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Abstract
Method-of-lines discretizations are demanding test problems for stiff integrationmeth-
ods. However, for PDE problems with known analytic solution, the presence of space
discretization errors or the need to use codes to compute reference solutions may limit
the validity of numerical test results. To overcome these drawbacks, we present in this
short note a simple test problem with boundary control, a situation where one-step
methods may suffer from order reduction. We derive exact formulas for the solution
of an optimal boundary control problem governed by a one-dimensional discrete heat
equation and an objective function that measures the distance of the final state from the
target and the control costs. This analytical setting is used to compare the numerically
observed convergence orders for selected implicit Runge–Kutta and Peer two-step
methods of classical order four, which are suitable for optimal control problems.
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1 Introduction

One main area of application for stiff integration methods is semi-discretizations in
space of time-dependent partial differential equations in themethod-of-lines approach.
In order to test new methods in this area, one may rely on PDE test problems with
known analytic solution or reference solutions computed by other numerical methods.
However, both approaches have its drawbacks. For PDE problems, the accuracy is
limited by the level of space discretization errors and in computing reference solutions
one has to trust the reliability of the used code. This background was our motivation to
develop the current test problems with exact discrete solutions for a finite difference
semi-discretization in space with arbitrarily fine grids.

It is known that, in contrast to multi-step-type methods, one-step methods may
suffer from order reduction if applied toMOL systems especially with time-dependent
boundary conditions, see [7, 8]. Motivated by our recent work [5, 6] on Peer two-step
methods in optimal control, the present example is formulated as a problem with
boundary control.

The paper is organized as follows. In Sect. 2, we apply a finite difference dis-
cretization with a shifted equi-spaced grid for the 1D heat equation with general
Robin boundary conditions and derive exact formulas for the solutions of the discrete
heat equation and an optimal boundary control problem. These analytical solutions
are used in a sparse setting to study the numerically observed convergence orders in
Sect. 3 for several one-step and two-step integration methods which are suitable for
optimal control. Conclusions are given in Sect. 4.

2 A Discrete Heat Equation with Boundary Control

2.1 Finite Difference Discretization of the 1D Heat Equation

We consider the initial-boundary-value problem for a function Y (x, t) governed by
the heat equation

∂t Y (x, t) = ∂xxY (x, t), (x, t) ∈ [0, 1] × [0, T ], (1)

∂xY (0, t) = 0, β0Y (1, t) + β1∂xY (1, t) = u(t), (2)

Y (x, 0) = Ψ (x),

where Ψ (x) and u(t) are given functions. The homogeneous Neumann condition at
x = 0 may be considered as a shortcut for space-symmetric solutions Y (−x, t) ≡
Y (x, t). The coefficients of the general Robin boundary condition are nonnegative,
β0, β1 ≥ 0 and nontrivial (β0, β1) �= (0, 0).

Equation (1) is approximated by finite differences with a shifted equi-spaced grid
with step size h = 1/m, m ∈ N:

x j =
(
j − 1

2

)
h, j = 1, . . . ,m.
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For the approximation of the boundary conditions, also the outside points x0 = −h/2
and xm+1 = 1+ h/2 will be considered temporarily. In the method-of-lines approach
with central differences, approximations y j (t), j = 1, . . . ,m, are defined by the
differential equations

y′
j = 1

h2
(
y j−1 − 2y j + y j+1

)
, j = 2, . . . ,m − 1, (3)

for the grid points in a distance to the boundary. The symmetric difference approxima-

tion 0
!= hYx (0, t) ∼= (y1 − y0) leads to the symmetry condition y0 ≡ y1 and yields

the MOL equation

y′
1 = −y1 + y2

h2
. (4)

In a similar way, the Robin boundary condition is approximated by the equation

β0
ym + ym+1

2
+ β1

ym+1 − ym
h

= u(t),

which may be solved for ym+1 by

ym+1 = 2β1 − β0h

2β1 + β0h
ym + 2h

2β1 + β0h
u(t).

