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Abstract
Thepaper presents primal–dual proximal splittingmethods for convex optimization, in
which generalized Bregman distances are used to define the primal and dual proximal
update steps. The methods extend the primal and dual Condat–Vũ algorithms and
the primal–dual three-operator (PD3O) algorithm. The Bregman extensions of the
Condat–Vũ algorithms are derived from the Bregman proximal point method applied
to a monotone inclusion problem. Based on this interpretation, a unified framework
for the convergence analysis of the two methods is presented. We also introduce a line
search procedure for stepsize selection in the Bregman dual Condat–Vũ algorithm
applied to equality-constrained problems. Finally, we propose a Bregman extension
of PD3O and analyze its convergence.

Keywords First-order proximal splitting algorithm · Bregman divergence

Mathematics Subject Classification 49M29 · 90C06 · 90C25

1 Introduction

We discuss proximal splitting methods for optimization problems in the form

minimize f (x) + g(Ax) + h(x), (1)

where f , g, and h are convex functions and h is differentiable. This general problem
covers awide variety of applications inmachine learning, signal and image processing,
operations research, control, and other fields [11, 19, 31, 40]. In this paper, we consider
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proximal splitting methods based on Bregman distances for solving (1) and some
interesting special cases of (1).

Recently, several primal–dual first-order methods have been proposed for the
three-term problem (1): the Condat–Vũ algorithm [20, 50, 53], the primal–dual three-
operator (PD3O) algorithm [51], and the primal–dual Davis–Yin (PDDY) algorithm
[44]. Algorithms for some special cases of (1) are also of interest. These include the
Chambolle–Pock algorithm, also known as the primal–dual hybrid gradient (PDHG)
method [10, 12] (when h = 0), the Loris–Verhoeven algorithm [15, 23, 34] (when
f = 0), the proximal gradient algorithm (when g = 0), and the Davis–Yin splitting
algorithm [21] (when A = I ). All these methods handle the nonsmooth functions f
and g via the standard Euclidean proximal operator.

To further improve the efficiency of proximal algorithms, proximal operators based
on generalized Bregman distances have been proposed and incorporated in many
methods [2, 3, 6, 14, 24, 27, 35, 46, 48]. Bregman distances offer two potential benefits.
First, the Bregman distance can help build a more accurate local optimization model
around the current iterate. This is often interpreted as a form of preconditioning. For
example, diagonal or quadratic preconditioning [29, 33, 41] has been shown to improve
the practical convergence of PDHG, as well as the accuracy of the computed solution
[1]. As a second benefit, a Bregman proximal operator of a function may be easier
to compute than the standard Euclidean proximal operator and therefore reduce the
complexity per iteration of an optimization algorithm. Recent applications of this kind
include optimal transport problems [16], optimization over nonnegative trigonometric
polynomials [13], and sparse semidefinite programming [30].

Extending standard proximal methods and their convergence analysis to Bregman
distances is not straightforward because some fundamental properties of the Euclidean
proximal operator no longer hold for Bregman proximal operators. An example is the
Moreau decomposition which relates the (Euclidean) proximal operators of a closed
convex function and its conjugate [37]. Another example is the simple relation between
the proximal operators of a function g and the compositionwith a linear function g(Ax)

when AAT is a multiple of the identity; see, e.g., [4, 19]. This composition rule is used
in [39] to establish the equivalence between some well-known first-order proximal
methods for problem (1) with A = I and with general A.

The purpose of this paper is to present new Bregman extensions and convergence
results for theCondat–Vũ andPD3Oalgorithms.Themain contributions are as follows.

• The Condat–Vũ algorithm [20, 50] exists in a primal and a dual variant.We discuss
extensions of the two algorithms that useBregman proximal operators in the primal
and dual updates. The Bregman primal Condat–Vũ algorithm first appeared in [12,
Algorithm 1] and is also a special case of the algorithm proposed in [52] for a more
general convex–concave saddle point problem. We give a new derivation of this
method and its dual variant, by applying the Bregman proximal point method to
the primal–dual optimality conditions. Based on the interpretation, we provide a
unified framework for the convergence analysis of the two variants and show an
O(1/k) ergodic convergence rate, which is consistent with previous results for
Euclidean proximal operators in [20, 50] and Bregman proximal operators in [12].
We also give a convergence result for the primal and dual iterates.
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• Wepropose an easily implemented backtracking line search technique for selecting
stepsizes in the Bregman dual Condat–Vũ algorithm for problems with equality
constraints. The proposed backtracking procedure is similar to the technique in
[36] for the special setting of PDHG with Euclidean proximal operators, but has
some important differences even in this special case.We give a detailed analysis of
the algorithm with line search and recover the O(1/k) ergodic rate of convergence
for related algorithms in [30, 36].

• We propose a Bregman extension for PD3O and establish an ergodic convergence
result.

The paper is organized as follows. Section 2 gives a precise statement of the prob-
lem (1) and reviews the duality theory that will be used in the rest of the paper. In
Sect. 3, we review some well-known first-order proximal methods and establish con-
nections between them. Section 4 provides some necessary background on Bregman
distances. In Sect. 5, we discuss the Bregman primal and dual Condat–Vũ algorithms
and analyze their convergence. The line search technique and its convergence are dis-
cussed in Sect. 6. In Sect. 7, we extend PD3O to a Bregman proximal method and
analyze its convergence. Section 8 contains results of a numerical experiment.

2 Duality Theory andMerit Functions

This section summarizes the facts from convex duality theory that underlie the primal–
dual methods discussed in the paper. We also describe primal–dual merit functions
that will be used in the convergence analysis.

We use the notation 〈x, y〉 = xT y for the standard inner product of vectors x and
y, and ‖x‖ = 〈x, x〉1/2 for the Euclidean norm of a vector x . Other norms will be
distinguished by a subscript.

2.1 Problem Formulation

In (1), the vector x is an n-vector and A is an m × n matrix. The functions f , g, and
h are closed and convex, and h is differentiable, i.e.,

h(x) ≥ h(x ′) + 〈∇h(x ′), x − x ′〉 for all x, x ′ ∈ dom h,

where dom h is an open convex set. We assume that f + h and g are proper, i.e., have
nonempty domains.

An important example of (1) is g = δC , the indicator function of a closed convex
set C . With g = δC , the problem is equivalent to

minimize f (x) + h(x)

subject to Ax ∈ C .

For C = {b}, the constraints are a set of linear equations Ax = b. This special case
actually covers all applications of the more general problem (1), since (1) can be
reformulated as
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minimize f (x) + g(y) + h(x)

subject to Ax = y,

at the expense of increasing the problem size by adding a splitting variable y.

2.2 Dual Problem and Optimality Conditions

The dual of problem (1) is

maximize −( f + h)∗(−AT z) − g∗(z), (2)

where ( f + h)∗ and g∗ are the conjugates of f + h and g:

( f + h)∗(w) = sup
x

(〈w, x〉 − f (x) − h(x)), g∗(z) = sup
y

(〈z, y〉 − g(y)).

