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Abstract
We study dynamic games with strategic complements where each player is modeled
by a scalar flow dynamical system with a controlled input and an uncontrolled output.
The model originates in inventory control problems with shared set-up costs and a
large number of players. An activation cost is shared among active players, namely
players who control their dynamics at a given time. As a main contribution, we prove
that two-threshold strategies, like the (s, S) strategies used in inventory control, are
mean-field equilibrium strategies in dynamic games with a large number of players.
Furthermore, we provide conditions for the convergence of the nonstationary mean-
field equilibrium to the stationary one in the limit.

Keywords Game theory · Multi-agent systems · Network systems · Mean-field games

1 Introduction

Games with strategic complements are characterized by the property that a player has
an increasing incentive to take a given action as more neighbors take that same action
[15, Chapter 9]. Examples of such games, though sometimes not explicitly mentioned,
arise in learning in social networks [11], collective behavior in social networks [12],
systemic risk [6], and cascading failures in financial networks [8, 18]. Coordination
games represent a subset of games with strategic complements whereby the payoff
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of a player scales with the percentage of players taking an action. This paper studies
a dynamic game with strategic complements where the players have to coordinate
actions within a finite horizon window [2, 3, 19]. The dynamics of each player is
a fluid flow dynamical system subject to a controlled input flow and a stochastic
uncontrolled output flow. Activating an input flow requires an activation cost. The
discrepancy between input and output flow accumulates in a state variable. Coupling
derives from the activation cost to be shared among all players who activate an input
flow at a given time, called active players. Sharing the activation cost determines an
incentive for the players to be active with an increasing number of active players. All
results can be extended to the vector case by using the robust decomposition approach
in [4, Section 3].

We extend the analysis in [19] to a mean-field scenario [1, 9, 10, 13, 14, 16, 17]
characterized by amicroscopic andmacroscopic dynamics. Themicroscopic dynamics
is the fluid flow system determining the state of each player. The optimal control
is obtained from solving a backward Bellman equation in the value function. The
macroscopic dynamics is in the form of a Markov chain dynamics where the nodes
represent all possible values for the players’ states, and the links are weighted by the
transition probabilities between states. The Markov chain dynamics determines the
evolution of the distribution of players’ states among the different values. The resulting
game involves both themicroscopic andmacroscopic dynamics in a unified framework
and takes the form of a discrete-state discrete-time mean-field game. Such a game
consists of two coupled difference equations, a backwardBellman equation in the value
function, and a forward Markov dynamics in the distribution of the players’ states.
The mean-field equilibrium is obtained as solution of these two coupled equations.
The stationary solution is obtained in the asymptotic limit when the horizon length
goes to infinity.

Contribution This study contributes in different ways to advance the theory on
dynamic coordination games with activation costs and extend for the first time the
use of two-threshold strategies to mean-field games. An example of two-threshold
strategy is the (s, S) strategy used in inventory control, see [7] and [5, Chapter 4].
In [5], the author derives the thresholds of the (s, S) policy for an individual player
considering a fixed cost. In this work, we present the explicit expression for these
thresholds considering a large number of players and an activation cost that depends
on the fraction of active players at each time t . We recall that (s, S) strategies are
strategies where replenishments occur anytime the inventory level goes below a lower
threshold s. Replenishments bring back the inventory level up to a higher threshold S.
In particular, we highlight the following results:

• Strategies at a Nash equilibrium have a threshold structure. Lower and upper
thresholds have an explicit expression in the deterministic case, namely when the
demand is known, or in single-stage games.

• Two-threshold (s, S) strategies are mean-field equilibrium strategies for the sta-
tionary solution in dynamic games with a large number of players. Stationary
solutions imply that the fixed cost is constant over the horizon. The game decom-
poses into a set of uncoupled optimization problems. In each problem, a single
player has to find the optimal strategy under a fixed cost. We then use the well-
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known optimality of (s, S) strategies under fixed cost to show that such strategies
are best responses for the game. Furthermore, we provide conditions for the con-
vergence of the nonstationary mean-field equilibrium to the stationary one in the
limit.

• We corroborate our results with a numerical analysis of a stylized inventorymodel.

This paper is organized as follows. In Sect. 2, we introduce the model. In Sect. 3, we
obtain the optimal thresholds. In Sect. 4, we study convergence to stationary solutions.
In Sect. 5, we provide numerical analysis. Finally, in Sect. 6, we draw conclusions and
discuss future works.