Thus, ym+1 may be eliminated from Eq. (3) with j =m yielding

y′
m = 1

h2
(ym−1 − θ ym) + γ u(t) (5)

with

θ = 2β1 + 3β0h

2β1 + β0h
= 3 − 4β1

2β1 + β0h
, γ = 2

(2β1 + β0h)h
. (6)

Hence, we have θ = 3 for the Dirichlet condition and θ = 1 for the pure Neumann
condition. Collecting all Eqs. (3), (4) and (5), the followingMOL system for the vector
y(t) = (

y j (t)
)
j=1,...,m is obtained:

y′ =My + γ emu(t), (7)

M = 1

h2

⎛
⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −θ

⎞
⎟⎟⎟⎟⎟⎠

, (8)
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where em is the m-th unit vector. The initial conditions are simple evaluations of the
function Ψ on the grid,

y(0) = ψ, ψ = (
Ψ (x j )

)m
j=1 . (9)

The basis of our construction is that the eigenvalues and eigenvectors of the sym-
metric matrix M are known, which is well known for special values of θ , at least.

Lemma 2.1 For m ≥ 2, the eigenvalues of the matrix M ∈ R
m×m from (8) are given

by

λk = −4m2 sin2
( ωk

2m

)
, k = 1, . . . ,m, (10)

where ωk, k = 1, . . . ,m, are the m first nonnegative solutions of the equation

tan(ω) tan
( ω

2m

)
= β0

2mβ1
, (11)

with the convention thatωk = (k− 1
2 )π , k = 1, . . . ,m, for β1 = 0. The corresponding

normalized eigenvectors v[k] have the components

v
[k]
j =νk cos

(
ωk

2 j − 1

2m

)
, j = 1, . . . ,m, (12)

with constants νk = 2/
√
2m + sin(2ωk)/ sin(ωk/m).

Proof In the main Eq. (3), the ansatz v = (	eiωx j
)m
j=1 gives

1

h2
(v j−1 − 2v j + v j+1) = 1

h2
	eiωx j

(
e−iωh) − 2 + eiωh

)
= − 4

h2
sin2

(
ωh

2

)
v j .

In the first equation, we have

1

h2
(−v1 + v2) = 1

h2

(
− cos

ωh

2
+ cos

(
3
ωh

2

))
= 4

h2

(
cos3

(
ωh

2

)
− cos

ωh

2

)

= − 4

h2
sin2

(
ωh

2

)
v1,

with the same factor λ := −(4/h2) sin2
(
ωh/2

)
. In order to satisfy the eigenvalue

condition in the last component, we consider the equation 0 = eTm(Mv − λv), i.e.,

0
!= vm−1 −

(
θ + λh2

)
vm = cos (ω(xm − h)) −

(
θ + λh2

)
cos(ωxm)

=
(
cos(ωh) + 4 sin2

(
ωh

2

)
− θ

)
cos(ωxm) + sin(ωh) sin(ωxm)
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=
(
1 + 2 sin2

(
ωh

2

)
− θ

)
cos(ωxm) + sin(ωh) sin(ωxm),

since cos(ωh) = 1 − 2 sin2(ωh/2). The last grid point is xm = 1 − h/2 and with the
trigonometric formulas for cos(ω−ωh/2), sin(ω−ωh/2) and the identity sin(ωh) =
2 sin(ωh/2) cos(ωh/2), we may proceed with

0 =
(
1 + 2 sin2

(
ωh

2

)
− θ

) (
cos(ω) cos

(
ωh

2

)
+ sin(ω) sin

(
ωh

2

))

+ 2 sin

(
ωh

2

)
cos

(
ωh

2

)(
sin(ω) cos

(
ωh

2

)
− cos(ω) sin

(
ωh

2

))

= (1 − θ) cos

(
ωh

2

)
cos(ω)

+
(
1 + 2 sin2

(
ωh

2

)
− θ + 2 cos2

(
ωh

2

))
sin

(
ωh

2

)
sin(ω)

= (1 − θ) cos

(
ωh

2

)
cos(ω) + (3 − θ) sin

(
ωh

2

)
sin(ω).

