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Abstract
We consider a geometrical approach to the optimisation problems motivated by
transportation system management. Here, we provide a comprehensive account of
geometric programming based on the elementary Finsler geometry in R

n . Then, we
present a Finslerian dynamical model for the nonlinear complementarity problem of
traffic equilibrium that can be applied to a variety of equilibrium problems.

Keywords Traffic equilibrium · Finsler geometry · Nonlinear complementarity
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1 Introduction

Traffic congestion is a significant issue in real-life applications such as roads and com-
munication networks. The need for measures to reduce congestion and manage traffic
demand in metropolitan areas is becoming more serious as the population grows. A
functioning society relies on transportation mobility to enable its members to par-
ticipate in essential activities such as production, consumption, communication, and
recreation.However, it is also necessary for society to introduce congestion-reliefmea-
sures for the quality of life and the environment, and to protect the safety of citizens.
Any well-founded transportation model recognises the individual network user’s right
to decide when, where, and how to travel [30]. However, there is always a conflict of
interest in the transportation system: a typical traveller expects to choose an optimal
route that minimises the combined travel time and cost, given the network conditions
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during the travel time (Wardrop’s principle [35]). However, society’s goal often is to
reduce the average travel time and environmental damage. The aggregate effect of
these decisions is a network flow that does not minimise the total system costs.

In urban traffic planning, Wardrop conditions are frequently used to predict and
analyse traffic flows. These equilibrium conditions, which are based on the assumption
of rational route choice behaviour by individual users, define a situation in which
travellers’ routes are the shortest paths between a given set of origins and destinations.

In the design and management of urban transportation systems, there is a need for
efficient planning tools for analysing and predicting future scenarios. Such tools rely
on the mathematical model of the transportation system, the users of the system, and
their aggregate behaviour under different traffic conditions [7]. The nonlinear com-
plementarity problem (NCP) is an important problem in mathematical programming
that has many applications in different fields [19]. One of the well-known NCP func-
tions is the Fischer-Burmeister function [16] that is used extensively in the solution
of nonlinear complementarity and variational inequality problems [13]. In 1999, Qi
[32] showed that the Fischer-Burmeister function and its several variants, such as the
Tseng-Luo NCP function [29] and the Kanzow-Kleinmichel NCP function [22], are
smooth in the areas away from the origin, strongly semi-smooth at the origin, and
irrational. Moreover, Qi proposed a class of piecewise rational NCP functions with
the same strongly semi-smooth property, see [32].

From the mathematical point of view, a transportation system is represented by a
strongly connected network where there is at least one path connecting any origin–
destination pair. This network also describes transportation options (i.e. roads, transit
lines, etc.) between origin–destination pairs. In general, an optimisation problem or
a mathematical programming problem refers to selecting the best (optimal) elements
from a set of available alternatives. If a given set contains multiple paths between two
fixed points, we may be able to consider a metric on the set and define the optimised
paths as the shortest paths or geodesics of this metric. The definition and axioms of
the geometry of a space basically depend on the definition of the shortest path in that
space.

For a well-known metric, such as a Euclidean or a Riemannian metric, this is
accomplished by establishing the relevant geometry to gain a better understanding of
its geometric behaviour. This phenomenon may be called the geometrisation of math-
ematical programming. In this paper, we present some examples of geometrisation of
nonlinear complementarity problem (NCP) and traffic equilibrium problem by using
Finsler metrics. Finsler metrics were introduced in the first quarter of the twentieth
century based on Paul Finsler’s thesis on the calculus of variations. Finsler metrics and
other extensions of Euclidean and Riemannian metrics are becoming more popular
in mathematical programming and optimisation theory, see for instance [2–5, 8–11,
24, 26]. The aim of this paper is to apply Finsler metrics defined on R

n to provide
a geometric model for the nonlinear complementarity problem of traffic equilibrium.
This work could be the first step towards using Finsler metrics in these types of math-
ematical programming problems. We first investigate the traffic equilibrium problem
from a Finsler geometrical point of view and demonstrate that the shortest paths are
solutions of a system of nonlinear equations known as the geodesics of a Randers met-
ric. Furthermore, we show that for a dynamical transition network, optimised routes
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are the minimal integration of the Fischer-Burmeister function. This leads to a Finsler
geometrical model for Wardrop’s dynamical user equilibrium problem.

