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Abstract
In this paper, we revisit some elements of the theory of self-concordant functions. We
replace the notion of self-concordant barrier by a new notion of set-limited function,
which forms a wider class. We show that the proper set-limited functions ensure
polynomial time complexity of the corresponding path-following method (PFM). Our
new PFM follows a deviated path, which connects an arbitrary feasible point with the
solution of the problem.We present some applications of our approach to the problems
of unconstrained optimization, for which it ensures a global linear rate of convergence
even in for nonsmooth objective function.

Keywords Convex optimization · Interior-point methods · Self-concordant
functions · Polynomial-time methods
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1 Introduction

Motivation In the end of the last century, Polynomial-Time interior-point methods
(IPM) were the most popular tools for solving convex optimization problems. Start-
ing from the famous papers by Karmarkar [7], Renegar [8], Gonzaga [5], and many
others, these methods completely changed our abilities in solving Linear Optimiza-
tion Problems. The further extension onto nonlinear optimization problems was done
by the theory of self-concordant functions [15]. Due to this theory, it became possi-

Communicated by Goran Lesaja.

B Yurii Nesterov
Yurii.Nesterov@uclouvain.be

1 Center of Operations Research and Econometrics (CORE), Catholic University of Louvain
(UCLouvain), Louvain-la-Neuve, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-023-02163-x&domain=pdf
http://orcid.org/0000-0002-0542-8757


Journal of Optimization Theory and Applications

ble to develop linearly convergent methods for Linear Matrix Inequalities and other
important classes of structured convex optimization problems (see [2, 12]).

However, the machinery underlying the general IPM is not simple. The most effi-
cient methods require rewriting the initial problem into the primal-dual conic form
(see [10, 17]). Moreover, the process of solution of these problem has to be divided
on two or even three stages, which makes the practical implementation of the new
methods a nontrivial task.

The algorithmic complexity of IPM and their high iteration cost were the main
factors in switching the research priorities onto much simpler gradient-type methods.
Development of the smoothing technique [13], supported by the demands of Big
Data, opened for these optimization schemes new possibilities of acceleration, which
overpass the limits of the classical Complexity Theory [11]. In parallel, we have seen
intensive development of the new second-order methods [6, 9, 14, 16], which now
benefit from the global complexity analysis even for nonconvex problems [1, 4].

However, an unavoidable drawback of the first- and second-order Black Box
Schemes consists in their sublinear global rate of convergence on general classes
of convex problems. Since in the most practical applications the internal structure
of convex problem is quite visible, these methods compete with linearly convergent
IPM, which use this structure for creating a powerful descriptor of the problem, the
self-concordant barrier of the feasible set.

In this paper, we revisit some basic elements of the theory of self-concordant func-
tions, having in mind simplification of the existing IPM. This theory is based on two
concepts, the notions of self-concordant function and notion of self-concordant bar-
rier. The first one is necessary for a proper description of the behavior of Newton
Method, and the second one is responsible for the global polynomial-time complexity
of IPM. Both concepts are local in the sense that they assume some relations between
directional derivatives of convex function, computed at the same point.

In our presentation, we replace the notion of self-concordant barrier by a new
concept of set-limited function, which requires boundedness of the variation of the
gradient with respect to the current point. This condition is clearly global and it is
much easier for verification. Thus, we significantly increase the class of good barriers.
On the other hand, using a new line of arguments, we show that the polynomial-time
complexity of the corresponding schemes is preserved.

Our second development is the Greedy Path-Following Method. In the standard
framework of IPM, it is necessary to follow the central path, which starts in a close
neighborhood of the analytic center of feasible set. Thus, usually a preliminary stage
is needed for approaching this center (e.g. Section 4.2 in [12]). In our new method, we
start moving towards the optimum immediately from the starting point, by following
a deviated path. We present some simple characteristics of the starting point ensuring
the polynomial-time complexity of this procedure.

