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Abstract
We enrich the theory of variational inequalities in the case of an aggregative structure
by implementing recent results obtained by using the Selten–Szidarovszky technique.
We derive existence, semi-uniqueness and uniqueness results for solutions and pro-
vide a computational method. As an application we derive very powerful practical
equilibrium results for Nash equilibria of sum-aggregative games and illustrate with
Cournot oligopolies.
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1 Introduction

When dealing with optimisation, equilibrium or related problems, a usual program
is to study existence, semi-uniqueness (i.e. there is at most one solution), uniqueness
and computation of solutions. For such problems, variational inequalities provide a
unifying, natural, simple and quite novel setting. The systematic study of this subject
began in the early 1960s with the influential work of Hartman and Stampacchia in [9]
for the study of (infinite)-dimensional partial differential equations. The present theory
of (finite dimensional) variational inequalities has found applications in mathematical
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programming, engineering, economics and finance.1 In particular this theory applies to
Nash equilibria of games in strategic form.However, various quite sophisticated recent
results for sum-aggregative games with pseudo-concave conditional payoff functions
do not follow from this theory. The results we have in mind here concern uniqueness
results as in [11] which are derived by what was called ‘the Selten-Szidarovszky
technique’ (SS-technique) in [26].

The origin of the SS-technique can be found in the book [21] of Selten dealing
with aggregative games and in the article [22] of Szidarovszky dealing with Cournot
oligopolies.2 The aim of the present article is to go a theoretical step further by integrat-
ing an advanced version of the SS-technique into the theory of variational inequalities.
For more on the SS-technique, see [4, 11].

We consider two types of variational inequalities that are special cases of the fol-
lowing quite general form

VI(X ,F) : F(x�) · (x − x�) ≥ 0 (x ∈ X), (1)

where X is a non-empty subset of Rn and F = (F1, . . . , Fn) : X → R
n is a function.

A solution of VI(X ,F) is defined as an x� ∈ X that satisfies all inequalities in (1).3

Both cases relate to the aggregative variational inequality VI(X,T) with X = R
n+ or

X = Xnl=1[0,ml ] where, with N := {1, . . . , n}, letting xN := ∑
l∈N xl ,

Ti (x) := − ti (xi , xN ). (2)

So here Ti depends on xi and the aggregate xN . (A precise definition concerning ti is
in order.) One may refer to this problem as an ‘aggregative variational inequality’. In
case X = R

n+ this variational inequality specialises to a nonlinear complementarity
problem and in the other case to a mixed nonlinear complementarity problem. We
shall study the complete set of solutions and do not exclude boundary or degenerate4

ones.
In Sect. 2 the results are obtained by applying standard theory for these aggrega-

tive variational inequalities. Although results in this section are not really new, they
may contribute to the literature in the sense that the presentation there is efficient,
self-contained and in addition critically reviews and repairs a result in [19]. The new
and much more powerful results are obtained by the Selten–Szidarovszky technique
in Sects. 3 and 4 assuming X = R

n+. In Sect. 3, contrary to Sect. 4, there are no differ-
entiability assumptions for the ti , just continuity is assumed. However, a discontinuity
at (0, 0) always is allowed.

A vast part of the ideas of proving the results in Sects. 3 and 4 is based on [3,
11, 29] dealing with sum-aggregative games and [26] dealing with so-called abstract
games. In particular Sect. 4.5 provides necessary and sufficient conditions for the vari-
ational inequality (2) to have a unique solution. As we shall see, the used mathematics

1 See in particular the two-volume work [5] for the basic theory and extensive references for finite dimen-
sional variational inequalities and complementarity problems. Also see [15], and see [18] for new trends.
2 Also see [24].
3 This is equivalent with that −F(x�) belongs to the normal cone of X at x�.
4 See (10) and Sect. 4.5.
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in the SS-technique is quite elementary (although technical): for example, no deep
results like Brouwer’s fixed point theorem, Gale–Nikaido theorem or advanced theo-
ries like topological fixed point index theory is needed. The fundamental idea behind
the SS-technique is the transformation of the n-dimensional problem for the aggregate
variational inequality into a 1-dimensional fixed point problem for the correspondence
b := ∑

i bi with bi : R+ � R is given by5

bi (y) := {xi ∈ R+ | xi ∈ [0, y] ∧ xi ti (xi , y) = 0 ∧ ti (xi , y) ≤ 0};

see Theorem 3.2. Various assumptions made on the ti relate to the so-called At Most
Single Crossing From Above property; see Definition 3.1. In the differentiable case
checking these assumptions may be straightforward. Theorem 3.2 also is at the base
for computational methods as shown in [1, 24] for the Cournot oligopoly context.

Section 5 explains how the theory of (aggregative) variational inequalities applies
to Nash equilibria of (sum-aggregative) games in strategic form. Especially economic
games in strategic form have an aggregative structure. Among others this concerns
oligopolistic, public good, cost-sharing, common resource, contest and rent-seeking
games (e.g. see [3, 27]). Themost important results concerningNash equilibria of sum-
aggregative games are in Theorem 5.1 which provides a very practical uniqueness
result and Theorem 4.3 which is, as illustrated in Sect. 5.4, at the base for games
with a possible discontinuity at the origin. The latter one is especially important for
contest and rent-seeking games and in fact provides a (very abstract) generalisation
and improvement of the results in [10, 23]. Both theorems do not use explicit pseudo-
concavity conditions for conditional payoff functions (which may be not so easy to
verify in various applications); in fact they implicitly hold. In doing so, the game
theoretic results in [11] are improved upon.

When one looks to the articles on Cournot oligopoly theory it becomes clear that
generalised convexity properties of the price function play an important role in more
sophisticated results; also Assumption (c) for the ti in Theorem 5.1 is closely related
to such properties.6 In this context it may be interesting to note that minima of various
(pre)invex functions (see [17, 18]) can be characterised by so-called variational-like
inequalities.

There are three appendices: on variational inequalities, on smoothness issues and
on various types of matrices.

2 Standard Technique

2.1 Setting

With VI(X ,F) the general variational inequality as in (1), we consider in this section

AVI := VI(X,T) : T(x�) · (x − x�) ≥ 0 (x ∈ X),

5 For correspondences we use the symbol �.
6 In particular, see the example in Sect. 5.4 and [28].
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where X = R
n+ (unbounded case) or X = Xnl=1[0,ml ] with ml > 0 (bounded case)

and

Ti (x) := − ti (xi , xN )

with ti : R+ × R+ → R (unbounded case) and ti : [0,mi ] × [0,∑n
l=1 ml ] → R

(bounded case). Further we suppose n ≥ 2. Let

N> := {i ∈ N | ti (0, 0) > 0}. (3)

Results in this section not being really new, we shall not use the designation ‘the-
orem’ for them.

2.2 Assumptions

In this section the following assumptions will occur.

CONT. ti is continuous.
DIFF. Ti and ti are continuously differentiable.
EC. (For unbounded case) There exists xi > 0 such that, ti (xi , y) < 0 for

every (xi , y) ∈ R
2+ with xi ≤ xi ≤ y.7 Let Ki := [0, xi ].

For the unbounded case, with Ki as in Assumption EC, let K := Xnl=1Kl .
These assumptions are supposed to hold for every i ∈ N .8 Below we often consider
situations where such an assumption just holds for a specific i ; then we add [i] to the
assumption; for example, EC[i].

Some comments concerning DIFF are in order. Of course, in DIFF, properties of
Ti and ti are related. However, it is comfortable to present them here as stated. As
the domain of Ti (ti ) is not open, we interpret continuous differentiability in DIFF as
usual: there exists a continuously differentiable extension of Ti (ti ) to an open set.

If Assumption DIFF holds, then the Jacobi matrix J(x) of T : X → R
n is given by

Ji j (x) =
{−(D1 + D2)ti (xi , xN ) if i = j,

−D2ti (xi , xN ) if i �= j .
(4)

2.3 Existence

Proposition 2.1 0 is a solution of AVI if and only if N> = ∅. 	
Proof 0 is a solution if and only if T(0) · x ≥ 0 (x ∈ X), i.e. if and only if∑n

i=1 ti (0, 0)xi ≤ 0 (x ∈ X). And this is equivalent with ti (0, 0) ≤ 0 (i ∈ N ),
i.e. with N> = ∅. 
�
Lemma 2.1 Consider the unbounded case. Suppose EC holds. Let B be a subset of
R
n+ with K ⊆ B. Each solution of VI(B,T) is a solution of VI(K,T).9 	

7 When dealing with this assumption, we automatically fix some xi .
8 The name of the acronyms CONT and DIFF is clear. And EC stands for ‘effective compactness’.
9 ‘Par abus de notation’ we just write T instead of the restrictions of T to B and T to K.
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Proof Suppose x� is a solution of VI(B,T). As K ⊆ B, it is sufficient to show that
x� ∈ K. By contradiction, suppose x�

j > x j for some j . EC implies t j (x�
j , x

�
N ) < 0.We

have x� ∈ B and
∑

i ti (x
�
i , x

�
N )(xi − x�

i ) ≤ 0 for all x ∈ B. By taking xi = x�
i (i �= j)

and x j = 0, t j (x�
j , x

�
N )x�

j ≥ 0 follows. Thus, t j (x�
j , x

�
N ) ≥ 0, a contradiction. 
�

Proposition 2.2 Suppose Assumption CONT holds.

1. Consider the bounded case. The set of solutions of AVI is a non-empty compact
subset of Rn.

2. Consider the unbounded case. If Assumption EC holds, then the set of solutions of
AVI is a non-empty compact subset of Rn and each solution belongs to K. 	

Proof 1. CONT implies thatT is continuous. Now apply LemmaA.9 in “Appendix A”.
2. By Lemma 2.1 with B = R

n+ each solution of AVI is a solution of VI(K,T) and
thus belongs to K. Next we are going to apply Lemmas A.9 and A.10 with X = R

n+.
Fix an r > 0 such thatK ⊆ Xr/2 ⊂ Xr ⊆ 137K.10 As 137K is compact, Lemma A.9
guarantees thatVI(137K,T) has a solution, say x�. Lemma2.1 guarantees that x� ∈ K.
So also x� ∈ Xr/2 ⊂ Xr . This implies that x� also is a solution of VI(Xr ,T) and that
‖ x� ‖ ≤ r/2 < r . By Lemma A.10 in “Appendix A”, x� is a solution of AVI.

In order to prove that the set of solutions of AVI is compact, it is sufficient, as this set
is, by part 1, bounded, that this set is closed. Well, this is guaranteed by Lemma A.7.


�

2.4 Semi-uniqueness

Suppose Assumption DIFF holds. Thus, by (4), in short notations,

J(x) =

⎛

⎜
⎜
⎜
⎝

−(D1 + D2)t1 −D2t1 −D2t1 · · · −D2t1
−D2t2 −(D1 + D2)t2 −D2t2 · · · −D2t2

...
...

...
...

...

−D2tn −D2tn −D2tn · · · −(D1 + D2)tn

⎞

⎟
⎟
⎟
⎠

.

It is important to realise that J(x) may not be symmetric.

Proposition 2.3 Consider the unbounded case. Suppose AssumptionDIFF holds. Each
of the following two conditions separately is sufficient for AVI to have at most one
solution.

(a). The matrix J(x) is for every x ∈ R
n+ positive quasi-definite.11

(b). The matrix J(x) is for every x ∈ R
n+ a P-matrix. 	

Proof In order for AVI to have at most one solution, it is, by Lemma A.4 in
“Appendix A”, sufficient to show that T : X → R

n is strictly monotone on X or
a P-function on X.

10 Do not worry about ‘137’ in this article!
11 In order to avoid any confusion, see “Appendix C”.
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(a). Suppose J(x) is positive quasi-definite for every x ∈ R
n+. By Lemma A.5, T is

strictly monotone.
(b). Suppose J(x) is for every x ∈ R

n+ a P-matrix. By LemmaA.6,T is a P-function.

�

Now results forAVI for the unbounded case are implied by conditions that guarantee
that each matrix J(x) is positive quasi-definite or a P-matrix. Such conditions can be
found in “Appendix C”. The next proposition presents such a result.

Proposition 2.4 Consider the unbounded case. Suppose Assumption DIFF holds.
Sufficient for AVI, to have at most one solution is that (D1 + D2)ti (xi , xN ) <

−(n − 1)|D2ti (xi , xN )| for every i ∈ N and x ∈ X. 	
Proof The proof is, by Proposition 2.3(b) complete if J(x) is for every x ∈ X a
P-matrix. Well, if J(x) is row diagonally dominant with positive diagonal entries,
then it is a P-matrix. By (4), this specialises to that for every x ∈ X and i ∈ N :
(D1 + D2)ti (xi , xN ) < 0 and (D1 + D2)ti (xi , xN ) < −(n − 1) | D2ti (xi , xN ) |, i.e.
to (D1 + D2)ti (xi , xN ) < −(n − 1) | D2ti (xi , xN ) |. 
�
Clearly, as n grows the inequality in part 2 of this proposition gets more difficult to
be satisfied. And note that, by Proposition 2.1, if we add in addition that N> �= ∅,
then we obtain the result that if AVI has a solution, then this solution is unique and
nonzero.

2.5 Uniqueness

Combining Proposition 2.4 (or a variant of it) with Proposition 2.2, we obtain a unique-
ness result for the aggregative variational inequality AVI. In Sects. 3 and 4 we shall
obtain more interesting results by using the SS-technique.