The rest of this paper is structured as follows. In Sect. 2, we briefly define a Finsler
metric on R

n , the NCP and the traffic equilibrium problem. In Sect. 3, we present a
Finsler geometrical model for the traffic problem and show that the optimal routes
(shortest paths) of a traffic problem can be presented as geodesics of a Randers metric.
In Sect. 4, first, we show that the Fischer-Burmeister function can be considered
as a special Randers metric. Then, we present a dynamical model for solving NCP.
Finally, we propose a mathematical model for solving the dynamical Wardrop’s user
equilibrium problem.

2 Preliminaries

In this section, we briefly introduce Finsler metrics on Rn , the nonlinear complemen-
tarity problem (NCP) and the traffic equilibrium problem. We assume that the reader
has no background knowledge of this topic.

2.1 Finsler Metrics onRn

Let M = R
n be the real n-dimensional space. The set of all tangent vectors at the

point x ∈ M is called the tangent space of M and denoted by Tx M . The set of all
tangent spaces at x ∈ M is called the tangent bundle of M and denoted by T M , i.e.
T M :=

⋃

x∈M

Tx M . Each element of T M has the form (x, y) consisting of the point

x ∈ M and the tangent vector y ∈ Tx M at the point x . Let the natural projection
π : T M → M be defined as π(x, y) := x . The pair (M, F) is said to be a Finsler
space where F : T M → [0,∞) is a function with the following properties:

1. F is differentiable on T M\{0}.
2. F is positively homogeneousof degreeone in y, i.e. F(x, λy) = λF(x, y),∀λ > 0.

3. The Hessian matrix of F
2
,

g = (gi j ) :=
(
1

2

[
∂2

∂ yi∂ y j
F
2
])

, (1)

is positive-definite on T M\{0} where i, j ∈ 1, . . . , n.

The function F is called a Finsler structure, and g is called its associated Finsler
metric on manifold M . Here, we use the notation F for the Finsler structure, rather
than the usual notation F , to avoid any confusion with the function F in the nonlinear
complementarity problem.

We can define a norm function on the vector space Tx M based on any Finsler metric
g on M .

Let {U , (xi )} or simply (x1, . . . , xn) = (xi ) : U → R
n be a local coordinate

system on an open subset U ⊂ M around the point x ∈ M . The coordinate system
{U , (xi )} induces a coordinate basis ∂

∂xi on Tx M . Hence, we can write each tangent
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vector in the form y = yi ∂
∂xi , where we apply the Einstein summation convention or

Einstein notation, that is, whenever an index variable appears twice in a single term,
once in an upper (superscript) and once in a lower (subscript) position, it implies that
we are summing over all of its possible values.

The local coordinate system (xi ) of x ∈ M generates a local coordinate system
(xi , yi ) on T M . The pair (xi , yi ), consisting of the position x ∈ M and the direction
y ∈ Tx M , is known as the line element of (M, F). The Finsler structure F(x, y) is
said to be Riemannian if it is independent of the direction y and, by homogeneity of

F , it is equivalent to say that
∂ F

∂ yi
= 0 for i ∈ 1, . . . , n. The Finsler structure F(x, y)

is said to be Euclidean if gi j (x, y) = δi j , where gi j is defined by (1) and δi j is the
Kronecker delta.