The conjugate ( f + h)∗ is the infimal convolution f ∗ and h∗, denoted by f ∗
� h∗:

( f ∗
� h∗)(z) = inf

w
(( f ∗(w) + h∗(z − w)).

The primal–dual optimality conditions for (1) and (2) are

0 ∈ ∂ f (x) + ∇h(x) + AT z, 0 ∈ ∂g∗(z) − Ax .

Here, ∂ f and ∂g∗ are the subdifferentials of f and g∗. We often write the optimality
conditions as

0 ∈
[

0 AT

−A 0

] [
x
z

]
+

[
∂ f (x) + ∇h(x)

∂g∗(z)

]
. (3)

Throughout the paper, we assume the optimality conditions (3) are solvable.
We will refer to the convex–concave function

L(x, z) = f (x) + h(x) + 〈z, Ax〉 − g∗(z)

as the Lagrangian of (1). We follow the convention that L(x, z) = +∞ if x /∈
dom( f + h) and L(x, z) = −∞ if x ∈ dom( f + h) and z /∈ dom g∗. The objective
functions in (1) and the dual problem (2) can be expressed as

sup
z

L(x, z) = f (x) + h(x) + g(Ax), inf
x
L(x, z) = −( f + h)∗(−AT z) − g∗(z).

Solutions x�, z� of the optimality conditions (3) form a saddle point of L:

inf
x
sup

z
L(x, z) = sup

z
L(x�, z) = L(x�, z�) = inf

x
L(x, z�) = sup

z
inf

x
L(x, z). (4)

In particular, L(x�, z�) is the optimal value of (1) and (2).
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2.3 Merit Functions

The algorithms discussed in this paper generate primal and dual iterates and approxi-
mate solutions x , z with x ∈ dom( f + h) and z ∈ dom g∗. The feasibility conditions
Ax ∈ dom g and −AT z ∈ dom( f + h)∗ are not necessarily satisfied. Hence, the
duality gap

sup
z′

L(x, z′)− inf
x ′ L(x ′, z) = f (x)+ h(x)+ g(Ax)+ ( f + h)∗(−AT z)+ g∗(z) (5)

may not always be useful as a merit function to measure convergence.
If we add constraints x ′ ∈ X and z′ ∈ Z to the optimization problems on the

left-hand side of (5), where X and Z are compact convex sets, we obtain a function

η(x, z) = sup
z′∈Z

L(x, z′) − inf
x ′∈X

L(x ′, z) (6)

defined for all x ∈ dom( f + h) and z ∈ dom g∗. This follows from the fact that the
functions f + h + δX and g∗ + δZ are closed and co-finite, so their conjugates have
full domain [43, Corollary 13.3.1]. If η(x, z) is easily computed, and η(x, z) ≥ 0 for
all x ∈ dom( f + h) and z ∈ dom g∗ with equality only if x and z are optimal, then
the function η can serve as a merit function in primal–dual algorithms for problem (1).

If dom( f + h) and dom g∗ are bounded, then X and Z can be chosen to contain
dom( f + h) and dom g∗. Then, the constraints in (6) are redundant and η(x, z) is the
duality gap (5). Boundedness of dom( f + h) and dom g∗ is a common assumption
in the literature on primal–dual first-order methods.

A weaker assumption is that (1) has an optimal solution x� ∈ int(X) and (2) has
an optimal solution z� ∈ int(Z). Then, η(x, z) ≥ 0 for all x ∈ dom( f + h) and
z ∈ dom g∗, with equality η(x, z) = 0 only if x, z are optimal for (1) and (2). To see
this, we first express the two terms in (6) as

sup
z′∈Z

L(x, z′) = f (x) + h(x) + (g � σZ )(Ax),

inf
x ′∈X

L(x ′, z) = −g∗(z) − (( f + h)∗ � σX )(−AT z),

where σX = δ∗
X and σZ (v) = δ∗

Z are the support functions of X and Z , respectively.
Consider the problem of minimizing η(x, z). By expanding the infimal convolutions
in the expressions for the two terms of η, this convex optimization problem can be
formulated as

minimize f (x) + h(x) + g(y) + σZ (Ax − y)

+ g∗(z) + ( f + h)∗(w) + σX (−AT z − w),
(7)

with variables x, y, z, w. The dual of this problem is

maximize − f (x̄) − h(x̄) − g(Ax̄) − g∗(z̄) − ( f + h)∗(−AT z̄)
subject to x̄ ∈ X , z̄ ∈ Z ,

(8)
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with variables x̄, z̄. The optimality conditions for (7) and (8) include the conditions
Ax − y ∈ NZ (z̄) and−AT z−w ∈ NX (x̄), where NX (x̄) = ∂δX (x̄) is the normal cone
to X at x̄ , and NZ (z̄) = ∂δZ (z̄) the normal cone to Z at z̄. By assumption, there exist
points x� ∈ int(X) and z� ∈ int(Z) that are optimal for the original problem (1) and its
dual (2). It can be verified that (x, y, z, w) = (x�, Ax�, z�,−AT z�), (x̄, z̄) = (x�, z�)

are optimal for (7) and (8), and that η(x�, z�) = 0. Now let (x̂, ẑ) be any other
minimizer of η, i.e., η(x̂, ẑ) = 0. Then, x̂, ẑ and the corresponding minimizers ŷ, ŵ

in (7), must satisfy the optimality conditions with the optimal dual variables x̄ = x�,
z̄ = z�. In particular, Ax̂ − ŷ ∈ NZ (z�) = {0} and −AT ẑ − ŵ ∈ NX (x�) = {0}. The
objective value of (7) at this point then reduces to 0 = f (x̂)+h(x̂)+g(Ax̂)+g∗(ẑ)+
( f + h)∗(−AT ŵ), the duality gap associated with the original problem and its dual.
This shows that η(x̂, ẑ) = 0 implies that x̂, ẑ are optimal for problem (1) and (2).

Consider for example the primal and dual pair

minimize f (x) + h(x)

subject to Ax = b
maximize −bT z − ( f + h)∗(−AT z).

Here, g = δ{b}. Ifwe take Z = {z | ‖z‖ ≤ γ }, thenσZ (y) = γ ‖y‖ and (g�σZ )(Ax) =
γ ‖Ax − b‖. If in addition dom( f + h) is bounded and we take X ⊇ dom( f + h),
then

η(x, z) = f (x) + h(x) + γ ‖Ax − b‖ + bT z + ( f + h)∗(−AT z)

withdomaindom( f +h)×Rm . Thefirst three terms are the primal objective augmented
with an exact penalty for the constraint Ax = b.

As another example, consider

minimize ‖x‖1
subject to Ax ≤ b

maximize −bT z
subject to ‖AT z‖∞ ≤ 1, z ≥ 0.

