CORRECTION

Correction to: Convexifactors, Generalized Convexity, and Optimality Condition

J. Dutta¹ \cdot S. Chandra² \cdot Rimpi³ \cdot C. S. Lalitha⁴

Published online: 24 March 2023 © Springer Science+Business Media, LLC, part of Springer Nature 2023

Correction to: J Optim Theory Appl

https://doi.org/10.1023/A:1014853129484

In this article the below author names are included. Rimpi and C.S. Lalitha

1 Introduction

We correct an error in the proof of Theorem 3.5 in [1].

- ☑ J. Dutta jdutta@iitk.ac.in
- S. Chandra sureshiitdelhi@gmail.com
 - Rimpi baloda.rimpi@gmail.com

C. S. Lalitha cslalitha@maths.du.ac.in

- ¹ Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- ² Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India
- ³ Department of Mathematics, University of Delhi, New Delhi, Delhi 110007, India
- ⁴ Department of Mathematics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India

The original article can be found online at https://doi.org/10.1023/A:1014853129484.

2 Mathematical Details

Theorem 3.5 in [1] says, if $\bar{x} \in S$ is a local minimum of (P) and f is locally Lipschitz which admits an USRC $\partial^* f(\bar{x})$ at \bar{x} , then

$$0 \in \operatorname{cl}(\overline{\operatorname{co}}(\partial^* f(\bar{x})) + T^{\circ}(S, \bar{x})).$$
(1)

The following example justifies that the above theorem fails to hold.

Example 2.1 Let $f : \mathbb{R}^2 \to \mathbb{R}$ and the feasible set S be defined as $f(x_1, x_2) = -x_1 + |x_2|$ and $S = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \le x_1 \le |x_2|\}$. Clearly, $\bar{x} = (0, 0)$ is a global minimum, $T(S, \bar{x}) = S$ and $\operatorname{co}(T(S, \bar{x})) = \operatorname{co}(S) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}$. Now, for any $v = (v_1, v_2) \in \mathbb{R}^2$, $f_d^+(\bar{x}, v) = -v_1 + |v_2|$. Also it can be seen that $\partial^* f(\bar{x}) = \{(-1, 1), (-1, -1)\}$ is an upper semi-regular convexificator of f at \bar{x} . As $T(S, \bar{x}) = S$, it follows that $f_d^+(\bar{x}, v) \ge 0$, for all $v \in T(S, \bar{x})$. Thus $\sup_{\zeta \in \partial^* f(\bar{x})} \langle \zeta, v \rangle \ge 0$, for all $v \in T(S, \bar{x})$. Clearly, $\sup_{\zeta \in \partial^* f(\bar{x})} \langle \zeta, \overline{v} \rangle = f_d^+(\bar{x}, \overline{v}) = -1 < 0$ for $\overline{v} = (2, 1) \in \operatorname{co}(T(S, \bar{x}))$. Moreover, $T^\circ(S, \bar{x}) = \{(x, 0) \in \mathbb{R}^2 : x \le 0\}$ and $\overline{\operatorname{co}}(\partial^* f(\bar{x})) = \{(-1, t) \in \mathbb{R}^2 : -1 \le t \le 1\}$. Hence $0 \notin \operatorname{cl}(\overline{\operatorname{co}}(\partial^* f(\bar{x})) + T^\circ(S, \bar{x}))$. Thus Theorem 3.5 in [1] fails to hold for f at \bar{x} .

We rectify the error in the above theorem by assuming the tangent cone to be convex. For this we first recall the notion of support functions from [2]. The *support function* $\sigma_A(x) : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ of a nonempty set $A \subseteq \mathbb{R}^n$ is defined as $\sigma_A(x) := \sup_{a \in A} \langle x, a \rangle$.

A correct statement of Theorem 3.5 in [1] should be as follows.