If we denote by �(p, q) the collection of all piecewise C∞ curves σ : [a, b] ⊂
R −→ M on (M, F) with σ(a) = p and σ(b) = q, then the length of σ is defined
by

J (σ ) :=
∫ b

a
F(σ,

dσ

dt
)dt,

where dσ
dt = dσ i

dt
∂

∂xi ∈ Tσ(t)M . For a map d defined by

d : M × M −→ [0,∞)

d(p, q) := inf�(p,q) J (σ ),

it can be shown that (M, d) satisfies the axioms of ametric space, except the symmetry
property, see [4] and [33]. A geodesic, in its original sense, is a generalisation of the
concept of a “straight line” in a Euclidean space. However, when the metric is not
Euclidean, geodesics are not necessarily straight lines and are defined as follows. A
piecewise C∞ curve σ : [a, b] −→ M with σ(a) = p and σ(b) = q on the space
M with the Finsler structure F is said to be a geodesic if it is a minimal curve in
�(p, q), with a constant velocity, i.e. J (σ ) = d(p, q). Hence, geodesics are defined
to be (locally) the shortest path between points in space.

For any Finsler metric g on M , we can define an inner product on the tangent space
Tx M given by g(., .) :=< ., . >g (here, for M = R

n , we have Tx M ∼= R
n). In the

local coordinate system {U , (xi )}, for all y, z ∈ Tx M we have g(y, z) = gi j yi z j . Each
inner product defines a norm ||y||g :=< y, y >g= gi j yi y j for a vector y ∈ Tx M
with respect to g. Hence, a vector y on the tangent space Tx M can have different
norms according to different Finsler metrics defined on M . For a Riemannian metric

gi j (·), F(xi , yi ) = (gi j yi y j )
1
2 + bi (x)yi , where β = bi (x)yi is a 1-form on M with

||β||g < 1, is a Finsler structure on M and its associated Finsler metric is called a
Randers metric, see [33] for more details.
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2.2 Nonlinear Complementarity Problem

Nonlinear complementarity problems (NCPs) arise from optimisation theory, engi-
neering and economic applications. The discretisation of infinite-dimensional varia-
tional inequalities leads to linear and nonlinear complementarity problems with many
degrees of freedom. The restricted NCP functions which can be used to reformulate
NCPs as constrained optimisation problems were first introduced by Yamashita [36].
For a given smooth mapping F : Rn → R

n , the NCP consists of finding a vector
x ∈ R

n such that
x ≥ 0, F(x) ≥ 0, F(x)T .x = 0, (2)

where F(x)T is the transpose of F(x). When the NCP is reformulated as finding the
zero of a self-mapping, the norm of the self-mapping naturally serves as the problem’s
merit function. Luo [29] and Tseng [34] proposed a class of merit functions for NCPs
and studied their several interesting properties. Kanzow, Yamashita and Fukushima
[23] used a similar idea and proposed new merit functions for the NCP.

Complementarity problems can be reformulated as systems of nonlinear equations
in several ways. A large number of methods have been developed based on the Newton
method and its generalisations. In order to overcome some disadvantages of the class
of non-smooth Newton methods and the class of the so-called smoothing methods, a
third class, known as Jacobian smoothing methods, was developed in [21]. A Jacobian
smoothing method is a mixture of Newton and non-smooth methods and is based
on solving the mixed Newton equation: a combination of the original semi-smooth
function and the Jacobian of the smooth operator of the Clarke generalised Jacobian
[12]. There are also several related algorithms entitled Newtonian algorithms, see for
instance [14, 20, 21, 31, 36]. Further, a solution ofNCPwith a neural network algorithm
was presented in [28]. Among these algorithms, the modified Newton algorithm is
preferred.

The modified Newton algorithm is a reformulation of system of differential Eq. (2)
that converts it to a non-modal optimisation problem which is convergent under some
conditions, see Sect. 8.7 of [6]. This reformulation is given by the system of equations:

φ(x) =
⎛

⎜⎝
φ1(x)
...

φn(x)

⎞

⎟⎠ =
⎛

⎜⎝
φ(x1, F1(x))
...