As important application examples, we consider problems of unconstrained mini-
mization, where we know barriers for the epigraph of the objective function. We show
how to choose the starting point in the epigraphs, which ensure the global linear rate
of convergence of the corresponding methods. Note that our scheme updates some
objects in the epigraph of the objective function, similarly to the methods based on the

123



Journal of Optimization Theory and Applications

overestimating technique (e.g. [3, 16]). However, in contrast to them, our new method
benefits from the global linear rate of convergence even for nonsmooth functions.
Contents In Sect. 2, we introduce the notion of a proper set-limited function, which
replaces in our presentation the notion of self-concordant barrier. The class of such
functions ismuchwider.However,we prove that themain properties of self-concordant
barrier are preserved.

In Sect. 3, we describe the Greedy Path-Following Method, which follows the
deviated path, starting from an arbitrary feasible point. We highlight the conditions
ensuring polynomial-time complexity of this scheme. As a side result, we show that in
the case of sharp minimum, the deviated path asymptotically approached the standard
central path.

In the last Sect. 4, we discuss several applications of our results to problem of
unconstrainedoptimization. In all cases,we showhow to choose the startingpoint in the
epigraph of the objective function, in order to ensure the linear rate of convergence of
the scheme. Note that this rate is achieved even if the objective function is nonsmooth.
Notation and Generalities In what follows, we denote by E a finite-dimensional real
vector space, and by E

∗ its dual space composed by linear functions on E. For such a
function s ∈ E

∗, we denote by 〈s, x〉 its value at x ∈ E.
Wemeasure distances inE by arbitrary norm ‖·‖E, denoting byB the corresponding

unit ball. Then the dual norm is defined in the standard way:

‖g‖∗
E

= max
x∈B

〈g, x〉, g ∈ E
∗.

For two sets Q1 and Q2 in E, we say that Q1 ⊂ Q2 if there exists some ε > 0 such
that Q1 + ε B ⊆ Q2. Sometimes we measure distances in E by Euclidean norm ‖ · ‖.
It is defined by a self-adjoint positive-definite operator linear B : E → E

∗ in the
following way:

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖g‖∗ = 〈g, B−1g〉1/2, g ∈ E
∗.

For a smooth function f : E → R, denote by ∇ f (x) its gradient, and by ∇2 f (x)
its Hessian evaluated at point x ∈ dom f . Note that

∇ f (x) ∈ E
∗, ∇2 f (x)h ∈ E

∗, h ∈ E.

Another possibility for measuring distances is given by the local norms defined by
a self-concordant function (see Sect. 4.2 in [12]). Recall that function f (·) is called
self-concordant if it is a closed convex function with open domain, which satisfies the
following condition:

D3 f (x)[h]3 ≤ 2〈∇2 f (x)h, h〉3/2, x ∈ dom f , h ∈ E,

where notation in the left-hand side corresponds to the third directional derivative of
function f (·) along direction h. The Hessian of self-concordant function provides us
with the local Euclidean norms:
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‖u‖x = 〈∇2 f (x)u, u〉1/2, u ∈ E, ‖g‖∗
x = 〈g, [∇2 f (x)]−1g〉1/2, g ∈ E

∗.

Amongmany useful properties of self-concordant functions, we employ the following
inequality (e.g. Theorem 4.1.7 in [12]):

〈∇ f (x) − ∇ f (y), x − y〉 ≥ ‖y − x‖2x
1 + ‖y − x‖x , x, y ∈ dom f . (1)

In what follows, we often use different statements from Chapter 4 of [12]. We put
the corresponding references in bold. Thus, referenceT.1.2means Theorem 4.1.2 from
[12].

2 Set-Limited Functions

Let Q be a closed convex set in E with nonempty interior. Denote by F(·) a self-
concordant function with dom F = int Q. In this paper, we consider the following
standard minimization problem:

c∗ = min
x∈Q 〈c, x〉, (2)

where c is a linear functional from E
∗.

In order to justify efficiency bounds for corresponding optimization methods,
we need to introduce additional assumptions on F(·). In the standard theory of
Polynomial-Time Interior-Point Methods [15], we assume that F(·) is a ν-self-
concordant barrier:

〈∇F(x), h〉2 ≤ ν〈∇2F(x)h, h〉, x ∈ dom F, h ∈ E, (3)

where the barrier parameter ν ≥ 1 is responsible for the complexity of problem (2).
In this way, it is possible to justify polynomial-time solvability for many important
classes of optimization problems (see [15]). However, the barrier property (3) is very
fragile. Even an addition to F(·) a linear function destroys the values of the barrier
parameter. The main goal of this paper is to replace (3) by a more robust definition,
which still gives us a possibility to prove polynomial-time complexity of interior-point
methods.

