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Abstract
We introduce two desirable properties concerning the allocative efficiency term in
the decomposition of economic efficiency. Since Farrell, economic efficiency, defined
in terms of the cost, revenue, profitability, or profit functions, is decomposed into
a technical efficiency measure and allocative efficiency. Resorting to duality theory,
allocative efficiency is calculated as a residual. In this framework, we show that this
residual is numerically inconsistent for several economic efficiency decompositions:
those based on the Russell Efficiency Measures, the Slack-Based Measure and the
Weighted Additive Measures. It should be expected that a technical inefficient firm,
if projected to the optimal economic benchmark, e.g., that maximizing profit, should
be allocative efficient, yet we show that the above decompositions may signal that it
is allocative inefficient. Our first property, called ‘essential,’ demands that economic
efficiency decompositions satisfy the above criterion. We also extend this property
by requiring that the allocative efficiency of a technically inefficient firm, evaluated
at the projected benchmark on the production frontier, coincides with the allocative
efficiency of the benchmark itself. Regarding this extension of the property, we show
that, besides the measures mentioned above, the Directional Distance Function and
the Hölder Distance Function fail in general to comply with it. However, we also prove
that, thanks to the flexibility of these two approaches in choosing a common directional
vector for all the assessed firms or a specific Hölder norm, these measures may satisfy
the extended essential property. We conclude that unless both properties are fulfilled,
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the (residual) allocative component of many previously published decompositions
cannot be correctly interpreted as price inefficiency.

Keywords Economic efficiency · Technical efficiency · Allocative efficiency ·
Essential property

1 Introduction

In for-profit organizations, the measurement of economic efficiency is particularly
important. Any company is interested in adjusting its level of inputs and outputs if
these changes lead to economic gains. Economic efficiency measurement based on the
approach initiated by Farrell (1957) has received great attention from academics and
practitioners. Since Farrell, researchers have analytically decomposed cost and rev-
enue efficiency into technical efficiency and allocative efficiency. Economic efficiency
measures howclose the firm is to the optimum froman economical perspective. namely
cost minimization, revenue maximization, profit maximization, or profitability maxi-
mization. Technical efficiencymeasures how close the firm is to the production frontier
of the corresponding technology. This technological gap implies economic inefficiency
in the form of cost excess (cost approach) or revenue loss (revenue approach), while
allocative efficiency measures the cost excess due to wrongly demanded quantities of
inputs undermarket prices, or foregone revenue caused bywrongly supplied quantities
of outputs under market prices (Aparicio et al. 2017a, b).

The measurement and decomposition of economic efficiency follows a two-step
process. First, technical efficiency is estimated by projecting the assessed firm onto the
production frontier (also called efficient frontier). In the case of Farrell’s approach, it is
doneby resorting to radialmovements, relating this component to bothDebreu’s (1951)
coefficient of resource utilization and the inverse of Shephard’s distance functions
(Shephard 1953). Secondly, allocative efficiency is derived as a ‘residual’ between
economic efficiency and its corresponding technical efficiency component. That is,
allocative efficiency is simply the economic loss that cannot be attributed to techni-
cal inefficiency. As a result of this residual nature, the mathematical definition and
measurement of allocative efficiency have received much less attention in the litera-
ture than those associated with the formulation of technical efficiency and economic
efficiency.

While Farrell unknowingly resorted to Shephard’s (radial) distance functions for
his decomposition, nowadays there are many alternative ways of calculating technical
efficiency and decomposing economic efficiency accordingly. Popular models are
those based on the Directional Distance Function by Chambers et al. (1996, 1998)
with respect to cost, revenue and profit inefficiency; the Hölder Distance Function
by Briec and Lesourd (1999) for profit inefficiency; Zofio and Prieto (2006), where
the Hyperbolic Graph Measure is related to the notion of profitability; Cooper et al.
(2011) and Aparicio et al. (2016), who establish the duality between the profit function
and the Weighted Additive Measure; Aparicio et al. (2015a), who show that cost
(revenue) inefficiency can be decomposed resorting to the Russell Measure of input
(output) efficiency; Aparicio et al. (2017a), who relate the Slacks-Based Measure
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(SBM) (Tone 2001)—previously known as Enhanced Russell Graph (ERG) by Pastor
et al. (1999)—to profit inefficiency; and, finally, Halická and Trnovská (2018), who
provide a decomposition of profit inefficiency in terms of the Russell Graph Measure.
For a comprehensive review of these approaches, see Pastor et al. (2022).

In this study, we show that, in contrast to what is commonly assumed in the lit-
erature, the ‘residual’ allocative component cannot be correctly interpreted as price
inefficiency for many of the previously published economic decompositions. If the
measure used to gauge technical efficiency projects the assessed unit onto a point
that is optimal from the corresponding economic perspective (e.g., maximum profit),
then, there should be no room for allocative inefficiency. This means that the alloca-
tive component for the unit under evaluation should value necessarily one in the case
of multiplicative approaches—those associated with economic decomposition where
technical efficiency and allocative efficiency are multiplicative factors—and zero in
the case of additive approaches—those where economic inefficiency is decomposed
in the sum of technical inefficiency plus allocative inefficiency. We call this quality
‘the essential property’ since we understand that, otherwise, the provided decompo-
sition is invalid because of lacking a meaningful allocative component. In particular,
considering the above models proposed in the literature, we prove that the Input-
and Output-oriented Radial Measures for cost and revenue efficiency, the Hyperbolic
GraphMeasure for profitability, and the Directional Distance Function, and the Hölder
DistanceFunction for profit inefficiency, are among the approaches inwhich the alloca-
tive component can be correctly interpreted. On the contrary, the remaining additive
decompositions cited in the previous paragraph fail to meet the essential property.

We also provide a refined extension of the essential property to endow the allocative
component with additional internal consistency. As mentioned, technical efficiency is
determined by the projection of the assessed unit onto the efficient frontier of the
technology and, by definition, allocative efficiency can be determined for technically
efficient firms only. In this regard, the extension that we propose means that, for any
evaluated firm, its allocative component must always coincide with the value of the
allocative component of the corresponding (technically efficient) projected bench-
mark. Regarding the list of measures that fulfill this additional property, we will prove
that only the Radial Measures and the Hyperbolic GraphMeasure, and the Directional
Distance Function, for certain directional vectors, satisfy such extension, falling out
of this group the Hölder Distance Function except for one specific norm.

Our results have relevant implications for the theory and practice of economic effi-
ciency measurement. It shows that the range of valid approximations is smaller than
initially thought, mainly confined to the cases already mentioned. Researchers should
keep in mind that, in contrast to what has been commonly accepted, the definition of
the allocative efficiency term as a residual in the relationship between economic effi-
ciency and technical efficiency is not always the correct strategy for measuring actual
price efficiency. The cause of this drawback plaguing many of the existing decompo-
sitions is the mechanical practice followed in the literature to decompose economic
efficiency. The first authors concerned with the empirical implementation of economic
efficiency never explored the properties of the decompositions, i.e., those of the alloca-
tive (in)efficiency terms, including the essential property or similar ones. Instead, they
took the fulfillment of the property for granted. Formally, the allocative efficiency term
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is defined as the residual derived from closing the so-called Fenchel–Mahler inequal-
ity (Färe and Grosskopf 2000), previously established between an overall economic
efficiency measure and an associated technical efficiency measure. Following Farrell
(1957), authors like Chambers et al. (1998) resorted to the same argument for deriving
an allocative inefficiency term for the decomposition of the Nerlovian efficiency, after
establishing an inequality between economic inefficiency and technical inefficiency
(represented by the Directional Distance Function in this case): “Finally, allocative
efficiency is defined as the gap in inequality (17), namely, AE…” (Chambers et al.
1998, pp. 360–361).

The same happens, for example, in the paper by Färe et al. (2002) on the Hyperbolic
Graph Measure and its relationship with economic efficiency. The authors claimed:
“Following the tradition of Farrell (1957) we may define allocative efficiency AE as
a residual…” (Färe et al. 2002, p. 673).

Subsequent authors followed an identical argument for decomposing overall
(in)efficiency into technical and allocative (in)efficiency, without questioning whether
such decompositionwas sensible or not. For example, a recent contribution byPetersen
(2020), exploring the definition and decomposition of ‘virtual’ profit inefficiency, also
emphasizes this interpretation: “A gap between the distance function and the Nerlo-
vian measure of profit inefficiency is a reflection of allocative inefficiency.” (Petersen
2020, p. 720).

Our contribution to the economic efficiency measurement is twofold. Following the
literature, many mathematical and economical properties have been well-established
for technical efficiency indices and, even, economic efficiency indices. However, so
far, no author has discussed the properties that the proper decomposition of an eco-
nomic efficiency index into technical and allocative components should meet. In this
regard, we discuss and introduce two properties that are essential for the correct inter-
pretation of the terms of the decomposition. These essential properties endow the
decomposition of economic efficiency with a meaningful allocative component. As a
second contribution of our research, we provide a taxonomy of the efficiencymeasures
concerning the satisfaction of these two relevant properties; in particular, the lack of
interpretability when they are not satisfied.

In the next section, we present some preliminary notions and well-known results
regarding the decomposition of cost, revenue, and profitability efficiency, as well as
profit inefficiency, into their technical and allocative components, and considering dif-
ferent efficiency measures. Sections 3 and 4 introduce the definitions of the essential
property and its extension. We also show, contrary to current belief, that few effi-
ciency measures satisfy these requirements, which illustrates a lack of appropriate
interpretability of the allocative component as actual price efficiency. Conclusions are
drawn in Sect. 5.

2 Decompositions of Economic Efficiency: Preliminary Notions,
Results, and Notation

In this section, we formalize some key notions about the technology and recall how
cost efficiency, revenue efficiency, profitability efficiency, and profit inefficiency have
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been decomposed through different approaches in the literature. Our formalization is
general, both in the definitions of the technology and the technical efficiencymeasures.
Nevertheless, certain technical efficiency measures have been exclusively calculated
(empirically determined) in the literature through the nonparametric Data Envelop-
ment Analysis (DEA) technique: the Russell measures and the Weighted Additive
Measures. This is the reason why, in these cases, we also show the optimization pro-
grams that allow determining the value of the measures under DEA.