φ(xn, Fn(x))

⎞

⎟⎠ = 0, (3)

where the NCP function φ is the Fischer-Burmeister NCP function [15, 16] defined
as follows:

φ : R2 → R, φ(a, b) = √
a2 + b2 − (a + b),

where φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.
(4)

The resulting system of nonlinear Eq. (2) is semi-smooth and the NCP has a solution x
if and only if x is a solution for (3). The function φ is locally Lipschitz and continuous
at every point, hence the Clarke generalised Jacobian at every point is defined. In [17],
the NCP is recast as an unconstrained minimisation problem and the natural merit
function G : Rn → R given by
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G(x) = 1

2

n∑

i=1

φ(xi , Fi (x))2 = 1

2
‖φ(x)‖2, (5)

is considered. Also, it is proved that any stationary point of the above function is a
solution of the NCP if the mapping F involved in Eq. (2) is continuously differentiable
and monotone. Hence, the solution of the NCP is given by solving

min
x∈Rn

G(x). (6)

The NCP is mainly applied in solving the traffic equilibrium problem which is studied
here, and also for the Karush–Kuhn–Tucker (KKT) optimality conditions [18].

2.3 Traffic Equilibrium Problem

Wardrop [35] Network equilibrium models have a variety of applications in urban
transportation, energydistribution, game theory, spatially separated economicmarkets,
electrical networks, and water resource planning, [1].

Assume a road network in which vehicles must travel from one location to another
through a limited number of roads. Each vehicle (user) prefers shorter or wider roads
to reduce their travel cost (time). However, increasing traffic on a given road will
increase the cost of transportation on that road. So, some vehicles may choose a
longer route to minimise their travel cost and the question that arises here is what is
the minimum stability requirement for transportation strategies. Although the idea of
traffic equilibriumoriginated as early as 1924withFrankKnight [25], themathematical
description of equilibrium was provided for the first time in 1952 by Wardrop [35].
Wardrop’s equilibrium principles (Wardrop equilibria) are as follows:
Wardrop’s first principle: The travel times across all routes actually used are either
equal to or less than those which would be experienced by a single vehicle on any
unused route. Each user non-cooperatively seeks to minimise their transportation
cost/time. A traffic flow that satisfies this principle is usually named user equilib-
rium (UE) flow.
Wardrop’s second principle At equilibrium the average journey time is minimum.
This implies that each user behaves cooperatively in choosing their route to ensure
the minimum cost of the whole system. A traffic flow satisfying Wardrop’s second
principle is generally referred to as system optimal (SO) flow.

Wardrop equilibria are related to the idea of Nash equilibrium [27] in game theory
and has been widely used since its introduction. However, analysing the transportation
networks with a large number of players is more complicated than analysing games
with a few numbers of players.

Wardrop equilibria can be presented mathematically as follows. Assume that Rab

denotes the set of simple (loop-free) routes for the origin–destination pair (a, b), hr

denotes the flow on the route r ∈ Rab, and cr denotes the travel time on the route
r ∈ Rab as experienced by an individual user. If the flow does not depend on time, i.e.
in a static model (against the dynamic model), Wardrop equilibria can be written as,
see [1],
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hT
r (cr (hr ) − πab) = 0, cr (hr ) − πab ≥ 0, hr = dr (πab), hr ≥ 0, πab ≥ 0, (7)

where πab is the minimal rout time and dr is the demand function of the route r ∈ Rab.
In [1], an equilibrium model for predicting traffic flow on a congested transportation
network is proposed based on using Wardrop’s first principle and written it as an NCP
(Eq. (2)) in the following form:

F(x)T · x =
(

cr (hr ) − πab hr − dr (πab)
)

·
(

hr

πab

)
= 0,

x =
(

hr

πab

)
≥ 0, F(x) =

(
cr (hr ) − πab

hr − dr (πab)

)
≥ 0,

(8)

where F : R
n → R

n is a continuous function. To reduce this NCP to an uncon-
strained global minimisation problem, a smooth, bounded, and convex gap function
G is applied, see [14]:

G(x) =
n∑

i=1

ϕ
(

xi , F(xi )
)
, (9)

where ϕ = 1
2φ

2 and φ is the Fischer-Burmeister function given by (4). So, solving the
NCP (8) is equivalent to finding a general unconstrained solution for Eq. (6) with G
given in (9).