Hence, the different versions of θ in (6) verify the condition (11) for m = 1/h. Rear-
ranging (11) as tan(ω) = β0/(2mβ1) cot(ω/(2m)), for β0 > 0 it is seen that exactly
m solutions exist in (0,mπ) since the function ω 
→ cot(ω/(2m)) is monotonically
decreasing and positive. Finally, the vector norms are computed for ω �= 0. Abbrevi-
ating ω/m =: Ω and using cos2(x) = (1 + cos(2x))/2, we get

m∑
j=1

cos2
((

j − 1

2

)
ω

m

)
= m

2
+ 1

2

m∑
j=1

cos ((2 j − 1)Ω)

= m

2
+ 1

2
	

m∑
j=1

ei(2 j−1)Ω = m

2
+ 1

2
	 ei2Ωm − 1

eiΩ − e−iΩ

= m

2
+ 1

4
�ei2Ωm − 1

sin(Ω)
= m

2
+ 1

4

sin(2ω)

sin(Ω)
,

which leads to the value of the normalizing factor ν in (12). 
�
For later use, we introduce the diagonal matrix 
 = diag(λk) and the unitary

matrix V = (v[1], . . . , v[m]) satisfying M = V
V T .

Remark 2.2 The well-known frequencies for Dirichlet boundary conditions are ωk =
(k − 1

2 )π and ωk = (k − 1)π , k = 1, . . . ,m for Neumann conditions. For general
values β0, β1 > 0, Eq. (11) may be rewritten in fixed point form

ω = fk(ω) := (k − 1)π + arctan

(
β0

2mβ1
cot

( ω

2m

))
, k = 1, . . . ,m.
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The functions fk are monotonically decreasing in ω, and an iteration with initial value
ω = max{1, (k−1)π} converges to the desired solutionωk at least for 2m > β0/β1 ≥
1, since 1/| f ′

k(ω)| = (4m2β1/β0) sin2(ω/(2m)) + (β0/β1) cos2(ω/(2m)).

Remark 2.3 The eigenvalues λk in (10) are O(h2)-approximations of the exact eigen-
values λ̂k = −ϕ2

k , where yk(x) = cos(ϕk x), k ∈ N, are the eigenfunctions of
the boundary value problem with frequencies ϕk satisfying ϕ tan(ϕ) = β0/β1. For
Dirichlet (β1 = 0) and Neumann (β0 = 0) conditions, the discrete frequencies
are exact, ωk = ϕk, k = 1, . . . ,m. Here, Taylor expansion in (10) shows that
λk = −4h−2 sin2(hωk/2) ∼= −ω2

k (1 + h2ω2
k/12) = λ̂k + O(h2ω3

k ). This shows
convergence of second order for fixed k. However, for k → m the estimate becomes
meaningless since then hωk = O(1). For general Robin conditions, β0, β1 > 0, an
additional error is added since (11) corresponds to β0/β1 = 2h−1 tan(hω/2) tan(ω) ∼=
ω tan(ω)(1+h2ω2/12), which is an O(h2)-perturbation of the condition for the exact
frequencies ϕk .

2.2 Exact Solution of the Discrete Heat Equation

Knowing the eigenvectors and eigenvalues of the linear problem (7), the computation
of its solution is straightforward. The representation y(t) = ∑

k=1,...,m ηk(t)v[k] leads
to

m∑
k=1

η′
k(t)v

[k] =
m∑

k=1

λkηk(t)v
[k] + γ emu(t).

Since the matrix M is symmetric, the inner product with v[ j] yields the decoupled
equations η′

j (t) = λ jη j (t) + γ v
[ j]
m u(t), which can be solved easily leading to the

following result.

Lemma 2.4 With the data from Lemma 2.1, the solution of the initial value problem
(7), (9) is given by

y(t) =
m∑

k=1

(
eλk tv[k]Tψ + γ v[k]

m

∫ t

0
eλk (t−τ)u(τ ) dτ

)
v[k]. (13)

Remark 2.5 The presence of the terms v
[k]
m indicates that simple sparse solutions with

only a few terms in (13) may not exist due to the inhomogeneous boundary condition
(2).