2.6 Application: Cournot Oligopoly

In this subsection, we critically reconsider and repair with Proposition 2.5 below an
equilibrium uniqueness result in [19].12 This result is as far as we know, the first one
analysing equilibria of Cournot oligopolies by means of nonlinear complementarity
problems. The setting for this result is a Cournot oligopoly game Γ with n ≥ 2
firms without capacity constraints with a price function p : R+ → R and with a
cost function ci : R → R for firm i ∈ N . With these notations the profit function
fi : Rn+ → R for firm i is given by

fi (x) = p(xN )xi − ci (xi ). (5)

12 Equilibrium semi-uniqueness in [19] is based on Proposition 2.3(1) by referring to a false statement
in [16] (see footnote 26 while our is based on Proposition 2.3(2) and so relies on P-matrices instead of
on positive definite matrices. Also a further article on this topic by [14] refers to this false statement.
Equilibrium existence in [19] refers to a result in [13] that in our opinion does not apply here. Furthermore
in [19] the relation between solutions of the nonlinear complementarity problem and the Nash equilibria
set is not addressed.
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This defines a game in strategic form Γ with N as player set and with R+ as strategy
set for each player and with fi as payoff function of firm i .

If p and every ci is twice continuously differentiable, then the aggregative varia-
tional inequality AVI where ti : R2+ → R is given by

ti (xi , y) = p′(y)xi + p(y) − c′
i (xi ),

is referred here to as ‘oligopolistic variational inequality’ and will be denoted by OVI.
In fact this aggregative variational inequality concerns what we call in Definition 5.1
in Sect. 5, for a more general setting, the associated variational inequality VI(Γ ).
Proposition 2.5 deals with the solution set of the oligopolistic variational inequality
and the Nash equilibrium set of Γ . Concerning the latter we have to refer in the proof
of Proposition 2.5 to results which are developed in Sect. 5.

Proposition 2.5 Consider a Cournot oligopoly Γ where p : R+ → R and every
ci : R+ → R is twice continuously differentiable with the following two conditions.

(a). For every i ∈ N and x ∈ R
n+:

2p′(xN ) + p′′(xN )xi − c′′
i (xi ) < −(n − 1) |p′(xN ) + p′′(xN )xi |.

(b). For every i ∈ N there exists an xi > 0 such that for every x ∈ R
n+ with xi ≥ xi ,

p′(xN )xi + p(y) − c′
i (xi ) < 0.

The following results hold.

1. Under condition (a), the oligopolistic variational OVI has at most one solution
and Γ has at most one Nash equilibrium.

2. Under condition (b), the OVI has a solution.
3. Under conditions (a) and (b), the OVI has a unique solution and Γ has a Nash

equilibrium. 	

Proof 1. Note that DIFF holds. The inequality in Proposition 2.4 specialises to the
inequality of the statement and so guarantees that OVI has at most one solution. By
Proposition 5.1(1) the set of Nash equilibria is contained in the set of solutions of OVI.
So the game has at most one Nash equilibrium.

2. Note that EC holds. Apply Proposition 2.2(2).
3. By parts 1 and 2, OVI has a unique solution, say e. We prove that all conditional

profit functions f (z)
i are pseudo-concave. Then Proposition 5.1(2) implies that e is a

Nash equilibrium and then next with Proposition 5.1(1) it follows that e is a unique

Nash equilibrium.Well, as ( f (z)
i )

′′
(xi ) = p′′(xi+∑

j z j )xi+2p′(xi+∑
j z j )−c′′

i (xi ),

condition (a) implies that ( f (z)
i )

′′
< 0 and thus f (z)

i even is strictly concave. 
�

For more on Cournot oligopolies, see, for example, [20, 25, 27].
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3 SS-Technique; Without Differentiability Assumptions

3.1 Setting

Let us fix again the setting. Let

Δ := {(x, y) ∈ R
2+ | x ≤ y} and Δ+ := Δ \ {(0, 0)}. (6)

With VI(X ,F) being the general variational inequality (1), the special case that we
consider in this section is

AVI := VI(Rn+,T) : T(x�) · (x − x�) ≥ 0 (x ∈ R
n+), (7)

where Ti (x) := − ti (xi , xN ) with ti : Δ → R. Further we suppose n ≥ 2.
Comparing AVI with AVI, note that for AVI we only consider the unbounded case.

The reason for this is that an analysis with the SS-technique becomes here much more
technical. Also note that the setting uses a smaller domain of ti than that in Sect. 2.1:
Δ instead of R2+. Δ is of course all that matters as (xi , xN ) ∈ Δ for every x ∈ R

n+.
We always assume in this section that every ti is continuous on Δ+ and denote the

set of solutions of AVI by

AVI•.

3.2 AMSCFA-Property

The following definition is very important for assumptions on the ti in the following
subsection.

Definition 3.1 A function g : I → R, where I is a real interval, has the AMSCFA-
property (‘At Most Single Crossing From Above’ property) if the following holds: if
z is a zero of g, then g(x) > 0 (x ∈ I with x < z) and g(x) < 0 (x ∈ I with x > z).
	

Thus, a function with the AMSCFA-property has at most one zero. Sufficient for a
function to have the AMSCFA-property is that it is strictly decreasing. Two other
simple results, that we freely use throughout the article, are the following: suppose
g : I → R is continuous where I is a proper real interval. Then:

– If g is at every x ∈ I with g(x) = 0 differentiable with g′(x) < 0, then g has the
AMSCFA-property.

– If g has the AMSCFA-property, then for all x, x ′ ∈ I

g(x) ≤ 0 ⇒ g(x ′) < 0 (x ′ > x), g(x) ≥ 0 ⇒ g(x ′) > 0 (x ′ < x).
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3.3 Assumptions

For i ∈ N and μ ∈ [0, 1], defining the function t (μ)
i : R++ → R by

t (μ)
i (λ) := ti (μλ, λ), (8)

the following assumptions appear in the analysis.13

AMSV. For every y > 0, the function ti (·, y) : [0, y] → R has at most one zero
and if it has a positive zero, then ti (0, y) > 0.

LFH’. For every y > 0, the function ti (·, y) : [0, y] → R has the AMSCFA-
property.

RA. For every μ ∈ ]0, 1], the function t (μ)
i has the AMSCFA-property.

RA1. The function t (1)i has the AMSCFA-property.
RA0. For every 0 < y < y′: ti (0, y) ≤ 0 ⇒ ti (0, y′) ≤ 0.
EC. There exists xi > 0 such that ti (xi , y) < 0 for every (xi , y) ∈ R

2+ with
xi ≤ xi ≤ y.

These assumptions are supposed to hold for every i ∈ N . Belowwe very often consider
situations where such an assumption just holds for a specific i ; then we add [i] to the
assumption; for example, RA[i]. Note that the above assumptions do not depend on
the value of ti at (0, 0). In fact this value is not important for results on AVI• \ {0};
the reader also may see Lemma A.1.

Of course, RA[i]⇒RA1[i], and LFH’[i]⇒AMSV[i]. In addition to these assump-
tions, we use the following terminology. We call i ∈ N of

type I+ if t (1)i (λ) > 0 for λ > 0 small enough;

type I− if t (1)i (λ) < 0 for λ > 0 small enough;

type I I− if t (0)i (λ) < 0 for λ > 0 large enough.

Lemma 3.1 [LFH’[i] ∧ RA[i] ] ⇒ RA0[i]. 	
Proof By contradiction. So suppose LFH’[i] and RA[i] hold, and 0 < y < y′, with
ti (0, y) ≤ 0 and ti (0, y′) > 0. The continuity of ti (0, ·) : R++ → R implies that
there exists y′′ ∈ [y, y′ [ with ti (0, y′′) = 0. Also ti (xi , y′) > 0 for xi > 0 small
enough. LFH’[i] implies ti (xi , y′′) < 0 (0 < xi ≤ y′′). Now take μ > 0 so small that
t (μ)
i (y′) = ti (μy′, y′) > 0. As t (μ)

i (y′′) = ti (μy′′, y′′) < 0 and t (μ)
i is continuous,

there exists y′′′ ∈ ]y′′, y′ [ with t (μ)
i (y′′′) = 0. But this is impossible as by virtue of

RA[i], t (μ)
i has the AMSCFA-property. 
�

Lemma 3.2 Suppose Assumption RA1[i] holds.

1. i is of type I+ or of type I−.

13 AMSV stands for ‘at most single-valued’ (see Lemma 3.4). LFH’ stands for ‘local Fisher–Hahn’ (see
[29] for Fisher–Hahn conditions). In Sect. 4.1 we introduce the stronger LFH assumption. RA stands for
‘ti radial direction’, RA1 for ‘radial direction with μ = 1’ and RA0 for ‘ti radial direction with μ = 0. EC
(again) stands for ‘effective compactness’.
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2. If i is of type I−, then t (1)i < 0. 	

Proof 1. In the case when t (1)i has a zero, say m, we have, t (1)i (xi ) > 0 for xi ∈ ]0,m [
and thus i is of type I+. Now suppose that t (1)i does not have a zero. As t (1)i is

continuous, we have t (1)i > 0 or t (1)i < 0. In the first case i is of type I+ and in the
second of type I−.

2. By contradiction. So suppose i is of type I− and t (1)i (ai ) ≥ 0 for some ai > 0. As

t (1)i (xi ) < 0 for xi > 0 small enough, the continuity of t (1)i implies the existence of an

li ∈ ]0, ai ]with t (1)i (li ) = 0. Assumption RA1[i] implies t (1)i (xi ) > 0 for 0 < xi < li ,
a contradiction with i being of type I−. 
�

3.4 Classical Nonlinear Complementarity Problem

Lemma A.2 in “Appendix A” implies: x� ∈ R
n+ is a solution of AVI if and only if x�

satisfies
∀i ∈ N : x�

i ∈ R+ ∧ x�
i ti (x

�
i , x

�
N ) = 0 ∧ ti (x

�
i , x

�
N ) ≤ 0. (9)

A solution x� of AVI is degenerate if there exists i ∈ N such that

x�
i = 0 ∧ ti (0, x

�
N ) = 0. (10)

3.5 Solution 0

Besides N> in (3), let

Ñ := {i ∈ N | ti (0, y) > 0 for some y > 0}. (11)

Proposition 3.1 1. 0 ∈ AVI• ⇔ N> = ∅.
2. Suppose Assumption AMSV[i] holds. If e ∈ AVI• and i /∈ Ñ , then ei = 0. Thus,

if Ñ = ∅, then AVI• ⊆ {0}.
3. Suppose Ñ = N> = ∅ and Assumption AMSV holds. Then AVI• = {0}. 	
Proof 1. Exactly the same proof as in Proposition 2.1 (with X = R

n+).
2. By contradiction. So suppose e is a solution of AVI, i /∈ Ñ and ei > 0. Now eN >

0. By (9), ti (ei , eN ) = 0. AMSV implies ti (0, eN ) > 0. So i ∈ Ñ , a contradiction.
3. By parts 1 and 2. 
�

Proposition 3.2 Suppose Assumption RA1 holds and every i ∈ N is of type I−. Then
x� ∈ AVI•\{0} ⇒ #{ j ∈ N | x�

j > 0} ≥ 2. 	

Proof By contradiction. So suppose x� ∈ AVI• with x� �= 0 and #{ j ∈ N | x�
j �=

0} ≤ 1. Let x�
i �= 0 and x�

j = 0 ( j �= i). By (9), t (1)i (x�
i ) = ti (x�

i , x
�
i ) = 0. As RA1[i]

holds, Lemma 3.2(2) gives a contradiction. 
�
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3.6 Computation

Definition 3.2 1. For i ∈ N , define the correspondence bi : R+ � R by

bi (y) := {xi ∈ R+ | xi ∈ [0, y] ∧ xi ti (xi , y) = 0 ∧ ti (xi , y) ≤ 0}.

And define the correspondences b : R+ � R
n and b : R+ � R by

b(y) := b1(y) × · · · × bn(y), b(y) := {
∑

i∈N
xi | x ∈ b(y)}.

2. Define the correspondences si : R++ � R (i ∈ N ) and s : R++ � R by

si (y) := bi (y)/y, s(y) := b(y)/y. 	

Note that14

b(y) =
∑

i∈N
bi (y).

The correspondence bi provides global information on the ti . Denote by fix(b) the
set of fixed points of the correspondence b : R+ � R, i.e. the set of y ∈ R+ for
which y ∈ b(y).

Definition 3.3 The aggregative variational inequality AVI is

– internal backward solvable if AVI• ⊆ ∪y∈fix(b)b(y);
– external backward solvable if AVI• ⊇ ∪y∈fix(b)b(y);
– backward solvable if it is internal and external backward solvable. 	

Lemma 3.3 x ∈ AVI• ⇔ x ∈ b(xN ) ⇔ [x ∈ b(xN ) and xN ∈ fix(b)]. 	
Proof Write the statement as A ⇔ B ⇔ C .

A ⇒ B: suppose x ∈ AVI•. By (9), we have for every i that xi ∈
R+, xi ti (xi , xN ) = 0 and ti (xi , xN ) ≤ 0. As xi ∈ [0, xN ], we have, xi ∈ bi (xN ).

B ⇒ C : suppose x ∈ b(xN ). This implies xN = ∑
i xi ∈ ∑

i bi (xN ) = b(xN ).
Thus xN ∈ fix(b).

C ⇒ A: suppose x ∈ b(xN ) and xN ∈ fix(b). Then for every i we have xi ∈
R+, xi ti (xi , xN ) = 0 and ti (xi , xN ) ≤ 0. By (9), x is a solution of AVI. 
�

The solution aggregator is defined as the function σ : AVI• → R given by

σ(x) :=
n∑

i=1

xi .

14 The sum here is the Minkowski sum.
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Theorem 3.1 1. σ(AVI•) = fix(b).
2. AVI is internal backward solvable.
3. If b is at most single-valued on fix(b), then AVI is backward solvable. 	
Proof 1. ‘⊆’: suppose x is a solution of AVI. By Lemma 3.3, xi ∈ bi (xN ) (i ∈ N ).
This implies xN = σ(x) = ∑

i xi ∈ ∑
i bi (xN ) = b(xN ), i.e. σ(x) ∈ fix(b).