Note that the condition (3) is local. It looks as an upper bound on the size of the
gradient in the local norm defined by the Hessian of the barrier. And maybe this is
the main reason of its fragility. In what follows, we replace it by a global condition,
related to the size of the gradient with respect to the feasible set.

Definition 2.1 We call convex function F(·) κ-set-limited with respect convex set
Q ⊆ dom F if there exists a constant κ ≥ 0 such that for any x, y ∈ Q we have

〈∇F(x), y − x〉 ≤ κ. (4)
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This definition has a geometric interpretation. Define the polar set at point x ∈ int Q
as follows:

PQ(x) =
{
g ∈ E

∗ : 〈g, y − x〉 ≤ 1, y ∈ Q
}
.

Then the condition (4) is equivalent to the following inclusion:

1

κ
∇F(x) ∈ PQ(x), x ∈ int Q. (5)

Note that inequality (4) withκ = ν is one of the main properties of self-concordant
barrier (seeT.2.4(1)). By lifting it up to the status of definition,we significantly increase
the class of good barrier functions.

Let usmention simple properties of set-limited functions, which do not need proofs.

– If F(·) is κ-set-limited, then for any λ > 0 function λF(·) is (λκ)-set-limited.
– If functions Fi (·) are κi -set-limited with respect to the sets Qi , i = 1, 2, then
function F(x) = F1(x) + F2(x) is (κ1 + κ2)-set-limited with respect to Q =
Q1

⋂
Q2.

– If F(·) has bounded variation on the set Q, then it is set-limited with respect to Q

with parameter κ = Var Q(F)
def= supx,y∈Q[F(y) − F(x)].

The next property is also simple. However, we put it separately for future references.

Lemma 2.1 Let function F(·) be set-limited and p be a recession direction of its
domain. Then

〈∇F(z), p〉 ≤ 0, z ∈ dom F . (6)

Proof Indeed, since the inequality 〈∇F(z), (z + τ p) − z〉(4)≤κ is valid for arbitrarily
large τ > 0, we get (6). 
�

The following result sometimes is useful.

Lemma 2.2 Let f (·) be differentiable and concave on the set� = {x ∈ E : f (x) ≥ 0}
and int� �= ∅. Then function F(x) = − ln f (x) is set-limited on � with κ = 1.

Proof Indeed, let f (x) > 0 and f (y) ≥ 0. Then, since f (·) is concave, we have

〈∇F(x), y − x〉 = 1

f (x)
〈∇ f (x), x − y〉 ≤ 1

f (x)
( f (x) − f (y)) ≤ 1.


�
For the needs of interior-point methods, we specify an additional property of set-

limited functions.

Definition 2.2 If set-limited function is self-concordant with respect to its domain, we
call it the proper set-limited function.
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Recall that self-concordant functions are closed and convex and they have open
domains. Let us prove that proper set-limited functions belong to the family of self-
concordant barriers.

Lemma 2.3 Any proper κ-self-limited function is also a κ
2-self-concordant barrier.

Proof For x ∈ dom F , let us choose an arbitrary direction h ∈ E. If necessary, we
can multiply it by −1, ensuring anyway the inequality 〈∇F(x), h〉 ≥ 0. In view of
T.4.1.5(1), the point y = x + h/‖h‖x belongs to Cl (dom F). Since F(·) is κ-set-
limited, we have

0 ≤ 〈∇F(x), h〉 = 〈∇F(x), y − x〉‖h‖x
(4)≤ κ‖h‖x .

Thus, the definition (3) is valid with ν = κ2. 
�
One of the consequences of this statement is that for proper set-limited functions

we always have κ ≥ 1 (see L.3.1).
Let us show that the proper set-limited functions inherit one of the most important

properties of self-concordant barriers. It is important that for this property we can use
parameter κ, not κ

2.