2.3 Exact Solution of an Optimal Control Problem

The inhomogeneity u(t) inherited from the boundary condition (2) may be considered
as a control to approach a given target profile ŷ ∈ R

m at some given time T > 0. In
an optimal control context, controls are searched for minimizing an objective function
like
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C = 1

2
‖y(T ) − ŷ‖22 + α

2

∫ T

0
u(t)2dt,

with the Euclidean vector norm ‖ · ‖2 in R
m and α > 0. The unique optimal solution

may be computed by using some multiplier function p(t) for the ODE restriction (7)
and considering the Lagrangian

L :=C +
∫ T

0
pT

(
y′ − My − γ emu

)
dt + pT (0)(y(0) − ψ)

=C −
∫ T

0

((
p′)T y + pT

(
My + γ emu

))
dt + pT (T )y(T ) − pT (0)ψ.

The partial derivatives of the Lagrangian L with respect to p(t) and p(T ) recover (7),
(9), and the other ones are

∂y(t)L = − p′ − MT p = −p′ − Mp, (14)

∂y(T )L = y(T ) − ŷ + p(T ),

∂u(t)L = αu − γ eTm p. (15)

Hence, the Karush–Kuhn–Tucker conditions, ∂(·)L = 0 in (14)–(15), show that the
control u(t) may be eliminated by

u(t) = γ

α
eTm p(t) = γ

α
pm(t), (16)

and a necessary condition for the optimal solution is that it solves the following bound-
ary value problem:

y′ = My + γ

α
eme

T
m p, y(0) = ψ, (17)

p′ = − Mp, p(T ) = ŷ − y(T ). (18)

The homogeneous differential equation (18) for p has the simple solution

p(t) = e(T−t)M p(T ) =
m∑

�=1

eλ�(T−t)v[�]v[�]T (ŷ − y(T ))

with the matrix exponential

esM = V diag
(
eλk s

)
V T , 0 ≤ s ≤ T .

With u given by (16), this solution may be used in (13) to yield the solution for (17)
with the coefficient functions

123
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ηk(t) = eλk tηk(0) + γ 2

α
v[k]
m

∫ t

0
eλk (t−τ) pm(τ )dτ

= eλk tηk(0) + γ 2

α
v[k]
m

m∑
�=1

v[�]
m

∫ t

0
eλk t+λ�T−(λk+λ�)τdτ · v[�]T (ŷ − y(T )).

(19)

Considering the function ϕ1(z) = ∫ 1
0 eztdt satisfying ϕ1(z) = (ez − 1)/z for z �= 0

and ϕ1(0) = 1, the integral may be written as

∫ t

0
eλk t+λ�T−(λk+λ�)τdτ = teλ�(T−t)ϕ1 ((λk + λ�)t) .

The result (19) may be used in different ways. The first application is computing the
solution for a given target profile ŷ.

Lemma 2.6 Let ŷ ∈ R
m be given. Then, the coefficient vector η(T ) of the solution

y(t) = Vη(t) of the boundary value problem (17), (18) is given by the unique solution
of the linear system

(I + Q)η(T ) = eT
η(0) + QV T ŷ, (20)

with the positive semi-definite matrix Q = (qk�)mk,�=1 having the elements

qk� = γ 2T

α
v[k]
m ϕ1 ((λk + λ�)T ) v[�]

m , k, � = 1, . . . ,m. (21)

Proof At the end point T , the formula (19) simplifies to

ηk(T ) = eλk T ηk(0) + γ 2T

α
v[k]
m

m∑
�=1

v[�]
m ϕ1 ((λk + λ�)T ) ·

(
v[�]T ŷ − η�(T )

)
.

This equationmay be reordered to the form given in (20)with thematrix elements (21).
Finally, we consider the quadratic form of the matrix Q with some vector w = (w j ),
obtaining

wT Qw = γ 2T

α

m∑
k,�=1

v[k]
m wk

∫ 1

0
e(λk+λ�)T τdτ · v[�]

m w�

= γ 2T

α

∫ 1

0

m∑
k,�=1

(eλk T τ v[k]
m wk)(e

λ�T τ v[�]
m w�)dτ

= γ 2T

α

∫ 1

0

( m∑
k=1

eλk T τ v[k]
m wk

)2
dτ ≥ 0.
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This means that Q is semi-definite and I + Q definite and the system (20) always has
a unique solution. 
�

