies $f(\bar{x}) \leq f\left(\bar{x}+t_{k} v_{k}\right)$ for all $k \geq k_{0}$. As f is locally Lipschitz with Lipschitz constant say, L, hence for every $v \in T(S, \bar{x})$ we have

$$
\begin{aligned}
f_{d}^{+}(\bar{x}, v) & =\limsup _{t \downarrow 0} \frac{f(\bar{x}+t v)-f(\bar{x})}{t} \\
& \geq \limsup _{k \rightarrow \infty}\left[\frac{f\left(\bar{x}+t_{k} v\right)-f\left(\bar{x}+t_{k} v_{k}\right)}{t_{k}}+\frac{f\left(\bar{x}+t_{k} v_{k}\right)-f(\bar{x})}{t_{k}}\right] \\
& \geq \lim _{k \rightarrow \infty}\left[-L\left\|v_{k}-v\right\|\right]+\limsup _{k \rightarrow \infty}\left[\frac{f\left(\bar{x}+t_{k} v_{k}\right)-f(\bar{x})}{t_{k}}\right] \geq 0 .
\end{aligned}
$$

As $\partial^{*} f(\bar{x})$ is an USRC of f at \bar{x}, it follows from [2, Proposition 2.2.1 (p. 211)] that

$$
\begin{equation*}
\sigma_{\operatorname{co}\left(\partial^{*} f(\bar{x})\right)}(v)=\sigma_{\partial^{*} f(\bar{x})}(v)=\sup _{\zeta \in \partial^{*} f(\bar{x})}\langle\zeta, v\rangle \geq 0, \text { for all } v \in T(S, \bar{x}) . \tag{3}
\end{equation*}
$$

As $T(S, \bar{x})$ is convex, hence by applying [2, Example 2.3.1 (p.215)] for $K=T^{\circ}(S, \bar{x})$ we deduce that

$$
\sigma_{T^{\circ}(S, \bar{x})}(v)= \begin{cases}0, & \text { if } v \in T(S, \bar{x}), \tag{4}\\ +\infty, & \text { otherwise }\end{cases}
$$

In view of [2, Theorem 3.3.3(i) (p. 226)] the support function of the set $U=$ $\operatorname{cl}\left(\operatorname{co}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x})\right)$ is

$$
\begin{equation*}
\sigma_{U}(v)=\sigma_{\mathrm{co}\left(\partial^{*} f(\bar{x})\right)}(v)+\sigma_{T^{\circ}(S, \bar{x})}(v), \text { for all } v \in T(S, \bar{x}) \tag{5}
\end{equation*}
$$

Using (3)-(5) and the fact that $\sigma_{K}(v)$ is infinite for $v \notin T(S, \bar{x})$, we conclude that $\sigma_{U}(v) \geq 0$ for all $v \in \mathbb{R}^{n}$. Thus, by [2, Theorem 2.2.2 (p. 211)], $0 \in U=$ $\operatorname{cl}\left(\operatorname{co}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x})\right)$.

If $\partial^{*} f(\bar{x})$ is a bounded set then $\operatorname{co}\left(\partial^{*} f(\bar{x})\right)$ is compact as $\partial^{*} f(\bar{x})$ is a closed set. Hence (1) reduces to (2) as $\operatorname{co}\left(\partial^{*} f(\bar{x})\right)+T^{\circ}(S, \bar{x})$ is a closed set.

References

1. Dutta, J., Chandra, S.: Convexifactors, generalized convexity, and optimality conditions. J. Optim. Theory Appl. 113(1), 41-64 (2002)
2. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