This is an example of (1) with f (x) = ‖x‖1, h(x) = 0, and g the indicator function
of {y | y ≤ b}. The domains dom f and dom g∗ are unbounded. If we choose
X = {x | ‖x‖∞ ≤ κ} and Z = {z | ‖z‖∞ ≤ λ}, then the merit function (6) for this
example is

η(x, z) = ‖x‖1 + λ

m∑
i=1

max{0, (Ax − b)i } + bT z + κ

n∑
i=1

max{0, |(AT z)i | − 1}

with domain Rn × Rm+. The second term is an exact penalty for the primal constraint
Ax ≤ b. The last term is an exact penalty for the dual constraint ‖AT z‖∞ ≤ 1.

3 First-Order Proximal Algorithms: Survey and Connections

In this section, we discuss several first-order proximal algorithms and their connec-
tions.We start with four three-operator splitting algorithms for problem (1): the primal
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and dual variants of the Condat–Vũ algorithm [20, 50], the primal–dual three-operator
(PD3O) algorithm [51], and the primal–dual Davis–Yin (PDDY) algorithm [44]. For
each of the four algorithms, wemake connections with other first-order proximal algo-
rithms, using reduction (i.e., setting some parts in (1) to zero) and the “completion”
reformulation (based on extending A to a matrix with orthogonal rows and equal row
norms) [39]. We focus on the formal connections between algorithms. The connec-
tions do not necessarily provide the best approach for convergence analysis or the best
known convergence results.

The proximal operator or proximal mapping of a closed convex function f : Rn →
R is defined as

prox f (y) = argmin
x

(
f (x) + 1

2
‖x − y‖2). (9)

If f is closed and convex, the minimizer in the definition exists and is unique for all
y [37]. We will call (9) the standard or Euclidean proximal operator when we need
to distinguish it from Bregman proximal operators in Section 4.

3.1 Condat–Vũ Three-Operator Splitting Algorithm

We start with the (primal) Condat–Vũ three-operator splitting algorithm, which was
proposed independently by Condat [20] and Vũ [50],

xk+1 = proxτ f

(
xk − τ(AT zk + ∇h(xk))

)
(10a)

zk+1 = proxσ g∗
(
zk + σ A(2xk+1 − xk)

)
. (10b)

The stepsizes σ and τ must satisfy στ‖A‖22 + τ L ≤ 1, where ‖A‖2 is the spectral
norm of A, and L is the Lipschitz constant of ∇h with respect to the Euclidean norm.
Many other first-order proximal algorithms can be viewed as special cases of (10),
and their connections are summarized in Fig. 1.

When h = 0, algorithm (10) reduces to the (primal) primal–dual hybrid gradient
(PDHG)method [10, 12, 42], or PDHGMu in [26].When g = 0 in (10) (and assuming

Fig. 1 Proximal methods derived from primal Condat–Vũ algorithm.
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Fig. 2 Proximal methods derived from dual Condat–Vũ algorithm.

z0 = 0), we obtain the proximal gradient algorithm. When f = 0, we obtain a
variant of the Loris–Verhoeven algorithm, which will be referred to as the Loris–
Verhoeven with shift, for reasons that will be clarified later. If we further set A = I ,
we obtain the reduced Loris–Verhoeven algorithm with shift. However, due to the
absence of f in the reduced Loris–Verhoeven algorithm with shift, it is not clear
how to apply the “completion” trick to it. Furthermore, when A = I in PDHG,
we obtain the Douglas–Rachford splitting (DRS) algorithm [18, 25, 32]. Conversely,
the “completion” technique in [39] shows that PDHG coincides with DRS applied
to a reformulation of the problem. Similarly, when A = I in the primal Condat–
Vũ algorithm (10), we obtain a new algorithm and refer to it as the reduced primal
Condat–Vũ algorithm. Conversely, the reduced primal Condat–Vũ algorithm reverts
to (10) via the “completion” trick.

Condat [20] also discusses a variant of (10), which we will call the dual Condat–Vũ
algorithm:

zk+1 = proxσ g∗(zk + σ Axk) (11a)

xk+1 = proxτ f

(
xk − τ(AT (2zk+1 − zk) + ∇h(xk))

)
. (11b)

Figure 2 summarizes the proximal algorithms derived from (11). When h = 0, algo-
rithm (11) reduces to PDHG applied to the dual of (1) (with h = 0), which is shown
to be equivalent to linearized ADMM [40] (also called Split Inexact Uzawa in [26]).
Setting g = 0 in (11) yields the proximal gradient algorithm. When f = 0, we obtain
the dual Loris–Verhoeven algorithm with shift, following the previous naming con-
vention, and if we further set A = I , we obtain the reduced dual Loris–Verhoeven
algorithm with shift. Moreover, setting A = I in (11) gives the reduced dual Condat–
Vũ algorithm. Conversely, applying the “completion” trick to this reduced algorithm
recovers (11). Similarly, setting A = I in dual PDHG gives dual DRS, i.e., DRS with
f and g switched, and conversely, the “completion” trick recovers dual PDHG from
dual DRS.
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Fig. 3 Proximal algorithms derived from PD3O.

3.2 Primal–Dual Three-Operator (PD3O) Splitting Algorithm

The third diagram starts with the primal–dual three-operator (PD3O) splitting algo-
rithm [51]

xk+1 = proxτ f (xk − τ(AT zk + ∇h(xk))) (12a)

zk+1 = proxσ g∗(zk + σ A(2xk+1 − xk + τ∇h(xk) − τ∇h(xk+1))), (12b)

and is presented in Fig. 3.
Compared with the Condat–Vũ algorithm (10), PD3O seems to have slightly more

complicated updates and larger complexity per iteration, but the requirement for the
stepsizes is looser: στ‖A‖22 ≤ 1 and τ ≤ 1/L . When h = 0, (12) reduces to the
(primal) PDHG. The classical proximal gradient algorithm can be obtained by setting
g = 0. The PD3O algorithm (12) with f = 0 was discovered independently as
the Loris–Verhoeven algorithm [34], the primal–dual fixed point algorithm based on
proximity operator (PDFP2O) [15], and the proximal alternating predictor corrector
(PAPC) [23]. Comparison with the Loris–Verhoeven algorithm with shift reveals a
minor difference between these two algorithms: the gradient term in the z-update is
taken at the newest primal iterate xk+1 in the Loris–Verhoeven algorithm and at the
previous point xk in the shifted version. This difference is inherited in the proximal
gradient algorithm and its shifted version. Furthermore, when A = I and σ = 1/τ in
PD3O, we recover the well-known Davis–Yin splitting (DYS) algorithm [21]. We can
also set A = I in the Loris–Verhoeven algorithm and obtain the classical proximal
gradient algorithm.