‘⊇’: suppose y ∈ fix(b). So y ∈ b(y) = ∑
i bi (y). Fix xi ∈ bi (y) (i ∈ N ) with

y = ∑
i xi . So y = xN and x ∈ b(xN ). By Lemma 3.3, x ∈ AVI•.

2. Suppose x ∈ AVI•. By Lemma 3.3, x ∈ b(xN ) and xN ∈ fix(b). It follows that
x ∈ b(xN ) ⊆ ∪y∈fix(b)b(y). Thus, x ∈ ∪y∈fix(b)b(y).

3. By part 2, we still have to prove ‘⊇’. So suppose x ∈ ∪y∈fix(b)b(y). Fix y ∈ fix(b)
with x ∈ b(y). As y ∈ b(y) and b is at most single-valued on fix(b), we have
b(y) = {y}. Noting that xN = ∑

l xl ∈ ∑
l bl(y) = b(y), xN = y follows. Thus,

x ∈ b(xN ). Now apply Lemma 3.3. 
�
The standard Szidarovszky variant of the SS-technique deals with at most single-

valued bi . For such situation also b is at most single-valued and Theorem 3.1(3) shows
that AVI is backward solvable. So what is a (weak) sufficient condition for the bi to
be at most single-valued? Well, the next lemma provides such a condition.

Lemma 3.4 If Assumption AMSV[i] holds, then for every y ∈ R+ there exists at most
one xi ∈ [0, y] with xi ti (xi , y) = 0 ∧ ti (xi , y) ≤ 0. 	
Proof SupposeAMSV[i] holds, By contradiction, suppose xi , x ′

i ∈ [0, y]with xi < x ′
i

are such. As x ′
i > 0, ti (x ′

i , y) = 0 follows. Because of AMSV[i], ti (xi , y) �= 0 and
ti (0, y) > 0. This implies xi = 0 and ti (0, y) ≤ 0, a contradiction. 
�

Furthermore, for i ∈ N letWi denote the essential domain of the correspondence bi ,
i.e. the set {y ∈ R+ | bi (y) �= ∅}. Now, the essential domain of si is W �

i := Wi \ {0},
that of b is W := ∩i∈N Wi and that of s is

W � := W\{0} = ∩i∈NW �
i .

Note that 0 ∈ Wi ⇔ i /∈ N> and that 0 ∈ W ⇔ N> = ∅.

Let b̂i := bi�Wi , i.e. the restriction of the correspondence bi toWi ; so b̂i : Wi � R.

Also define b̂ := b�W . Finally, let ŝi := si�W �
i
, b̂ := b�W and ŝ := s�W �. If Assump-

tion AMSV holds, then by Lemma 3.4 the correspondences b̂i , ŝi , b̂ and ŝ are
single-valued and we can and will interpret them as functions. Then in particular
b̂(y) = (b̂1(y), . . . , b̂n(y)).

Theorem 3.2 Suppose Assumption AMSV holds. Then

1. AVI• = {b̂(y) | y ∈ fix(b̂)}.
2. σ(AVI•) = fix(b̂).
3. AVI•\{0} = {b̂(y) | y ∈ W � with y ∈ fix(b̂)} = {b̂(y) | y ∈ W � with ŝ(y) = 1}.
4. x� ∈ AVI• ⇒ x�

i = b̂i (x�
N ) (i ∈ N ). 	
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Proof 1. Theorem 3.1(3) guarantees that AVI is backward solvable. As b is at most
single-valued, we obtain AVI• = ∪y∈fix(b)b(y) = ∪y∈fix(b̂)(b̂1(y), . . . , b̂n(y)) =
{b̂(y) | y ∈ fix(b̂)}.

2. By Lemma 3.1(1). 3. By parts 1 and 2.
4. Suppose x� ∈ AVI•. By part 1, there exists y ∈ fix(b̂)} such that x�

i = b̂i (y) (i ∈
N ). It follows that y = b̂(y) = ∑

i b̂i (y) = ∑
i x

�
i = x�

N . Thus, x
�
i = b̂i (x�

N ) (i ∈ N ).

�

Proposition 3.3 If AssumptionAMSVholds, then the solution aggregatorσ is injective.
	
Proof By contradiction. So suppose AMSV holds and x, x′ are distinct solutions with
σ(x) = σ(x′) =: y. As x �= x′, we can fix i ∈ N with x ′

i > xi . Note that y �= 0. By
(9), ti (xi , y) ≤ 0 = ti (x ′

i , y) AMSV implies ti (0, y) > 0. So xi > 0 and therefore,
by (9), ti (xi , y) = 0 which is a contradiction with AMSV. 
�
Proposition 3.4 Suppose t1 = · · · = tn. If Assumption AMSV holds, then each solution
x� of AVI, is symmetric, i.e. x�

1 = · · · = x�
n. 	

Proof By contradiction. So suppose x� is a non-symmetric solution. Fix π ∈ Sn such
that15 Pπ (x�) �= x�; The assumption t1 = · · · = tn implies that the aggregative vari-
ational inequality AVI is symmetric.16 By Lemma A.11, Pπ (x�) is another solution.
As σ(x�) = σ(Pπ (x�)), we have a contradiction with Proposition 3.3, i.e. with the
injectivity of σ . 
�

3.7 Structure of the SetsWi,W+
i andW++

i

For the further analysis it is important to obtain more insight into the structure of Wi .
If Assumption AMSV holds, then let

W+
i := {y ∈ Wi | 0 < b̂i (y) ≤ y},

W++
i := {y ∈ Wi | y ∈ Int(Δ+)} = {y ∈ Wi | 0 < b̂i (y) < y}.

Note that

W++
i ⊆ W+

i ⊆ W �
i ⊆ Wi .

Lemma 3.5 Suppose Assumptions AMSV[i] and RA0[i] hold, y ∈ W �
i and y′ > y.

Then b̂i (y) = 0 ⇒ [y′ ∈ W �
i ∧ b̂i (y′) = 0]. Thus, W �

i is a real interval. 	

15 See (15) for Pπ .
16 May be, see “Appendix A” for this notion.
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Proof Suppose b̂i (y) = 0.We have ti (0, y) = ti (b̂i (y), y) ≤ 0. ByRA0[i], ti (0, y′) ≤
0. So b̂i (y′) = 0 and y′ ∈ W �

i . 
�
Lemma 3.6 Suppose Assumption LFH’[i] holds. Then

1. W++
i is open.

2. If Assumption RA1[i] and RA0[i] hold, then W++
i and W+

i are real intervals. 	
Proof 1. Suppose y ∈ W++

i . So ti (b̂i (y), y) = 0. By LFH’[i], ti (y, y) < 0 < ti (0, y).

As ti (0, ·) : R++ → R and t (1)i are continuous, there exists δ > 0 such that ti (y′, y′) <

0 < ti (0, y′) (0 < y − δ < y′ < y + δ). For every y′ ∈ ]y − δ, y + δ [, the function
ti (·, y′) : [0, y′] → R is continuous, and therefore, there exists xi ∈ ]0, y′ [ with
ti (xi , y′) = 0. Thus, W++

i is open.
2. Suppose RA1[i] and RA0[i] hold. First we prove thatW++

i is an interval. To this

end suppose y, y′ ∈ W++
i with y < y′ and y′′ ∈ ]y, y′ [.We have 0 < b̂i (y) ≤ y, 0 <

b̂i (y′) ≤ y′, ti (b̂i (y), y) = 0 and ti (b̂i (y′), y′) = 0. By LFH’[i], the continuous
functions ti (·, y) and ti (·, y′) have the AMSCFA-property. It follows that ti (y, y) ≤ 0
and ti (0, y′) > 0. Now RA0[i] implies ti (0, y′′) > 0. By RA1[i], the continuous
function t (1)i has the AMSCFA-property. It follows that ti (y′′, y′′) < 0. Next the
continuity of ti (·, y′′) implies that there exists an xi ∈ ]0, y′′ [ with ti (xi , y′′) = 0 and
therefore y′′ ∈ W++

i . Thus, W++
i is an interval.

Statement concerning W+
i : suppose y, y′ ∈ W+

i with y < y′ and y′′ ∈ ]y, y′ [.
Now the above proof again applies, and shows that y′′ ∈ W++

i ⊆ W+
i . 
�

Lemma 3.7 Suppose Assumptions AMSV[i] and EC[i] hold. Then b̂i (y) < xi (y ∈
Wi ). 	
Proof This is, as xi > 0, trivial if b̂i (y) = 0. Now suppose b̂i (y) > 0. We have
0 = ti (b̂i (y), y). As (b̂i (y), y) ∈ Δ+, EC[i] implies b̂i (y) < xi . 
�

If t (1)i : R++ → R has a unique zero, then we denote it by

xi . (12)

(Thus, xi > 0.) Sufficient for xi to be well-defined is that t (1)i has a zero and that
Assumption RA1[i] holds. If in addition Assumption AMSV[i] holds, then we have
b̂i (xi ) = xi ∈ W+

i .
Note that if i is of type I− and Assumption RA1[i] holds, then, by Lemma 3.2(2),

xi is not well-defined.

Lemma 3.8 If xi is well-defined and Assumption EC[i] holds, then xi ≤ xi . 	
Proof By the definitions of xi and xi . 
�
Lemma 3.9 Suppose i is of type I+ and Assumption RA1[i] holds. Any of the following
three assumptions is sufficient for xi to be well-defined.

(a). Assumptions LFH’[i] and RA0[i] hold and W �
i �= ∅.
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(b). Assumption EC[i] holds.
(c). Assumption LFH’[i] holds and i is of type I I−. 	
Proof HavingRA1[i], we prove that t (1)i has a zero. As t (1)i is continuous, it is sufficient
to show that this function assumes a positive and a negative value.

(a). Fix y ∈ W �
i . We have ti (b̂i (y), y) ≤ 0. LFH’[i] implies t (1)i (y) = ti (y, y) ≤

ti (b̂i (y), y) ≤ 0. As i is of type I+, we can fix xi ∈ ]0, y] with t (1)i (xi ) = ti (xi , xi ) >

0.
(b). As i is of type I+, t (1)i (xi ) > 0 for xi small enough. EC[i] implies t (1)i (xi ) <

0 (xi > xi ).
(c). As i is of type I+, t (1)i (λ) = ti (λ, λ) > 0 for λ > 0 small enough. As i is

of type I I−, ti (0, λ) < 0 for λ > 0 large enough. As, by LFH’[i], ti (·, λ) has the
AMSCFA-property, it follows that t (1)i (λ) < 0 for λ > 0 small enough. 
�
Lemma 3.10 Suppose i is of type I+, Assumptions LFH’[i] and RA1[i] hold and xi
is well-defined. Then

1. W �
i = [xi ,+∞ [.

2. If ti (0, y) > 0 (y > 0), then W++
i = ]xi ,+∞ [ and W+

i = [xi ,+∞ [. 	
Proof 1. ‘⊆’: by contradiction. So suppose y ∈ W �

i and y < xi . As y > 0, the

AMSCFA-property of t (1)i (by virtue of RA1[i]) gives ti (y, y) = t (1)i (y) > t (1)i (xi ) =
0. As (by virtue of LFH’[i]) ti (·, y) has the AMSCFA-property, we have ti (xi , y) > 0
for all 0 ≤ xi ≤ y. Thus, y /∈ Wi , a contradiction.

‘⊇’: suppose y ≥ xi . If ti (0, y) ≤ 0, then y ∈ W �
i . Now suppose ti (0, y) > 0.

RA1[i] implies ti (y, y) ≤ 0. As ti (·, y) is continuous, there exists an xi ∈ ]0, y] with
ti (xi , y) = 0. Thus, y ∈ W �

i .

2. First statement ‘⊆’: suppose y ∈ W++
i . Then ti (b̂i (y), y) = 0 and 0 < b̂i (y) <

y. By LFH’[i], ti (y, y) < 0. RA1[i], implies y > xi .
First statement ‘⊇’: suppose y > xi . We have ti (0, y) > 0 and, by RA1[i],

ti (y, y) < 0. The continuity of ti (·, y) implies that there exists xi ∈ ]0, y [ with
ti (xi , y) = 0. As LFH’[i] holds, y ∈ W++

i follows.

Second statement ‘⊆’: suppose y ∈ W+
i . Then ti (b̂i (y), y) = 0 and 0 < b̂i (y) ≤ y.

LFH’[i] implies ti (y, y) ≤ 0. Now, RA1[i] implies y ≥ xi .
Second statement ‘⊇’: suppose y ≥ xi . We have ti (0, y) > 0 and, by RA1[i],

ti (y, y) ≤ 0. The continuity of ti (·, y) implies that there exists xi ∈ ]0, y] with
ti (xi , y) = 0. So 0 < xi = b̂i (y) ≤ y. Thus, y ∈ W+

i . 
�
Lemma 3.11 Suppose Assumptions AMSV[i] and RA1[i] hold and i is type I−. Then

1. {y > 0 | ti (0, y) > 0} ⊆ W++
i .

2. W �
i = R++.

3. W++
i = W+

i .

4. If Assumption EC[i] holds, then b̂i (y) < xi (y > 0). 	
Proof 1. Suppose y > 0 with ti (0, y) > 0. By Lemma 3.2(2), ti (y, y) < 0. As ti (·, y)
is continuous, there exists an xi ∈ ]0, y [ with ti (xi , y) = 0. So y ∈ W++

i .
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2. ‘⊆’: trivial. ‘⊇’: suppose y > 0. If ti (0, y) ≤ 0, then y ∈ W �
i . Now suppose

ti (0, y) > 0. By part 1, y ∈ W++
i ⊆ W �

i .
3. ‘⊆’ is trivial. Now suppose y ∈ W+

i . The proof is complete if we show that

b̂i (y) < y. Well, if b̂i (y) = y, then t (1)i (y) = ti (b̂i (y), y) = 0 contradicting
Lemma 3.2(2).