Theorem 2.1 Let F(·) be a proper set-limited function with parameter κ. Then for all
x, y ∈ dom F with 〈∇F(x), y − x〉 ≥ 0 we have

‖y − x‖x ≤ κ + 2
√

κ. (7)

Proof Denote r = ‖x − y‖x , and let r >
√

κ (otherwise, (7) is trivial). Choosing
α = 1

r

√
κ < 1 for yα = x + α(y − x), we get

ω
def= 〈∇F(yα), y − x〉 ≥ 〈∇F(yα) − ∇F(x), y − x〉

= 1

α
〈∇F(yα) − ∇F(x), yα − x〉 (1)≥ 1

α
· ‖yα − x‖2x
1 + ‖yα − x‖x

= α‖y − x‖2x
1 + α‖y − x‖x = r

√
κ

1 + √
κ

.

At the same time, (1− α)ω = 〈∇F(yα), y − yα〉(4)≤κ. Thus,
(
1 − 1

r

√
κ

) r
√

κ

1+√
κ

≤ κ,
and this is exactly inequality (7). 
�

The following result provides us with many examples of proper set-limited func-
tions.

Lemma 2.4 Let F1(·) be ν-self-concordant barrier for set Q
def= dom F1 and F2(·) be

a self-concordant function with Q ⊂ dom F2. Then function F(x) = F1(x) + F2(x)
is a proper κ-set-limited with respect to Q with κ = ν + Var Q(F2).
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Proof Indeed, for any x and y from Q, we have

〈∇F(x), y − x〉 = 〈∇F1(x), y − x〉 + 〈∇F2(x), y − x〉 (4)≤ ν + F2(y) − F2(x)

≤ ν + Var Q(F2). 
�
It is convenient to use Lemma 2.4 when dom F2 = E. Therefore, let us recall the

most important examples of such functions.

– F2(x) = 1
2 〈Qx, x〉, where matrix Q is positive semidefinite.

– F2(x) = φ∗(x) def= supg∈dom φ[〈g, x〉 − φ(g)], where φ(·) is a self-concordant
function defined on a bounded open convex set dom φ ⊂ E

∗ (see Theorem 2.4.1
in [15]).

3 Greedy Path-FollowingMethod

Let F(·) be a proper set-limited function with respect to the set Q with parameter κ.
For solving optimization problem (2), we propose the following simple scheme.

Greedy Path-Following Method

Initialization. Choose x0 ∈ int Q and β ∈ (0, 1
3 ].

Set γ =
√

β

1+√
β

− β and g0 = −∇F(x0).

kth iteration (k ≥ 0): Update gk+1 = gk + γ c
‖c‖∗

xk
.

Set xk+1 = xk − [∇2F(xk)]−1(∇F(xk) + gk+1).

(8)

We call this method greedy since it immediately attacks the problem (2), without
preliminary finding the analytic center of the set Q, as it is advised by the standard
theory (e.g. Section 4.2 in [12]). Note that the bounds on β ensure γ > 0.

Defining t0 = 0 and tk+1 = tk + γ
‖c‖∗

xk
for k ≥ 0, we can see that gk = g0 + tkc.

Let us prove that tk → ∞ and method (8) follows approximately the sequence of
minimizers of the auxiliary problems

min
x∈Q

{
fk(x)

def= 〈gk, x〉 + F(x)
}
, k ≥ 0.

Lemma 3.1 Let β ∈ (
0, 1

3

]
. Then, for any k ≥ 0, we have

‖∇F(xk) + gk‖∗
xk ≤ β. (9)
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Proof For k = 0, the left-hand side of inequality (9) is zero, so it is satisfied.
Note that the main step at each iteration of method (8) is the Newton Step from the

point xk for the potential fk+1(·). Assume that (9) is valid for certain k ≥ 0. Then

‖∇ fk+1(xk)‖∗
xk =

∥∥∥∥∥∇F(xk) + gk + γ c

‖c‖∗
xk

∥∥∥∥∥
∗

xk

(9)≤ β + γ.

Therefore, in view of T.1.14, we have

‖∇ fk+1(xk+1)‖∗
xk+1

≤
(

β + γ

1 − β − γ

)2

= β.