Let x ∈ R
M
+ denote a column vector of inputs and y ∈ R

N
+ a column vec-

tor of outputs; the production possibility set (or technology) T is given by T �{
(x, y) ∈ R

M+N
+ : x can produce y

}
. In this paper, we assume that T is a subset of

R
M+N
+ that satisfies the following postulates:

(P1) T is nonempty;
(P2) T (x) :� {(u, y) ∈ T : u ≤ x} is bounded ∀x ∈ Rm

+ ;
(P3) T is a closed set;
(P4) (x, y) ∈ T , (x,−y) ≤ (x ′,−y′) ⇒ (x ′, y′) ∈ T , i.e., inputs and outputs are

freely disposable;
(P5) T is a convex set.

The notion of technical inefficiency is related to the distance from the evaluated
firm to the frontier of the technology. In this regard, there are in the literature two main
definitions of production frontiers used as benchmarks for technical efficiency mea-
surement. We are referring to the weakly efficient frontier and a subset of it, called
the strongly efficient frontier. The weakly efficient frontier is defined as ∂W (T ) �
{(x, y) ∈ T : (u,−v) < (x,−y) ⇒ (u, v) /∈ T }, while the strongly efficient fron-
tier is ∂ S(T ) � {(x, y) ∈ T : (u,−v) ≤ (x,−y), (u, v) �� (x, y) ⇒ (u, v) /∈ T }.
Depending on the efficiency measure considered, one of these two notions comes
into play when characterizing the reference frontier. Whether technical efficiency is
measured against the weakly or strongly efficient subset of the production technology
is relevant because this determines if the efficiency measure satisfies the indication
property, i.e., complies with the notion of Pareto–Koopmans efficiency. By the defini-
tions of the strongly and theweakly efficient frontiers, the strongly efficient frontier is a
subset of the weakly efficient frontier. Complying with the indication property ensures
that the efficiency measure identifies projection points that belong to the strongly effi-
cient frontier. Therefore, if the property of indication is not satisfied, the corresponding
efficiency model does not necessarily project the assessed unit onto the strongly effi-
cient frontier. If we look at the classical literature, we find that Koopmans (1951, p. 60)
provides a practical definition of technical efficiency based on Pareto optimality: A
producer is technically efficient if, given its actual production process, an increase in
any output requires a reduction in at least one other output or an increase in at least
one input, and if a reduction in any input requires an increase in at least one other
input or a reduction in at least one output. Consequently, an inefficient producer could
produce the same outputs with less of at least one input or could use the same inputs to
produce more of at least one output. For those efficiency measures projecting the firms
under evaluation to the weakly efficiency frontier ∂W (T ), additional input reductions
or outputs expansions (slacks) in the sense of Pareto–Koopmans may exist, and there-
fore, they do not comply with this accepted notion of efficiency. Our results show that
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there exists a trade-off between the indication property and the essential properties.
Among the list of popular technical efficiency measures mentioned in this paper, those
that satisfy the indication property (i.e., comply with the notion of Pareto–Koopmans
efficiency) do not meet our new essential properties, and vice versa.

In empirical contexts, technical efficiency measures are calculated by approx-
imating the technology from a set of observations. Among the nonparametric
methodologies that could be used, DEA stands out as one of the most applied tech-
niques. DEA approximates the production technology from observed, cross-sectional
data, relying on the Activity Analysis approach (Koopmans 1951) and mathemati-
cal programming. Based on the principle of minimum extrapolation, DEA yields the
smallest subset of the input–output space as an inner approximation containing all
observations and satisfying certain technological assumptions: convexity and free dis-
posability of inputs and outputs. DEA generates convex polyhedral technologies (i.e.,
intersections of finite numbers of half-spaces), consisting of piecewise linear com-
binations of the so-called j � 1, . . . , J Decision Making Units—i.e., firms in an
economic context, thereby allowing for multiple inputs, x j � (x j1, . . . , x jM

) ∈ R
M
+ ,

and outputs, y j � (y j1, . . . , y j N
) ∈ R

N
+ . The DEA approximation of the production

technology T , under Variable Returns to Scale (VRS), is given by (Banker et al. 1984):

T �
{
(x, y) ∈ R

M
+ × R

N
+ : Xλ ≤ x,Yλ ≥ y, λ · 1J � 1, λ ≥ 0J

}
, (1)

where X is the matrix

⎡

⎢⎢⎢
⎣

x11 x21 . . . xJ1
x12 x22 xJ2
...

...
x1M x2M . . . xJM

⎤

⎥⎥⎥
⎦
, Y is the matrix

⎡

⎢⎢⎢
⎣

y11 y21 . . . yJ1
y12 y22 yJ2
...

...
y1N y2N . . . yJ N

⎤

⎥⎥⎥
⎦
,

1J ∈ R
J
+ is the vector with all components equal to one and 0J ∈ R

J
+ is the vector

with all components equal to zero.
Within the market, firms aim at attaining the best possible economic outcome. In

general, it is assumed that firms intend to maximize profit, defined as revenue minus
cost. It is possible, however, that the firm faces constraints on the output or input sides
that prevent the maximization of profit by choosing what would be optimal output and
input quantities. In these partial cases, firms’ optimizing behavior is represented by cost
and revenue functions. These three complementary perspectives, viz. cost, revenue,
and profit, are also complemented in practice with the possibility of reinterpreting the
economic behavior of the firm in terms of the ratio of revenue to costs, rather than their
difference, corresponding to the concept of profitability, also termed return-to-dollar.
Next, we summarize the definitions of cost, revenue, profitability, and profit functions,
following this order.

The cost function represents the minimum cost of producing a fixed amount of
outputs given input pricesw ∈ R

M
+ . The cost function, yielding optimal input demands,

defines as (e.g., Färe and Primont 1995):

C(y, w) � min
x

{w · x : (x, y) ∈ T }, (2)
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where a · b denotes the inner product of vectors a and b.
From an output perspective, the revenue function represents the maximum revenue

of selling output quantities given (fixed) amounts of output prices p ∈ R
N
+ . The revenue

function, yielding optimal output supplies, defines in the following terms (e.g., Färe
and Primont 1995):

R(x, p) � max
y

{p · y : (x, y) ∈ T }. (3)

The profitability function represents the maximum revenue to cost given the tech-
nology and input and output prices. FollowingZofío and Prieto (2006), the profitability
function, yielding optimal input and output quantities, defines as:

�(w, p) � max
x,y

{ p · y
w · x : (x, y) ∈ T , w · x > 0

}
. (4)

Finally, the most representative measure of economic efficiency corresponds to
the profit function, defined as maximum revenue minus cost, given the technology
and input and output prices. The reason is that profit maximization is the commonly
accepted operating goal for firms. The profit function, yielding optimal input demands
and output supplies, corresponds to (e.g., Färe and Primont 1995):

�(w, p) � max
x,y

{p · y − w · x : (x, y) ∈ T }. (5)

As for the profit function, Briec and Lemaire (1999) showed that the functional
support of the technology is the profit function, the dual variables being the shadow
prices—just like the cost and revenue functions are the functional supports of the input
and output production possibility sets, respectively.

Now, we present the most usual measures of technical efficiency and their dual
relationships with the above economic functions (cost, revenue, profitability, or profit),
as they were established in the literature. Throughout the paper, we consider that the
cost, revenue, profit and profitability functions have a finite value. The connection
between the technology and functional supports can be found, for example, in Briec
and Lemaire (1999) and, in a more general way, in Briec (1997a). This part of the text
is organized in subsections. The first two subsections are devoted to multiplicative
efficiency measures, while the last four correspond to additive inefficiency measures.
As convention, we reserve the term efficiency for multiplicative measures where a
value of one reflects an efficient behavior, while we reserve inefficiency for additive
measures where zero reflects an efficient behavior (the larger the score the greater the
inefficiency).

2.1 The Input and Output-Oriented Radial Measures

Here, we summarize the classical approach to calculate and decompose cost and rev-
enue efficiency based on Farrell’s tradition (Farrell 1957). At the time of publishing
his seminal paper, Farrell did not seem to be aware of the work by Shephard (1953),
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where he formalized the duality between the cost function and the input distance func-
tion, constituting the theoretical base for the decomposition of economic efficiency.
Instead, Farrell cites Debreu’s (1951) ‘coefficient of resource utilization’ as a source
of inspiration. Nevertheless, Shephard never introduced the concept of overall eco-
nomic efficiency, nor that of allocative efficiency, being one step short of proposing
the corresponding decomposition explicitly. It is worth mentioning that, regarding the
technical efficiency measure, the only difference between both approaches is that Far-
rell’s (radial) input-oriented measure is equivalent to the inverse of Shephard’s input
distance function. Although Farrell only considered a single-output technology, his
ideas were later extended in a suitable way in the literature for dealing with multiple
output frameworks and for two orientations (i.e., input-oriented and output-oriented),
giving rise to the radial technical efficiency measures (see Charnes et al. 1978; Banker
et al. 1984).

We now show the optimization model that allows calculating the input-oriented
radial measure for a specific firm, o, represented by the input–output vector (xo, yo):

T ERI (xo, yo) � min{θo : (θoxo, yo) ∈ T }. (6)

Let θ∗
o be an optimal solution ofmodel (Eq. 6). Then, the projection point associated

with the Input-oriented Radial Measure (RI) is defined as
(
x̂ R Io , yo

) � (θ∗
o xo, yo

)
.

Note that the projection point is unique. Also, T ERI (xo, yo)may be interpreted as the
efficiency score of firm o calculated with respect to the weakly efficient frontier since
slacksmay exist given the inequality restrictions in (Eq. 6). Consequently, thismeasure
does not satisfy the indication property associatedwith the notion of Pareto–Koopmans
efficiency. This means that this efficiency model does not necessarily project the units
onto the strongly efficient frontier.