4. Suppose EC[i] holds. Fix y > 0. The statement is clear if b̂i (y) = 0. Now
suppose b̂i (y) > 0. We have 0 = ti (b̂i (y), y). EC[i] implies that b̂i (y) < xi . 
�
Lemma 3.12 Suppose Assumption LFH’, RA1 and RA0 hold. Let N ′ = {k ∈
N | k is of type I+}.
1. If N ′ = ∅, then W � = R++.
2. Suppose N ′ �= ∅ and that for every i ∈ N ′: Assumption EC[i] holds or i is of type

I I−. Then, with x = maxk∈N ′ xk, W
� = [x,+∞ [. 	

Proof By Lemma 3.2(1) every i is of type I+ or I−. Remember that W � = ∩iW �
i .

1. Suppose N ′ = ∅. So every i is of type I−. Now apples Lemma 3.11(2).
2.Lemma3.9(b,c) guarantees that xk (k ∈ N ′) arewell-defined.ByLemma3.10(1),

W �
k = [xk,+∞ [ (k ∈ N ′) and, by Lemma 3.11(2) W �

l = R++ (l ∈ N\N ′). Thus,
W � = [x,+∞ [. 
�

3.8 Properties of the Functions b̂i and ŝi

Proposition 3.5 Suppose Assumptions LFH’[i], RA1[i] and RA0[i] hold. Then the
function b̂i : W �

i → R is continuous. 	
Proof We may suppose that W �

i �= ∅. By Lemma 3.5, W �
i is a non-empty interval.

It is sufficient to prove that b̂i is continuous on each non-empty compact interval I
with I ⊆ W �

i . Fix such an interval. Further consider the function b̂i : I → R. As

0 ≤ b̂i (y) ≤ y (y ∈ I ), b̂i is bounded. As b̂i is bounded, continuity of b̂i is equivalent
to the closedness of its graph, i.e. of the closedness of the subset {(y, b̂i (y)) | y ∈ I } in
I ×R. As I ×R is closed inR2, it remains to be proved that this graph is closed inR2.
In order to do this take a sequence ((ym, b̂i (ym))) in I × R that is in R

2 convergent,
with, say, limit (y�, b�), and prove that (y�, b�) ∈ {(y, b̂i (y)) | y ∈ I }, i.e. that
y� ∈ I and b̂i (y�) = b�. We have lim ym = y� and lim b̂i (ym) = b�. As I is closed,
y� ∈ I follows; so y� > 0. We have 0 ≤ b̂i (ym) ≤ ym , bi (ym)ti (b̂i (ym), ym) = 0
and ti (b̂i (ym), ym) ≤ 0. Taking limits and noting that ti : Δ+ → R is continuous, we
obtain 0 ≤ b̂� ≤ y�, b�ti (b�, y�) = 0 and ti (b�, y�) ≤ 0. Thus, as desired, b̂i (y�) = b�.


�
Proposition 3.6 1. If Assumptions AMSV and RA[i] hold, then ŝi : W+

i → R is
injective.

2. If Assumptions LFH’[i], RA1[i] and RA0[i] hold, then ŝi is on the interval W+
i

strictly increasing or strictly decreasing. 	
Proof 1. Suppose AMSV and RA[i] hold. We prove by contradiction that ŝi : W+

i →
R is injective. So suppose ŝi (y) = ŝi (y′) = w where y, y′ ∈ W+

i with y �= y′. So
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b̂i (y) = wy > 0 and b̂i (y′) = wy′ > 0. It follows that ti (wy, y) = ti (wy′, y′) = 0,
i.e. t (w)

i (y) = t (w)
i (y′) = 0. But, by RA[i], the function t (w)

i has the AMSCFA-
property.

2. Suppose LFH’[i], RA1[i] and RA0[i] hold, Lemma 3.6(2) guarantees that W+
i

is an interval. Remember that W+
i is a subset of W �

i . Proposition 3.5 implies that ŝi is
continuous onW+

i . It now follows with part 1 that ŝi : W+
i → R is strictly decreasing

or strictly increasing. 
�
Lemma 3.13 Suppose Assumptions LFH’[i] and RA[i] hold and: i is of type I+ or
of type I I− or Assumption EC[i] holds. Then ŝi is strictly decreasing on the interval
W+

i . 	

Proof By Lemma 3.1, RA0[i] holds and by Lemma 3.6(2), W+
i is a real interval. We

may assume that W+
i is not empty. Now Lemma 3.5 implies that W �

i is an interval
without upper bound. By Proposition 3.6(2) ŝi : W+

i → R is strictly decreasing or
strictly increasing. By contradiction we prove that ŝi is strictly decreasing on W+

i ; so
suppose ŝi is strictly increasing on W+

i . By Proposition 3.5, ŝi : W �
i is continuous.

Case where i is of type I+: by Lemma 3.9(a), xi in (12) is well-defined. We have
xi ∈ W+

i and ŝi (xi ) = 1. Since ŝi is strictly increasing on W+
i , y /∈ W+

i for every
y > xi . Fix such an y. Then ŝi (y) = 0. The continuity of ŝi implies that there exists
y′ ∈ ]xi , y [ with ŝi (y′) = 1/137. But then y′ ∈ W+

i , a contradiction.
Case where i is of type I I−: fix y′ ∈ W+

i . So ŝi (y′) > 0. As i is of type I I−,
ŝi (y) = 0 for y large enough. Let y′′ with y′′ > y′ be such an y. The continuity of ŝi
implies that there exists ỹ ∈ ]y′, y′′ [ with ŝi (ỹ) = ŝi (y′)/137. But then ỹ ∈ W+

i and
ŝi (ỹ) < ŝi (y′), a contradiction.

Case where EC[i] holds: fix y′ ∈ W+
i . So ŝi (y′) > 0. By Lemma 3.7, ŝi (y) ≤

xi/y (y ∈ W �
i ). This implies limy→+∞ ŝi (y) = 0. The continuity of ŝi implies that

there exists ỹ > y′ with ŝi (ỹ) = ŝi (y′)/137. But then ỹ ∈ W+
i and ŝi (ỹ) < ŝi (y′), a

contradiction. 
�
Lemma 3.14 Suppose Assumptions LFH’ and RA0 hold and every ŝi : W+

i → R is
strictly decreasing. Then ŝ is strictly decreasing on the subset of its domain W � where
it is positive. 	
Proof We may suppose that the subset of W � where ŝ is positive contains at least two
elements. Let ya, yb with ya < yb be such. So ŝ(ya) > 0 and ŝ(yb) > 0. Note that
ya, yb ∈ W �

i (i ∈ N ) and that y ∈ W �
i \W+

i ⇒ ŝi (y) = 0.
First we prove ŝi (ya) − ŝi (yb) ≥ 0 (i ∈ N ). We consider four cases.
Case where ya, yb ∈ W+

i : ŝi (ya) − ŝi (yb) > 0, by assumption.
Case where ya ∈ W+

i , yb /∈ W+
i : ŝi (ya) − ŝi (yb) = ŝi (ya) − 0 = ŝi (ya) > 0.

Case where ya /∈ W+
i , yb /∈ W+

i : ŝi (ya) − ŝi (yb) = 0 − 0 = 0.
Case where ya /∈ W+

i , yb ∈ W+
i : this case is impossible by Lemma 3.5.

Next fix j with ŝ j (ya) > 0. If also ŝ j (yb) > 0, then ya, yb ∈ W+
i and by the above,

ŝ j (ya) − ŝ j (yb) > 0. If ŝ j (yb) = 0, then also ŝ j (ya) − ŝ j (yb) = ŝ j (ya) > 0. As
desired, we obtain that s(ya) − s(yb) = ∑

i∈N (ŝi (ya) − ŝi (yb)) > 0. 
�
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Lemma 3.15 Suppose Assumptions AMSV, RA1 and RA0 hold. If every i ∈ N is
of type I−, then W � = R++ and for every y′ > 0 with ŝ(y′) > 0 it holds that
ŝ(y) > 0 (0 < y ≤ y′). 	
Proof By Lemma 3.11(2), W � = R++. Fix 0 < y ≤ y′ with ŝ(y′) > 0. Then
b̂i (y′) > 0 for at least one i . For such an i , Lemma 3.5 implies b̂i (y) > 0. So
b̂(y) = ∑

l∈N b̂l(y) > 0. Thus, ŝ(y′) > 0. 
�
Lemma 3.16 Suppose Assumptions LFH’, RA1, EC hold and for every i ∈ N: i is
of type I+ and ti (0, y) > 0 (y > 0). Let x = maxi∈N xi . Then W � = [x,+∞ [,
ŝ(x) > 1 and for every x� ∈ AVI•\{0}, it holds that x�

N > x. 	
Proof By Lemma 3.9(b),the xi are well-defined. Fix k� such that x = xk�

. By
Lemma 3.10(1,2), W � = [x,+∞ [ and W+

i = [xi ,+∞ [ (i ∈ N ). Noting that
x ∈ W+

i (i ∈ N ) and n ≥ 2, we obtain ŝ(x) = ŝk� (xk�
) + ∑

k �=k�
ŝk(x) =

1+∑
k �=k�

ŝk(x) > 1. If x� ∈ AVI•\{0}, then, by Theorem 3.2(2), b̂(x�
N ) = x�

N ∈ W �.
So ŝ(x�

N ) = 1 and thus x�
N > x . 
�

3.9 Semi-uniqueness, Existence and Uniqueness

The proof of the following proposition follows a reasoning similar to a result in [2]
for sum-aggregative games.

Proposition 3.7 Suppose Assumption LFH’ holds and every ti is decreasing in its
second variable. Then AVI has at most one solution. 	
Proof By contradiction. So suppose x, x′ ∈ AVI• with x �= x′. We may suppose
xN ≤ x ′

N . Note that x ′
N > 0. As x �= x′, we can fix i with xi < x ′

i . (9) implies
ti (x ′

i , x
′
N ) = 0 ≥ ti (xi , xN ). By LFH’[i], the function ti (·, x ′

N ) has the AMSCFA-
property; so ti (xi , x ′

N ) > 0 follows. As ti is decreasing in its second variable, 0 <

ti (xi , x ′
N ) ≤ ti (xi , xN ) holds, which is a contradiction. 
�

Theorem 3.3 Suppose Assumptions LFH’ and RA hold and for every i ∈ N: i is of
type I+ or of type I I− or EC[i] holds. Then AVI has at most one nonzero solution. 	
Proof By Lemma 3.1, RA0 holds. Lemma 3.13 guarantees that every ŝi : W+

i → R is
strictly decreasing. By Lemma 3.14, ŝ is strictly decreasing on the subset of its domain
where it is positive. Theorem 3.2(3) now implies the desired result. 
�
Of course, if we add N> �= ∅ as assumption to this theorem, then (by Proposi-
tion 3.1(1)) AVI has at most one solution and such a solution is nonzero.

Theorem 3.4 Suppose Assumptions LFH’, RA1, RA0 hold and at least one i ∈ N is of
type I+. Any of the following two assumptions is sufficient for AVI to have a nonzero
solution and for the solution set of AVI to be a non-empty compact subset of Rn.

(a.) Assumption EC holds.
(b.) Every i ∈ N is of type I I−.
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If in addition to (a) and (b) Assumption RA holds, then AVI has a unique nonzero
solution. 	
Proof We prove the first statement about existence; then the second about uniqueness
follows from Theorem 3.3.

Let N ′ = {k ∈ N | k is of type I+}. For both cases (a) and (b), Lemma 3.12(2)
guarantees that W � = [x,+∞ [ with x = x p for some p ∈ N ′. It follows that
ŝ(x) = ∑

i∈N ŝi (x) ≥ ŝ p(x p) = 1. The solution set of AVI is a non-empty compact
subset of Rn if AVI• \ {0} is a non-empty compact subset of Rn+; we shall prove the
latter. By Theorem 3.2(3), AVI•\{0} equals b̂(Z) where Z is the set of zeros of the
function b̂ : [x,+∞ [ → R. As this function is continuous, it follows that Z is a
closed subset of [x,+∞ [, so also a closed subset of R. Below we show that Z also is
a bounded subset of R and therefore a compact subset of R. As Proposition 3.5 also
implies that b̂ : [x,+∞ [ → R

n is continuous, it then follows that AVI•\{0} = b̂(Z)

is a compact subset of Rn . Finally note that, by Lemma 3.2, each i is of type I+ or of
type I−.

(a.) Having EC, fix y with y ≥ ∑
i∈N xi . By Lemma 3.8, y ≥ x p > x p = x . Thus,

y ∈ W �. With Lemmas 3.7 and 3.11(4), we obtain, b̂(y) = ∑
i b̂i (y) ≤ ∑

i x i ≤ y;
thus ŝ(y) ≤ 1. By the intermediate value theorem, there exists y� ∈ [x, y] with
ŝ(y�) = 1; so y� ∈ fix(b̂). By Theorem 3.2(3), b̂(y�) is a nonzero solution of AVI.
With Lemmas 3.7 and 3.11(4), we obtain, b̂(y) ≤ ∑

i x i (y ≥ x). So Z is a bounded
subset of R.