Hence, inequality (9) is proved for all k ≥ 0. 
�
Thus, we have proved that method (8) follows approximately a deviated path xd(·),

defined by the equation

∇F(xd(t)) + tc − ∇F(x0) = 0, t ≥ 0. (10)

It starts at an arbitrary point xd(0) = x0 ∈ int Q = dom F , and we can expect that it
approaches an optimal solution of the problem (2) as t → ∞. In the standard theory of
Polynomial-Time Interior-Point Methods, this property is ensured by two additional
assumptions. Firstly, we assume that F(·) is also a ν-self-concordant barrier. Another
assumption is that we follow the central path, which starts from the analytic center
xF of the set Q, defined by condition ∇F(xF ) = 0. In our analysis, we drop the last
assumption and study the behavior of xd(·) assuming that F(·) is a proper set-limited
function.

First of all, we need to prove that the big values of t provide us with a good
approximation of the optimal solution.

Theorem 3.1 Let F(·) be a proper κ-set-limited function. Then, for all t > 0 we have

〈c, xd(t)〉 − c∗ ≤ κ0

t
, κ0

def= 2κ + 〈∇F(x0), x0 − x∗〉. (11)

Moreover, if xk satisfies the approximate centering condition (9), then

〈c, xk〉 − c∗ ≤ (1 − β)κ0

(1 − 2β) tk
. (12)

Proof Indeed,

t〈c, xd(t) − x∗〉 (10)= 〈−∇F(xd(t)) + ∇F(x0), xd(t) − x∗〉
(4)≤ κ + 〈∇F(x0), xd(t) − x∗〉 (4)≤ 2κ + 〈∇F(x0), x0 − x∗〉.
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Note that by T.1.5(1), ‖c‖∗
xk ≤ 〈c, xk〉 − c∗. Therefore, in view of T.1.13, we have

〈c, xk − xd(tk)〉 ≤ ‖c‖∗
xk‖xk − xd(tk)‖xk

(9)≤ β

1 − β
‖c‖∗

xk ≤ β

1 − β
(〈c, xk〉 − c∗).

Thus, 〈c, xk〉 − c∗ ≤ 1−β
1−2β (〈c, xd(tk)〉 − c∗), and (12) follows from (11). 
�

From the theory of self-concordant barriers, it is known that the path-following
strategy along the central path has linear rate of convergence, which depends only on
the value of barrier parameter ν (e.g. [12]). Let us show that for the deviated paths this
role is now taken by the constant κ0.

Theorem 3.2 Let β ∈
(
0, 2−√

3
2

)
. Then, for any k ≥ 1, we have

tk ≥ t1
2

· 2k/κ̂β , (13)

where κ̂β = 1 +
√

κβ

γ (γ−β)
with κβ = 1−β

1−2β κ0.

Proof Denote by k̂ the smallest integer such that k̂ ≥
√

κβ

γ (γ−β)
. Since the values tk

are monotonically increasing, for all k, 1 ≤ k ≤ k̂, we have

tk ≥ t1 ≥ t1 · 2(k−k̂)/k̂ . (14)

Let us assume now that inequality (14) is valid for all k, 1 ≤ k ≤ n, where n ≥ k̂.
Note that the upper bound for β ensures γ > β. At the same time,

〈c, xk+1〉 = 〈c, xk〉 −
〈
c, [∇2F(xk)]−1

(
∇F(xk) + gk + γ c

‖c‖∗
xk

)〉

(9)≤ 〈c, xk〉 + β‖c‖∗
xk − γ ‖c‖∗

xk .

Thus, 0 < (γ − β)‖c‖∗
xk ≤ 〈c, xk〉 − 〈c, xk+1〉, and we conclude that

tn+1 − tn+1−k̂ =
n∑

i=n+1−k̂

γ

‖c‖∗
xi

≥
n∑

i=n+1−k̂

γ (γ − β)

〈c, xi 〉 − 〈c, xi+1〉

≥ γ (γ − β)

〈c, xn+1−k̂〉 − c∗
· k̂2

since
∑n

i=n+1−k̂
[〈c, xi 〉 − 〈c, xi+1〉] = 〈c, xn+1−k̂〉 − 〈c, xn+1〉 ≤ 〈c, xn+1−k̂〉 − c∗.