In general, solutions computed with (20) will not be sparse, i.e., they will have
m nontrivial basis coefficients in the state y and the Lagrange multiplier p. Due to
the special inhomogeneity in (17), sparse solutions for the state y probably do not
exist. However, by adjusting the target profile ŷ, one may simply start with a sparse
multiplier p(t) with, for instance, two terms only,

p(t) = δ1e
λ1(T−t)v[1] + δ2e

λ2(T−t)v[2], (22)

with coefficients δ1, δ2 belonging to some reasonable form of the control u. Then, by
the boundary condition in (18), the corresponding target profile has the form

ŷ = y(T ) + δ1v
[1] + δ2v

[2], (23)

where, by (19), the coefficients of y(T ) are given by

ηk(T ) = eλk T ηk(0) + γ 2T

α
v[k]
m

2∑
�=1

δ�v
[�]
m ϕ1 ((λk + λ�)T ) . (24)

We will use this construction in our numerical example.

3 Test Case: Dirichlet Boundary Control Problem

To illustrate an application of the derived expressions for the exact discrete solutions of
the linear heat equation equipped with different boundary conditions, we consider the
following ODE-constrained optimal control problem with an incorporated boundary
control of Dirichlet type:

min
(y,u)

C := 1

2
‖y(T ) − ŷ‖22 + α

2

∫ T

0
u(t)2 dt

subject to y′(t) = My(t) + γ emu(t), t ∈ (0, T ],
y(0) = 1,

with T =1, γ =2/h2, α =1, 1 = (1, . . . , 1)T ∈ R
m , state vector y(t) ∈ R

m , and M
as defined in (8) with θ = 3. We set δ1 = δ2 = −1/75 in (22) and compute the target
profile ŷ ∈ R

m from (23) with coefficients for y(T ) defined in (24).
We will compare numerical results for four time integrators of classical order four:

the symmetric 2-stage Gauss method (Appendix: Table 1), the symmetric 3-stage
partitioned Runge–Kutta pair Lobatto IIIA-IIIB (Appendix: Table 2) and our recently
developed two-step Peer methods AP4o43bdf and AP4o43dif [6]. The two one-step
methods are symplectic and therefore well suited for optimal control [4, 9].

123
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Two test scenarios are considered. First, the accuracy of the numerical approxi-
mations for y(T ) and p(0) is studied, where the exact control u(t) = γ pm(t)/α is
used. The initial value for the multiplier is set to p(T ) = ŷ − yτ (T ) with yτ (T ) being
the approximation of y(T ) with time step τ . In this case, the Karush–Kuhn–Tucker
system decouples and only two systems of linear ODEs have to be solved. In the
second scenario, the optimal control problem is solved for all unknowns (y, p, u) by
a gradient-based interior point algorithm as implemented in the MATLAB routine
fmincon, see, e.g., [1, 2] for more details, and the errors for the control are discussed.

We first reduce the objective function C(y, u) to the so-called Mayer form, which
uses terminal solution values only. Introducing an additional differential equation
y′
m+1(t) = u(t)2 with initial values ym+1(0) = 0 and an extended state vector ỹ =

(yT , ym+1)
T , the new objective function reads C̃ = (‖y(T ) − ŷ‖22 + αym+1(T ))/2.

Let now U ∈ R
sN denote the vector of approximate control values at the nodes

tni = tn+ciτ , i=1, . . . , s, used by an s-stage time integrator on a time grid {t0, . . . , tN }
with step size τ [3, 6], and let C̃(U ) := C̃(ỹ(T )) be the value of the cost functional
associated with these discrete controls. Then, the Karush–Kuhn–Tucker system pro-
vides a convenientway to compute the gradient∇U C̃(U ) for a givenU (k) in an iterative
optimization algorithm, solving first the forward Eq. (7) for y with given intermediate
values for the control to compute approximations yτ and then the backward Eq. (18)
for p using yτ (T ) as approximation for y(T ). For Runge–Kutta methods, it holds
∇uτ (tni )C̃(U ) = −τbi pτ (tni )∇u f (yτ (tni ), uτ (tni )) [3, Formula (27)], where yτ (tni ),
pτ (tni ), and uτ (tni ) are the approximations of (y(t), p(t), u(t)) at t = tni , respec-
tively, and bi are the weights of the Runge–Kutta method, see Appendix. Similar
formulas are computable for other time integrators. Eventually, we set U (0) = 0 as
initial guess and call fmincon, where we provide gradients of the objective function
for each approximation U (k).