3.3 Primal–Dual Davis–Yin (PDDY) Splitting Algorithm

The core algorithm in Fig. 4 is the primal–dual Davis–Yin (PDDY) splitting algorithm
[44]

zk+1 = proxσ g∗(zk + σ Axk) (13a)

xk+1 = proxτ f

(
xk − τ AT (2zk+1 − zk) − τ∇h(xk + τ AT (zk − zk+1))

)
. (13b)
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Fig. 4 Proximal algorithms derived from PDDY.

The requirement for stepsizes is the same as that in PD3O: στ‖A‖22 ≤ 1 and τ ≤ 1/L .
Figure 4 is almost identical to Fig. 3 with the roles of f and g exchanged.When h = 0,
PDDY reduces to the dual PDHG. In addition, when A = I and σ = 1/τ , PDDY
reduces to the Davis–Yin algorithm, but with f and g exchanged. Similarly, when
h = 0, A = I and σ = 1/τ , PDDY reverts to the Douglas–Rachford algorithm with
f and g switched.
We have seen that the middle and right parts of Fig. 4 are those of Fig. 3 with f

and g switched. However, when one of the functions f or g is absent, the algorithms
reduced from PD3O and PDDY are exactly the same. In particular, when f = 0,
PDDY reduces to the Loris–Verhoeven algorithm.

4 Bregman Distances

In this section, we give the definition of Bregman proximal operators and the basic
properties that will be used in the paper. We refer the interested reader to [9] for an
in-depth discussion of Bregman distances, their history, and applications.

Letφ be a convex functionwith a domain that has nonempty interior, and assumeφ is
continuous on dom φ and continuously differentiable on int(dom φ). The generalized
distance (or Bregman distance) generated by the kernel function φ is defined as the
function

d(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉, (14)

with domain dom d = dom φ × int(dom φ). The corresponding Bregman proximal
operator of a function f is

proxφ
f (y, a) = argmin

x
( f (x) + 〈a, x〉 + d(x, y)) (15)

= argmin
x

( f (x) + 〈a, x〉 + φ(x) − 〈∇φ(y), x〉). (16)

It is assumed that for everya and every y ∈ int(dom φ) theminimizer x̂ = proxφ
f (y, a)

is unique and in int(dom φ).
The distance generated by the kernel φ(x) = (1/2)‖x‖2 is the squared Euclidean

distance d(x, y) = (1/2)‖x − y‖2. The corresponding Bregman proximal operator is
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the standard proximal operator applied to y − a:

proxφ
f (y, a) = prox f (y − a).

For this distance, closedness and convexity of f guarantee that the proximal operator
is well defined. The questions of existence and uniqueness are more complicated for
general Bregman distances. There are no simple general conditions that guarantee
that for every a and every y ∈ int(dom φ) the generalized proximal operator (15)
is uniquely defined and in int(dom φ). Some sufficient conditions are provided (see,
for example, [8, Section 4.1], [3, Assumption A]), but they may be quite restrictive or
difficult to verify in practice. In applications, however, the Bregman proximal operator
is used with specific combinations of f and φ, for which the minimization problem
in (15) is particularly easy to solve. In those applications, existence and uniqueness
of the solution follow directly from the closed-form solution or availability of a fast
algorithm to compute it. A typical example will be provided in Sect. 8.

From the expression (16) and the definition of subgradient, we see that x̂ =
proxφ

f (y, a) satisfies

f (x) + 〈a, x〉 ≥ f (x̂) + 〈a, x̂〉 + 〈∇φ(y) − ∇φ(x̂), x − x̂〉
= f (x̂) + 〈a, x̂〉 + d(x̂, y) + d(x, x̂) − d(x, y) (17)

for all x ∈ dom f ∩ dom φ. The second inequality follows from the definition (14);
see, e.g., [45, Lemma 4.1].

5 Bregman Condat–Vũ Three-Operator Splitting Algorithms

We now discuss two Bregman three-operator splitting algorithms for the problem (1).
The algorithms use a generalized distance dp in the primal space, generated by a
kernel φp, and a generalized distance dd in the dual space, generated by a kernel φd.
The first algorithm is

xk+1 = prox
φp
τ f

(
xk, τ AT zk + τ∇h(xk)

)
(18a)

zk+1 = proxφd
σ g∗

(
zk,−σ A(2xk+1 − xk)

)
(18b)

and will be referred to as the Bregman primal Condat–Vũ algorithm. The second
algorithm will be called the Bregman dual Condat–Vũ algorithm:

zk+1 = proxφd
σ g∗(zk,−σ Axk) (19a)

xk+1 = prox
φp
τ f (xk, τ AT (2zk+1 − zk) + τ∇h(xk)). (19b)

The two algorithms need starting points x0 ∈ int(dom φp) ∩ dom h, and z0 ∈
int(dom φd). Conditions on stepsizes σ , τ will be specified later. When Euclidean
distances are used for the primal and dual proximal operators, the two algorithms
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reduce to the primal and dual variants of the Condat–Vũ algorithm (10) and (11),
respectively. Algorithm (18) has been proposed in [12]. Here, we discuss it together
with (19) in a unified framework.

In Sect. 5.1,we show that the proposed algorithms can be interpreted as theBregman
proximal point method applied to a monotone inclusion problem. In Sect. 5.2, we
analyze their convergence. In Sect. 5.3, we discuss the connections between the two
algorithms and other Bregman proximal splitting methods.

Assumption 1

(1.1) The kernel functions φp and φd are 1-strongly convex with respect to norms
‖ · ‖p and ‖ · ‖d, respectively:

dp(x, x ′) ≥ 1

2
‖x − x ′‖2p, dd(z, z′) ≥ 1

2
‖z − z′‖2d (20)

for all (x, x ′) ∈ dom dp and (z, z′) ∈ dom dd. The assumption that the strong
convexity constants are equal to one can be made without loss of generality,
by scaling the norms (or distances) if needed.

(1.2) The function Lφp − h is convex for some L > 0. More precisely, dom φp ⊆
dom h and

h(x) − h(x ′) − 〈∇h(x ′), x − x ′〉 ≤ Ldp(x, x ′) for all (x, x ′) ∈ dom dp. (21)

(1.3) The primal–dual optimality conditions (3) have a solution (x�, z�) with x� ∈
dom φp and z� ∈ dom φd.

Note that Assumption 1.2 is looser than the one in [12, Equation (4)]. We denote
by ‖A‖ the matrix norm

‖A‖ = sup
u �=0,v �=0

〈v, Au〉
‖v‖d‖u‖p = sup

u �=0

‖Au‖d,∗
‖u‖p = sup

v �=0

‖AT v‖p,∗
‖v‖d , (22)

where ‖ · ‖p,∗ and ‖ · ‖d,∗ are the dual norms of ‖ · ‖p and ‖ · ‖d.

5.1 Derivation from Bregman Proximal Point Method

TheBregmanCondat–Vũ algorithms (18) and (19) can be viewed as applications of the
Bregman proximal point algorithm to the optimality conditions (3). This interpretation
extends the derivation of the Bregman PDHG algorithm from the Bregman proximal
point algorithm given in [30]. The idea originates with He and Yuan’s interpretation
of PDHG as a “preconditioned” proximal point algorithm [28].