Theorem 2.1 If $\bar{x} \in S$ is a local minimum of (P), $T(S, \bar{x})$ is a convex cone and f is locally Lipschitz which admits an USRC $\partial^* f(\bar{x})$ at \bar{x} , then (1) holds. Further, if $\partial^* f(\bar{x})$ is bounded, then

$$0 \in \operatorname{co}(\partial^* f(\bar{x})) + T^{\circ}(S, \bar{x}).$$
⁽²⁾

Proof As \bar{x} is a local minimum of (P), there exists $\epsilon > 0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in B(\bar{x}, \epsilon) \cap S$. For $v \in T(S, \bar{x})$, there exist sequences $(t_k)_{k \in \mathbb{N}}$ and $(v_k)_{k \in \mathbb{N}}$ with $t_k \downarrow 0$ and $v_k \rightarrow v$ such that $\bar{x} + t_k v_k \in S$. Thus there exists $k_0 \in \mathbb{N}$ such that $\bar{x} + t_k v_k \in B(\bar{x}, \epsilon) \cap S$ for all $k \geq k_0$, which implies $f(\bar{x}) \leq f(\bar{x} + t_k v_k)$ for all $k \geq k_0$. As f is locally Lipschitz with Lipschitz constant say, L, hence for every $v \in T(S, \bar{x})$ we have

$$f_{d}^{+}(\bar{x}, v) = \limsup_{t \downarrow 0} \frac{f(\bar{x} + tv) - f(\bar{x})}{t}$$

$$\geq \limsup_{k \to \infty} \left[\frac{f(\bar{x} + t_{k}v) - f(\bar{x} + t_{k}v_{k})}{t_{k}} + \frac{f(\bar{x} + t_{k}v_{k}) - f(\bar{x})}{t_{k}} \right]$$

$$\geq \lim_{k \to \infty} [-L \|v_{k} - v\|] + \limsup_{k \to \infty} \left[\frac{f(\bar{x} + t_{k}v_{k}) - f(\bar{x})}{t_{k}} \right] \geq 0.$$

🖉 Springer

As $\partial^* f(\bar{x})$ is an USRC of f at \bar{x} , it follows from [2, Proposition 2.2.1 (p. 211)] that

$$\sigma_{\operatorname{co}(\partial^* f(\bar{x}))}(v) = \sigma_{\partial^* f(\bar{x})}(v) = \sup_{\zeta \in \partial^* f(\bar{x})} \langle \zeta, v \rangle \ge 0, \text{ for all } v \in T(S, \bar{x}).$$
(3)

As $T(S, \bar{x})$ is convex, hence by applying [2, Example 2.3.1 (p. 215)] for $K = T^{\circ}(S, \bar{x})$ we deduce that

$$\sigma_{T^{\circ}(S,\bar{x})}(v) = \begin{cases} 0, & \text{if } v \in T(S,\bar{x}), \\ +\infty, & \text{otherwise.} \end{cases}$$
(4)

In view of [2, Theorem 3.3.3(i) (p. 226)] the support function of the set $U = cl(co(\partial^* f(\bar{x})) + T^{\circ}(S, \bar{x}))$ is

$$\sigma_U(v) = \sigma_{\operatorname{co}(\partial^* f(\bar{x}))}(v) + \sigma_{T^\circ(S,\bar{x})}(v), \text{ for all } v \in T(S,\bar{x}).$$
(5)

Using (3)–(5) and the fact that $\sigma_K(v)$ is infinite for $v \notin T(S, \bar{x})$, we conclude that $\sigma_U(v) \ge 0$ for all $v \in \mathbb{R}^n$. Thus, by [2, Theorem 2.2.2 (p. 211)], $0 \in U = cl(co(\partial^* f(\bar{x})) + T^{\circ}(S, \bar{x}))$.

If $\partial^* f(\bar{x})$ is a bounded set then $co(\partial^* f(\bar{x}))$ is compact as $\partial^* f(\bar{x})$ is a closed set. Hence (1) reduces to (2) as $co(\partial^* f(\bar{x})) + T^{\circ}(S, \bar{x})$ is a closed set.

References

- Dutta, J., Chandra, S.: Convexifactors, generalized convexity, and optimality conditions. J. Optim. Theory Appl. 113(1), 41–64 (2002)
- Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.