Note that

〈c, xn+1−k̂〉 − c∗
(12)≤ κβ

tn+1−k̂

.
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Therefore, tn+1 ≥ tn+1−k̂

(
1 + γ (γ−β)

κβ
k̂2

)
≥ 2tn+1−k̂ . Hence, in view of assumption

(14),

tn+1 ≥ 2t1 · 2(n+1−2k̂)/k̂ = t1 · 2(n+1−k̂)/k̂ .

Thus, inequality (14) is proved for all k ≥ 1. It remains to note that k̂ ≤
√

κβ

γ (γ−β)
+1.


�
Thus, if we start from a point x0 with κ0 ≤ O(κ), then the efficiency of Greedy

Path-Following Method (8) remains on the level of a standard path-following scheme,
equipped with a κ-self-concordant barrier. Note that we keep the standard possibility
to start from a neighborhood of the analytic center xF since

〈∇F(x0), x0 − x∗〉 ≤ ‖∇F(x0)‖∗
xF

(‖x0 − xF‖xF + ‖x∗ − xF‖xF
)

(7)≤ (‖x0 − xF‖xF + κ + 2
√

κ
) ‖∇F(x0)‖∗

xF .

Thus, if ‖∇F(x0)‖∗
xF is smaller than an absolute constant, we have κ0 ≤ O(κ). How-

ever, sometimes we have another possibilities for reaching this relation (see Sect. 4).
In the opposite case, if κ0 is very big, then we cannot guarantee good com-

plexity bounds. However, in one particular situation, any deviated path nevertheless
approaches asymptotically the central path.

Definition 3.1 We say that problem (2) has sharp minimum if there exists a constant
ρ > 0 such that for all x ∈ Q we have

〈c, x〉 − c∗ ≥ ρ‖x − x∗‖. (15)

Our analysis is based on the following result, which was initially proved in [18] for
the dual formulation of a conic optimization problem.

Lemma 3.2 Let function F(·) be self-concordant with dom F = int Q and the mini-
mum of problem (2) be sharp. Then for any x ∈ int Q we have

∇2F(x) � ρ2

4[〈c, x〉 − c∗]2 B. (16)

Proof Let x ∈ int Q. By T.1.5(1), the ellipsoid W = {y ∈ E : ‖y − x‖x ≤ 1}
belongs to Q. Denote τ = 〈c, x〉 − c∗. Then 〈c, x〉 − ‖c‖∗

x ≥ c∗. Thus, ‖c‖∗
x ≤ τ

and we conclude that for any y ∈ W we have 〈c, y〉 − c∗ ≤ 2τ . This means that

‖y − x∗‖(15)≤ 2τ
ρ
. Consequently, for any g ∈ E

∗, we have

max
y∈W 〈g, y〉 = 〈g, x〉 + ‖g‖∗

x ≤ 〈g, x∗〉 + 2τ

ρ
‖g‖∗.
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Without loss of generality, we assume that 〈g, x∗〉 ≤ 〈g, x〉 (otherwise, multiply g by
−1). Thus, we have proved the inequality ‖g‖∗

x ≤ 2τ
ρ

‖g‖∗. Since g is arbitrary, we
get (16). 
�

In order to get point xk in a neighborhood of the central path, we need to ensure
that the norm ‖∇F(xk) + tkc‖∗

xk is smaller than an absolute constant. Note that

‖∇F(xk) + tkc‖∗
xk ≤ ‖∇F(xk) + gk‖∗

xk + ‖∇F(x0)‖∗
xk

(16)≤ β + 2

ρ
[〈c, xk〉 − c∗]‖∇F(x0)‖∗.

Hence, by inequality (12), we obtain an upper bound for this moment.

4 Second-Order Methods for Structured UnconstrainedMinimization

Let us consider the following problem of unconstrained convex optimization:

min
x∈E

f (x), (17)

where function f (·) has an explicit structure, which allows us to point out a proper set-
limited function F with respect to its epigraph E f = {z = (τ, x) ∈ R×E : τ ≥ f (x)}.
This gives us a possibility to solve problem (17) by a linearly convergent method (8)
as applied to the initial optimization problem, rewritten in the standard form:

min
z

{
〈c, z〉 ≡ τ : z = (τ, x) ∈ E f

}
. (18)