The Bregman proximal point algorithm [9, 24, 27] is an algorithm for monotone
inclusion problems 0 ∈ F(u). The update uk+1 in one iteration of the algorithm is
defined as the solution of the inclusion

∇φ(uk) − ∇φ(uk+1) ∈ F(uk+1),
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where φ is a Bregman kernel function. Applied to (3), with a kernel function φpd, the
algorithm generates a sequence (xk, zk) defined by

∇φpd(xk, zk) − ∇φpd(xk+1, zk+1)

∈
[

AT zk+1 + ∂ f (xk+1) + ∇h(xk+1)

−Axk+1 + ∂g∗(zk+1)

]
. (23)

5.1.1 Primal–Dual Bregman Distances

We introduce four possible primal–dual kernel functions: the functions

φ+(x, z) = 1

τ
φp(x) + 1

σ
φd(z) + 〈z, Ax〉, φ−(x, z) = 1

τ
φp(x) + 1

σ
φd(z) − 〈z, Ax〉,

where σ, τ > 0, and the functions

φdcv(x, z) = φ+(x, z) − h(x), φpcv(x, z) = φ−(x, z) − h(x).

The subscripts in φ+ and φ− refer to the sign of the inner product term 〈z, Ax〉. The
subscripts in φpcv and φdcv indicate the algorithm (Bregman primal or dual Condat-
Vũ) for which these distances will be relevant. If these kernel functions are convex,
they generate the following Bregman distances. The distances generated by φ+ and
φ− are

d+(x, z; x ′, z′) = 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) + 〈z − z′, A(x − x ′)〉

d−(x, z; x ′, z′) = 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) − 〈z − z′, A(x − x ′)〉, (24)

respectively, and the distances generated by φdcv and φpcv are

ddcv(x, z; x ′, z′) = d+(x, z; x ′, z′) − h(x) + h(x ′) + 〈∇h(x ′), x − x ′〉
dpcv(x, z; x ′, z′) = d−(x, z; x ′, z′) − h(x) + h(x ′) + 〈∇h(x ′), x − x ′〉.

The following lemma provides sufficient conditions for the (strong) convexity of φ+,
φ−, φpcv, and φdcv.

Lemma 1 The functions φ+ and φ− are convex if στ‖A‖2 ≤ 1 and strongly convex if
στ‖A‖2 < 1. The functions φdcv and φpcv are convex if

στ‖A‖2 + τ L ≤ 1 (25)

and strongly convex if στ‖A‖2 + τ L < 1.
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Proof To show that the kernel functions φ+ and φ− are convex, we show that d+ and
d− are nonnegative. Suppose στ‖A‖2 ≤ δ1δ2 with δ1, δ2 > 0. Then, (20) and the
arithmetic–geometric mean inequality imply that

∣∣〈z − z′, A(x − x ′)〉∣∣ ≤ ‖A‖‖z − z′‖d‖x − x ′‖p
≤

√
δ1δ2

στ
‖z − z′‖d‖x − x ′‖p

≤ δ1

2τ
‖x − x ′‖2p + δ2

2σ
‖z − z′‖2p

≤ δ1

τ
dp(x, x ′) + δ2

σ
dd(z, z′). (26)

Therefore,

d±(x, z; x ′, z′) = 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) ± 〈z − z′, A(x − x ′)〉

≥ 1 − δ1

τ
dp(x, x ′) + 1 − δ2

σ
dd(z, z′)

≥ 1 − δ1

2τ
‖x − x ′‖2p + 1 − δ2

2σ
‖z − z′‖2d.

With δ1 = δ2 = 1, this shows convexity of φ+ and φ−; with δ1 = δ2 < 1, strong
convexity. Similarly,

ddcv/pcv(x, z; x ′, z′) = d±(x, z; x ′, z′) − h(x) + h(x ′) + 〈∇h(x ′), x − x ′〉
≥ 1 − τ L − δ1

τ
dp(x, x ′) + 1 − δ2

σ
dd(z, z′).

With δ1 = 1−τ L and δ2 = 1, this shows convexity of φpcv and φdcv; with δ1 = δ−τ L
and δ2 = δ < 1, strong convexity. ��

5.1.2 Bregman Condat-Vũ Algorithms from Proximal Point Method

TheBregmanprimalCondat–Vũ algorithm (18) is theBregmanproximal pointmethod
with the kernel function φpd = φpcv. If we take φpd = φpcv in (23), we obtain two
coupled inclusions that determine xk+1, zk+1. The first one is

0 ∈ 1

τ
(∇φp(xk+1) − ∇φp(xk)) + AT zk + ∇h(xk) + ∂ f (xk+1).

This shows that xk+1 solves the optimization problem

minimize f (x) + 〈AT zk + ∇h(xk), x〉 + 1

τ
dp(x, xk).
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The solution is the x-update (18a) in the Bregman primal Condat–Vũ method. The
second inclusion is

0 ∈ 1

σ
(∇φd(zk+1) − ∇φd(zk)) − A(2xk+1 − xk) + ∂g∗(zk+1).

This shows that zk+1 solves the optimization problem

minimize g∗(z) − 〈z, A(2xk+1 − xk)〉 + 1

σ
dd(z, zk).

The solution is the z-update (18b).
Similarly, choosing φpd = φdcv in (23) yields the Bregman dual Condat–Vũ algo-

rithm (19).

5.2 Convergence Analysis

The derivation in Sect. 5.1 allows us to apply existing convergence theory for the Breg-
man proximal point method to the proposed algorithms (18) and (19). In particular,
Solodov and Svaiter [45] have studied Bregman proximal point methods with inex-
act prox-evaluations for solving variational inequalities, which include the monotone
inclusion problem as a special case. The results in [45] can be applied to analyze con-
vergence of the Bregman Condat–Vũ methods with inexact evaluations of proximal
operators.

The literature on the Bregman proximal point method for monotone inclusions [24,
27, 45] focuses on the convergence of iterates, and this generally requires additional
assumptions on φp and φd (beyond Assumption 1.1). In this section, we present a
self-contained convergence analysis and give a direct proof of an O(1/k) rate of
ergodic convergence (using only Assumption 1). We also give a self-contained proof
of convergence of the iterates xk and zk .

For the sake of brevity,we combine the analysis of theBregmanprimal andBregman
dual Condat–Vũ algorithms. In the following, d, d̃, φ̃ are defined as

d = d− d̃ = dpcv φ̃ = φpcv for Bregman primal Condat–Vũ (18),
d = d+ d̃ = ddcv φ̃ = φdcv for Bregman dual Condat–Vũ (19).