2 Mean-Field Inventory Game

We consider a large number of indistinguishable players and a finite number of states
(inventory levels). Let us assume that at stage t = 0, 1, ..., N the inventory level for
an individual player is xt ∈ Z, the player faces a stochastic demand ωt ∈ Z+ and
orders a quantity ut ∈ Ut ⊆ Z+, whereUt denotes the set of admissible actions, Z is
the set of integers, and Z+ is the set of nonnegative integers. Hence, the microscopic
dynamics of the player evolves according to a linear finite-state, discrete-time model:

xt+1 = xt + ut − ωt , for all t = 0, 1, . . . , N . (1)

According to [5] in (s, S) strategies, replenishments occur anytime the inventory
level goes below a lower threshold s and when a replenishment takes place it brings
back the inventory level up to the upper threshold S [7]. In accordance with this
strategy, let us define the control ut as follows:

ut := μ(xt ) :=
{
S − xt , if xt < s,

0, if xt ≥ s,
for all t = 0, 1, . . . , N . (2)

After substituting the (s, S) strategy as defined in (2) in the dynamics (1), we obtain

xt+1 =
{
S − ωt , if xt < s,
xt − ωt , if xt ≥ s,

for all t = 0, 1, . . . , N . (3)

To define the random parameter ωt that corresponds to the uncertain demand at
time t , let us consider a probability distribution φt : Z+ → [0, 1] such that ω �→ φt

ω;
here, φt

ω is the probability of having a demand of ω items at time t for all ω ∈ Z+.
To derive amacroscopic dynamics for the system, let us denote byπ t the distribution

of players over the states at time t . Hence, π t is a vector that stores in each of its entries
the fraction of players in each possible state. In particular, the j th entry π t

j represents
the fraction of players whose state is xt = j at time t and derives from the following
distribution function:

π t
j : Z → [0, 1], j �→ π t

j ∈ [0, 1].
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Fig. 1 Markov chain representing the macroscopic dynamics (4) obtained from the microscopic dynamics
(1)

Occasionally, we will view π t as an infinite-dimensional vector in Z. Also, let π0 be
the initial distribution of players over the states.

At every time step t , the players in state l decide the amount to reorder ut . The order
quantity, as well as the demand distribution ωt , determines the transition probability
Pt
l j from state l to state j . Given the transition probabilities Pt

l j at time 0 ≤ t < N ,
the distribution of players at time t + 1 is given by the following macroscopic model
which takes the form of a Markov chain:

π t+1
j =

∑
l∈Z

π t
l P

t
l j , for all j ∈ Z, for all t = 0, 1, . . . , N . (4)

The transition probabilities Pt
l j used in the above equation are linked to the probabil-

ity mass functions used tomodel the stochastic demand. To see this, let φt
0, φt

1, φt
2, . . .

be the probability mass functions at time t associated with ωt = 0, 1, 2 . . ., respec-
tively. The relation between Pt

l j and φt
0, φt

1, φt
2, . . . is as follows:

[ . . . Pt
l,S−2 P

t
l,S−1 P

t
l,S] = [ . . . φt

2 φt
1 φt

0], l < s. (5)

The above equation defines the transition probabilities from any state below the
threshold, where the players reorder up to level S. For any state equal to or greater
than the threshold s, the transition probabilities are instead given by:

[ . . . Pt
l,l−2 P

t
l,l−1 P

t
l,l ] = [ . . . φt

2 φt
1 φt

0], l ≥ s. (6)

Figure 1 depicts the Markov chain that represents the macroscopic dynamics (4).
In the mean-field context, the fraction of active players, which are the players whose
inventory level is below or equal to the lower threshold st , is then given by:

at =
∑
l,l<st

π t
l , for all t = 0, 1, . . . , N . (7)
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Likewise, we can define a value function for any time t which represents the
expected optimal cost for a player in the generic state j at time t :

vt : Z → R+, j �→ vtj ∈ R+.

Let the transition probability matrix at time t be denoted by Pt = [Pt
l j ]l, j∈Z.

Associated with each probability Pt
l j , there is a transition cost for going from state l to

state j , which depends also on the distribution of players π t ; let us denote such cost
as ctl j (π

t , Pt ).
The average cost for the players in state l, when their dynamics follow the transition

probability matrix Pt , for a given distribution π t and the future cost defined by the
value function vt+1

j , for all j ∈ Z, are given by:

etl (π
t , Pt , vt+1) =

∑
j∈Z

[
cl j (π

t , Pt )Pt
l j + vt+1

j Pt
l j

]
, for all t = 0, 1, . . . , N .

We are in the position to provide the following definition of Nash equilibrium in
the mean-field limit, in discrete-time, and in discrete-state space.

Definition 2.1 (Definition 1 in [9]) Let S
Z denote the simplex in Z. Fix a probability

vector π ∈ S
Z and a cost vector v ∈ R

Z. A stochastic matrix P ∈ [0, 1]Z×Z is a Nash
minimizer of e(π, ·, v) if for each l ∈ Z and any q ∈ [0, 1]Z,

el(π, P, v) ≤ el(π,P(P, q, l), v),

where P(P, q, l) is obtained from matrix P by replacing the lth row by q ∈ S
Z.

We say that the following pair of time-varying distribution and value function

{(π t , vt ); 0 ≤ t ≤ N }

is a mean-field equilibrium if it is the solution of the following system of equations
for all t = 0, 1, . . . , N :

{
vtl = ∑

j

[
cl j (π t , Pt )Pt

l j + vt+1
j Pt

l j

]
, ∀ j ∈ Z,

π t+1
j = ∑

l π
t
l P

t
l j , ∀ j ∈ Z,

(8)

where Pt is a Nash minimizer of e(π t , ·, vt+1).
In the above set of equations, we set the transition cost ctl j = cl j (π t , Pt ) at time t

as follows:

{
K t + r(S − l) + pmax(0,− j) + hmax(0, j), if l < s
pmax(0,− j) + hmax(0, j), otherwise,

(9)
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where K t := K (at ) ≥ 0 is the transportation cost charged to each player that is active
at time t , r ≥ 0 is the fixed purchase cost per stock unit, h ≥ 0 the fixed penalty on
holding and p > h ≥ 0 the fixed penalty on shortage.