(b). As every i is of type I I−, we have b̂i (y) = 0 (i ∈ N ) for y large enough. So
ŝ(y) = 0 for y large enough. Fix y with y ≥ x and ŝ(y) = 0. Consider ŝ : [x,+∞ [ →
R. Proposition 3.5 implies that ŝ is continuous. By the intermediate value theorem,
there exists y� ∈ [x, y] with ŝ(y�) = 1. Thus, y� ∈ fix(b̂). By Theorem 3.2(3), b̂(y�)
is a nonzero solution of AVI. By the above, b̂(y) = 0 for y large enough. So Z is a
bounded subset of R. 
�

4 SS-Technique; with Differentiability Assumptions

4.1 Setting

The setting here is the same as in Sect. 3.1. However, we always assume here not only

that each function ti : Δ+ → R is continuous but also is partially differentiable.17 Par-
tial differentiability is necessary for defining Assumptions LFH, DIR and DIR’ given
below.

4.2 Assumptions

Besides Assumptions AMSV, LFH’, RA, RA1, RA0 and EC from Sect. 3.3, we here
also consider four new ones:

17 It does not make sense to say that ti is partially differentiable on Δ. Indeed, D1ti (0, 0) does not make
sense.
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DIFF. ti : Δ+ → R is continuously partially differentiable.
LFH. For every (xi , y) ∈ Δ+: ti (xi , y) = 0 ⇒ D1ti (xi , y) < 0.
DIR. For every (xi , y) ∈ Δ+ with xi > 0: ti (xi , y) = 0 ⇒ (xi D1 +

yD2)ti (xi , y) < 0.
DIR’. For every xi > 0: ti (xi , xi ) = 0 ⇒ (D1 + D2)ti (xi , xi ) < 0.

Note that Assumptions LFH, DIR and DIR’ concern local conditions.18 Note that
DIR[i] ⇒ DIR’[i] and that LFH[i] ⇒ LFH’[i] ⇒ AMSV[i].

Lemma 4.1 1. [ DIFF[i] ∧ DIR’[i] ] ⇒ RA1[i].
2. [ DIFF[i] ∧ DIR[i] ] ⇒ RA[i]. 	
Proof 1. SupposeAssumptions DIFF[i] andDIR’[i] hold.We prove that t (1)i : R++ →
R has the AMSCFA-property, by showing that t (1)i (λ) = 0 ⇒ (t (1)i (λ))

′
< 0. Well,

by Lemma B.1 in “Appendix B”, we have (t (1)i )
′
(λ) = (D1 + D2)ti (λ, λ). DIR’[i]

implies the desired result.
2. Suppose DIFF[i] and DIR[i] hold. Fix μ ∈ ]0, 1]. We have to prove that t (μ)

i :
R++ → R has the AMSCFA-property. This we do by showing t (μ)

i (λ) = 0 ⇒
(t (μ)
i )

′
(λ)) < 0.Well, by Lemma B.1, (t (μ)

i )
′
(λ) = (μD1+D2)ti (μλ, λ). If t (μ)

i (λ) =
0, then ti (μλ, λ) = 0 and DIR[i] implies μλD1ti (μλ, λ) + λD2ti (μλ, λ) < 0. So

(t (μ)
i )

′
(λ) < 0. 
�

Lemma 4.2 Suppose Assumptions DIFF[i], LFH[i] and DIR[i] hold. Then for every
(xi , y) ∈ Δ+

ti (xi , y) = 0 ⇒ (D1 + D2)ti (xi , y) < 0. 	

Proof Suppose (xi , y) ∈ Δ+ with ti (xi , y) = 0. We have the following identity:

(D1 + D2)ti (xi , y) =
( xi D1 + yD2

y
+ y − xi

y
D1

)
ti (xi , y)

If xi > 0, then LFH[i] and DIR[i] imply the desired result. Now suppose xi = 0.
We have to prove ti (0, y) = 0 ⇒ (D1 + D2)ti (0, y) ≤ 0. Well, by LFH[i],
D1ti (0, y) < 0. By Lemmas 4.1(2) and 3.1, RA0[i] holds and as ti (0, y) = 0 it follows
that ti (0, y + h) ≤ 0 (h > 0). Therefore, D2ti (0, y) = limh↓0 ti (0,y+h)−ti (0,y)

h =
limh↓0 ti (0,y+h)

h ≤ 0. 
�

4.3 Properties of the Functions b̂i and ŝi

In the next lemma we consider the differentiability of b̂i ; note that by Lemma 3.6(1),
W++

i is open.

18 The name of the acronym DIFF is clear. DIR stands for ‘directional (derivative)’ and DIR’ for a special
case of the DIR assumption. Also see footnote 13.
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Proposition 4.1 Suppose Assumptions DIFF[i] and LFH[i] hold and W++
i �= ∅. Then

1. b̂i is continuously differentiable on W++
i with b̂′

i = − D2ti
D1ti

on W++
i .

2. ŝi is continuously differentiable onW
++
i with ŝ′

i (y) = − b̂i (y)D1ti (b̂i (y),y)+yD2ti (b̂i (y),y)
y2·D1ti (b̂i (y),y)

.

3. If Assumption DIR[i] holds, then ŝ′
i (y) < 0 (y ∈ W++

i ). 	

Proof 1. For every y ∈ W++
i we have b̂i (y) > 0 and therefore, by (9), ti (b̂i (y), y) =

0. As DIFF[i] holds, ti is continuously differentiable on Int(Δ+). As by LFH[i],
D1ti (b̂i (y), y) < 0 (y ∈ W++

i ), the classical implicit function theorem implies that

W++
i is open and b̂i is continuously differentiable onW

++
i . Differentiating the identity

ti (b̂i (y), y) = 0 (y ∈ W++
i ), the second statement follows.

2. By part 1.
3. Suppose DIR[i] holds. As for y ∈ W++

i we have ti (b̂i (y), y) = 0, the formula
in part 2 together with LFH[i] and DIR[i] imply ŝ′

i (y) < 0 (y ∈ W++
i ). 
�

Lemma 4.3 Suppose Assumptions DIFF, LFH and DIR hold. Then ŝ : W � → R and
every ŝi : W+

i → R are strictly decreasing where positive. 	
Proof By Lemma 4.1(2), RA holds; so with Lemma 3.1 RA0 also holds. By
Lemma 3.14, the proof is complete if we show that every ŝi : W+

i → R is strictly
decreasing. Well, by Lemma 3.13, this holds if i is of type I+. As each i is, by
Lemma 3.2(1), of type I+ or I−, the proof is complete if strict decreasingness holds
for i of type I−. So suppose i is of type I−. If W+

i = ∅, we are done. Suppose
W+

i �= ∅. Proposition 4.1(2) together with RA implies ŝ′
i (y) < 0 (y ∈ W++

i ). By
Lemma 3.11(3), W+

i = W++
i . Thus, ŝi : W+

i → R is strictly decreasing. 
�

4.4 Semi-uniqueness, Existence and Uniqueness

The following theorems provide variants of Theorems 3.3 and 3.4. Concerning this
note that, by Lemma 4.1(2), DIFF together with DIR imply RA. As a matter of fact
this makes that the other assumptions about type I+, type I I− and EC in Theorem 3.3
are not used anymore.

Theorem 4.1 Suppose Assumptions DIFF, LFH and DIR hold. Then AVI has at most
one nonzero solution. 	
Proof By Lemma 4.3, ŝ is strictly decreasing on the subset of its domain where it is
positive. Theorem 3.2(3) now implies the desired result. 
�
Theorem 4.2 Suppose Assumptions DIFF, LFH, DIR’ and RA0 hold and at least one
i ∈ N is of type I+. Then any of the following two assumptions is sufficient for AVI
to have a nonzero solution and for the solution set of AVI to be a non-empty compact
subset of Rn.

(a.) Assumption EC holds.
(b.) Every i ∈ N is of type I I−.
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If in addition to (a) and (b) Assumption DIR holds, then AVI has a unique nonzero
solution. 	
Proof First statement (about existence): by Lemma 4.1(1), RA1 holds and so by
Lemma 3.1 also RA0 holds. So the first statement in Theorem 4.1 applies and implies
the desired result.

Second statement (about uniqueness): by Lemma 4.1(2), RA holds. So the second
statement in Theorem 4.1 applies and implies the desired result. 
�
In addition to the previous theorem that presupposes that at least one i ∈ N is of type
I+, we provide with the next theorem a result that can handle situations where every
i ∈ N is of type I−. Remember the definition of Ñ in (11).

Theorem 4.3 Suppose Assumptions DIFF, LFH, DIR and EC hold and every i ∈ N is
of type I−. Then

1. For every i ∈ Ñ and sufficiently small y > 0, there exists a unique ξi (y) ∈ ]0, y [
with ti (ξi (y), y) = 0.

2. For every i ∈ Ñ the limit si := limy↓0 ξi (y)
y exists and si ∈ ]0, 1].

3.
∑

i∈Ñ si > 1 ⇔ AVI has a unique nonzero solution. 	
Proof Note that by Lemma 4.1(2), RA holds. Now by Lemma 3.1, RA0 also holds.

1. Suppose i ∈ Ñ , so ti (0, ỹi ) > 0 for some ỹi > 0. ByRA0, ti (0, y) > 0 (0 < y ≤
ỹi ). So, by Lemma 3.11(1), ]0, ỹi ] ∈ W++

i . Thus, for every y ∈ ]0, ỹi ], ξi (y) = b̂i (y)
is as looked for.

2. By the proof of part 1, we have b̂i (y) > 0 (0 < y ≤ ỹi ). Lemma 4.3 guarantees
that ŝi is strictly decreasing on ]0, ỹi [. As ŝi ≤ 1, the limit si exists and 0 < si ≤ 1.

3. For i ∈ N \ Ñ , we have ti (0, y) ≤ 0 (y > 0) and thus b̂i (y) = 0 (y > 0).
Therefore ŝi (y) = 0 (y > 0). Also we already know (by the proof of part 1) that, in
parts 1 and 2, ξi (y) = b̂i (y).

‘⇒’: suppose
∑

i∈Ñ si > 1; so Ñ �= ∅. By Theorem 4.1 we still have to
prove that AVI has a nonzero solution. As RA1 holds, Lemma 3.12(2) guarantees
that W � = R++. Consider ŝ : R++ → R. By part 2, we obtain limy↓0 ŝ(y) =
(
∑

i∈Ñ +∑
i∈N\Ñ ) limy↓0 ŝi (y) = ∑

i∈Ñ si > 1. By virtue of EC, we can fix y with

y >
∑

k∈N xk . So ỹ ∈ W �. By Lemma 3.7, b̂i (y) ≤ xi (i ∈ N ). It follows that
b(y) = ∑

k∈N b̂k(y) ≤ y and therefore ŝ(y) ≤ 1. Proposition 3.5 implies that ŝ is
continuous. By the intermediate value theorem, there exists y� ∈ W � with ŝ(y�) = 1.
Theorem 3.2(3) implies b̂(y�) ∈ AVI•\{0}.

‘⇐’: suppose AVI has a unique nonzero solution e. By Theorem 3.2(2), ŝ(eN ) = 1.
By Lemma 3.15, ŝ > 0 on ]0, eN ]. By Lemma 4.3, ŝ is strictly decreasing on ]0, eN ].
So

∑
i∈Ñ si = ∑

i∈Ñ limy↓0 ŝi (y) = limy↓0
∑

i∈Ñ ŝi (y) = limy↓0
∑

i∈N ŝi (y) =
limy↓0 ŝ(y) > ŝ(eN ) = 1. 
�
The fundamental result about the existence of the limit in Theorem 4.3(2) guarantees
that this limit in various cases can be computed as we shall illustrate in Sect. 5.4. Its
part 3 then gives a sufficient and necessary condition for AVI to have a unique solution
while 0 is not a solution.
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4.5 Sufficient and Necessary Conditions

ForCournot oligopolies there are powerful results dealingwith sufficient andnecessary
conditions for equilibriumuniqueness.Concerning this, [7] is amilestone. It concerns a
variant of a result in [14].Contrary to the latter result, it considers thewhole equilibrium
set and in particular does not exclude degenerate ones.19 The proof in [7] also is
much more elementary than the proof in [14] which deals with Cournot equilibria as
solutions of a complementarity problem to which differential topological fixed point
index theory is applied. The more simple nature of this proof was realised by using
ideas from the Selten–Szidarovszky technique.A shortcoming of the result in [7] is that
a strong variant of a Fisher–Hahn condition (see footnote 13) has to hold.20 Another is
that the price function is not allowed to be everywhere positive (which is an assumption
that often is used). In [29] a generalisation of the result in [7] was provided solving
these shortcomings; in addition, can deal with sum-aggregative games. Below we
even go a step further, by further generalising such that results apply to aggregative
variational inequalities. In addition we improve them intrinsically (by using the ŝi
besides the b̂i ). However, we only do this for the case where every i is of type I+ and
ti (0, y) > 0 (y > 0).21

Theorem 4.4 Suppose Assumptions DIFF, LFH, DIR’, RA0 and EC hold, N> �= ∅
and for every i ∈ N: i is of type I+ and ti (0, y) > 0 (y > 0). Then

1. For every x� ∈ AVI•, it holds that x�
i > 0 (i ∈ N ) and D1ti (x�

i , x
�
N ) < 0.

2. AVI• is a non-empty compact subset of Rn+ that contains a nonzero element.

3. −∑
i∈N

x�
i D1ti (x�

i ,x
�
N )+x�

N D2ti (x�
i ,x

�
N )

D1ti (x�
i ,x

�
N )

< 0 (x� ∈ AVI•) ⇒ #AVI• = 1.

4. AVI• = {x�} ⇒ −∑
i∈N

x�
i D1ti (x�

i ,x
�
N )+x�

N D2ti (x�
i ,x

�
N )

D1ti (x�
i ,x

�
N )

≤ 0. 	