Following Farrell (1957), cost efficiency is defined multiplicatively as the ratio
of minimum cost to observed cost: CERI (xo, yo, w) � C(yo,w)

w·xo ≤ 1. Subsequently,
enabling the decomposition of cost efficiency, the following well-known inequality
holds:

CERI (xo, yo, w) � C(yo, w)

w · xo︸ ︷︷ ︸
Cost

Efficiency (CERI )

≤ T ERI (xo, yo)︸ ︷︷ ︸
Technical

Efficiency (T ERI )

. (7)

Finally, the allocative efficiency (AE) component is derived from (Eq. 7) by render-
ing it an equality, i.e., AERI (xo, yo, w) � CERI (xo, yo, w)

/
T ERI (xo, yo). This is

the reason why this component is conceptualized as a ‘residual’. Allocative efficiency
corresponds to the adjustment of the projected input vector to the minimum cost input
combination; i.e., from

(
θ∗
o xo1, . . . , θ

∗
o xoM
)
to the optimal input demands x∗(yo, w),

where x∗(yo, w)�argmin{w · x : (x, yo) ∈ T }.
Example 1 We illustrate the standard decomposition through Fig. 1 and a set of four
firms (A, B, C and D) that consume two inputs to produce a common single output.
Additionally, we consider that the minimum cost is achieved at point C and analyze
the cost efficiency of unit A. Resorting to the standard equiproportional projection for
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Fig. 1 Illustration of the classical
decomposition of economic
efficiency (Farrell 1957)

solving technical efficiency (that is, the projection associated with a radial measure),
this firm should reduce input quantities matching those used by B. Note that unit B is
located onto the efficient frontier and, therefore, it is technically efficient. Afterward,
the unit corrects for allocative efficiency by changing its input bundle from B to C,
the production plan minimizing cost.

From an output orientation, the radial output measure of technical efficiency can
be determined by solving the following optimization program:

T ERO(xo, yo) � max
{
φo :
(
xo, φoyo

) ∈ T
}
. (8)

Letφ∗
o be an optimal solution ofmodel (Eq. 8). Then, the projection point associated

with the Output-oriented Radial Measure (RO) is defined as
(
xo, ŷ ROo

) � (xo, φ∗
o yo
)
.

Note that this efficient projection is unique for this type of model. Also, like its input-
oriented counterpart (Eq. 6), this measure does not satisfy the indication property.
This means that this efficiency model does not necessarily project the units onto
the strongly efficient frontier. Additionally, revenue efficiency is usually defined as
RERO(xo, yo, p) � R(xo,p)

p·yo ≥ 1, which is bounded by the technical efficiency score
as follows (Färe and Primont 1995).

RERO(xo, yo, p) � R(xo, p)

p · yo︸ ︷︷ ︸
Revenue

Efficiency (RERO )

≥ T ERO(xo, yo)︸ ︷︷ ︸
Technical

Efficiency (T ERO )

. (9)

Again, following Farrell’s tradition, the residual allocative efficiency (AE) compo-
nent is derived from (Eq. 9) as AERO (xo, yo, p) � RERO(xo, yo, p)

/
T ERO(xo, yo).
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2.2 The Hyperbolic GraphMeasure

This subsection is concerned with the measurement of profitability, defined as the
ratio of revenue to cost, and with the determination of profitability efficiency, com-
paring observed profitability to optimal profitability. From an economical perspective,
the relationship between the Hyperbolic Graph Measure (Färe et al. 1985) and the
profitability (or “return-to-dollar”) measure of economic performance was first sug-
gested by Färe et al. (2002). Subsequently, Zofío and Prieto (2006) formalized it for
the Generalized Distance Function (Chavas and Cox 1999), which encompasses the
Hyperbolic Graph Measure as a particular case, showing that profitability efficiency
can be decomposed multiplicatively into the usual technical and allocative terms.

The Hyperbolic Graph Measure for firm o is determined as the optimal value of
the following optimization program, which projects the point (xo, yo) onto the weakly
efficient frontier:

T EH (xo, yo) � min
{
δo ∈ R+ :

(
δoxo, yo

/
δo
) ∈ T
}
. (10)

Let δ∗
o be an optimal solution of model (Eq. 10). Then, the projection point defined

from the Hyperbolic (H) Graph Measure is
(
x̂ Ho , ŷHo

) � (δ∗
o xo, yo

/
δ∗
o

)
. Note that the

efficient projection is unique for this measure. Additionally, the Hyperbolic Graph
Measure does not meet indication. This means that this efficiency model does not
necessarily project the units onto the strongly efficient frontier.

Zofío and Prieto (2006) show that the reference technology exhibits local constant
returns to scale (CRS) at the profitabilitymaximizing benchmark (Eq. 4). Accordingly,
they established a relationship between profitability efficiency (�E) and the Hyper-
bolic measure calculated under CRS (i.e., assuming that T � σT , with σ ∈ R++),
denoted here as T ECRS

H (xo, yo) � δCRS∗
o :

�EH (xo, yo, w, p) � p · yo/w · xo
�(w, p)
︸ ︷︷ ︸

Prof i tabili t y E f f ciency (�EH )

≤
(
T ECRS

H (xo, yo)
)2 �
(
δCRS∗
o

)2

︸ ︷︷ ︸
T echncial E f f ciency (T ECRS

H )

.

(11)

As usual, Zofío and Prieto (2006) determined allocative efficiency as a residual

from the inequality in (11): AEH (xo, yo, w, p) � �EH (xo, yo, w, p)
/(

δCRS∗
o

)2
.

2.3 The Directional Distance Function

As ameasure of graph technical inefficiency, the Directional Distance Function (DDF)
introduced by Chambers et al. (1998) also allows for simultaneous output expansions
and input contractions through a single parameter.1 Additionally, theDDF is related to a

1 InConsumptionTheory, Luenberger (1992a) introduced the concept of benefit function as a representation
of the amount that an individual is willing to trade, in terms of a specific reference commodity bundle g,
for the opportunity to move from a consumption bundle to a utility threshold. In a natural way, the notion
of benefit function leads to the conceptualization of the input-oriented Directional Distance Function in
Production Theory. Also, Luenberger (1992b) defined the so-called shortage function, which basically
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measure of profit inefficiency, named Nerlovian by these authors after Nerlove (1965),
which is calculated as the normalized deviation between optimal and actual profit at
market prices, as we show next. In particular, the DDF allows researchers to select
the direction

(
g−
o , g+o
) ∈ RM+N

+ , with
(
g−
o , g+o
) �� 0M+N , in which the firm (xo, yo)

is projected onto the frontier. The Directional Distance Function does not satisfy the
indication property. This means that this efficiency model does not necessarily project
the units onto the strongly efficient frontier. The associated optimization model to be
solved is:

T IDDF

(
xo, yo; g

−
o , g+o
) � max

{
βo :
(
xo − βog

−
o , yo + βog

+
o

) ∈ T
}
. (12)

Let β∗
o be an optimal solution ofmodel (Eq. 12). Then, the corresponding projection

point is
(
x̂ DDF
o , ŷDDF

o

) � (xo − β∗
o g

−
o , yo + β∗

o g
+
o

)
. Note that, given a directional

vector
(
g−
o , g+o
)
, the projection point is unique for the DDF.

Regarding the dual relationship between the DDF and a measure of profit ineffi-
ciency �IDDF (xo, yo, w, p), Chambers et al. (1998) prove that:

�IDDF
(
xo, yo, w̃, p̃; g−

o , g+o
) � �(w, p) − (p · yo − w · xo)

w · g−
o + p · g+o︸ ︷︷ ︸

(Normalized) Profit Inefficiency (�IDDF )

≥ T IDDF

(
xo, yo; g

−
o , g+o
)

︸ ︷︷ ︸
T echnical I ne f f iciency (T IDDF )

. (13)

The numerator on the ratio above is easily recognized to be the difference between
maximum attainable profit and the firm’s actual profit. In this sense, it measures profit
loss due to inefficiencies. The lost profit is normalized by the factor w · g−

o + p · g+o ,
which is related to market prices and the corresponding directional vector. The nor-
malization resulting from duality theory has as desirable consequence that the profit
inefficiency measure is units’ invariant; i.e., it is independent of the units of measure-
ment in monetary values, since they cancel out in the numerator and denominator.
The normalization of profit inefficiency prompts us to explicitly denote it by including
(w̃, p̃), since one can consider that the normalization factor is associated with prices:
(w̃, p̃) � (w/

(
w · g−

o + p · g+o
)
, p/
(
w · g−

o + p · g+o
))
. Finally, allocative inefficiency

is retrieved from (13) as an additive residual term:AIDDF
(
xo, yo, w̃, p̃; g−

o , g+o
) �

�IDDF
(
xo, yo, w̃, p̃; g−

o , g+o
)− T IDDF

(
xo, yo, g−

o , g+o
)
.

2.4 The Hölder Distance Function

The Hölder distance function was first introduced to relate the notions of technical
efficiency and metric distances. Briec (1999) defined the Hölder distance function for
firm (xo, yo) as follows:

Footnote 1 continued
measures the distance in the direction of a vector g of a production plan to the boundary of the production
possibility set. In other words, the shortage function can be seen as the precursor of the Directional Distance
Function. The corresponding duality result was later completed by Chambers et al. (1998).
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T IHölder(xo, yo; h) � min
s−o ,s+o

{∥∥(s−
o , s+o
)∥∥

h :
(
xo − s−

o , yo + s+o
) ∈ ∂W (T )

}
, (14)

where s−
o � (s−

o1, . . . , s
−
oM

)
and s+o � (s+o1, . . . , s+oN

)
are vectors of input and output

slacks, respectively.
The Hölder norms �h (h ∈ [1,∞]) are defined over a k-dimensional real normed

space as

‖ . ‖h : z → ‖z‖h �

⎧
⎪⎪⎨

⎪⎪⎩

(
k∑

q�1

∣∣zq
∣∣h
)1/ h

, if h ∈ [1,∞[ ,

max
q�1,...,k

{∣∣zq
∣∣}, if h � ∞ ,

where z � (z1, . . . , zk) ∈ R
k . From a computational perspective, the different Hölder

distance functions associated with alternative norms are related to nonlinear optimiza-
tion programs, which, in general, are not easily solved (see, for example, Aparicio
et al. 2007, or, more recently, Aparicio et al. 2020). However, in two specific cases, it
is possible to calculate these measures of technical inefficiency through one or several
linear programming models. We are referring to the cases h � 1 and h � ∞, where
the topological balls associated with these norms define polyhedral sets. In partic-
ular, T IHölder(xo, yo; 1) can be related to the DDF and calculated as the minimum
of the values T IDDF

(
xo, yo;
(
0, . . . , 1(m′), ...0

)
, 0N
)
, m′ � 1, . . . , M, and the val-

ues T IDDF
(
xo, yo; 0M ,

(
0, . . . , 1(n′), ...0

))
, n′ � 1, . . . , N . In the case of h � ∞,

T IHölder(xo, yo;∞) �T IDDF (xo, yo; 1M , 1N ) (see Briec 1999).
Regarding the efficient projection generated from an optimal solution

(
s−∗
o , s+∗

o

)
of

(Eq. 14), it is defined as
(
x̂Höldero , ŷHöldero

) � (xo − s−∗
o , yo + s+∗

o

)
. In the case of the

Hölder Distance Function, in contrast to the previous measures, the projection point
could not be unique. Additionally, this measure does not meet the indication property.
This means that this efficiency model does not necessarily project the units onto the
strongly efficient frontier.