3 A Finsler Geometric Model of Traffic Problem

In this section, we apply geometric methods to provide a mathematical model for the
transportation network. Unless stated otherwise, we will assume further that

(I) All origin–destination pairs are distinct, so we have a loop-free graph model of
the transportation network.

(II) The network is strongly connected, that is, at least one route joins each origin–
destination pair. From a mathematical point of view, this condition means that
we have a convex network (a subset of R2).

(III) The transport demand is either a constant number or a function of travel
cost/time. This is typically a decreasing function of cost/time.

(IV) All travellers have perfect information about their travel. Therefore, we have
a deterministic model, unlike a stochastic model where travellers choose their
paths randomly.

For any given pair of origin–destination points in the vehicle network, we usually
have different route options. These routes are made by a string of streets and cross-
sections and, for each route, we have an estimated travel time. This time depends on
some factors such as the capacity of streets, the number of stops behind cross-sections
and the travel demand of that specific route.

Now assume that we have a Riemannian metric g on R
2 and its corresponding

norm-squared for tangent vectors y ∈ TxR
2 is given by ‖y‖2g := g(y, y). In traffic
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modelling, we can interpret this as the time it takes, using a car with fixed power, to
travel from the base point of the vector y to its tip.

Let u ∈ TxR
2 be a unit vector and denote the traffic congestion or any external factor

that increases the traffic congestion by a vector ω ∈ TxR
2 such that ‖ω‖g < 1. Before

ω sets in, a journey from the base to the tip of any unit vector u would take one unit
of time. After the effect of ω, within the same one unit of time, we traverse not u but
v = u−ω instead. This is because traffic congestion is a vector in the opposite direction
of flow. The measure of this new vector is not equal to 1 (‖v‖g �= 1). This argument
for using a vector’s length is the key idea of a technique known as Okubo’s technique
[4]. In fact, the geometry of movement in the former case (without considering the
external factor) is the Riemannian geometry, rather than the Finslerian geometry in
the latter case. Here, we consider the effect of traffic congestion (the vector field ω)
and introduce a newmetric F such that v be a unit vector with respect to the new norm
corresponding to F .

Theorem 3.1 Let g be a Riemannian metric and ω a vector field on R
2 such that

‖ω‖g < 1. If ω indicates the traffic congestion, then the travel time for a car with
a fixed power to pass through a vector field y ∈ TxR

2 is measured by the Randers
metric F(x, y) = ‖y‖g

1−‖ω‖g
.

Proof Let u ∈ TxR
2 be a unit vector. After taking the effect of the vector ω into

account, we have v = u − ω, where ‖v‖g = 1 − ‖ω‖g . Now, a Finsler structure F

that satisfies F(v) = 1 would be F(v) = ‖v‖g

1 − ‖ω‖g
. For an arbitrary vector field

y ∈ TxR
2, the corresponding Finsler metric F is

F(x, y) = ‖y‖g

1 − ‖ω‖g
.