The above transition cost can be rewritten in compact form as:

ctl j =
(
K t + r(S − l)

)
δ(l < s) + pmax(0,− j) + hmax(0, j),

where

δ(l < s) =
{
1, if l < s,
0, otherwise.

(10)

Note that the transportation cost K t = K (at ) paid by each player is amonotonically
decreasing function on the fraction of active players at time t . As the fraction of active
players at increases, the transportation cost K t decreases. If a player makes an order,
it incentivizes other players to reorder; this implies that the cost of one player also
depends on the actions of the other players. Let us assume a large number of players
M and a total transportation cost K̃ . As an example, if the total cost is equally divided
among the active players, the individual transportation cost charged to each player is

given by K (at ) = K̃
Mat if the player is active, and it is zero otherwise.

3 Optimal Thresholds

In this section, we provide explicit expressions to obtain the lower threshold s and
the upper threshold S, as a function of the probability distribution function φt which
determines the stochastic demand at each time t .

Let us denote by yt = xt + ut , the instantaneous inventory position, i.e., the
inventory level just after the order has been issued, and let us define the following
stage cost function:

Gt (yt ) = r yt + pE{max(0,−(yt − ωt ))} + hE{max(0, yt − ωt )}. (11)

Then, we have for the value function:

vtx = −r xt + minyt≥xt [K t + Gt (yt ),Gt (xt )], (12)

where the term −r xt + K t +Gt (yt ) indicates the stage cost in case of reordering, and
−r xt + Gt (xt ) indicates the stage cost in case of no reordering. Hence, note that the
cost of reordering is given by:

K t − r xt+ Gt (yt ) = K t + rut + pE{max(0, −(yt − ωt ))} + hE{max(0, yt − ωt )}
= K t + r(yt − xt ) + pE{max(0, −(yt − ωt ))} + hE{max(0, yt − ωt )}.
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To obtain St , for an instantaneous inventory position γ , first let us define the
expected holding E{max(0, γ − ωt )} and expected shortage E{max(0,−(γ − ωt ))}
as follows:

E{max(0, γ − ωt )} = Ψ t
h [γ ] :=

γ∑
ω=0

(γ − ω)φt
ω,

E{max(0,−(γ − ωt ))} = Ψ t
s [γ ] :=

∞∑
ω=γ+1

(ω − γ )φt
ω,

where φt
ω is the probability of having a demand of ω items at time t .

Hence, the stage cost function Gt (γ ) is given by:

Gt (γ ) = r(γ − xt ) + h
γ∑

ω=0

(γ − ω)φt
ω

︸ ︷︷ ︸
:=Ψ t

h [γ ]

+p
∞∑

ω=γ+1

(ω − γ )φt
ω

︸ ︷︷ ︸
:=Ψ t

s [γ ]

.

By applying the discrete difference operator Δ, to function Gt (γ ) we then have:

ΔGt (γ ) := Gt (γ + 1) − Gt (γ )

= r(γ + 1 − xt ) + h
∑γ+1

ω=0(γ + 1 − ω)φt
ω + p

∑∞
ω=γ+2(ω − γ − 1)φt

ω

−r(γ − xt ) − h
∑γ

ω=0(γ − ω)φt
ω − p

∑∞
ω=γ+1(ω − γ )φt

ω

= r + h
∑γ

ω=0 φt
ω − p

∑∞
ω=γ+1 φt

ω

= r + hΦ t
ω[γ ] − p(1 − Φ t

ω[γ ]),

where Φ t
ω[γ ] is the cumulative distribution function defined as:

Φ t
ω[γ ] :=

γ∑
ω=0

φt
ω.

The order-up-to level St is the optimal γ , which is obtained from solving:

minγ {γ | ΔGt (γ ) ≥ 0} = minγ {γ | r + hΦ t
ω[γ ] − p(1 − Φ t

ω[γ ]) ≥ 0}.

From the above, we then obtain (Fig. 2):

St = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −r + p

h + p

}
. (13)

To obtain st , let us consider the cost of not reordering, which is given by:

−r xt + Gt (xt ) = pE{max(0,−(xt − ωt ))} + hE{max(0, xt − ωt )}
= h

∑xt
ω=0(x

t − ω)φt
ω + p

∑∞
ω=xt+1(ω − xt )φt

ω

= hΨ t
h [γ ] + pΨ t

s [γ ].
(14)
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γ

Φt
ω [γ] ≥ −r+p

h+p

ω

φt
ω

Fig. 2 Value of γ such that the cumulative distribution function Φt
ω[γ ] ≥ −r+p

h+p

From the above, we then obtain:

st := argmin
xt

{xt | − r xt + Gt (xt ) ≤ K t − r St + Gt (St )}.