Regarding profit inefficiency measurement, Briec and Lesourd (1999) proved that
the following dual relationship holds:

�IHölder(xo, yo, w̃, p̃; h) � �(w, p) − (p · yo − w · xo)
‖(w, p)‖q︸ ︷︷ ︸

(Normalized) Profit Inefficiency (�IHölder)

≥ T IHölder(xo, yo; h)︸ ︷︷ ︸
Technical Inefficiency (T IHölder)

, (15)

where q is such as 1
h + 1

q � 1.
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By (Eq. 15), (normalized) profit inefficiency may be measured and decomposed
additively into technical inefficiency and allocative inefficiency by recovering alloca-
tive inefficiency as a residual: AIHölder(xo, yo, w̃, p̃; h) ��IHölder(xo, yo, w̃, p̃; h) −
T IHölder(xo, yo; h).

2.5 The Russell Measures

As previously mentioned, the measurement of technical efficiency using frontiers
began with the work by Debreu (1951), Shephard (1953), and Farrell (1957). Subse-
quently, some of the limitations of the Farrell approach such as its lack of flexibility
when adjusting inputs and outputs, resulting in the failure to satisfy the indication
property, prompted further progress in this area. One of these research lines con-
sisted in generalizing Farrell’s approach to consider non-equiproportional reductions
in inputs or increases in outputs; that is, resulting in the development of non-radial
efficiency measures. This generalization was originally due to Färe and Lovell (1978),
who proposed an axiomatic approach to the problem, suggesting that an ideal measure
of efficiency should satisfy certain desirable properties. According to these ideas, they
defined what they termed Russell Measure of input efficiency. Later, Färe et al. (1985)
proposed an extension of the input-oriented Russell Measure to the output-oriented
case, working with multiple outputs. Furthermore, Färe et al. (1985) defined a non-
oriented Russell measure of technical efficiency: the so-called Russell GraphMeasure.
This measure extended the two oriented versions in the sense that it simultaneously
considered inefficiency (radial and non-radial) in both inputs and outputs. However, its
empirical application was hampered by its nonlinearity. To overcome this drawback,
Pastor et al. (1999) developed a new measure, which they named Enhanced Russell
GraphMeasure, which has the advantage of being linear—this measure was later rein-
troduced by Tone (2001) as the Slacks-Based Measure. Next, we briefly present all
thesemeasures and their dual relationships with the cost, revenue, and profit functions,
as established in the literature.

2.5.1 The Russell Graph Measure

Inspired by the work of Russell and Schworm (2018), we define the Russell Graph
Measure of technical efficiency for the firm (xo, yo) in a general way as follows:

T ERGM (xo, yo) � min
{

1

M + N

(
M∑

m�1

θom +
N∑

n�1

1

φon

)

: (θo � xo, φo � yo) ∈ T , θo ≤ 1M , φo ≥ 1N

}

,

(16)

where a�b denotes the componentwise vector product, also calledHadamard product.
Following Färe et al. (1985), under Data Envelopment Analysis, the value of the

Russell Graph Measure of technical efficiency can be determined through the next
nonlinear optimization program:
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T ERGM (xo, yo) � min
θo,φo,λo

1
M+N

(
M∑

m�1
θom +

N∑

n�1

1
φon

)

s.t .
Xλo � θo � xo,
Yλo � φo � yo,
λo · 1J � 1,
θo ≤ 1M , φo ≥ 1N , λo ≥ 0J .

(17)

Recently, Halická and Trnovská (2018) have introduced a method to solve in an
exact way the Russell Graph Measure in Data Envelopment Analysis. In particular,
they reformulate the original nonlinear model (Eq. 17) as a semidefinite programming
(SDP) model, while describing how to derive the corresponding dual program. On
the one hand, the SDP reformulation of the Russell Graph Measure can be solved
efficiently using standard SDP solvers. On the other hand, the dual program allows
establishing, for the first time, the following relationship between profit inefficiency
and the Russell Graph Measure.

�IRGM (xo, yo, w̃, p̃) � �(w, p) − (p · yo − w · yo)
(M + N )min{w1xo1, . . . , wMxoM , p1yo1, . . . , pN yoN }
︸ ︷︷ ︸

(Normalized) Profit Inefficiency (�IRGM )

≥ 1 − T ERGM (xo, yo)︸ ︷︷ ︸
Technical Inefficiency (T IRGM )

. (18)

Halická and Trnovská (2018) closed the inequality in (Eq. 18) including
a term that was interpreted as allocative inefficiency: AIRGM (xo, yo, w̃, p̃) �
�IRGM (xo, yo, w̃, p̃) − [1 − T ERGM (xo, yo)].

Finally, given an optimal solution
(
θ∗
o , φ∗

o

)
of model (Eq. 16), then the correspond-

ing projection point is defined as
(
x̂ RGM
o , ŷ RGM

o

) � (θ∗
o � xo, φ∗

o � yo
)
. Note that

the Russell Graph Measure can yield different projection points for the same firm.
Also, a relevant feature is that this measure projects observations to the strongly effi-
cient frontier, satisfying the indication property. This means that this efficiency model
always projects the units onto the strongly efficient frontier.

2.5.2 The Input- and Output-Oriented Russell Measures

In this subsection, we turn our attention to the input-oriented version of the Russell
Measure of technical efficiency. The results associatedwith the output-oriented version
will be also shown by analogy.

The Russell Measure of input efficiency can be defined in a general way through
the following optimization program:

T ERMI (xo, yo) � min

{
1

M
(θo · 1M ) : (θo � xo, yo) ∈ T , θo ≤ 1M

}
, (19)
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Additionally, underDEA, theRussellMeasure of input efficiency can be determined
by the next linear program:

T ERMI (xo, yo) � min
θo,λo

1
M (θo · 1M )

s.t .
Xλo � θo � xo,
Yλo ≥ yo,
λo · 1J � 1,
θo ≤ 1M , λo ≥ 0J .

(20)

Given an optimal solution θ∗
o of model (Eq. 19), then the corresponding projection

defines as
(
x̂ RM I
o , yo

) � (θ∗
o � xo, yo

)
. The Russell Measure of input efficiency can

produce alternative projection points. Furthermore, it does not satisfy the indication
property in the full input–output space, but it does meet the indication property in the
reduced level set T (yo) � {x ∈ R

M
+ : (x, yo) ∈ T

}
. This means that this efficiency

model always projects the units onto the strongly efficient frontier of T (yo). Addition-
ally, Aparicio et al. (2015a) showed, under DEA, that a normalized measure of cost
inefficiency can be lower bounded by the score associated with the Russell measure
of input efficiency:

C IRMI (xo, yo, w̃) � w · xo − C(yo, w)

M min{w1xo1, . . . , wMxoM }︸ ︷︷ ︸
(Normalized) Cost Inefficiency (C IRMI )

≥ 1 − T ERMI (xo, yo)︸ ︷︷ ︸
Technical Inefficiency (T IRMI )

.

(21)

As usual, allocative inefficiency is defined residually as AIRMI (xo, yo, w̃) �
C IRMI (xo, yo, w̃) − [1 − T ERMI (xo, yo)].

Alternatively, relying on the Russell Measure of output efficiency, counterpart to
(Eq. 20) and denoted as T ERMO(xo, yo), we attain the following relationship:

RIRMO(xo, yo, p̃) � R(xo, p) − p · yo
N min{p1yo1, . . . , pN yoN }
︸ ︷︷ ︸

(Normalized) Revenue Inefficiency (RIRMO )

≥ 1 − T ERMO(xo, yo)︸ ︷︷ ︸
Technical Inefficiency (T IRMO )

,

(22)

and allocative inefficiency is then residually recovered as AIRMO(xo, yo, p̃) �
RIRMO(xo, yo, p̃) − [1 − T ERMO(xo, yo)]. Finally, the corresponding projection
point for the Russell measure of output efficiency would be defined as

(
xo, ŷ

RMO
o

) �(
xo, φ∗

o � yo
)
and may not be unique. Regarding T ERMO(xo, yo), this measure satis-

fies indication in the reduced level set T (xo) � {y ∈ R
N
+ : (xo, y) ∈ T

}
. This means

that this efficiency model always projects the units onto the strongly efficient frontier
of T (xo).
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2.5.3 The Enhanced Russell Graph Measure or Slacks-Based Measure

The Enhanced Russell Graph Measure (Pastor et al. 1999) is equivalent to the Slacks-
Based Measure proposed by Tone (2001) and can be defined, in a general way, as
follows (see Russell and Schworm 2018):

T EERG(xo, yo) � min

{
1
M (θo · 1M )

1
N (φo · 1N )

: (θo � xo, φo � yo) ∈ T , θo ≤ 1M , φo ≥ 1N

}

.