If we put λ = 1 − ‖ω‖2g then F(x, y) can be written as

F(x, y) = ‖y‖g

λ
+ ‖ω‖g‖y‖g

λ
=

√
gi j yi y j

λ
+ gi jω

i y j

λ
, (10)

which is obviously a Randers metric. �
Therefore, the optimal/shortest route between any arbitrary origin–destination pair

(p, q) is a geodesic of the corresponding Randers metric passing through these points.
Equivalently, we need to find minimums of the following integral

J (σ ) =
∫ 1

0
F

(
x(t), y(t)

)
dt, y(t) = dx

dt
, (11)

where F is given by (10) and σ : [0, 1] → R defined by t → x(t) such that x(0) = p

and x(1) = q. It can be shown that, by assuming L = F
2

2 , any minimal point x(t) of
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the length integral (11) is a solution of the following system of differential equations,
see Chap. 5 of [33]:

Li j
d2xi

dt2
+ ∂Li

∂x j

dx j

dt
− ∂L

∂xi
= 0, (12)

where Li = ∂L
∂ yi , Li j = ∂2L

∂ yi ∂ y j . Therefore,

Corollary 3.1 If we consider traffic congestion as an external factor that affects the
vehicle transition network, then the differential equation of the shortest route between
any origin–destination pair is given by Eq. (12).

4 A FinslerianModel for Wardrop’s User Equilibrium Problem

In this section, we show that the Fischer-Burmeister function is a special Randers
metric, and therefore, the equations of its geodesics are equations of theminimal paths.
Then, we present a Finsler geometrical model for solving the dynamical Wardrop’s
user equilibrium problem that may apply in solving different equilibrium problems.

4.1 Finsler Geometry and Traffic Equilibrium

Here, we illustrate that the Fischer-Burmeister function is a special Randers metric.

Proposition 4.1 The Fischer-Burmeister function is a Finsler metric of Randers type
and its geodesics are the optimised paths in the NCP.

Proof Let g be a Euclidean metric on R
2 given by g(a, b) = √

a1b1 + a2b2, where
a = (a1, a2) and b = (b1, b2) are two arbitrary points on R

2. The local coordinate

system (x1, x2) on R
2 induces the local fields of frames

(
∂

∂x1
, ∂

∂x2

)
and (dx1, dx2)

on the tangent space TxR
2 and its dual T ∗

x R
2. Therefore, we have g

(
∂

∂x1
, ∂

∂x2

)
=

√
(dx1)2 + (dx2)2 and from Eq. (4), the Fischer-Burmeister function on R

2 is given
by:

φ(dx1, dx2) =
√

(dx1)2 + (dx2)2 − (dx1 + dx2). (13)

The first term in the right-hand side of (13) can be written as
√

δi j dxi dx j , where
δi j is the Kronecker symbol and i, j run over the range 1,2. So, it is a Euclidean (or
Riemannian)metric onR2. The second term in (13) is a differential 1-formβ = ωi dxi ,
where ∀i : ωi = −1. Therefore, the Fischer-Burmeister function is a Randers metric.

�
By virtue of the above proposition, solutions of the NCP, i.e. the optimised paths of

the Fischer-Burmeister function, are geodesics of a Randers metric given by Eq. (12).

4.2 The Dynamical Transition Network

The traffic congestion and transport demand in some hours of the day (peak hours)
are increasing dramatically. A typical solution to address this issue, instead of build-
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ing additional infrastructure, is the introduction of dynamic elements to road traffic
management. This includes for instance using sensors to measure traffic flows and
automatic interconnected guidance systems (for example traffic signs which open a
lane in different directions depending on the time of day) to manage traffic in peak
hours. Here, we generalise the method of solving the NCP, discussed in Sect. 4.1, to
dynamic systems.

Theorem 4.1 If the traffic flow and the travel time are functions of time t, then the
solutions of the traffic equilibrium problem are minima of the following integration

G(t) =
∫ t1

t0
ϕ(h(t), c(t))h′(t)dt, (14)

where ϕ = 1
2φ and φ is the Fischer-Burmeister function, h(t) is the traffic flow, c(t)

is the travel time, t0 is the start of travel time, and t1 is the end of travel time.