Proof The assumptions imply (by Lemma 4.1(1)) that RA1 holds; so Lemma 3.10
applies. By the latter lemma, it holds for every i ∈ N that W �

i = [xi ,+∞ [ and
W++

i = ]xi ,+∞ [. So, with x = maxi x i , the domain of ŝ is W � = [x,+∞ [. Note
that ]x,+∞ [ ⊆ W++

i (i ∈ N ). Proposition 4.1(2) implies that ŝ is differentiable at
every y ∈ ]x,+∞ [ with

ŝ′(y) = −
∑

i∈N

b̂i (y)D1ti (b̂i (y), y) + yD2ti (b̂i (y), y)

y2D1ti (b̂i (y), y)
.

1. Suppose x� ∈ AVI• and let i ∈ N . As N> �= ∅, we have by Proposi-
tion 3.1(1) that x�

N �= 0. By Theorem 3.2(4), x�
i = b̂i (x�

N ). If x�
i = 0, then

ti (0, x�
N ) = ti (b̂i (x�

N ), x�
N ) ≤ 0 which thus is impossible. So we have x�

i > 0 and

therefore ti (x�
i , x

�
N ) = ti (b̂i (x�

N ), x�
N ) = 0. Now LFH[i] implies D1ti (x�

i , x
�
N ) < 0.

19 I.e. equilibria x� for which there exists i with x�
i = 0 and Di fi (x�) = 0. Also see (10) in Sect. 3.4.

20 See [29] for details.
21 We think that handling the other cases should be possible, butwill entail various additional quite technical
boundary and differentiability issues.
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2. By Theorem 5.1.

3. Suppose −∑
i∈N

x�
i D1ti (x�

i ,x
�
N )+x�

N D2ti (x�
i ,x

�
N )

D1ti (x�
i ,x

�
N )

< 0 (x� ∈ AVI•). By part 1, it is

sufficient to prove that #AVI• = 1. By Theorem 3.2(3) and part 1, AVI• = {b̂(y) | x ≤
y < +∞ with ŝ(y) = 1}. We prove that there exists at most one y ∈ [x,+∞ [ with
ŝ(y) = 1. As ŝ is (by Proposition 3.5) continuous, this in turn can be done by showing
that ŝ − 1 has the AMSCFA-property. For this in turn it is sufficient that ŝ′(y) < 0
for every y ∈ [x,+∞ [ with ŝ(y) = 1. So suppose y ∈ [x,+∞ [ with ŝ(y) = 1.
Let x� = b̂(y). By Theorem 3.2(1) and part 1, x� is a nonzero solution of AVI.
This implies x�

N = ∑
i b̂i (y) = b̂(y) = y. As x�

i = b̂i (y) = b̂i (x�
N ), we obtain

−∑
i∈N

b̂i (y)D1ti (b̂i (y),y)+x�
N D2ti (b̂i (y),y)

y2D1ti (b̂i (y),y)
< 0. By Lemma 3.16 we have y > x . Now

Proposition 4.1(3) implies ŝ′(y) < 0.
4. Suppose AVI• = {x�}. By part 1, x� �= 0. By Theorem 3.2(2), fix(b̂) = {x�

N }.
This implies that ŝ − 1 has x�

N as unique zero. By Lemma 3.16, x�
N > x . So ŝ is

differentiable at x�
N . We now prove by contradiction that ŝ′(x�

N ) ≤ 0. Well, sup-
pose ŝ′(x�

N ) > 0. Let g := ŝ − 1. So g(x�
N ) = 0 and g′(x�

N ) = ŝ′(x�
N ) > 0;

this implies that there exists x ′ ∈ ]x, x�
N [ with g(x ′) < 0. Also, by Lemma 3.16,

g(x) = ŝ(x) − 1 > 0. As g is continuous, g has a zero in ]x, x�
N [, which is a contra-

diction. As by Theorem 3.2(4), x�
i = b̂i (xN� ) (i ∈ N ), we obtain by Proposition 4.1(2),

−∑
i∈N

x�
i D1ti (x�

i ,x
�
N )+x�

N D2ti (x�
i ,x

�
N )

D1ti (x�
i ,x

�
N )

= (x�
N )2ŝ′(x�

N ) ≤ 0. 
�

5 Variational Inequalities and Nash Equilibria

5.1 Setting

Consider a game in strategic form with player set N := {1, . . . , n}, for player i ∈ N
a strategy set Xi and payoff function fi . So every Xi is a non-empty set and every fi
a function X1 × · · · × Xn → R. We denote the set of strategy profiles X1 × · · · × Xn

also by X. For i ∈ N , define Xı̂ := X1 × · · · × Xi−1 × Xi+1 × · · · × Xn . Further
assume n ≥ 2. We denote such a game by Γ .

Given i ∈ N , we sometimes identify X with Xi × Xı̂ and then write x ∈ X as
x = (xi ; xı̂ ). For i ∈ N and z ∈ Xı̂ , the conditional payoff function f (z)

i : Xi → R is

defined by f (z)
i (xi ) := fi (xi ; z) and the best-reply correspondence Ri : Xı̂ � Xi is

defined by Ri (z) := argmaxxi∈Xi
f (z)
i (xi ).

Remember: a strategy profile x ∈ X is called aNash equilibrium if xi ∈ Ri (xı̂ ) (i ∈
N ).

5.2 AssociatedVariational Inequality

First suppose that each strategy set Xi of Γ is a proper real interval and that each
payoff function fi is partially differentiable with respect to its i-th variable. Now for
x = (xi ; z) ∈ X one has
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Di fi (x) = Di fi (xi ; z) = ( f (z)
i )

′
(xi ). (13)

Definition 5.1 Consider Γ . The associated variational inequality VI[Γ ] is the varia-
tional inequality VI(X,F), i.e.

F(x�) · (x − x�) ≥ 0 (x ∈ X),

where F = (F1, . . . , Fn) : X → R
n is given by

Fi (x) = −Di fi (x). 	

Proposition 5.1 Consider the associated variational inequality VI[Γ ].
1. Suppose e is a Nash equilibrium. Then e is a solution of VI[Γ ].
2. Suppose e is a solution of VI[Γ ] and i ∈ N. If the conditional payoff function f (eı̂ )

i
is pseudo-concave,22 then ei ∈ Ri (eı̂ ).

3. Suppose e is a solution of VI[Γ ]. If every f (eı̂ )
i is pseudo-concave, then e is a Nash

equilibrium.
4. Suppose each conditional payoff function is pseudo-concave and let e ∈ X. Then:

e is a Nash equilibrium if and only if e is a solution of VI[Γ ]. 	
Proof 1. As e is a Nash equilibrium, we have for every i that ei is a maximiser of the
conditional payoff function f (eı̂ )

i : R+ → R. Its differentiability at ei together with

Fermat’s theorem implies ( f (eı̂ )
i )

′
(ei )(xi − ei ) ≤ 0 (xi ∈ Xi ), i.e. that Di fi (e) · (xi −

ei ) ≤ 0 (xi ∈ Xi ). As Di fi (e) = −Fi (e), this becomes Fi (e)·(xi−ei ) ≥ 0 (xi ∈ Xi ).
Summing over i ∈ N gives F(e) · (x − e) ≥ 0 (x ∈ X).

2. We prove that ei is a maximiser of f (eı̂ )
i . We have F(e) · (x − e) ≥ 0 (x ∈ X).

By taking an x ∈ X with x j = e j if j �= i , we see that Fi (e) · (xi − ei ) ≥ 0 (xi ∈ Xi ),

i.e. that Di fi (e) · (xi − ei ) ≤ 0 (xi ∈ Xi ). Thus, ( f
(eı̂ )
i )

′
(ei ) · (xi − ei ) ≤ 0 (xi ∈ Xi ).

As f (eı̂ )
i is pseudo-concave, it follows that ei is a maximiser of this function.

3. By part 2. 4. By parts 1 and 3. 
�
Next let us consider a more subtle situation dealing with games that we simply

refer to as ‘almost smooth’. This type of game allows for a possible discontinuity at
the origin which is useful for various specific games, like that in Sect. 5.4.

Definition 5.2 Γ is called almost smooth if for every i ∈ N :

a. Xi = R+;

22 We recall the definition of pseudo-concavity for a differentiable function h : I → R where I is a proper
real interval. h is (strictly) pseudo-concave if for all x, y ∈ I with x �= y: h′(x)(y − x) (<) ≤ 0 ⇒
h(y) (<) ≤ h(x). We note that for a strictly pseudo-concave h, its derivative h′ has the AMSCFA-property
(see Definition 3.1). Also important for us is Theorem 3.1 in [8]), which states for a twice differentiable h:
if for all x ∈ I the implication h′(x) = 0 ⇒ h′′(x) < 0 holds, then h is strictly pseudo-concave. (Note
that here I may be closed and h may not be twice continuously differentiable.)
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b. fi is partially differentiable with respect to its i-th variable at every x �= 0;
c. the partial derivative Di fi (0) exists as an element of R ∪ {+∞}. 	
Note that for an almost smooth Γ for every i ∈ N : each conditional payoff function
f (z)
i with z �= 0 is differentiable, the conditional payoff function f (0)

i is differentiable
onR++ and its derivative at 0 exists as element ofR∪{+∞}. Also note that the payoff
functions fi are not supposed to be continuous. Finally note that for x = (xi ; z) ∈ X,
formula (13) holds.

Definition 5.3 Consider an almost smooth game Γ . The associated variational
inequality VI’[Γ ] is the variational inequality VI(X,F), i.e. F(x�) · (x − x�) ≥
0 (x ∈ X) where F = (F1, . . . , Fn) : X → R

n is given by Fi (x) =⎧
⎨

⎩

−Di fi (x) if x �= 0,
−Di fi (0) if x = 0 and Di fi (0) �= +∞,

−137 if x = 0 and Di fi (0) = +∞. 	
Note that for an almost smooth Γ where Di fi (0) �= +∞ (i ∈ N ), the associated

variational inequalityVI’[Γ ] is the same as the associated variational inequalityVI[Γ ]
and then Proposition 5.1 holds. For VI’[Γ ] the following variant of Proposition 5.1
holds.

Proposition 5.2 Suppose Γ is almost smooth.

1. Suppose e is a nonzero Nash equilibrium. Then e is a solution of VI’[Γ ].
2. Suppose e is a nonzero solution of VI’[Γ ] and i ∈ N. If the conditional payoff

function f (eı̂ )
i is pseudo-concave, then ei ∈ Ri (eı̂ ).

3. Suppose e is a nonzero solution of VI’[Γ ]. If every f (eı̂ )
i is pseudo-concave, then

e is a Nash equilibrium.
4. Suppose each conditional payoff function is pseudo-concave and let e be a nonzero

strategy profile. Then: e is aNash equilibrium if and only if e is a solution of VI’[Γ ].
	

Proof The proof is the same as in Proposition 5.1 by noting that Di fi (e) = −Fi (e)
as e �= 0. 
�

Verifying pseudo-concavity in applications for the conditional payoff functions
may be not so easy. For a broad class of sum-aggregative games we shall derive prac-
tical results (i.e. Proposition 5.5) in terms of marginal reductions (see Definition 5.5)
guaranteeing pseudo-concavity.

5.3 Sum-aggregative Games

Definition 5.4 Consider a game Γ in the case when each strategy set is a subset of
R. For i ∈ N , let Zi := ∑

j �=i X j (Minkowski sum). Γ is sum-aggregative if there

exists functions f̃ (z)
i : Xi → R (z ∈ Zi ), referred to as reduced conditional payoff

functions, such that f (z)
i = f̃

(
∑

j z j )
i . 	
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Note that reduced conditional payoff functions, if well-defined, are uniquely deter-
mined.

Remember the definition of Δ and Δ+ in (6).

Definition 5.5 SupposeΓ is almost smooth and sum-aggregative. Themarginal reduc-
tions of Γ are defined as the functions ti : Δ → R (i ∈ N ) given by

ti (xi , y) :=

⎧
⎪⎨

⎪⎩

( f̃ (y−xi )
i )

′
(xi ) if (xi , y) �= (0, 0),

( f̃ (0)
i )

′
(0) if (xi , y) = (0, 0) and ( f (0)

i )
′
(0) �= +∞,

137 if (xi , y) = (0, 0) and ( f (0)
i )

′
(0) = +∞.

	

Proposition 5.3 Consider an almost smooth sum-aggregative game Γ together with
its marginal reductions ti .

1. ti (xi , xN ) =
⎧
⎨

⎩

Di fi (x) if x �= 0,
Di fi (x) if x = 0 and Di fi (x) �= +∞,

137 if x = 0 and Di fi (x) = +∞.

2. For all (xi ; z) ∈ X with xi + ∑
j z j �= 0: ( f (z)

i )
′
(xi ) = ti (xi , xi + ∑

j z j ). 	
3. If ( f (0)

i )
′
(0) �= +∞, then ( f (0)

i )
′
(0) = ti (0, 0).

Proof 1. For x �= 0, by Definition 5.5 and (13), ti (xi , xN ) = ( f̃ (xN−xi )
i )

′
(xi ) =

( f (xı̂ )
i )

′
(xi ) = Di fi (x). Now suppose x = 0 and Di fi (x) �= +∞. Then, as +∞ �=

Di fi (x) = ( f (0)
i )

′
(0) = ( f̃ (0)

i )
′
(0), we obtain ti (xi , xN ) = ti (0, 0) = ( f̃ (0)

i )
′
(0) =

Di fi (0). Finally, suppose x = 0 and Di fi (x) = +∞. Then, as +∞ = Di fi (x) =
( f (0)

i )
′
(0) = ( f̃ (0)

i )
′
(0), we obtain ti (xi , xN ) = ti (0, 0) = 137.

2. By part 1, ti (xi , xi + ∑
j z j ) = Di fi (xi ; z) = ( f (z)

i )
′
(xi ).