(23)

Under DEA, this measure can be computed through the following model, which
may be easily linearized (Pastor et al. 1999):

T EERG(xo, yo) � min
θo,φo,λo

1
M (θo·1M )
1
N (φo·1N )

s.t .
Xλo � θo � xo,
Yλo � φo � yo,
λo · 1J � 1,
θo ≤ 1M , φo ≥ 1N , λo ≥ 0J .

(24)

Given an optimal solution
(
θ∗
o , φ∗

o

)
of model (Eq. 23), the corresponding projec-

tion point may be defined as
(
x̂ E RG
o , ŷ E RG

o

) � (θ∗
o � xo, φ∗

o � yo
)
. For the firm under

evaluation, theEnhancedRussellGraphMeasuremay yield different projection points.
Additionally, thismeasure satisfies the property of indication. Thismeans that this effi-
ciency model always projects the units onto the strongly efficient frontier. Moreover,
Aparicio et al. (2017a), under DEA, proved that the following inequality holds:

�IE RG(xo, yo, w̃, p̃) � �(w, p) − (p · yo − w · xo)
min{Mw1xo1, . . . , MwMxoM , Np1yo1, . . . , NpN yoN }
︸ ︷︷ ︸

(Normalized) Profit Inefficiency (�IE RG )

≥ 1 − T EERG(xo, yo)︸ ︷︷ ︸
Technical Inefficiency (T IERG )

. (25)

Applying the definition of the allocative inefficiency term as a residual,
these authors derived this component from (Eq. 25) as AIERG(xo, yo, w̃, p̃) �
�IE RG(xo, yo, w̃, p̃) − [1 − T EERG(xo, yo)].

2.6 TheWeighted Additive Measures

After the introduction in the literature of the radial measures, other approaches for
measuring the distance from a unit to the production frontier were defined, with the
aim of solving certain drawbacks of the radial ones. In particular, radial measures do
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not satisfy the indication property, meaning that inefficiencies in the form of indi-
vidual (non-radial) slacks obtained in the optimization models (Eq. 6) and (Eq. 8) are
neglected. In this context, the additivemodel byCharnes et al. (1985)was thefirst graph
‘linear’ model that guaranteed that firms were compared exclusively with respect to
the set of Pareto–Koopmans efficient benchmarks in the input–output space—i.e., the
strongly efficient frontier ∂ S(T ). Building uponCharnes et al. (1985), other researchers
have introduced several modifications to the original additive model, weighting the
slacks that appear in the objective function to make the measure independent of the
units of measurement (see, for example, Lovell and Pastor 1995; Cooper et al. 1999).

In the case of the Weighted Additive Measures, following Russell and Schworm
(2018), the optimization model to be solved would be as follows:

T IW A(xo, yo) � max
{
ρ−s−

o + ρ+s+o :
(
xo − s−

o , yo + s+o
) ∈ T , s−

o ≥ 0M , s+o ≥ 0N
}
.

(26)

The vectors ρ− � (ρ−
1 , . . . , ρ−

M

) ∈ R
M
++ and ρ+ � (ρ+

1 , . . . , ρ+
N

) ∈ R
N
++ contain,

respectively, input and output weights representing the relative importance of unit
inputs and unit outputs from a technical perspective.

In the case of resorting to the DEA technique, to estimate technical inefficiency for
firm (xo, yo), a possibility is to solve the following linear program (see Lovell and
Pastor 1995):

T IW A
(
xo, yo; ρ−, ρ+

) � max
λo,s

−
o ,s+o

ρ−s−
o + ρ+s+o

s.t .
Xλo � xo − s−

o ,

Yλo � yo + s+o ,

λo · 1J � 1,
s−
o ≥ 0M , s+o ≥ 0N , λo ≥ 0J .

(27)

If
(
s−∗
o , s+∗

o

)
is an optimal solution of (Eq. 26), then the corresponding projection

point is defined as
(
x̂W A
o , ŷW A

o

) � (xo − s−∗
o , yo + s+∗

o

)
. In the case of the Weighted

Additive Measures, the projection point could be not unique. Also, this measure satis-
fies the property of indication. This means that this efficiency model always projects
the units onto the strongly efficient frontier.

Within the Data Envelopment Analysis context, Cooper et al. (2011) proved the
following dual relationship between a normalized measure of profit inefficiency and
the value of the Weighted Additive Measure:

�IW A
(
xo, yo, w̃, p̃; ρ−, ρ+) � �(w, p) − (p · yo − w · xo)

min

{
w1
ρ−
1

, . . . , wM
ρ−
M

,
p1
ρ+
1
, . . . ,

pN
ρ+
N

}

︸ ︷︷ ︸
(Normalized) Profit Inefficiency (�IW A)

≥ T IW A
(
xo, yo, ρ

−, ρ+)

︸ ︷︷ ︸
Technical Inefficiency (T IW A)

. (28)
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In this way, the allocative term is defined as AIW A
(
xo, yo, w̃, p̃; ρ−, ρ+

) �
�IW A
(
xo, yo, w̃, p̃; ρ−, ρ+

)− T IW A
(
xo, yo; ρ−, ρ+

)
.

3 An Essential Property of Allocative Efficiency for Decomposing
Economic Efficiency

In this section, we introduce the definition of a pair of properties related to the decom-
position of economic efficiency that ensure its consistency and coherence. Invoking
these properties, we show, in contrast to what has been commonly assumed until
now, that the allocative component derived as a residual term in the previously pub-
lished economic decompositions cannot be always correctly interpreted as actual price
inefficiency, depending on the technical efficiency measure selected for decomposing
overall efficiency.

The literature on efficiencymeasurement is plenty of contributions devoted to intro-
ducing and discussing the set of properties that a technical efficiency measure should
satisfy from a technological perspective (see, for example, Färe and Lovell 1978;
Pastor et al. 1999; Russell and Schworm 2018). Although it might seem otherwise,
complying with these properties is also critical to the analysis of economic efficiency.
To the extent that allocative efficiency is calculated as a residual, as we pointed out
in the foregoing section, the measurement of technical efficiency is key to the decom-
position of overall efficiency. In this regard, over the years a consensus has emerged
in the literature about the properties or tests that technical efficiency measures should
pass from an axiomatic perspective. Some of the most relevant properties that are
identified in the literature as natural requirements for an efficiency measure are: indi-
cation, monotonicity, homogeneity, translation invariance, and units’ invariance (or
commensurability). As they are well-known, we do not discuss them here, but refer to
them when necessary, as we have already done with the indication property.

Regarding the desirable properties that an economic efficiency measure should sat-
isfy, various researchers have explicitly or implicitly adopted some of them in the
existing literature. Here, we summarize several of such desirable properties in relation
to profit inefficiency, e.g., Kuosmanen et al. (2010) and Cooper et al. (2011), although
equivalent counterparts can be stated for the cost and revenue-based efficiency mea-
sures. These properties are: indication, homogeneity of degree zero in prices and
quantities, non-negativity and units’ invariance. Again, relevant to our analysis is the
desired property of units’ invariance, which is satisfied by the additive economic inef-
ficiency models as a result of the normalization process that duality theory requires for
the determination of the specific Fenchel–Mahler inequalities that allow their decom-
position. Multiplicative measures satisfy this property in a natural way thanks to their
definition as ratios, which cancel out monetary units.

Therefore, the extant literature has clearly established the properties that technical
and economic efficiency measures must satisfy. However, so far, no one has reflected
on the properties that the decomposition of the economic efficiency index into technical
and allocative components shouldmeet. As previously argued, the main reason for this
omission seems to be the residual nature of the allocative component. An exception is
Aparicio et al. (2015b),who introduced the property that allocative efficiency should be
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independent of the output (input) level that is considered as reference when measuring
technical inefficiency in the input (output) oriented approach. Färe et al. (2019, p. 189)
named this new attribute the invariance property of allocative efficiency measure.

Next, we introduce a novel property that is essential for the correct interpretation of
the efficiency terms of the decomposition, both technical and allocative. We start with
the input-oriented version, which is later extended to the output-oriented case and to
the graph (or non-oriented) scenario. Before introducing the definition of the essential
property for the decomposition of economic efficiency, we recall the multiplicative or
additive classification of the efficiency measures and their decompositions, depend-
ing on whether the measurement of the distance between the firm under evaluation,
represented by (xo, yo), and a reference benchmark on the efficient frontier,

(
x̂o, ŷo
)
,

entails projecting the former multiplicatively by a factor expanding outputs and/or
reducing inputs, or rather the addition of output quantities and/or subtraction of input
quantities. Next, we introduce the formal definition of the new property.

Definition 1 (Essential property, input-oriented version). If x̂o is such that w · x̂o �
C(yo, w), then AE(xo, yo, w) � 1 formultiplicative approaches and AI (xo, yo, w̃) �
0 for additive approaches.

Consequently, under the multiplicative approach, if the measure used to gauge
technical efficiency directly projects the assessed unit onto a benchmark thatminimizes
cost, there should be no room for allocative efficiency. This means that the term
AE(xo, yo, w)must be equal to one. In parallel, when the additive approach is adopted,
if the technical inefficiency measure determines a benchmark that minimizes cost,
then allocative inefficiency AI (xo, yo, w̃) should be nil. This definition is illustrated
in Fig. 2 under the multiplicative approach associated with the Input-oriented Radial
Measure. When evaluating the economic inefficiency of firm D, technical efficiency
is first determined by an equiproportional reduction in its inputs until the frontier
is reached at benchmark C. Secondly, allocative efficiency is represented by the gap
between the projected benchmark, i.e., unit C, and the firmminimizing cost. However,
in this example, firm C has been chosen, so it is the cost-efficient benchmark. So,

Fig. 2 Illustration of the essential
property for the input-oriented
radial measure
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clearly, the gap must be zero and, consequently, the allocative efficiency component
in the corresponding ‘multiplicative’ decomposition of cost efficiency must be one.

Once we have introduced the input-oriented version of the essential property, let
us next introduce the output-oriented version and their graph (or non-oriented) vari-
ants—in this last case for profitability efficiency and profit efficiency.

Definition 2 (Essential property, output-oriented version). If ŷo is such that p · ŷo �
R(xo, p), then AE(xo, yo, p) � 1 for multiplicative approaches and AI (xo, yo, p̃) �
0 for additive approaches.