Proof Let the traffic flow h(t) and the travel time c(t) (which is in general a function
of h) be functions of time and assume that the minimal rout time π in (7) is zero. Then,
using the Fischer-Burmeister function φ on R

2 (Eq. (13)), Eq. (5) can be written as

G(h) =
∫ h1

h0
ϕ(h, c(h))dh,

where ϕ = 1
2φ. Since dh = h′(t)dt , this equation is equivalent to Eq. (14). Now by

virtue of a well-known fact in the calculus of variation the minima of integration (14)
are solutions to traffic equilibrium problem or present the shortest route (the route that
requires the least amount of time to pass through it). �

4.3 The Finsler Geometrical Model

Now, we can present a Finsler geometrical model for solving the dynamicalWardrop’s
user equilibrium problem:

Lemma 4.1 Any Finsler structure F(x, y) on R
2 can be considered as a gap function

in solving the NCP.

Proof Assume that the transit network has all conditions I-IV in Sect. 3 and also traffic
flow and the other ingredients in the transit network are functions of time. Further
assume that F(x, y) : TR

2\{0} → R
+ is a Finsler metric on R

2 and a car with a
fixed power travels from point a to point b through a smooth curve r on R2. From the
calculus of variation the minima of the following integral provide the shortest curve
between points a = r(t0) and b = r(t1):

L(r(t)) =
∫ t1

t0
F(x(t), y(t))dt, y(t) = dx

dt
,
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where we assume that r : [t0, t1] → R defined by t → x(t) such that x(t0) = a and
x(t1) = b. As a Finsler structure (see Sect. 2.1), F(x, y) meets all the conditions of
a gap function in solving the NCP. Equivalently, L(r(t)) is always a positive number
that is independent of the parameter t , and F is a differentiable function and if we put

(gi j ) :=
(
1
2

[
∂2

∂ yi ∂ y j F
2
])

, then we have det(gi j ) �= 0, see Sect. 2.2 or Sect. 8.7 of [6]

for more details. �
Theorem 4.2 The optimised routes for the traffic equilibrium problem in a dynamical
transition network are geodesics of a Finsler structure F(x, y) of Randers type, where
x(t) denotes the traffic flow at time t and y(t) = ẋ(t) is the velocity of a car with fixed
power at time t.

Proof Let x(t) be the traffic flow and y(t) = ẋ(t) the velocity of a car with fixed
power at time t . Then, Wardrop’s user equilibrium principle can be written as

F(x, y) = 0 ⇔ x ≥ 0, y ≥ 0, x .y = 0.

Here, F(x, y) = 0 implies that the traffic congestion is extremely high and the car
velocity is zero (y = 0) or the car stops, so we have x .y = 0. In Sect. 3, we show that
the geometrical method of solving the traffic problem leads to finding the geodesics of
a Randers metric. On the other hand, Proposition 4.1 implies that the common applied
mathematical method, i.e. finding the minima of the Fischer-Burmeister function,
can be seen as a special case of this geometrical method. Thus, if the given Finsler
metric in Lemma 4.1 be a Randers metric, it is a solution of the NCP. Therefore, from
Theorem 4.1, the equations of optimised routes for the traffic equilibrium problem in
a dynamical transition network are given by the geodesic equations of a Finsler metric
of Randers type. �

5 Conclusion

By analysing the nonlinear complementarity problem (NCP) of traffic equilibrium
from the Finsler geometric point of view, we presented a mathematical dynamical
model, based on Finsler geometry to provide the optimal paths for the dynamical
Wardrop’s user equilibrium problem.Applying one of the commonmethods of solving
NCPs, the modified Newton algorithm, we show that by assuming traffic congestion
as an external factor that affects the usual vehicle transition network, the differential
equation of the shortest route between any origin–destination pair is geodesic of a
Finsler metric known as the Randers metric. Then, we extend this result and show
that in general, the Fischer-Burmeister function is a Randers metric. Therefore, using
Finsler geometry, one can solve the dynamical Wardrop’s user equilibrium problem
by finding the geodesics of the corresponding Randers metric, see Eq. (12).
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