3. Suppose ( f (0)
i )

′
(0) �= +∞. By Definition 5.5, ti (0, 0) = ( f̃ (0)

i )
′
(0) =

( f (0)
i )

′
(0). 
�

Lemma 5.1 Consider an almost smooth sum-aggregative Γ together with a marginal
reduction ti . Suppose ti : Δ+ → R is continuous and continuously partially differen-
tiable.

1. Each conditional payoff function f (z)
i (z �= 0) is twice differentiable, f (0)

i is twice

differentiable onR++ and the formula ( f (z)
i )

′′
(xi ) = (D1 + D2)ti (xi , xi +∑

l zl)
holds.

2. Sufficient for the conditional payoff functions f (z)
i (z �= 0) to be strictly pseudo-

concave is that for every 0 ≤ xi ≤ y, ti (xi , y) = 0 ⇒ (D1 + D2)ti (xi , y) < 0.
3. Sufficient for the conditional payoff function f (0)

i to be strictly pseudo-concave on
R++ is that for every xi > 0, ti (xi , xi ) = 0 ⇒ (D1 + D2)ti (xi , xi ) < 0. 	

Proof 1. First and third statement: let a := ∑
l zl . By Proposition 5.3(2), ( f

(z)
i )

′
(xi ) =

ti (xi , xi + a). Thus, ( f (z)
i )

′′
(xi ) is nothing else than the derivative of the function

R+ → R defined by λ �→ ti (λ, λ + a) at λ = xi . Note that a > 0. As ti : Δ+ → R
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is continuously partially differentiable, it follows that ti is continuously differentiable
on Int(Δ+). If xi �= 0, then (xi , xi + a) ∈ Int(Δ+) and therefore the chain rule

can be applied implying ( f (z)
i )

′′
(xi ) = (D1 + D2)ti (xi , xi + a). If xi = 0, then

( f (z)
i )

′′
(0) = limh↓0 ti (h,h+a)−ti (0,a)

h . Applying Lemma B.2 in “Appendix B” gives

( f (z)
i )

′′
(xi ) = (D1 + D2)ti (0, a).

Second and third statement: by Proposition 5.3(2), ( f (0)
i )

′
(xi ) = ti (xi , xi ). Apply-

ing Lemma B.1 in “Appendix B” gives ( f (0)
i )

′′
(xi ) = (D1 + D2)ti (xi , xi ).

2. In order to prove the strict pseudo-concavity of f (z)
i , we show (having part 1 and

footnote 22) that for every xi ≥ 0 the implication ( f (z)
i )

′
(xi ) = 0 ⇒ ( f (z)

i )
′′
(xi ) < 0

holds. Well, with part 1 and y = xi + a, this becomes ti (xi , y) = 0 ⇒ (D1 +
D2)ti (xi , y) < 0.

3. Consider the function f (0)
i : R++ → R. In order to prove the strict pseudo-

concavity (havingpart 1 and footnote 22),we show that for every xi > 0 the implication

( f (0)
i )

′
(xi ) = 0 ⇒ ( f (0)

i )
′′
(xi ) < 0 holds.Well, with part 1 this becomes ti (xi , xi ) =

0 ⇒ (D1 + D2)ti (xi , y) < 0. 
�
Having the above, now consider for an almost smooth sum-aggregative game Γ its

associated variational inequality VI’[Γ ] (see Definition 5.3). With the ti the marginal
reductions ofΓ , Proposition 5.3 implies Fi (x) = −ti (xi , xN ). Thus, VI’[Γ ] is nothing
else than the aggregative variational inequality given by (7).

Proposition 5.4 Consider an almost smooth sum-aggregative game Γ together with
its marginal reductions ti . Then N> �= ∅ ⇒ 0 is a not Nash equilibrium. 	
Proof Suppose N> �= ∅. Fix i ∈ N>. By Fermat’s theorem, if 0 is an equilibrium, then

( f (0)
i )

′
(0) ≤ 0. So, if ( f (0)

i )
′
(0) = +∞, then 0 is not an equilibrium. Next suppose

( f (0)
i )

′
(0) �= +∞. Then, by Proposition 5.3(3), ( f (0)

i )
′
(0) = ti (0, 0) > 0 and thus 0

is not an equilibrium. 
�
Proposition 5.5 Consider an almost smooth sum-aggregative Γ together with a
marginal reduction ti : Δ → R. Suppose that for every i ∈ N

(a). ti : Δ+ → R is continuous and continuously partially differentiable;
(b). for every (xi , y) ∈ Δ+: ti (xi , y) = 0 ⇒ D1ti (xi , y) < 0;
(c). for every (xi , y) ∈ Δ+ with xi > 0: ti (xi , y) = 0 ⇒ (xi D1 + yD2)ti (xi , y) < 0.

Then:

1. The conditional payoff functions f (z)
i (z �= 0) are strictly pseudo-concave.

2. The conditional payoff function f (0)
i is strictly pseudo-concave on R++. 	

Proof We apply Lemma 5.1. So in part 1 we have to prove that for every 0 ≤ xi ≤ y:
ti (xi , y) = 0 ⇒ (D1 + D2)ti (xi , y) < 0. And in part 2 that for every xi > 0:
ti (xi , xi ) = 0 ⇒ (D1 + D2)ti (xi , xi ) < 0. Well, these implications are guaranteed
by Lemma 4.2. 
�
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Part 2 of the next theorem provides a full result that applies to many concrete
sum-aggregative games in the literature.

Theorem 5.1 Consider for the marginal reductions ti : Δ → R of an almost smooth
sum-aggregative game Γ the following six assumptions that are supposed to hold for
every i ∈ N.

(a). ti : Δ+ → R is continuous and continuously partially differentiable.
(b). for every (xi , y) ∈ Δ+: ti (xi , y) = 0 ⇒ D1ti (xi , y) < 0.
(c). for every (xi , y) ∈ Δ+ with xi > 0: ti (xi , y) = 0 ⇒ (xi D1 + yD2)ti (xi , y) <

0.
(d). there exists xi > 0 such that ti (xi , y) < 0 for every (xi , y) ∈ R

2+ with xi ≤
xi ≤ y.

(e). ti (0, y) > 0 for some y > 0 ⇒ ti (0, 0) > 0.
(f). ti (0, y) < 0 for y > 0 large enough.

Then:

1. Suppose Assumptions (a), (b) and (c) hold. Then for e �= 0: e is a Nash equilibrium
⇔ e is a solution of VI’[Γ ].

2. SupposeAssumptions (a), (b), (c), (e) hold and for at least one i ∈ N that ti (λ, λ) >

0 for λ small enough. If Assumpt. (d) or (f) holds, then Γ has a unique nonzero
Nash equilibrium. 	

Proof First note that (a), (b), (c), (d) respectively concern DIFF, LFH, DIR, EC, that
(e) says Ñ ⊆ N> and that (f) means that i is of type I I−. Also rememberDIR⇒DIR’,
LFH ⇒ LFH’, [DIFF ∧ DIR] ⇒ RA and [LFH’ ∧ RA] ⇒ RA0 (see Lemmas 4.1(2)
and 3.1).

1. First suppose e is a Nash equilibrium. By Proposition 5.2(1), e is a solution of
VI’[Γ ]. Next suppose e is a solution of VI’[Γ ]. As e �= 0, there are two cases.

Case where #{i ∈ N | ei �= 0} ≥ 2: now eı̂ �= 0 (i ∈ N ). By Proposition 5.5(1),
every conditional payoff function f (eı̂ )

i is pseudo-concave. So Proposition 5.2(3) guar-
antees that e is a Nash equilibrium.

Case where #{i ∈ N | ei �= 0} = 1: let k be such that ei = 0 (i �= k) and
ek > 0. By Proposition 3.1(2), k ∈ Ñ ; so k ∈ N>. By Proposition 5.5(1), every
f (eı̂ )
i (i �= k) is pseudo-concave. So, by Proposition 5.2(2), ei ∈ Ri (eı̂ ) (i �= k). We

now prove that also, ek ∈ Rk(ek̂), i.e. that ek is a maximiser of f (0)
k , and then the proof

is complete. Well, as e is a solution of VI’[Γ ], we have by (9) and Proposition 5.3(2)
that 0 = tk(ek, eN ) = tk(ek, ek) = ( f (0)

k )
′
(ek). As, by Proposition 5.5(2), f (0)

k is

pseudo-concave on R++, ek is a maximiser of the function f (0)
k : R++ → R. By

contradiction we now prove that ek also is a maximiser of f (0)
k : R+ → R. So

suppose it is not. Then f (0)
k (0) > f (0)

k (ek) and 0 is a maximiser of f (0)
k . This implies

( f (0)
k )

′
(0) ≤ 0. Thus, by Proposition 5.3(3), tk(0, 0) = ( f (0)

k )
′
(0) ≤ 0, which is a

contradiction with k ∈ N>.
2. We prove that VI’[Γ ] has a unique nonzero solution; then we are done by part

1. Well, Theorem 4.2 applies and proves the desired result. 
�
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5.4 Application to Cournot Equilibria

In this subsection we illustrate the power of our general theory by giving a short proof
of an important result in [23]. As therein each firm is of type I−, Theorem 5.1 does
not apply; we have to rely on Theorem 4.3.

So consider, as in Sect. 2.6, a Cournot oligopoly gameΓ with at least two firmswith
price function p and cost functions ci . Suppose that p(y) = 1/y (y > 0) and that the ci
are twice continuously differentiable with c′

i > 0 and c′′
i > 0.With formula (5) we see

thatΓ is an almost smooth sum-aggregative game. Consider the associated aggregative

variational inequality VI’[Γ ]. As ( f (0)
i )

′
(0) = limh↓0(1 − ci (h) + ci (0))/h = +∞,

we have for the marginal reductions

ti (xi , y) =
{
p′(y)xi + p(y) − c′

i (xi ) = − xi
y2

+ 1
y − c′

i (xi ) if (x,y) �= (0, 0),

137 if (xi , y) = (0, 0).

One very quickly verifies that Assumptions DIFF, LFH, DIR and EC hold. Now let us
apply Theorem 4.3. We there have Ñ = N and as ti (λ, λ) = −c′

i (λ) < 0, each player

is of type I−. Solving 0 = ti (ξi (y), y) = − ξi (y)
y2

+ 1
y − c′

i (ξi (y)) gives

xii
y

= 1 − yc′
i (

ξi (y)

y
). (14)

Theorem 4.3(2) guarantees that si = limy↓0 ξi (y)/y exists. Taking this limit (14)
gives si = 1 (i ∈ N ). Thus, with Theorem 4.3(3) it follows that VI’[Γ ] has a unique
nonzero solution, say e. Now Theorem 5.1(1) implies that e is a unique nonzero
Cournot equilibrium. Further as N> �= ∅, 0 is by Proposition 5.4 not a Cournot
equilibrium. Thus, the game has a unique Cournot equilibrium and this equilibrium is
nonzero.

6 Conclusions

Finite-dimensional variational inequalities over product sets with an aggregative struc-
ture are dealt with. New results concerning existence and especially concerning
semi-uniqueness, uniqueness and computation of solutions are obtained for the case
of Rn+. This is achieved by generalising the Selten–Szidarovszky technique and by
exploiting the At Most Single Crossing From Above property. This technique trans-
forms the original n-dimensional problem into a 1-dimensional fixed point problem.
We allow, as this is important for various applications, for a possible discontinuity
at the origin. An application to Nash equilibria of sum-aggregative games that does
not need explicit pseudo-concavity assumptions for the conditional payoff functions
follows in a natural way. The used mathematics is relatively elementary (although it
is technical) when compared to standard approaches. We corrected various errors in
the literature that occurred by applying the standard approach to Cournot oligopolies
and illustrate the power of our results with such games. In order to make the article
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more alluring for a broader audience, also a nearly self-contained presentation of the
very basic theory of variational inequalities is added in “Appendix A”.
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Appendix A: Variational Inequalities

Results in this section concern the general variational inequality VI(X ,F) in (1):

F(x�) · (x − x�) ≥ 0 (x ∈ X),

where X is a non-empty subset ofRn and F = (F1, . . . , Fn) : X → R
n . These results

essentially can be found in the literature; in particular see [12]. However, below we
present a nearly23 self-contained presentation which especially may be useful for
readers that are not (so) familiar with variational inequalities.

Lemma A.1 Suppose F : X → R
n. Consider the variational inequality VI(X ,F) and

let u ∈ X. If F(x) = F(x) for every x �= u, then for every x� ∈ X \{u}: x� is a solution
of VI(X ,F) ⇔ x� is a solution of VI(X ,F). 	
Proof As F(x�) = F(x�). 
�

The next two lemmas are very fundamental. Lemma A.2 relates VI(X ,F) to a
nonlinear complementarity problem and Lemma A.3 relates VI(X ,F) to a, what one
may call, a mixed nonlinear complementarity problem.

Lemma A.2 Let X = R
n+. For x� ∈ R

n+ the following four statements are equivalent.

(a). x� is a solution of VI(Rn+,F).
(b). x� is a solution of: x ≥ 0 ∧ F(x) · x = 0 ∧ F(x) ≥ 0.
(c). For every i ∈ N: x�

i ≥ 0, x�
i Fi (x

�) = 0 ∧ Fi (x�) ≥ 0.
(d). For every i ∈ N exactly one the following holds: [x�

i = 0 ∧ Fi (x�) ≥
0] and [x�

i > 0 ∧ Fi (x�) = 0]. 	
Proof ‘(a) ⇒ (b)’: suppose x� is a solution of VI(Rn+,F). Then x� ≥ 0 and F(x�) ·
(x − x�) ≥ 0 (x ≥ 0). In particular for24 x = x� + ei we have Fi (x�) ≥ 0. So
F(x�) ≥ 0. This implies F(x�) · x� ≥ 0. If there exists an i with Fi (x�)x�

i < 0, then
for x = x� + x�

i ei we find the contradiction 0 > Fi (x�)x�
i = F(x�) · (x − x�) ≥ 0.