5.2.1 One-Iteration Analysis

Lemma 2 Under Assumption 1 and the stepsize condition (25), the iterates generated
by the Bregman Condat–Vũ algorithms (18) and (19) satisfy

L(xk+1, z) − L(x, zk+1)

≤ d(x, z; xk, zk) − d(x, z; xk+1, zk+1) − d̃(xk+1, zk+1; xk, zk) (27)

for all x ∈ dom f ∩ dom φp and z ∈ dom g∗ ∩ dom φd.
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Proof We write (18) and (19) in a unified notation as

xk+1 = prox
φp
τ f (xk, τ (AT z̃ + ∇h(xk))) (28a)

zk+1 = proxφd
σ g∗(zk,−σ Ax̃) (28b)

where x̃ and z̃ are defined in the following table:

Bregman primal Condat–Vũ : x̃ = 2xk+1 − xk z̃ = zk

Bregman dual Condat–Vũ : x̃ = xk z̃ = 2zk+1 − zk .

The optimality condition (17) for the proximal operator evaluation (28a) is

τ( f (xk+1) − f (x)) ≤ dp(x, xk) − dp(xk+1, xk) − dp(x, xk+1)

+ τ 〈AT z̃ + ∇h(xk), x − xk+1〉

for all x ∈ dom f ∩ dom φp. The optimality condition for (28b) is that

σ(g∗(zk+1) − g∗(z)) ≤ dd(z, zk) − dd(zk+1, zk) − dd(z, zk+1)

−σ 〈z − zk+1, Ax̃〉

for all z ∈ dom g∗ ∩ dom φd. Combining the two inequalities gives

L(xk+1, z) − L(x, zk+1)

= f (xk+1) − f (x) + h(xk+1) − h(x) + g∗(zk+1) − g∗(z)
+〈AT z, xk+1〉 − 〈zk+1, Ax〉

≤ 1

τ

(
dp(x, xk) − dp(x, xk+1) − dp(xk+1, xk)

)

+ 1

σ

(
dd(z, zk) − dd(z, zk+1) − dd(zk+1, zk)

)
+h(xk+1) − h(x) + 〈∇h(xk), x − xk+1〉
+〈AT z̃, x − xk+1〉 − 〈z − zk+1, Ax̃〉 + 〈AT z, xk+1〉 − 〈zk+1, Ax〉 (29)

≤ 1

τ

(
dp(x, xk) − dp(x, xk+1) − dp(xk+1, xk)

)

+ 1

σ

(
dd(z, zk) − dd(z, zk+1) − dd(zk+1, zk)

)
+h(xk+1) − h(xk) − 〈∇h(xk), xk+1 − xk〉
+〈AT z̃, x − xk+1〉 − 〈z − zk+1, Ax̃〉
+〈AT z, xk+1〉 − 〈zk+1, Ax〉 (30)

for all x ∈ dom f ∩ dom φp and all z ∈ dom g∗ ∩ dom φd. The second inequality
follows from convexity of h. Substituting the expressions for x̃ and z̃ in the Bregman
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primal Condat–Vũ algorithm (18), we obtain for the last four terms on the right-hand
side of (30)

〈AT z̃, x − xk+1〉 − 〈z − zk+1, Ax̃〉 + 〈AT z, xk+1〉 − 〈zk+1, Ax〉
= 〈zk, A(x − xk+1)〉 − 〈z − zk+1, A(2xk+1 − xk)〉 + 〈AT z, xk+1〉 − 〈zk+1, Ax〉
= 〈zk − zk+1, A(x − xk+1)〉 + 〈z − zk+1, A(xk − xk+1)〉
= −〈z − zk, A(x − xk)〉 + 〈z − zk+1, A(x − xk+1)〉

+ 〈zk+1 − zk, A(xk+1 − xk)〉. (31)

If we substitute the expressions for x̃ and z̃ in the Bregman dual Condat–Vũ algorithm,
the last four terms on the right-hand side of (30) equal to the negative of the right-hand
side of (31).

Therefore, for both algorithms, (30) implies that

L(xk+1, z) − L(x, zk+1)

≤ 1

τ
dp(x, xk) + 1

σ
dd(z, zk)∓〈z − zk, A(x − xk)〉

−
(1
τ

dp(x, xk+1) + 1

σ
dd(z, zk+1)∓〈z − zk+1, A(x − xk+1)〉

)

−
(1
τ

dp(xk+1, xk) + 1

σ
dd(zk+1, zk)∓〈zk+1 − zk, A(xk+1 − xk)〉

)
+ h(xk+1) − h(xk) − 〈∇h(xk), xk+1 − xk〉,

if we select the minus sign in ∓ for the Bregman primal Condat–Vũ algorithm, and
the plus sign for the Bregman dual Condat–Vũ algorithm. ��

5.2.2 Ergodic Convergence

We define averaged iterates

xavgk = 1

k

k∑
i=1

xi , zavgk = 1

k

k∑
i=1

zi (32)

for k ≥ 1. The ergodic convergence of (xavgk , zavgk ) is given in the following theorem.

Theorem 1 Under Assumption 1 and the stepsize condition (25), the averaged iterates
(xavgk , zavgk ) satisfy

L(xavgk , z) − L(x, zavgk ) ≤ 2

k

(1
τ

dp(x, x0) + 1

σ
dd(z, z0)

)
(33)

for all x ∈ dom f ∩ dom φp and z ∈ dom g∗ ∩ dom φd.
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Proof From (27) in Lemma 2, since L(u, v) is convex in u and concave in v,

L(xavgk , z) − L(x, zavgk ) ≤ 1

k

k∑
i=1

(L(xi , z) − L(x, zi )
)

≤ 1

k

(
d(x, z; x0, z0) − d(x, z; xk, zk)

)

≤ 1

k
d(x, z; x0, z0)

≤ 2

k

(1
τ

dp(x, x0) + 1

σ
dd(z, z0)

)

for all x ∈ dom f ∩dom φp and z ∈ dom g∗∩dom φd. The last step follows from (26)
with δ1 = δ2 = 1. ��

Substituting x = x�, z = z� in (33) gives

L(xavgk , z�) − L(x�, zavgk ) ≤ 2

k

(1
τ

dp(x�, x0) + 1

σ
dd(z

�, z0)
)
.

More generally, if X ⊆ dom φp and Z ⊆ dom φd are compact convex sets that contain
optimal solutions x�, z� in their interiors, then the merit function (6) is bounded by

η(xavgk , zavgk ) ≤ 2

k

(1
τ
sup
x∈X

dp(x, x0) + 1

σ
sup
z∈Z

dd(z, z0)
)
.

5.2.3 Monotonicity Properties

We present an auxiliary result that will be used in Sect. 5.2.4 to show convergence of
iterates.

Lemma 3 Under Assumption 1 and the stepsize condition (25), we have

d(x�, z�; xk+1, zk+1) ≤ d(x�, z�; xk, zk) − d̃(xk+1, zk+1; xk, zk) (34)

for k ≥ 0, and
d(x�, z�; xk, zk) ≤ d(x�, z�; x0, z0). (35)

The inequality (34) also implies
∑k

i=0 d̃(xi+1, zi+1; xi , zi ) ≤ d(x�, z�; x0, z0), and
thus d̃(xk+1, zk+1; xk, zk) → 0.