Definition 3 (Essential property, graph versions). (a) If
(
x̂o, ŷo
)
is such that p · ŷo/w ·

x̂o � �(w, p), then AE(xo, yo, w, p) � 1, and (b) if
(
x̂o, ŷo
)
is such that p · ŷo −w ·

x̂o � �(w, p), then AI (xo, yo, w̃, p̃) � 0.

In words, in the graph case, if researchers choose a multiplicative approach such
as the Hyperbolic Graph Measure, then, if the measure projects the assessed firm
onto a benchmark that maximizes profitability, there should be no room for alloca-
tive efficiency. This means that the term AE(x, y, w, p) should be necessarily one.
Additionally, when the additive approach is applied, if the technical efficiency mea-
sure determines a benchmark firm that maximizes profit, then allocative inefficiency
AI (x, y, w̃, p̃) should be nil.

Next, we are going to prove that the essential property is satisfied by the Input- and
Output-oriented Radial Measures concerning the cost and revenue functions, respec-
tively, as well as by the Hyperbolic Graph Measure and the Directional Distance
Function regarding the profitability function and the profit function, respectively.

Proposition 1 The following statements hold.

(i) The Input-oriented Radial Measure satisfies Definition 1.
(ii) The Output-oriented Radial Measure satisfies Definition 2.
(iii) The Hyperbolic Graph Measure satisfies Definition 3(a).
(iv) The Directional Distance Function satisfies Definition 3(b).

Proof (i) The proof of the satisfaction of this property can be seen through the expres-
sion: AERI (xo, yo, w) � CERI (xo, yo, w)

/
T ERI (xo, yo) � C(yo,w)

T ERI (xo,yo)·(w·xo) �
C(yo,w)

w·(θ∗
o xo)

� C(yo,w)

w·x̂ R Io
. Then, if x̂ R Io is such that w · x̂ R Io � C(yo, w), we

immediately obtain that AERI (xo, yo, w) � 1. (ii) This statement can be
proved following the same steps as in (i). (iii) Manipulating the expression

AEH (xo, yo, w, p) � �EH (xo, yo, w, p)
/(

δCRS∗
o

)2
, we equivalently obtain

AEH (xo, yo, w, p) �
p·
(

1
δCRS∗
o

yo

)
/w·(δCRS∗

o xo
)

�(w,p) � p·ŷHo /w·x̂ Ho
�(w,p) . Consequently, if

(
x̂ Ho , ŷHo

)
is such that p · ŷHo /w · x̂ Ho � �(w, p), then AEH (xo, yo, w, p) �

1, which represents what we wanted to prove. (iv) Extending equation (6) in
Aparicio et al. (2015b, p. 886), dealing with cost inefficiency, to profit inef-
ficiency, we have that AIDDF (xo, yo, w̃, p̃)—which is by definition equal to
�IDDF (xo, yo, w̃, p̃)−T IDDF

(
xo, yo, g−

o , g+o
)
, can be equivalently expressed as
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�(w,p)−(p·(yo+β∗
o g

+
o )−w·(xo−β∗

o g
−
o ))

w·g−
o +p·g+o � �(w,p)−(p·ŷDDF

o −w·x̂ DDF
o
)

w·g−
o +p·g+o . By Definition 3(b),

if
(
x̂ DDF
o , ŷDDF

o

)
is such that p · ŷDDF

o − w · x̂ DDF
o � �(w, p), then

AIDDF (xo, yo, w̃, p̃) � 0, thereby finishing the proof. �

In particular, Proposition 1(i) means that the popular Input-oriented RadialMeasure
satisfies the essential property associated with the decomposition of cost efficiency,
which allows a correct interpretation of the two terms in the decomposition: technical
efficiency and allocative efficiency. Consequently, although Farrell (1957) and subse-
quent researchers on economic efficiency neglected the satisfaction of the so-called
essential property, his definition and decomposition of cost efficiency do satisfy this
necessary condition, implying the internal consistency of the decomposition. This
shows that the residual allocative efficiency term rightly indicates that there cannot
be any cost excess attributed to this source of inefficiency if the projected cost at the
technically efficient benchmark coincides with minimum cost. Probably, Farrell did
not focus his attention on this issue because the satisfaction of the property is rel-
atively trivial in the case of radial projections measuring technical efficiency, given
the multiplicative definition of allocative efficiency as the ratio of minimum cost to
projected cost. However, this is not true for most of the measures introduced in the
previous section, as we show next. Regarding the Output-oriented Radial Measure (ii),
the Hyperbolic Graph Measure (iii), and the Directional Distance Function (iv), the
property also holds.

3.1 The Essential Property in the Case of Multiple Optimal Projections

So far, we have been assuming that the projection point that is generated by themeasure
of technical efficiency or inefficiency is unique. However, this is not true for some of
the traditional measures shown in Sect. 2, mainly those based upon slacks. In this
regard, the essential property needs to be qualified to allow for this general case,
which considers the existence of alternative solutions. In this way, let B̂o be the set
of all benchmark projections yielded by the (in)efficiency model for the assessed firm
(xo, yo). Then, Definitions 1, 2 and 3 may be adapted as follows.

Definition 4 (Essential property, input-oriented version, multiple projection points).
If ∃x̂o ∈ B̂o such that w · x̂o � C(yo, w), then AE(xo, yo, w) � 1 for multiplicative
approaches and AI (xo, yo, w̃) � 0 for additive approaches.

Definition 5 (Essential property, output-oriented version, multiple projection points).
If ∃ŷo ∈ B̂o such that p · ŷo � R(xo, p), then AE(xo, yo, p) � 1 for multiplicative
approaches and AI (xo, yo, p̃) � 0 for additive approaches.

Definition 6 (Essential property, graph versions, multiple projection points). (a) If
∃(x̂o, ŷo

) ∈ B̂o such that p · ŷo/w · x̂o � �(w, p), then AE(xo, yo, w, p) � 1, and

(b) if ∃(x̂o, ŷo
) ∈ B̂o such that p · ŷo −w · x̂o � �(w, p), then AI (xo, yo, w̃, p̃) � 0.

The above definitions state that if there is at least a projection point where opti-
mality is achieved from an economical perspective, then the allocative inefficiency
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term should take value one in the multiplicative approach, and zero in the additive
approach.

Regarding these new adaptations of the essential property, the Hölder Distance
Function satisfies Definition 6(b), as we next prove.

Proposition 2 The Hölder Distance Function satisfies Definition 6(b).

Proof We must prove that if ∃(x̂Höldero , ŷHöldero

)
such that p · ŷHöldero − w ·

x̂Höldero � �(w, p), then AIHölder(xo, yo, w̃, p̃; h) � 0, which is equiva-
lent to prove that if ∃(x̂Höldero , ŷHöldero

)
such that p · ŷHöldero − w · x̂Höldero �

�(w, p), then �IHölder(xo, yo, w̃, p̃; h) � T IHölder(xo, yo; h). First of all, note that
�IHölder(xo, yo, w̃, p̃; h) coincides with the distance from firm (xo, yo) to the hyper-
plane H � {(x, y) ∈ R

M+N : p · y − w · x � �(w, p)
}
when the norm ‖ . ‖h is

used (see Mangasarian 1999). Notice that, by hypothesis,
(
x̂Höldero , ŷHöldero

) ∈ H .
Additionally,

∥∥ (xo, yo) − (x̂Höldero , ŷHöldero

) ∥∥
h � T IHölder(xo, yo; h). Next, we are

going to prove that
(
x̂Höldero , ŷHöldero

) ∈argmin
{‖ (xo, yo) − (x, y) ‖h : (x, y) ∈ H

}

and, consequently,
∥∥ (xo, yo) − (x̂Höldero , ŷHöldero

) ∥∥
h � �IHölder(xo, yo, w̃, p̃; h) and

�IHölder(xo, yo, w̃, p̃; h) � T IHölder(xo, yo; h), as we seek. Let us assume that(
x̂Höldero , ŷHöldero

)
/∈ argmin

{‖ (xo, yo) − (x, y) ‖h : (x, y) ∈ H
}
and we will arrive

to a contradiction. Let P∗ be the set of points (x∗, y∗) ∈ H such that (x∗, y∗) ∈
argmin

{‖ (xo, yo) − (x, y) ‖h : (x, y) ∈ H
}
. Then, it is possible to prove that

(x∗, y∗) ∈ D(xo, yo), with D(xo, yo) � {(u, v) ∈ R
M+N : (u,−v) ≤ (xo,−yo)

}
.

To see that, we invoke Theorem 2.1 in Mangasarian (1999), which states that the
points (x∗, y∗) have the following format: x∗ � x0 − (p·yo−w·xo)−�(w,p)

‖(w,p)‖q z∗ and y∗ �
y0 − (p·yo−w·xo)−�(w,p)

‖(w,p)‖q t∗, where (z∗, t∗) ∈ argmax
{
p · t − w · z : ‖(z, t)‖h � 1

}
.