In particular, we have (Fig. 3):

st := argminxt
{
xt | hΨ t

h [xt ] + pΨ t
s [xt ] ≤ K t + r(St − xt ) + hΨ t

h [St ] + pΨ t
s [St ]

}
.

(15)

Observe that the right-hand side of the inequality in (15) corresponds to the cost of
reordering once we obtain the optimal upper threshold St .

In order to obtain the lower threshold st , we have to find the minimum inventory
level xt that satisfies (15). As the penalty on shortage is greater than the penalty
on holding (p > h), if the inventory level decreases, then the left-hand side of the
inequality in (15) increases. If the transportation cost K t decreases, the right-hand
side of the inequality decreases and the minimum inventory level xt that satisfies (15)
increases. Therefore, the lower the transportation cost the higher the threshold st .

Equations (13) and (15) represent explicit expressions to obtain the two thresholds
and fully characterize the reordering strategy once the probability distribution of the
stochastic demand is given.

Once the thresholds are obtained, we implement the control ut , which is given by
(2), and we obtain the resulting dynamics (3).

In the following, we study the time evolution of the first-order moment of the
inventories. The expected inventory at time t when xt is distributed according to π t

is given by:

Ext =
∑
l

π t
l l.
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xt

Ψt
h[x

t] Ψt
s [xt]

ω

φt
ω

S

Ψt
h[S] Ψt

s [S]

hΨt
h[x

t] + pΨt
s [x

t]

≤ Kt + r(St − xt)

+hΨt
h[S

t] + pΨt
s [S

t]

Fig. 3 Value of xt that satisfies equation (15)

Then, from (3) the expected inventory at time t+1 when xt+1 is distributed accord-
ing to π t+1 and the demand ω takes values in the support Ω ⊆ Z+, follows the
recursion:

Ext+1 =
∑
l

π t+1
l l =

∑
ω∈Ω

[(St − ω)(
∑
l,l<st

π t
l ) +

∑
l,l≥st

(l − ω)π t
l ]φω

=
∑
ω∈Ω

[(St − ω)at +
∑
l,l≥st

(l − ω)π t
l ]φω. (16)

From
∑

l,l≥st π
t
l = 1 − at , we have:

Ext+1 =
∑
ω∈Ω

[Stat − ω +
∑
l,l≥st

lπ t
l ]φω =

∑
ω∈Ω

[Stat − ω +
∑
l

lπ t
l −

∑
l,l<st

lπ t
l ]φω

=
∑
ω∈Ω

[Stat − ω + Ext −
∑
l,l<st

lπ t
l ]φω =

∑
ω∈Ω

[St (
∑
l,l<st

π t
l ) − ω + Ext −

∑
l,l<st

lπ t
l ]φω

=
∑
ω∈Ω

[−ωφω] +
∑
l,l<st

(St − l)π t
l + Ext . (17)
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In the numerical example, we make use of (17) to obtain the first moment of the
distribution of the inventory at time t + 1.

4 Stationarity

In this section, we are interested in stationary solutions, namely solutions where both
the distribution function and the value function do not depend on time.

Remark 4.1 If the distribution function and the value function do not depend on time,
we have a stationary fraction of active players, namely

ã =
∑
l,l<s

πl .

In addition, the activation cost is a function of the fraction of active players. Therefore,
the cost K (ã) is fixed over the horizon and it depends on the stationary solution. Now,
we can apply the results obtained in Sect. 3 for a fixed activation cost K , to obtain the
optimal lower threshold s and the optimal upper threshold S.

Let us denote by (π, v) the generic stationary solution. The pair (π, v) is a mean-
field equilibrium at steady state if it satisfies the following set of equations:

{
vl = ∑

j cl j (π, P)Pl j + v j Pl j − λ̄,

π j = ∑
l πl Pl j ,

(18)

where λ̄ is the optimal average cost per stage. In [9], the authors prove that the optimal
average cost can be seen as an average transition cost over the population of players.
If P̄ is the optimal transition matrix and (π̄, v̄) is a stationary solution of (18), then
λ̄ = ∑

l j π j cl j (π̄, P̄)P̄l j .
Assuming a bounded support for the demand ω and therefore also for the inventory

level x , which we denote by [1, η], let us define matrix Ã = [ãi j ]i, j∈[1,η], where:

ãi j =
{−P0i − ∑

k,k 
=i Pik, if j = i,
−P0 j + Pi j , if j 
= i .

(19)

Let us define the new variable ξ tlk = [vtl − vtk], which can be seen as a potential
difference between two generic states or nodes of the Markov chain l and k, and the
vector ξ tl := [ξ tl j ] j∈Z = [vtl − vtj ] j∈Z. In particular, ξ t0 := [ξ t0 j ] j∈Z = [vt0 − vtj ] j∈Z.
In addition, denote Pt

l = [Pt
l j ] j∈Z and cl = [cl j ] j∈Z for all l ∈ Z.