Proof For (x, z) = (x�, z�), the left-hand side of (27) is nonnegative and (34) holds.
Hence, d(x�, z�; xk+1, zk+1) ≤ d(x�, z�; xk, zk) and (35) holds. ��
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5.2.4 Convergence of Iterates

Convergence of iterates can be obtained by combining the derivation in Sect. 5.1 and
existing results on Bregman proximal point method [27, Theorem 3.1], [45, Theo-
rem 3.2]. Here, we provide a self-contained proof under additional assumptions about
the primal and dual distance functions.

Assumption 2

(2.1) For fixed x and z, the sublevel sets {x ′ | dp(x, x ′) ≤ γ } and {z′ | dd(z, z′) ≤
γ } are closed. In other words, the distances dp(x, x ′) and dd(z, z′) are closed
functions of x ′ and z′, respectively. Since a sum of closed functions is closed,
the distance d(x, z; x ′, z′) is a closed function of (x ′, z′), for fixed (x, z).

(2.2) If x̃k ∈ int(dom φp) converges to x ∈ dom φp, then dp(x, x̃k) → 0. Similarly,
if z̃k ∈ int(dom φd) converges to z ∈ dom φd, then dd(z, z̃k) → 0.

(2.3) The stepsizes σ and τ satisfy στ‖A‖2 + τ L < 1.

The first two assumptions inAssumption 2 are common in the literature onBregman
distances [9, 14, 24, 27]. As shown in Lemma 1, Assumption 2 implies that the kernel
functions φpcv and φdcv are strongly convex and that

d̃(x, z; x ′, z′) ≥ α

2τ
‖x − x ′‖2p + α

2σ
‖z − z′‖2d (36)

for some α > 0. Similarly, στ‖A‖2 < 1 implies that

d(x, z; x ′, z′) ≥ β

2τ
‖x − x ′‖2p + β

2σ
‖z − z′‖2d (37)

for some β > 0. Recall that d = d−, d̃ = dpcv for the Bregman primal algorithm (18),
and d = d+, d̃ = ddcv for the Bregman dual algorithm (19).

Theorem 2 Under Assumptions 1 and 2, the iterates (xk, zk) generated by Bregman
primal and dual Condat–Vũ algorithms (18) and (19) converge to an optimal point
(x�, z�).

Proof Wefirst note that d̃(xk+1, zk+1; xk, zk) → 0 and (36) imply that xk+1−xk → 0
and zk+1 − zk → 0.

The inequality (35), together with (37), implies that the sequence (xk, zk) is
bounded. Let (xki , zki ) be a convergent subsequence of (xk, zk) with limit (x̂, ẑ).
Since xki +1 − xki → 0 and zki +1 − zki → 0, the sequence (xki +1, zki +1) converges
to (x̂, ẑ). We show that (x̂, ẑ) satisfies the optimality condition (3).

From (35), d(x�, z�; xki , zki ) is bounded. Since the sublevel sets {(x ′, z′) |
d(x�, z�; x ′, z′) ≤ γ } are closed and in int(dom φp) ∩ int(dom φd), the limit
(x̂, ẑ) ∈ int(dom φp) ∩ int(dom φd). The iterates in the subsequence satisfy

∇φpd(xki , zki ) − ∇φpd(xki +1, zki +1) +
[−AT zki +1

Axki +1

]
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∈
[
∂ f (xki +1) + ∇h(xki +1)

∂g∗(zki +1)

]
, (38)

where φpd = φpcv in the Bregman primal Condat–Vũ algorithm and φpd = φdcv
in the Bregman dual Condat–Vũ algorithm. The left-hand side of (38) converges to
(−AT ẑ, Ax̂) because ∇φpd is continuous on int(dom φpd). Since the operator on
the right-hand side of (38) is maximal monotone, the limit point (x̂, ẑ) satisfies the
optimality condition (see [7, page 27], [47, Lemma 3.2])

[−AT ẑ
Ax̂

]
∈

[
∂ f (x̂) + ∇h(x̂)

∂g∗(ẑ)

]
.

To show convergence of the entire sequence, we substitute (x̂, ẑ) in (27):

L(xk+1, ẑ) − L(x̂, zk+1) ≤ d(x̂, ẑ; xk, zk) − d(x̂, ẑ; xk+1, zk+1).

We have d(x̂, ẑ; xk, zk) ≤ d(x̂, ẑ; xk−1, zk−1) for all k ≥ 1, since the left-hand side is
nonnegative. This further implies that d(x̂, ẑ; xk, zk) ≤ d(x̂, ẑ; xki , zki ) for all k ≥ ki .
By Assumption (2.2), the right-hand side converges to zero. Then, the left-hand side
also converges to zero and from (37), xk → x̂ and zk → ẑ. ��

5.3 Relation to Other Bregman Proximal Algorithms

Following similar steps as in Sect. 3, we obtain several Bregman proximal splitting
methods as special cases of (18) and (19). The connections are summarized in Figs. 5
and 6. A comparison of Figs. 1 and 5 shows that all the reduction relations (A = I )
are still valid. However, it is unclear how to apply the “completion” operation to
algorithms based on non-Euclidean Bregman distances.

When h = 0, (18) reduces to Bregman PDHG [12]. When g = 0, g∗ = δ{0} (and
assuming z0 = 0), we obtain the Bregman proximal gradient algorithm [3]. When
f = 0 in (18), we obtain the Bregman Loris–Verhoeven algorithm with shift, and if
we further set A = I , we obtain the Bregman reduced Loris–Verhoeven algorithm

Fig. 5 Proximal algorithms derived from Bregman primal Condat–Vũ algorithm (18).
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Fig. 6 Proximal algorithms derived from Bregman dual Condat–Vũ algorithm (19).

with shift. Similarly, when A = I in (18), we recover the reduced Bregman primal
Condat–Vũ algorithm, and setting A = I in Bregman PDHG yields the Bregman
Douglas–Rachford algorithm.

Similarly, the Bregman dual Condat–Vũ algorithm (19) can be reduced to some
other Bregman proximal splitting methods, as summarized in Fig. 6. In particular,
when f = 0 in (19), we obtain the Bregman dual Loris–Verhoeven algorithm with
shift, and if we further set A = I , we obtain the reduced Bregman Loris–Verhoeven
algorithm with shift.