Notice that z∗ ≤ 0M and t∗ ≥ 0N . Let us suppose that ∃m′ � 1, . . . , M

such that z∗m′ > 0. Then, the vector
(
z∗1, . . . , z∗m′−1,−z∗m′ , z∗m′+1, . . . , z

∗
M , t∗
)
sat-

isfies
∥∥∥
(
z∗1, . . . , z∗m′−1,−z∗m′ , z∗m′+1, . . . , z

∗
M , t∗
)∥∥∥

h
� 1 and p · t∗ −

M∑

m ��m′
wmz∗m +

wm′ z∗m′ > p · t∗ −
M∑

m ��m′
wmz∗m , which is a contradiction with the fact that

(z∗, t∗) ∈ argmax
{
p · t − w · z : ‖(z, t)‖h � 1

}
. Analogously, we can prove the

same regarding the sign of t∗. Consequently, (p·yo−w·xo)−�(w,p)
‖(w,p)‖q z∗ ≥ 0M and

(p·yo−w·xo)−�(w,p)
‖(w,p)‖q t∗ ≤ 0N since p · yo − w · xo ≤ �(w, p) by the definition of the

profit function. This implies that (x∗,−y∗) ≤ (xo,−yo), i.e., (x∗, y∗) ∈ D(xo, yo).
Now, if, as we assumed,

(
x̂Höldero , ŷHöldero

)
/∈ P∗, then ∃(x ′, y′) ∈ P∗ such that

δ :� ∥∥ (xo, yo) − (x ′, y′) ∥∥
h <
∥∥ (xo, yo) − (x̂Höldero , ŷHöldero

) ∥∥
h . As Briec (1999,

Lemma 1) proved, the intersection between the ball centered at (xo, yo) with radius∥∥ (xo, yo) − (x̂Höldero , ŷHöldero

) ∥∥
h � inf

u,v

{‖(xo, yo) − (u, v)‖h : (u, v) ∈ ∂W (T )
}
and

the set D(xo, yo) is a subset of T . Then, the intersection between the ball centered
at (xo, yo) with radius δ and the set D(xo, yo) is a subset of the previous intersection
of sets. Therefore,

(
x ′, y′) ∈ T . Finally, we have two scenarios to be studied. (i) If
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(
x ′, y′) ∈ ∂W (T ), then we achieve a contradiction with the fact that

(
x̂Höldero , ŷHöldero

)

is the closest point in ∂W (T ) to (xo, yo). (ii) If
(
x ′, y′) ∈ T \∂W (T ), we achieve a

contradiction with the fact that the hyperplane H is a supporting hyperplane of T . �

Therefore, although the Hölder distance function can yield more than one projec-
tion point, something that could a priori lead to an indetermination of the value of
price inefficiency due to having the possibility of taking different valid values (each
one associated with the gap between the projection point and the maximizing profit
benchmark), Proposition 2 guarantees that the decomposition in (15), where the alloca-
tive term is derived as a residual, is well-defined, always producing a unique value for
technical inefficiency and allocative inefficiency.

Unfortunately, as we show next through a simple numerical example, the remaining
measures shown in Sect. 2 that may yield multiple projections do not satisfy the
essential property. In other words, the Russell Graph Measure for profit, the input-
and output-oriented versions of the Russell Measure with respect to cost and revenue,
respectively, and the Enhanced Russell Graph Measure and the Weighted Additive
Measure both for profit, do not yield a suitable decomposition of overall efficiency or
inefficiency due to the residual nature of their corresponding allocative terms.

Example 2 Let us assume that we have observed two firms that consume two inputs
for producing one output (x1, x2, y): A � (1, 2, 1) and B � (1, 1, 2). Additionally, we
consider w1 � 1, w2 � 2 and p � 2 as market prices. In this situation, under Data
Envelopment Analysis, the strongly efficient frontier is exclusively formed by firm B,
which additionally represents the pointwheremaximumprofit is achieved. Then,when
one evaluates firm A resorting to the Russell Graph Measure, the Enhanced Russell
Graph Measure or the Weighted Additive Measure, the only projection point is firm
B, which Pareto-dominates firm A. Next, we analyze what happens with each of the
above three graph measures with respect to the determination of economic efficiency
and its decomposition for firm A.

(i) The Russell Graph Measure: �IRGM (xA1, xA2, yA, w̃, p̃) � 4
3 > 1 −

T ERGM (xA1, xA2, yA) � 1− 2
3 � 1

3 . Therefore, AIRGM (xA1, xA2, yA, w̃, p̃) �
1 > 0.

(ii) The Enhanced Russell Graph Measure: �IE RG(xA1, xA2, yA, w̃, p̃) � 2 > 1−
T EERG(x1A, x2A, yA) � 1− 3

8 � 5
8 . Therefore, AIERG(xA1, xA2, yA, w̃, p̃) �

11
8 > 0.

(iii) The Weighted Additive Measure for input and output weights equal
to one,

(
ρ−, ρ+
) � (1M , 1N ): �IW A(xA1, xA2, yA, w̃, p̃) � 4 >

T IW A(xA1, xA2, yA) � 2. Therefore, AIW A(xA1, xA2, yA, w̃, p̃) � 2 > 0.

Notice that all the allocative inefficiency components are strictly greater than zero,
when the only projection point, firm B, is the benchmark maximizing profit. If these
three approaches were associated with a consistent decomposition of economic inef-
ficiency, the allocative inefficiency term should be zero, indicating that there is no gap
associated with price inefficiency. This result implies that the essential property does
not hold with respect to these three measures. Similar examples can be established for
the input and output-oriented versions of the Russell measure.
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We remark that, despite being overlooked until now, the essential property turns out
to be very sensible from the perspective of the conceptual (and geometrical) interpre-
tation of allocative efficiency. The main reason why this property has been neglected
is that the first efficiency measures used for decomposing economic efficiency, that is,
the input and output Shephard distance functions (Farrell 1957), meet this property
in a natural way; although it was never explicitly proven. The subsequent develop-
ments in the literature with the objective of introducing and decomposing economic
efficiency, as the Directional Distance Function, tacitly assumed the satisfaction of
the essential property. Fortunately, as we showed above, the DDF satisfies the desired
property. Lamentably, moremodern approaches formeasuring and decomposing over-
all efficiency do not satisfy the essential property, except the measures based upon the
Hölder metrics. Consequently, some evaluated firms might exhibit an overestimation
of the actual value of price (allocative) inefficiency when these approaches are used
for decomposing overall inefficiency.

4 The Extended Essential Property of Allocative Efficiency

Another interesting property that, in our opinion, the components of the decomposition
of economic efficiency should fulfill represents a refined extension of the essential
property presented in the previous section. Before introducing its formal definition,
we illustrate this notion through the simple example used in Fig. 1 above. In that
example, firm A is interior to the technology and, consequently, it is not possible to
directly determine its corresponding price efficiency under the traditional approach.
In contrast, this value may be directly determined for firms located on the efficient
frontier. So, for unit A, technical efficiency is resolved in the first stage, by projecting
A onto the frontier (unit B), and, next, allocative efficiency is determined through
the gap between unit B and unit C, where cost is minimized. In this regard, it seems
reasonable to demand that the allocative efficiency value assigned to firm A, through
firm B, coincides with the allocative efficiency value directly determined for firm B.
That is, independently measuring the allocative efficiency of the firm under evaluation
and that of its projection, both values should be equal. Otherwise, the projection
would be assigned two or even more allocative efficiency values; that corresponding
to itself plus those associated with all firms that identify it as technological benchmark.
This property is related to the internal consistency of the decomposition of economic
efficiency in its usual drivers.

Definition 7 (The extended essential property). (a) AE(xo, yo, w, p) �
AE
(
x̂o, ŷo, w, p

)
, ∀(xo, yo) ∈ T , for the multiplicative approach, and (b)

AI (xo, yo, w̃, p̃) � AI
(
x̂o, ŷo, w̃, p̃

)
, ∀(xo, yo) ∈ T , for the additive approach.

The above property means that for any evaluated firm (xo, yo), its allocative effi-
ciency or inefficiency, depending on the nature of the approach (multiplicative or
additive), always coincides with the allocative efficiency of its corresponding bench-
mark at the production frontier

(
x̂o, ŷo
)
. Notice that Definition 7 was established for

graph measures. However, by analogy, it is easy to define oriented versions of it. This
definition is especially important because, as we will prove later, only some measures

123



122 Journal of Optimization Theory and Applications (2023) 197:98–129

(the radial measures, the hyperbolic measure, the directional distance function when
the directional vector is common across firms, and the Hölder Distance Function under
the norm �∞) satisfy it, which can be seen as an advantage in comparison with the
other alternatives (the Russell Measures—graph and oriented, the Enhanced Russell
Graph Measure and the Weighted Additive Measure).

A relevant relationship between the original definition of the property and its exten-
sion can be established. Specifically, if a decomposition of those presented in Sect. 2
satisfies the extended version of the essential property, then it also meets the essential
property, as we prove in Proposition 3.

Proposition 3 For the approaches considered in Sect. 2, if Definition 7 holds, then the
essential property is satisfied.

Proof Seeking brevity, let us only prove the statement for the first measure pre-
sented in Sect. 2. In this regard, let us consider the Input-oriented Radial Measure
of technical efficiency. In that case, if

(
xg, yg
) ∈ T , that is, a generic input–out-

put bundle belonging to the technology is such that w · xg � C
(
yg, w
)
, then,

by (7), CERI
(
xg, yg, w

) � 1. Additionally, T ERI

(
xg, yg
) � θ∗

g ≤ 1. There-
fore, by (7) again, T ERI

(
xg, yg
) � 1 and, consequently, AERI

(
xg, yg, w

) �
CERI
(
xg, yg, w

)/
T ERI

(
xg, yg
) � 1. Let us then suppose that Definition 7(a)

holds. In that case, AE(xo, yo, w) � AE
(
x̂ R Io , yo, w

)
, ∀(xo, yo) ∈ T . Finally, if(

x̂ R Io , yo
) ∈ T is such that w · x̂ R Io � C(yo, w) (see Definition 1), then, by the reason-

ing shown above for the generic point
(
xg, yg
) ∈ T , AERI

(
x̂ R Io , yo, w

) � 1. Hence,
by the hypothesis of the satisfaction of Definition 7, AE(xo, yo, w) � 1 as well and
Definition 1 holds. �

Because of this previous proposition, we have that if a measure on the list shown in
Sect. 2 does not satisfy the essential property, then this measure results in a decompo-
sition that cannot meet the extended variant of the property since, otherwise, it would
satisfy the essential property, what would be a contradiction. This means that the Rus-
sell GraphMeasure, the input and output-oriented versions of the RussellMeasure, the
Enhanced Russell Measure and, finally, the Weighted Additive Measure do not satisfy
the extension of the proposed property (Definition 7). As for the radial measures, the
Directional Distance Function and theHölderDistance Function, we next analyze each
case separately. Before doing that, it is worth mentioning that, a priori, the technical
efficiency measures that can yield alternative projection benchmarks onto the efficient
frontier could present a special difficulty for satisficing the extended essential property
since, again, a problem of indetermination of the value of price efficiency arises. In
that case, each projection point could be associated with a different value for the term
AI
(
x̂o, ŷo, w, p

)
.