Before discussing the main contribution of this section, that is the convergence of
nonstationary mean-field equilibrium to the stationary one in the limit, we present an
intermediate result to verify the structure of Ã introduced in (19).
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Lemma 4.1 Let a bounded support for the demand ω and for the inventory level x be
given and denote it by [1, η]. The discrete-time dynamics of the potential difference
ξ t0 = [vt0 − vtj ] j∈[1,η] is given by:

ξ̇ t0 = Ãξ t0 + b̃, (20)

where Ã = [ãti j ]i, j∈[1,η], each entry ãti j is of the form (19) and b̃ = [cT0 Pt
0 −

cTj P
t
j ] j∈[1,η].

Proof The proof is in the Appendix. ��
In the following theorem, we present the conditions for the nonstationary mean-

field equilibrium, which is a solution of (8), to converge to the stationary solution of
problem (18). Note that the stochastic matrix Pt presented in equation (8) is a Nash
minimizer of the average cost e(π t , ·, vt ).

Let π [N ](−N ) be the initial distribution of players at the beginning of the horizon
at time −N and v[N ](N )l the terminal cost at the end of the horizon at time N .

Theorem 4.1 Given N > 0, a vector π0 ∈ Z and a terminal penalty vN
l ∈ R+, let

(π [N ], v[N ]) be the solution of (8) with initial-terminal conditions π [N ](−N ) = π0

and v[N ](N )l = vN
l . Let (π̄, v̄) be a solution of the stationary problem (18). When

N → ∞

π [N ]0 → π̄ , v[N ]0 → v̄, (21)

if det( Ã) > 0.

Proof The proof is in the Appendix. ��

5 Numerical Analysis

We consider an example where the demand ωt ∈ Ω := {0, 1, 2, 3} and it is uniformly
distributed, namely by using the notation φω to indicate the probability that ωt = ω,
we have φi = 1

4 for all i ∈ Ω .
Assume that the proportional purchase cost is r = 1, the shortage cost is p = 10,

and the holding cost is h = 2. In the case of single-stage optimization, we have that
the order-up-to level is given by:

S = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −c + p

h + p

}
.

From the above, we obtain S = 2. Indeed for γ = 3, we have:

Φ t
ω[3] = 1 ≥ −r + p

h + p
= 3

4
.
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For γ = 2, we obtain:

Φ t
ω[2] = 3

4
= −r + p

h + p
= 3

4
,

Differently, for γ = 1 it holds

Φ t
ω[1] = 1

2
�

−r + p

h + p
= 3

4
,

and therefore

S = argmin
γ

{
γ | Φ t

ω[γ ] ≥ −r + p

h + p

}
= 2.

As for the reorder level s, we have:

s := argminx
{
x | hΨ t

h [x] + pΨ t
s [x] ≤ K t + r(S − x) + hΨ t

h [S] + pΨ t
s [S]

}
.

(22)

We show next that we have s = 1.
Actually, for xt = 1 we obtain:

hΨ t
h [1] + pΨ t

s [1] = h 1
4 + p 3

4 = 8 ≤ K t + r + hΨ t
h [2] + pΨ t

s [2]
= K t + 1 + h 3

4 + p 1
4 = K t + 5,

(23)

which is satisfied by any K t ≥ 3.
For xt = 0, we have:

hΨ t
h [0] + pΨ t

s [0] = p 6
4 = 15 ≤ K t + 2r + hΨ t

h [2] + pΨ t
s [2]

= K t + 2 + h 3
4 + p 1

4 = K t + 6,
(24)

which is satisfied by any K t ≥ 9.
For any K t < 9, we then have:

s := argminx
{
x | hΨ t

h [x] + pΨ t
s [x] ≤ K t + r(S − x) + hΨ t

h [S] + pΨ t
s [S]

}
= 1.

We can conclude then that for any K t , such that 1 ≤ K t < 9, we have the reorder
level s = 1 and the order-up-to level S = 2.

Then, from (3) the microscopic dynamics is defined in the bounded support
{−2,−1, 0, 1, 2}, namely xt ∈ {−2,−1, 0, 1, 2} for all t ≥ 0 and is given by:

xt+1 =
{
2 − ωt , if xt = −2,−1, 0,
xt − ωt , if xt = 1, 2.

(25)
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Fig. 4 Markov chain
representing the macroscopic
dynamics obtained from the
microscopic dynamics (25)
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The macroscopic dynamics corresponding to the microscopic dynamics (25) is the
Markov chain displayed in Fig. 4.

As for the value function difference we have a 4 × 4 system where l ∈
{−2,−1, 0, 1, 2}, which is given by:

⎡
⎢⎢⎣

ξ̇−2−1

ξ̇−20

ξ̇−21

ξ̇−22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ξ−2−1
ξ−20
ξ−21
ξ−22

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1
4 (

∑2
j=1 c−2 j − ∑2

j=1 c−1 j )
1
4 (

∑2
j=1 c−2 j − ∑2

j=1 c0 j )
1
4 (

∑2
j=1 c−2 j − ∑2

j=1 c1 j )
1
4 (

∑2
j=1 c−2 j − ∑2

j=1 c2 j )

⎤
⎥⎥⎥⎦ .