Note that a special form of the feasible set in (18) gives us additional possibilities
in keeping the value 〈∇F(z0), z0 − z∗〉 small enough (see (11) and (13) for its role in
the complexity bounds). Indeed, given by arbitrary starting point x0 ∈ E, we are free
to choose any starting value τ0 > f (x0). If τ0 is big enough, then we can expect the
value of 〈∇F(z0), z0 − z∗〉 to be small, or even negative. Note that the condition

〈∇F(z0), z0 − z∗〉 ≤ 0 (19)

allows us to estimate the distance to the solution from the starting point byTheorem2.1.
At the same time, it is much weaker than any of the ”centering” conditions for the
starting point. Let us look at the following example. 
�
Example 4.1 Let the objective function in problem (17) is f (x) = |x |, x ∈ R ≡ E.
We can rewrite this problem in the standard form as follows:

min
z=(τ,x)∈R2

{
τ : τ ≥ |x |

}
. (20)
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Thus, a natural self-concordant barrier for epigraph of the objective is F(z) =
− ln(τ 2 − x2) with barrier parameter ν = 2. The central path z(t) of problem (2)
is the trajectory of minimizers of the following function:

tτ − ln(τ 2 − x2), t > 0.

Thus, z(t) = ( 2t , 0). A narrow neighborhoodNβ of the central path, which is appropri-
ate for the standard path-following scheme, can be found from the following condition:

z ∈ Nβ ⇔ min
t>0

‖z − z(t)‖z ≤ β,

where β ∈ (0, 1
3 ) (see Sect. 4.2 in [12]). Simple but tedious computations tell us that

min
t>0

‖z − z(t)‖2z = 2x2

x2 + τ 2
.

Hence, the neighborhood Nβ has the following representation:

Nβ =
{

(τ, x) : τ ≥
√

2

β2 − 1 · |x |
}

.

Thus, if β is small, this is a tiny cone around the horizontal axis in R
2. The standard

theory of Interior-Point Methods requires to start the path-following process exactly
from this region. Let us look what happens with condition (19). Since z∗ = (0, 0), for
any z ∈ dom F we have:

〈∇F(z), z − z∗〉 = 〈∇F(z), z〉 = −2.

Thus, any point in dom F is appropriate for starting the corresponding deviated path,
which approaches the optimal solution of problem (20) with linear rate. 
�

In the remaining part of this section, we show how to ensure condition (19) for
different problem settings.

4.1 Lipschitz-Continuous Functions

Let us assume that the objective function of problem (17) satisfies the following con-
dition:

f (x) − f ∗ ≤ L f ‖x − x∗‖E, x ∈ E, (21)

where ‖ · ‖E is an arbitrary norm on E. This means that all elements of the cone

R =
{
z = (τ, x) ∈ R × E : τ ≥ L f ‖x‖E

}

are recession directions of the epigraph E f .
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Let us choose arbitrary x0 ∈ E with a known bound to the optimum: ‖x0 − x∗‖E ≤
R. Then we can take

z0 = ( f (x0) + L f R, x0). (22)

In this case, for direction p0 = z0 − z∗ = ( f (x0) − f ∗ + L f R, x0 − x∗), we have

L f ‖x0 − x∗‖E ≤ L f R ≤ f (x0) − f ∗ + L f R.

Thus, p0 ∈ R, and by Lemma 2.1 we conclude that

κ0
(11)= 2κ + 〈∇F(z0), z0 − z∗〉(6)≤ 2κ.

Hence, the choice (22) of the starting point ensures the following complexity of
method (8) as applied to problem (17):

O

(√
κ ln

‖c‖∗
z0

ε

)
(23)

iterations of the path-following scheme.
From the view point of iteration complexity, method (8) is a second-order scheme.

However, it can be applied to the objective functions in (17) satisfying no specific
assumptions on their smoothness except boundedness of the first-order derivatives
(21). An alternative approach could consist in applying to f (·) a variant of smoothing
technique [13] and minimizing the result by a second-order method. However, to
the best of our knowledge, all existing strategies of this kind have sublinear rate of
convergence.