In both test cases, we use m = 250 and m = 500 to also study the influence of the
system size. The number of time steps are N = 2k with k = 4, . . . , 11.

In Fig. 1, results for the first test scenario are shown. Not surprisingly, the serious
order reduction for the symplectic one-step Runge–Kutta methods is clearly seen. This
phenomenon is well understood and occurs particularly drastically for time-dependent
Dirichlet boundary conditions [8]. This drawback is shared by all one-stepmethods due
to their insufficient stage order. Note that the number of affected time steps increases
when the system size is doubled. In contrast, the newly designed two-stepPeermethods
for optimal control problems work quite close to their theoretical order four for the
state y and the adjoint p. The order reduction for the one-step methods is also visible
for the more challenging fully coupled problem. The results plotted in Fig. 2 show
a reduction to first order for the approximation of the control, whereas the two-step
methods perform with order two for this problem. We refer to [3] for a discussion of
the convergence order for general ODE constrained optimal control problems. Once
again, the range of the affected time steps depends on the problem size. It increases
for finer spatial discretizations.
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Fig. 1 Dirichlet heat problem with m = 250, 500 spatial points and given exact control u(t):
‖y(T )−yτ (T )‖∞ (left) and ‖p(0)−pτ (0)‖∞ (right)

10-2 10-1

TIMESTEP

10-4

10-3

10-2

10-1

100

M
AX

IM
U

M
 C

O
N

TR
O

L 
ER

R
O

R

Dirichlet Heat Problem: M=250

AP4o43bdf
AP4o43dif
Gauss2
LobattoIIIA/B3
order 1
order 2

10-3 10-2 10-1

TIMESTEP

10-4

10-3

10-2

10-1

100

M
AX

IM
U

M
 C

O
N

TR
O

L 
ER

R
O

R

Dirichlet Heat Problem: M=500

AP4o43bdf
AP4o43dif
Gauss2
LobattoIIIA/B3
order 1
order 2

Fig. 2 Dirichlet heat problem with m = 250, 500 spatial points, solved by MATLAB’s gradient-based
fmincon with interior point algorithm for (y, p, u): maxn,i |u(tni )−uτ (tni )|

4 Conclusions

We have derived exact formulas for the solution of an optimal boundary control prob-
lem constrained by a one-dimensional discrete heat equation, including Dirichlet and
general Robin boundary conditions. These solutions have been used to compare sym-
plectic Runge–Kutta methods and recently developed Peer two-step methods of order
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four. The numerically observed convergence orders illustrate a serious order reduction
for Runge–Kutta methods, which is much less severe for our Peer two-step methods.
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Appendix: Symplectic Runge–Kutta methods

An implicit s-stage Runge–Kuttamethod to numerically solve y′(t) = f (t, y), y(0) =
y0, with constant step size τ > 0 on a uniform partition 0 < t1 < . . . < tN , tn = nτ ,
is given by

ki = f

⎛
⎝tn + ciτ, yn + τ

s∑
j=1

ai j k j

⎞
⎠ , i = 1, . . . , s,

yn+1 = yn + τ

s∑
j=1

bi ki ,

where bi , ai j are real numbers, ci = ∑s
j=1 ai j , and yn are approximations of y(tn).

The coefficients are usually displayed in a Butcher tableau

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

.

We give the coefficients of the symplectic 2-stage Gauss method in Table 1 and the
symplectic 3-stage Lobatto IIIA-IIIB pair in Table 2. Further symplectic methods and
useful information can be found in [4].
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Table 1 Coefficients of the 2-stage Gauss method of order 4

1/2 − √
3/6 1/4 1/4 − √

3/6
1/2 +

√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

Table 2 Coefficients of the 3-stage Lobatto IIIA-IIIB pair of order 4

0 0 0 0
1/2 5/24 1/3 -1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

0 1/6 -1/6 0
1/2 1/6 1/3 0
1 1/6 5/6 0

1/6 2/3 1/6
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