(26)

From (26), we note that the det( Ã) = 1 > 0. From (17), we also have that the
dynamics of the expected inventory (first moment) is given by:

Ext+1 = −2π t+1
−2 − π t+1

−1 + π t+1
1 + 2π t+1

2

= ∑
ω∈Ω [(2 − ω)(π t−2 + π t−1 + π t

0) + (1 − ω)π t
1 + (2 − ω)π t

2]φω

= ∑
ω∈Ω [2(π t−2 + π t−1 + π t

0) + π t
1 + 2π t

2 − ω(π t−2 + π t−1 + π t
0 + π t

1 + π t
2)]φω

= ∑
ω∈Ω [−2π t−2 − π t−1 + π t

1 + 2π t
2 + 4π t−2 + 3π t−1 + 2π t

0 − ω]φω

= ∑
ω∈Ω(−ωφω) + ∑

l,l<1(2 − l)π t
l + Ext .

(27)

The rest of this section involves numerical analysis for a system of 100 indis-
tinguishable players. All simulations are carried out with MATLAB on an Intel(R)
Core(TM)2 Duo, CPU P8400 at 2.27 GHz, and a 3GB of RAM. The horizon win-
dow consists of T = 200 iterations. For each player, we simulate (25) for three cases
characterized by a different initial distribution.
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Fig. 5 Time plot of the distribution π t for the three cases over states −2 (blue), −1 (red), 0 (yellow), 1
(purple), and 2 (green)

The initial state is obtained from a random uniform distribution in {1, 2} for
case 1, in {−2, 0} for case 2, and in {−2, 2} for case 3 using the commands
x0=randi([1,2],n,1), x0=randi([-2,0],n,1), and
x0=randi([-2,2],n,1), respectively. The demand is obtained in accordance
with φi and is generated using the command w=randi([0,3],n,T).

The step size is dt = 0.1, the proportional purchase cost is r = 1, the shortage cost
is p = 10, and the holding cost is h = 2.

Figure 5 displays the time plot of the distribution π t for all t ∈ [0, T ] for the three
cases. The distribution at steady state is greater in state −1, 0, and 1 (red, yellow, and
purple lines, respectively). Note that, in accordance with Theorem 4.1, the three cases
with different initial distribution have the same distribution at steady state. During the
simulation, we assume any 50 iterations the states are reset to their initial value, to
investigate the time response during the transients.

Figure 6 displays the time plot of the microscopic dynamics for a single player. In
other words, the plot shows the inventory level (the state) of a player. Observe that,
according to (25), the inventory level of the individual player takes its values in the
bounded support {−2,−1, 0, 1, 2}, where the lower threshold is s = 1 and the upper
threshold is S = 2. The player’s inventory is formost of the time in state 0 and 1, which
is in accordance with the greater values of the distribution in those states obtained from
the macroscopic dynamics in the previous figure. Therefore, we can observe a clear
connection between the macroscopic dynamics (Fig. 5) and the microscopic dynamics
for a single player (Fig. 6).

In the next example,we analyze the same systemwith 100 indistinguishable players.
The purchase, shortage, and holding costs are as in the previous example, and we
consider a transportation cost K = 1200, which will be divided among the active
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Fig. 6 Time plot of the microscopic dynamics of a single player

Fig. 7 Markov chain
representing the macroscopic
dynamics for a demand set
Ω := {0, 1, ..., 10}
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players at each time t . The horizon window consists again of T = 200 iterations.
However, in this case we increase the demand set such that wt ∈ Ω := {0, 1, ..., 10}
and is uniformly distributed. The macroscopic dynamics is represented by theMarkov
chain displayed in Fig. 7.

In Fig. 8, it is represented the time plot of the macroscopic dynamics for one player.
In accordance with (13) and (15), it is possible to see that the players reorder when
their inventory level is lower than or equal to the threshold s, which also depends on
the number of active players, and they reorder up to the upper threshold S = 8.

Figure 9 illustrates the time plot of the distributionπ t for three different initial states.
The simulations were developed for three cases in which the initial states are obtained
from a random uniform distribution in {0, 1, ..., 8} for case 1, in {−10,−9, ...,−1, 0}
for case 2, and in {−10,−9, ...,−1, 0, 1, ..., 8} for case 3. The states i displayed are
i = −8 (blue), i = −1 (yellow), i = 1 (purple), and i = 8 (red). Note that, in
accordance with Theorem 4.1, the four cases with different initial distribution have
the same distribution at steady state. One can also see that the distribution at steady
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Fig. 8 Time plot of the microscopic dynamics of a single player and demand wt ∈ Ω := {0, 1, ..., 10}
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Fig. 9 Time plot of the distribution π t for the three cases overstates −8 (blue), −1 (yellow), 1 (purple),
and 8 (red)

state is greater in state -1 and 1, which is consistent with Fig. 8. In Fig. 8 indeed,
the inventory is for most of the time in states closer to state 0. In the same way as in
the previous example, we can observe a clear connection between the macroscopic
dynamics (Fig. 9) and the microscopic dynamics for a single player (Fig. 8). During
this simulation, we assume any 50 iterations the states are reset to their initial value.
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6 Conclusions