4.2 Max-Type Functions

Let f (x) = max1≤i≤m fi (x), where the functions fi (·) are closed and convex, with
epigraphs

Ei = {z = (τ, x) : τ ≥ fi (x)}

admitting νi -self-concordant barriers in the form Fi (z) = − ln(τ − fi (x)), i =
1, . . . ,m. For an important example of quadratic fi (·), we have all νi = 1. Note
that quadratic functions do not satisfy assumption (21) of Sect. 4.1.
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For the standard barrier F(z) = −∑m
i=1 ln(τ − fi (x)), we have κ = ∑m

i=1 νi . At
the same time,

〈∇F(z0), z0 − z∗〉 =
m∑
i=1

1

τ0 − fi (x0)
[τ ∗ − τ0 + 〈∇ fi (x0), x0 − x∗〉]

≤
m∑
i=1

1

τ0 − fi (x0)
[ f (x0) − τ0 + 〈∇ fi (x0), x0 − x∗〉

≤
m∑
i=1

f (x0) − fi (x0)

τ0 − f (x0)
+

m∑
i=1

‖∇ fi (x0)‖∗
E

τ0 − f (x0)
R − m,

where R ≥ ‖x0 − x∗‖E. Thus, in order to have 〈∇F(z0), z0 − z∗〉 ≤ 0, it is enough
to choose

τ0 = f (x0) + 1

m

m∑
i=1

{
f (x0) − fi (x0) + R‖∇ fi (x0)‖∗

E

}
. (24)

In this case, the corresponding implementation of method (8) admits the polynomial-
time complexity bound (23).

4.3 Average Function

Let f (x) = 1
m

∑m
i=1 fi (〈ai , x〉 − bi ), where the univariate functions fi (·) are convex

on R. We assume also that they are Lipschitz-continuous:

| fi (s1) − fi (s2)| ≤ Li |s1 − s2|, s1, s2 ∈ R, i = 1, . . . ,m. (25)

Let the epigraphs Ei = {z = (τ, s) ∈ R
2 : τ ≥ fi (s)} admit νi -self-concordant

barriers Fi (·, ·) with parameters νi , i = 1, . . . ,m. Then we can use the following
proper set-limited function

F(τ, x) =
m∑
i=1

Fi (τ
(i), 〈ai , x〉 − bi ), τ = (τ (1), . . . , τ (m)) ∈ R

m, x ∈ E,

with parameter κ = ∑m
i=1 νi . Our objective function now is 1

m

∑m
i=1 τ (i).

Let z = (τ, x). Our goal is to find the starting point z0 such that 〈∇F(z0), z0−z∗〉 ≤
0. In view of Lemma 2.1, for that we need to ensure the inclusion

z0 − z∗ ∈ R =
{
(τ, x) : τ (i) ≥ Li |〈ai , x〉|, i = 1, . . . ,m

}
.

Thus, we can handle each coordinate independently. Note that for R ≥ ‖x0 − x∗‖E

we have
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Li |〈ai , x0 − x∗〉|
≤ Li‖ai‖∗

E
R

(25)≤ 2Li‖ai‖∗
E

· R + fi (〈ai , x0〉 − bi ) − fi (〈ai , x∗〉 − bi ).

Therefore, we can take

τ
(i)
0 = fi (〈ai , x0〉 − bi ) + 2Li‖ai‖∗

E
· R, i = 1, . . . ,m. (26)

In this case, the corresponding second-order scheme (8) has the complexity bound
(23).

As an example, consider the following problem, arising in Machine Learning:

min
x∈E

{
1

m

m∑
i=1

φ0(〈ai , x〉 − bi )

}
, φ0(s) = max{0, s}, Lφ0 = 1. (27)

This is a convex nonsmooth optimization problem, which admits only slowly conver-
gent optimization schemes. Therefore, for accelerating the methods, very often the
function φ0(·) is replaced by its smooth approximation φμ(s) = μ ln

(
1 + es/μ

)
with

μ > 0, augmenting sometimes the objective in (27) by a strongly convex regularization
term.

In our approach, we get linearly convergent scheme directly for the problem (27).
For that, we need to endow the epigraph Eφ0 = {(τ, s) ∈ R

2 : τ ≥ φ0(s)} with the
standard 2-self-concordant barrier

F(τ, s) = − ln(τ − s) − ln τ, τ > 0, s ∈ R,

and use method (8) for the epigraph of the objective function.
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