Next, we are going to prove that the extended essential property is satisfied by
the Input- and Output-oriented Radial Measures as well as by the Hyperbolic Graph
Measure.

Proposition 4 The Input- and Output-oriented Radial Measures as well as the Hyper-
bolic Graph Measure satisfy Definition 7.
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Proof From the proof of Proposition 1(i), we have that AERI (xo, yo, w) � C(yo,w)

w·x̂ R Io
.

Additionally, AERI
(
x̂ R Io , yo, w

) � C(yo,w)

w·x̂ R Io
since
(
x̂o, ŷo
)
is projected onto itself.

Therefore, AERI (xo, yo, w) � AERI
(
x̂o, ŷo, w

)
. Following the same steps, one can

prove the property for the output-oriented measure and the Hyperbolic Graph Mea-
sure. �

As for the Directional Distance Function, this measure does not always meet the
extended essential property. We next show a simple counterexample resorting to the
directional vector that is frequently chosen in empirical applications:

(
g−
o , g+o
) �

(xo, yo).

Example 3 Resorting to Example 2, let us add a new (inefficient) unit, firm C, with
input–output vector (1.5, 2, 1). Assessing its technical inefficiency, we obtain that its
corresponding Directional Distance Function projection, with

(
g−
o , g+o
) � (1.5, 2, 1),

is
(
x̂ DDF
C , ŷDDF

C

) � (1, 4
3 ,

4
3

)
. If we compute the allocative inefficiency associated

with the decomposition of profit inefficiency for firm C � (1.5, 2, 1) and its projec-
tion,
(
x̂ DDF
C , ŷDDF

C

) � (1, 4
3 ,

4
3

)
, we obtain AIDDF (xC, yC, w̃, p̃; xC, yC) � 0.2667

and AIDDF
(
x̂ DDF
C , ŷDDF

C , w̃, p̃; x̂ DDF
C , ŷDDF

C

) � 0.3158, respectively. This high-
lights that the allocative inefficiency of an interior point, once evaluated at the
projected benchmark through T IDDF

(
xo, yo; g−

o , g+o
)
, could not coincide with the

allocative inefficiency of that reference under the DDF. The reason is that the
underlying normalization factors in (13), w · g−

o + p · g+o , including the choice
of directional vector

(
g−
o , g+o
) � (xo, yo) for the DDF technical inefficiency mea-

sure, T IDDF (xo, yo; xo, yo), are different for firm C � (1.5, 2, 1) and its projection(
x̂ DDF
C , ŷDDF

C

) � (1, 4
3 ,

4
3

)
.

Fortunately, although the DDF does not satisfy the extended version of the essential
property in general, we can state a condition that ensures its fulfillment.

Proposition 5 If
(
g−
o , g+o
) � (g−, g+

)
for all (xo, yo) ∈ T , then the Directional

Distance Function satisfies Definition 7.

Proof Extending equation (6) in Aparicio et al. (2015b, p. 886), deal-
ing with cost inefficiency, to profit inefficiency, and considering the con-
dition

(
g−
o , g+o
) � (g−, g+

)
for all point belonging to T , we have that

AIDDF
(
xo, yo, w̃, p̃; g−, g+

) ��(w,p)−(p·ŷDDF
o −w·x̂ DDF

o
)

w·g−+p·g+ . Regarding the evaluation

of
(
x̂ DDF
o , ŷDDF

o

) ∈ T , we have that the projection point corresponding to(
x̂ DDF
o , ŷDDF

o

)
is
(
x̂ DDF
o , ŷDDF

o

)
in the direction of

(
g−, g+
)
. Consequently, we

have AIDDF
(
x̂ DDF
o , ŷDDF

o , w̃, p̃; g−, g+
) � �(w,p)−(p·ŷDDF

o −w·x̂ DDF
o
)

w·g−+p·g+ . The above
statements are true for any (xo, yo) ∈ T and its corresponding projection point(
x̂ DDF
o , ŷDDF

o

)
, which also satisfies that

(
x̂ DDF
o , ŷDDF

o

) ∈ T . Thus, we have
that AIDDF

(
xo, yo, w̃, p̃; g−

o , g+o
) � AIDDF

(
x̂ DDF
o , ŷDDF

o , w̃, p̃; g−, g+
)
for all

(xo, yo) ∈ T . �

In the literature, two previously used directional vectors with constant values are(
g−
o , g+o
) � (1M , 1N ) and

(
g−
o , g+o
) � (x, y), where x denotes the arithmetic mean of
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the input variables and y denotes the arithmetic mean of the output variables. For a
discussion on the available choices for directional vectors see, for example, Färe et al
(2008). Juo et al. (2015) study the change of profit efficiency in the Taiwanese banking
industry adopting

(
g−
o , g+o
) � (x, y).

Finally, regarding the Hölder Distance Function, we next show through a simple
counterexample that this measure fails the satisfaction of the extended version of the
essential property.

Example 4 Let us consider the following data set for one input and one output: A� (4,
4), B � (5, 3), C � (3, 3), and D � (5, 5). Let us assume that (w, p) � (1, 4). Under
Data Envelopment Analysis, if we evaluate firmB using the Euclidean distance, we get
that its allocative inefficiency equals 0.526, being A the unique technical projection
point. Additionally, if we assess firm A, we get an allocative inefficiency term equal
to 0.728, which does not coincide with 0.526.

5 Discussion and Conclusions

Under the traditional approach, economic efficiency is decomposed into technical
efficiency and allocative efficiency. In this paper, the main conclusion is that unless a
certain property, which we name essential, is fulfilled, the allocative component of all
existing decompositions cannot be correctly interpreted as actual price inefficiency.
The essential property states that allocative inefficiency should not exist when the
corresponding technical efficiency measure directly projects the evaluated unit onto a
point that is efficient from an economical perspective. Additionally, and searching for
the internal consistency of the approaches, we have also introduced a refined exten-
sion of the essential property: the allocative (in)efficiency for any assessed unit must
coincide with the allocative (in)efficiency measured at the corresponding projection
benchmark.

Table 1 summarizes the performance of the alternative technical (in)efficiency
measures considered with respect to the satisfaction of these two properties. All mul-
tiplicative economic efficiency decompositions, including those based on the Input-
and Output-oriented Radial Distance functions and the Hyperbolic Graph Measure,
satisfy the essential and extended properties of allocative efficiency. This is not the
case for the additive decompositions of economic inefficiency. In this case, only the
Directional Distance Function and the Hölder Distance Function satisfy the essential
property, but they fail to meet the extended version in general. In the case of the Direc-
tional Distance Function, it is met if the directional vector g � (g−

o , g+o
)
is common

to all firms. For the Hölder Distance Function, fulfilling the extended version requires
to resort to the Chebyshev norm, i.e., h � ∞, because this model is equivalent to
the Directional Distance Function model with g � (g−

o , g+o
) � (1M , 1N ) (see Briec

1999). On the contrary, there is no remedy for the additive decompositions of economic
inefficiency based on the Russell Measures and the Weighted Additive Measures. All
these measures fail to satisfy the essential properties, and no exceptions exist.

The Russell and other slack-based inefficiency measures were introduced in the lit-
erature to account for the notion of Pareto–Koopmans efficiency. Our results show that
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their use in the decomposition of economic efficiency could be questionable because
they fail to satisfy the essential properties. However, we also stress in Table 1 that none
of the decompositions complying with the essential properties, either multiplicative or
the additive directional andHölder distance functions, satisfies the indication property,
which means that these efficiency models do not necessarily project the units onto the
strongly efficient frontier. We have then detected a trade-off between indication and
essentiality.

We believe that our results are key for current research related to the definition
and measurement of economic efficiency. In general, the numerical values of profit
inefficiency and its two elements can only be compared if the normalization factor is
common to all firms, and this is captured by the fulfillment of the essential proper-
ties. Let us take, for example, the case of the Directional Distance Function and the
most popular choice of directional vector corresponding to the individually observed
quantities: g � (g−

o , g+o
) � (xo, yo) (see Briec 1997b). In this case, as we pass this

choice to the measurement of economic efficiency, neither the value of profit ineffi-
ciency nor that of allocative inefficiency are comparable across observations because
the normalization factor differs across observations. This unsatisfactory situation is
signaled by the unfulfillment of the extended version of the essential property. In
general, any research proposal that evolves the Directional Distance Function model
resulting in different normalizations would run into the problems here unveiled. For
example, when measuring and decomposing profit inefficiency change through (addi-
tive) Luenberger indicators as in Juo et al (2015). Briec and Kersterns (2009a) discuss
this problem in relation to the determinateness property, while Briec and Kersterns
(2009b, propositions 3.6 and 3.7) show that infeasibilities can be remedied by choosing
a directional vector proportional to the observed output vector. Consequently, impos-
ing minimal restrictions on the direction to guarantee feasibility is incompatible with
the satisfaction of the extended version of the essential property when measuring and
decomposing profit inefficiency.

Our results are even more critical for contributions that endogenize the directional
vector when measuring profit inefficiency (see, for example, Zofío et al. 2013). From
this perspective, these models satisfy both essential properties, although it requires
the relaxation of the non-negativity constraints on the directional vector, as inputs
may need to be increased and outputs decreased with respect to their observed values
(i.e., the directional vector is free-valued). Petersen (2018) revisits this question and
shows that the directional vector pointing in the direction that minimizes the Euclidean
distance between the observed input–output vector and the efficient frontier can be
considered ‘optimal’. Petersen (2020) further explores the virtual profit efficiency
model under endogenous directions which fails to be units’ invariant (i.e., does not
satisfy the commensurability property). In both articles, the (dual) directional vec-
tor in the volume or quantity space is different for each observation, and therefore,
profit inefficiency measurement does not satisfy the extended version of the essential
property.

Finally, a promising avenue of research would be the determination of additive
decompositions of economic inefficiency that, basedonpopular definitions of technical
inefficiency like the Slacks-Based Measure or the Weighted Additive Measures (see
Pastor et al. 2012), satisfy the essential properties.
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