We have developed an abstraction in the form of a dynamic coordination game model
where each player’s dynamics is a scalar fluid flow dynamical system characterized
by a controlled input flow and an uncontrolled output flow. The players have to pay
a share of the activation cost to control their dynamics at a given time. We have
provided three main contributions. First, we have showed that if the retailers are
rational players, then they benefit from using threshold strategies where the threshold
is on the fraction of active players. Then, we have obtained explicit expressions for
the lower and upper thresholds under specific circumstances. Third, we have extended
our study to a scenario with a large number of players and we have proved that two-
threshold strategies, such as the (s, S) strategies used in inventory control, are optimal
strategies for the stationary solution. In this context, we have also provided conditions
for the nonstationary mean-field equilibrium to converge to the stationary one in the
limit.

A main key direction for future works is to explore the feasibility of the proposed
coordination scheme in multi-vector energy systems (heat, gas, power) with special
focus on coalitional bidding in decentralized energy trade. The ultimate goal is to
investigate the benefits of aggregating independent wind power producers.
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7 Appendix

In this section, we provide the proof of the main results, Lemma 4.1 and Theorem 4.1,
presented in Sect. 4.

Proof of Lemma 4.1. Let us rewrite (8) explicitly for l ∈ [0, η] as:

vt0 = (c00(·) + vt+1
0 )Pt

00 + (c01(·) + vt+1
1 )Pt

01 + . . . + (c0η(·) + vt+1
η )Pt

0η,

...

vtη = (cη0(·) + vt+1
0 )Pt

η0 + (cη1(·) + vt+1
1 )Pt

η1 . . . + (cηη(·) + vt+1
η )Pt

ηη.

(28)
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By subtracting the same quantity from the LHS and RHS, we obtain the following set
of difference equations, when l ∈ [0, η]:

v̇t0 = vt0 − vt+1
0

= (c00(·) + vt+1
0 )Pt

00 + (c01(·) + vt+1
1 )Pt

01 . . . + (c0η(·) + vt+1
η )Pt

0η − vt+1
0

= c00(·)Pt
00 + c01(·)Pt

01 + . . . + c0η(·)Pt
0η + (vt+1

0 − vt+1
0 )Pt

00

+(vt+1
1 − vt+1

0 )Pt
01 + . . . + (vt+1

η − vt+1
0 )Pt

0η,

...

v̇tη = vtη − vt+1
η

= (cη0(·) + vt+1
0 )Pt

η0 + (cη1(·) + vt+1
1 )Pt

η1 + . . . + (cηη(·) + vt+1
η )Pt

ηη − vt+1
η

= cη0(·)Pt
η0 + cη1(·)Pt

η1 + . . . + cηη(·)Pt
ηη + (vt+1

0 − vt+1
η )Pt

η0

+(vt+1
1 − vt+1

η )Pt
η1 + . . . + (vt+1

η − vt+1
η )Pt

ηη.

In compact form, for l = 0, 1, . . . , η, we have:

v̇tl = ∑
j∈[0,η][cl j (π t , Pt )Pt

l j ] + [vt0 − vtl vt1 − vtl . . . vtη − vtl ]
[
Pt
l0 Pt

l1 . . . Pt
lη

]T
.

(29)

From ξ t0k = v̇t0 − v̇tk , we then have:

ξ̇ t0k = v̇t0 − v̇tk
= ∑

j∈[0,η][c0 j (π t , Pt )Pt
0 j ] + [vt+1

j − vt+1
0 ]Tj∈ZPt

0 − ∑
j∈[0,η][ck j (π t , Pt )Pt

k j ]
−[vt+1

j − vt+1
k ]Tj∈ZPt

k .

In matrix form, we have:

ξ̇ t0k = [c00(·) . . . c0η(·)]
[
Pt
00 . . . Pt

0η

]T − [ck0(·) . . . ckη(·)]
[
Pt
k0 . . . Pt

kη

]T
+[vt+1

0 − vt+1
0︸ ︷︷ ︸

ξ t00

. . . vt+1
η − vt+1

0︸ ︷︷ ︸
ξ tη0

]
[
Pt
00 . . . Pt

0η

]T

−[vt+1
0 − vt+1

k︸ ︷︷ ︸
ξ t0k

. . . vt+1
η − vt+1

k︸ ︷︷ ︸
ξ tηk

]
[
Pt
k0 . . . Pt

kη

]T

We know that ξ tl j = −ξ tjl = −ξ t0l + ξ t0 j . Hence, we obtain:

ξ̇ t0k =ξ t01(−Pt
01 + Pt

k1) + ξ t02(−Pt
02 + Pt

k2) + . . . + ξ t0k(−Pt
0k −

∑
j, j 
=k

Pt
k j )