Thus F(x�) · x� = 0 follows.

23 The exceptions concern the use of Brouwer’s fixed point theorem and the Gale–Nikaido theorem.
24 Denoting by ei the i th basis vector.
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‘(b) ⇒ (a)’: suppose x� ≥ 0 ∧ F(x�) · x� = 0 ∧ F(x�) ≥ 0. Then for every
x ≥ 0, we obtain, as desired, thatF(x�)·(x−x�) = F(x�)·x−F(x�)·x� = F(x�)·x ≥ 0.

‘b ⇒ c’: suppose x� ≥ 0 ∧ F(x�) · x� = 0 ∧ F(x�) ≥ 0. Concerning c
we show that x�

i Fi (x
�) = 0 (i ∈ N ). Well, suppose x�

j Fj (x�) �= 0 for some j . Then
x�
j > 0 and Fj (x�) > 0 and the contradiction F(x�) · x� > 0 would follow.
‘(c) ⇒ (b)’: clear. ‘(c) ⇔ (d)’: clear. 
�

Lemma A.3 Let X = [0,m1]×· · ·×[0,mn]. For x� ∈ X the following two statements
are equivalent.

(a). x� is a solution of VI(X ,F).
(b). For every i ∈ N exactly one of the following holds:

[x�
i = 0 ∧ Fi (x�) ≥ 0], [0 < x�

i < mi ∧ Fi (x�) = 0], [x�
i =

mi ∧ Fi (x�) ≤ 0]. 	
Proof ‘(a) ⇒ (b)’: suppose x� is a solution of VI(X ,F).

If x�
i = 0, then for x = x� + εei , F(x�) · (x − x�) = Fi (x�)ε ≥ 0. So Fi (x�) ≥ 0.

If 0 < x�
i < mi , then for x = x� + εei , again Fi (x�) ≥ 0 follows and for

x = x� − εei , −Fi (x�) ≥ 0 follows. So Fi (x�) = 0.
If x�

i = mi , then for x = x� − εei , again Fi (x�) ≤ 0 follows.
‘(b) ⇒ (a)’: suppose (b) holds; fix x ∈ X. We prove that for every i ∈ N ,

Fi (x�)(xi − x�
i ) ≥ 0; then (a) follows.

If x�
i = 0, then Fi (x�) ≥ 0 and therefore Fi (x�)(xi − x�

i ) = Fi (x�)xi ≥ 0.
If 0 < x�

i < mi , then Fi (x�) = 0 and therefore Fi (x�)(xi − x�
i ) = 0.

If x�
i = mi , then Fi (x�) ≤ 0 and therefore Fi (x�)(xi − mi ) ≥ 0. 
�

For S ⊆ X , F is said to be strictly monotone on S if for all x, x′ ∈ S with x �= x′

(x − x′) · (F(x) − F(x′)) > 0.

And F is said to be a P-function on S if for all x, x′ ∈ S with x �= x′ there exists an
index k such that

(xk − x ′
k) · (Fk(x) − Fk(x′)) > 0.

Of course, if F is strictly monotone on S, then it is a P-function on S.

Lemma A.4 Let X = R
n+. Suppose S ⊆ X.

1. If F is a P-function on S, then VI(X ,F) has at most one solution in S.
2. If F is strictly monotone on S, then VI(X ,F) has at most one solution in S. 	
Proof 1. Suppose F is a P-function on S and x, x′ ∈ S are solutions. By
Lemma A.2(a,c), for every i

(xi − x ′
i )(Fi (x) − Fi (x′)) = (−x ′

i Fi (x) − xi Fi (x′)) + (xi Fi (x) + x ′
i Fi (x

′))
= (−x ′

i Fi (x) − xi Fi (x′)) + (0 + 0) ≤ 0.

Since F is a P-function on S, this implies x = x′.
2. By part 1. 
�
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In the following two lemmaswe deal with the situationwhere S is a proper rectangle
inRn+, i.e.where S = S1×· · ·×Sn with each Si is a proper real intervalwith Si ⊆ R+.25

Lemma A.5 Let X = R
n+. Suppose S is a proper rectangle in R

n+, every Fi : S → R

is continuously differentiable. If for every x ∈ S the Jacobi matrix J(x) of F at x is
positive quasi-definite, then F is strictly monotone on S. 	
Proof Suppose for every x ∈ S the matrix J(x) is positive quasi-definite. Fix x, x̆ ∈ S
with x �= x̆.We have to prove that (x−x̆)·(F(x)−F(x̆)) > 0.Well, let y : [0, 1] → R

n

be defined by y(λ) := λx + (1 − λ)x̆ and let H := F ◦ y : [0, 1] → R
n . Note that H

is continuously differentiable with H′(λ) = J(y(λ))�(x − x̆). We obtain

(x − x̆) · (F(x) − F(x̆)) = (x − x̆) · (H(1) − H(0)) = (x − x̆) ·
∫ 1

0
H′(λ) dλ

=
∫ 1

0
(x − x̆) · J(y(λ))�(x − x̆) dλ > 0.


�
Lemma A.6 Let X = R

n+. Suppose S is a proper rectangle in R
n+, every Fi : S → R

is continuously differentiable and for all x ∈ S, the Jacobi matrix J(x) of F at x is a
P-matrix. Then F is a P-function on S. 	
Proof This is a quite technical and deep result, due to Gale and Nikaido, which essen-
tially can be found in [6]. Also see [5, Proposition 3.5.9]. 
�
Lemma A.7 Suppose F : X → R

n is continuous. Then VI•(X ,F) is a closed subset
of Rn. 	
Proof Let (xm) be a sequence in VI•(X ,F) which is convergent with limit x�. So we
have for every m that F(xm) · (x − xm) ≥ 0 (x ∈ X). As F is continuous, we obtain,
by taking limits, F(x�) · (x − x�) ≥ 0 (x ∈ X). Thus x� is a solution of VI(X ,F),
which completes the proof. 
�
Lemma A.8 Suppose X is convex and closed. Denote by PX : R

n → X the (now
well-defined) metric projection of Rn on X, i.e. PX (y) denotes the unique z ∈ X with
‖ y − z ‖ ≤ ‖ y − x ‖ (x ∈ X). Define H : X → R

n by

H(x) := PX (x − F(x))

Let x� ∈ X. Then: x� is a solution of VI(X ,F) ⇔ x� = H(x�), i.e. x� is a fixed point
of H. 	
Proof x is a solution of VI(X ,F) ⇔ F(x�) · (x− x�) ≥ 0 (x ∈ X) ⇔ ((x� −F(x�))−
x�) · (x − x�) ≤ 0 (x ∈ X) ⇔ x� = PX (x� − F(x�)) ⇔ x� = H(x�). 
�
25 Lemma A.5 also holds, with the same proof if S a non-empty open convex subset of Rn with S ⊆ R

n+.
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Lemma A.9 Suppose X is convex and compact and F : X → R
n is continuous. Then

VI•(X ,F) is a non-empty compact subset of Rn. 	
Proof As X is compact, X is bounded and therefore also VI•(X ,F) is bounded. As
VI•(X ,F) is by Lemma A.7 closed, this set is compact. So we still have to prove that
a solution exists.

By Lemma A.8, x is a solution of VI(X ,F) if and only if x� is a fixed point of H .
As F and PX are continuous, also H is continuous. Brouwer’s fixed point theorem
guarantees the existence of a fixed point of H . 
�
Lemma A.10 Suppose X is convex and F : X → R

n is continuous. For r > 0, let
Xr = {x ∈ R

n | ‖ x ‖ ≤ r} ∩ X. Then for x� ∈ X the following two statements are
equivalent.

(a). x� is a solution of VI(X ,F).
(b). There exists r > ‖ x� ‖ such that x� is a solution of VI(Xr ,F). 	

Proof ‘(a) ⇒ (b)′: suppose x� is a solution of VI(X ,F). Take r > ‖ x� ‖ arbitrary.
As ‖ x� ‖ ∈ Xr ⊆ X , x� also is a solution of VI(Xr ,F).

‘(b) ⇒ (a)′: suppose r > ‖ x� ‖ is such that x� is a solution of VI(Xr ,F). Let x ∈
X . For λ > 0 small enough, we have, using that X is convex, y := x�+λ(x−x�) ∈ Xr .
As x� is a solution of VI(Xr ,F), we obtain λF(x�) · (x − x�) = F(x�) · (y − x�) ≥ 0
and therefore, as desired, F(x�) · (x − x�) ≥ 0. 
�

Notation: for π ∈ Sn , i.e. a permutation of N , define Pπ : X → R
n by

Pπ (x1, . . . , xn) = (xπ<−1>(1), . . . , xπ<−1>(n)). (15)

We call the general variational equality VI(X ,F) symmetric if Pπ (X) = X and for
every π ∈ Sn and x ∈ X

Fi (x) = Fπ(i)(Pπ (x)).

Lemma A.11 Suppose VI(X ,F) is symmetric. If x� is a solution of VI(X ,F) and
π ∈ Sn, then Pπ (x�) is also a solution. 	
Proof As x� is a solution, we have F(x�) · (x − x�) ≥ 0 (x ∈ X). And from this, as
desired,

F(Pπ (x�)) · (x − Pπ (x�))

=
∑

i

Fi (Pπ (x�)) ·
(
xi − x�

π<−1>(i)

)

=
∑

i

Fπ(i)(Pπ (x�)) · (
xπ(i) − x�

i

)

=
∑

i

Fi (x�) · (
xπ(i) − x�

i

) =
∑

i

Fi (x�) · ((
Pπ<−1>(x)

)
i − x�

i

)

= F(x�) · (
Pπ<−1>(x) − x�

) ≥ 0.


�
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Appendix B: Smoothness Issues

In this appendix we consider the aggregative variational inequality AVI (7) as dealt
with in Sect. 4.1. In the next lemma we consider the function t (μ)

i defined in (8).

Lemma B.1 If Assumption DIFF holds, then for every 0 < μ ≤ 1, the function t (μ)
i :

R++ → R is continuously differentiable with (t (μ)
i )

′
(λ) = (μD1 + D2)ti (μλ, λ). 	

Proof For μ �= 1 differentiability of t (μ)
i and the formula for the derivative follows

from the chain rule. The formula in turn shows that t (μ)
i is even continuously differen-

tiable. So we still have to prove that t (1i is continuously differentiable and the formula

(t (1)i )
′
(λ) = (D1 + D2)ti (λ, λ) holds. Note that here we cannot apply the (standard)

chain rule as (λ, λ) does not belong to the interior of Δ+. The proof is complete if we
show that

(t (1)i )
′
(λ) = lim

h↓0
ti (λ + h, λ + h) − ti (λ, λ)

h
= lim

h↑0
ti (λ + h, λ + h) − ti (λ, λ)

h
= (D1 + D2)ti (λ, λ).

Well for h > 0, we have

ti (λ + h, λ + h) − ti (λ, λ)

h
= ti (λ + h, λ + h) − ti (λ, λ + h)

h
+ ti (λ, λ + h) − ti (λ, λ)

h
.

By the first mean value theorem, there exist ε1(h), ε2(h) ∈ ]0, 1 [ such that this
becomes

D1ti (λ + ε1(h)h, λ + h) + D2ti (λ, λ + ε2(h)h).

As ti : Δ+ → R is continuously partially differentiable, the desired result fol-
lows by taking limh↓0. And for −λ < h < 0 we have ti (λ+h,λ+h)−ti (λ,λ)

h =
ti (λ+h,λ+h)−ti (λ+h,λ)

h + ti (λ+h,λ)−ti (λ,λ)
h . By the first mean value theorem, there exist

ε1(h), ε2(h) ∈ ]0, 1 [ such that this becomes D1ti (λ + h, λ + ε1(h)h) + D2ti (λ +
ε2(h)h, λ). As ti : Δ+ → R is continuously partially differentiable, the desired result
follows by taking limh↑0. 
�

Lemma B.2 SupposeAssumptionDIFFholds. Then for a > 0: limh↓0 ti (h,a+h)−ti (0,a)
h =

(D1 + D2)ti (0, a). 	

Proof For h > 0 small enough we have ti (h,a+h)−ti (0,a)
h = ti (h,a)−ti (0,a)

h +
ti (h,a+h)−ti (h,a)

h . By the first mean value theorem, there exist ε1(h), ε2(h) ∈ ]0, 1 [
such that this becomes D1ti (ε1(h)h, a) + D2ti (h, a + ε2(h)h). As ti : Δ+ → R is
continuously partially differentiable, the desired result follows by taking limh↓0. 
�
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Appendix C: Various Types of Matrices

In this appendix we recall some useful well-known results about matrices.
Consider an n × n matrixM with real coefficients. Denote by � the matrix product

and consider elements ofRn as row vectors. Let tM be the transpose ofM.M is called
– positive quasi-definite if x�M�tx > 0 for every x ∈ R

n\{0},
– positive definite ifM is positive quasi-definite and symmetric,
– row diagonally dominant, if for all i : |Mii | >

∑
j �=i |Mi j |,

– column diagonally dominant, if for all i : |Mii | >
∑

j �=i |Mji |,
– a P-matrix if all of its principal minors are positive.
Some results:
– x�M�tx = x�M+tM

2 �tx,

–M is positive quasi-definite if and only if M+tM
2 is positive definite,

– if M is row diagonally dominant and column diagonally dominant with positive
diagonal entries, thenM is positive quasi-definite,

– each positive definite matrix is a P-matrix,
– ifM is row diagonally dominant with positive diagonal entries or column diago-

nally dominant with positive diagonal entries, then it is a P-matrix.26
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