+ . . . + ξ t0η(−Pt
0η + Pt

kη) +
∑

j∈[0,η]
[c0 j (π t , Pt )Pt

0 j ] −
∑

j∈[0,η]
[ck j (π t , Pt )Pt

k j ],
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from which we obtain (20). ��
Proof of Theorem 4.1. From (8), let us subtract vt+1

l from the LHS and RHS and obtain
for all l ∈ Z:

vtl − vt+1
l =

∑
j∈Z

(cl j (π
t , Pt )Pt

l j + vt+1
j Pt

l j ) − vt+1
l

=
∑
j∈Z

[cl j (π t , Pt )Pt
l j + (vt+1

j − vt+1
l )Pt

l j ]. (30)

In the second equality above, we use the condition
∑

j∈Z Pt
l j = 1 which implies∑

j∈Z Pt
l jv

t+1
l = vt+1

l . Let us denote the derivative in discrete time by the scalar

quantity v̇tl = vtl − vt+1
l for all l ∈ Z. Using the variable ξ tlk = vtl − vtk , which

represents the potential difference between two generic states, then for all l, k ∈ Z,
we have:

ξ̇ tlk = v̇tl − v̇tk =
∑
j∈Z

[
(cl j (·)Pt

l j − ck j (·)Pt
k j ) − ξ tl j P

t
l j + ξ tk j P

t
k j

]
. (31)

We are interested in finding equilibrium points where the potential difference between
the value function of any pair of states is constant. When the potential difference is
constant, we have a stationary solution for (18). The equilibrium points of the above
dynamics can be obtained by setting (31) equal to zero, which yields:

0 =
∑
j

[
(cl j (·)Pt

l j − ck j (·)Pt
k j ) − ξ tl j P

t
l j + ξ tk j P

t
k j

]
,∀l, k ∈ Z.

Using the notation Pt
l = [Pt

l j ] j∈Z and cl = [cl j ] j∈Z for all l ∈ Z, the equilibrium
condition can be rewritten as:

ξ̇ tlk = cTl Pt
l − cTk P

t
k − PtT

l ξ tl + PtT
k ξ tk = 0, (32)

where ξ tl := [ξ tl j ] j∈Z = [vtl − vtj ] j∈Z. In matrix form, we then have:

ξ̇ tl :=

⎡
⎢⎢⎣

...

ξ̇ tlk
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

. . .
...

. . .
...

. . .

. . . −PtT
l . . . PtT

k . . .

. . .
...

. . .
...

. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

ξ tl
...

ξ tk
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

...

cTl Pt
l − cTk P

t
k

...

⎤
⎥⎥⎦

︸ ︷︷ ︸
b

= 0. (33)

By using the condition ξ tl j = −ξ tjl and ξ tl j = vtl −vtj = vtl −vt0−vtj +vt0 = −ξ t0 l +ξ t0 j ,
we can express the above set of equations in the variables ξ t0l for all l ∈ Z. Setting
ξ t0 := [ξ t0 j ] j∈Z = [vt0 − vtj ] j∈Z, we have:
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ξ̇ t0 = Ãξ t0 + b̃, (34)

where the matrix Ã and vector b̃ can be derived from A and vector b. Assuming a
bounded support for ω and therefore also for x , denoted by [1, η], we obtain a generic
η × η dynamical system where Ã = [ãti j ]i, j∈[1,η], and from which the following
equilibrium point can be obtained:

ξ∗ = − Ã−1b̃ ≥ 0.

In Lemma 4.1, we illustrate a constructive way to obtain Ã. Hence, for the bounded
support [1, η], system (34) can be represented in matrix form as:

⎡
⎢⎢⎢⎣

ξ̇ t01
ξ̇ t02
...

ξ̇ t0η

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pt
01 −

∑
k,k 
=1

Pt
1k −Pt

02 + Pt
12 . . . −Pt

0η + Pt
1η

−Pt
01 + Pt

21 −Pt
02 −

∑
k,k 
=2

Pt
2k . . . −Pt

0η + Pt
2η

...
...

. . .
...

−Pt
01 + Pt

η1 −Pt
02 + Pt

η2 . . . −Pt
0η −

∑
k,k 
=η

Pt
ηk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ξ t01
ξ t02
...

ξ t0η

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣
cT0 P

t
0 − cT1 P

t
1

cT0 P
t
0 − cT2 P

t
2

...

cT0 P
t
0 − cTη Pt

η

⎤
⎥⎥⎥⎦ . (35)

It is evident that the entries of the main diagonal of the matrix follow the law, for
generic l ∈ {0, 1, . . . , η}:

ãtll = −Pt
0l − ∑

k,k 
=i P
t
lk,

ãtl j = −Pt
0 j − Pt

l j ,
(36)

which are in accordance with (19). Now, note that the trace of Ã is negative, namely

Tr( Ã) =
∑

l∈{0,...,μ}
ãtll =

∑
l∈{0,...,μ}

[−Pt
0l −

∑
k,k 
=i

Pt
lk] < 0.

If the determinant of matrix Ã is positive, then the time response of the dynamical
system (34) is characterized by eigenvalues with negative real part, and the sys-
tem is asymptotically stable. Therefore, we can conclude that the initial conditions
(π [N ]0, v[N ]0) converge to the equilibrium point (π̄, v̄):

lim
N→∞ π [N ]0 = π̄ , lim

N→∞ v[N ]0 = v̄. ��
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