6 Bregman Dual Condat–Vũ Algorithmwith Line Search

The algorithms (18) and (19) use constant parameters σ and τ . The stepsize condi-
tion (25) involves thematrix norm ‖A‖ and theLipschitz constant L in (21). Estimating
or bounding ‖A‖ for a large matrix can be difficult. As an added complication, the
norms ‖·‖p and ‖·‖d in the definition of the matrix norm (22) are assumed to be scaled
so that the strong convexity parameters of the primal and dual kernels are equal to
one. Close bounds on the strong convexity parameters may also be difficult to obtain.
Using conservative bounds for ‖A‖ and L results in unnecessarily small values of
σ and τ and can dramatically slow down the convergence. Even when the estimates
of ‖A‖ and L are accurate, the requirements for the stepsizes (25) are still too strict
in most iterations, as observed in [1]. In view of the above arguments, line search
techniques for primal–dual proximal methods have recently become an active area of
research. Malitsky and Pock [36] proposed a line search technique for PDHG and the
Condat–Vũ algorithm in the Euclidean case. The algorithm with adaptive parameters
in [49] focuses on a special case of (1) (i.e., f = 0) and extends the Loris–Verhoeven
algorithm. A Bregman proximal splitting method with line search is discussed in [30]
and considers the problem (1) with h = 0 and g = δ{b}. In this section, we extend the
Bregman dual Condat–Vũ algorithm (19) with a varying parameter option, in which
the stepsizes are chosen adaptively without requiring any estimates or bounds for
‖A‖ or the strong convexity parameter of the kernels. The algorithm is restricted to
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problems in the equality constrained form

minimize f (x) + h(x)

subject to Ax = b.
(39)

This is a special case of (1) with g = δ{b}, the indicator function of the singleton {b}.
The details of the algorithm are discussed in Sect. 6.1, and a convergence analysis is

presented in Sect. 6.2. The main conclusion is an O(1/k) rate of ergodic convergence,
consistent with previous results for related algorithms [30, 36].

Assumption 3 The kernel function, the Bregman distance, and the norm in the dual
space are

φd(z) = 1
2‖z‖2, dd(z, z′) = 1

2‖z − z′‖2, ‖z‖d = ‖z‖.

(Recall that ‖ · ‖ denotes the Euclidean norm.)

The matrix norm ‖A‖ is defined accordingly as

‖A‖ = sup
u �=0,v �=0

〈v, Au〉
‖v‖‖u‖p = sup

u �=0

‖Au‖
‖u‖p = sup

v �=0

‖AT v‖p,∗
‖v‖ .

6.1 Algorithm

The algorithm uses the following iteration, with starting points x0 ∈ dom h ∩
int(dom φp) and z−1 = z0:

z̄k+1 = zk + θk(zk − zk−1) (40a)

xk+1 = prox
φp
τk f

(
xk, τk(AT z̄k+1 + ∇h(xk))

)
(40b)

zk+1 = zk + σk(Axk+1 − b). (40c)

With constant parameters θk = 1, σk = σ , τk = τ , the algorithm reduces to the
Bregman dual Condat–Vũ algorithm (19) applied to (39), except for the numbering of
the dual iterates.

In the line search algorithm, the parameters θk , τk , σk are determined by a back-
tracking search. At the start of the algorithm, we set τ−1 and σ−1 to some positive
values. To start the search in iteration k we choose θ̄k ≥ 1. For i = 0, 1, 2, . . ., we set
θk = 2−i θ̄k , τk = θkτk−1, σk = θkσk−1, and compute z̄k+1, xk+1, zk+1 using (40). For
some δ ∈ (0, 1], if

〈zk+1 − z̄k+1, A(xk+1 − xk)〉 + h(xk+1) − h(xk) − 〈∇h(xk), xk+1 − xk〉
≤ δ2

τk
dp(xk+1, xk) + 1

2σk
‖z̄k+1 − zk+1‖2, (41)
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we accept the computed iterates z̄k+1, xk+1, zk+1 and parameters θk , σk , τk , and
terminate the backtracking search. If (41) does not hold, we increment i and continue
the backtracking search.

The backtracking condition (41) is similar to the condition in the line search algo-
rithm for PDHG with Euclidean proximal operators [36, Algorithm 4], but it is not
identical, even in the Euclidean case. The proposed condition is weaker and allows
larger stepsizes than the condition in [36, Algorithm 4].

6.2 Convergence Analysis

The proof strategy is the same as in [30, Section 3.3], extended to account for the
function h. The main conclusion is an O(1/k) rate of ergodic convergence, as shown
in Eq. (49).

6.2.1 Lower Bound on Algorithm Parameters

Lemma 4 Suppose Assumptions 1 and 3 hold. The stepsizes selected by the backtrack-
ing process are bounded below by

τk ≥ τmin � min
{
τ−1,

−L + √
L2 + 4δ2β‖A‖2
4β‖A‖2

}
, σk ≥ σmin � βτmin, (42)

where β = σ−1/τ−1. The lower bounds imply that the backtracking eventually termi-
nates with positive stepsizes σk and τk .

Proof Applying (26) in the proof of Lemma 1 with τ = τk , σ = σk , δ1 = δ2 − τk L
and δ2 = 1, together with the Lipschitz condition (21) in Assumption 1, we see that
the backtracking condition (41) holds at iteration k if 0 < δ ≤ 1 and

τkσk‖A‖2 + τk L ≤ δ2.

Then, mathematical induction can be used to prove (42). The rest of the proof is
similar to that in [30, §3.3.1], extended to account for the smooth function h, and thus
is omitted here. ��

6.2.2 One-Iteration Analysis

Lemma 5 Suppose Assumptions 1 and 3 hold. The iterates xk+1, zk+1, z̄k+1 generated
by the algorithm (40) and the backtracking process satisfy

L(xk+1, z) − L(x, z̄k+1)

≤ 1

τk

(
dp(x, xk) − dp(x, xk+1) − (1 − δ2)dp(xk+1, xk)

)

+ 1

2σk

(
‖z − zk‖2 − ‖z − zk+1‖2 − ‖z̄k+1 − zk‖2

)
(43)
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for all x ∈ dom f ∩ dom φp and all z. Here, L(x, z) = f (x) + h(x) + 〈z, Ax − b〉.
Proof The optimality condition for the primal prox-operator (40b) gives

f (xk+1) − f (x) ≤ 1

τk

(
dp(x, xk) − dp(x, xk+1) − dp(xk+1, xk)

)
+〈AT z̄k+1 + ∇h(xk), x − xk+1〉

for all x ∈ dom f ∩ dom φp. Hence,

f (xk+1) + h(xk+1) − f (x) − h(x)

≤ 1

τk
(dp(x, xk) − dp(x, xk+1) − dp(xk+1, xk)) + 〈AT z̄k+1, x − xk+1〉

+ h(xk+1) − h(x) + 〈∇h(xk), x − xk+1〉
≤ 1

τk
(dp(x, xk) − dp(x, xk+1) − dp(xk+1, xk)) + 〈AT z̄k+1, x − xk+1〉

+ h(xk+1) − h(xk) − 〈∇h(xk), xk+1 − xk〉. (44)

The second inequality follows from the convexity of h, i.e., h(x) ≥ h(xk) +
〈∇h(xk), x − xk〉. The dual update (40c) implies that

〈z − zk+1, Axk+1 − b〉 = 1

σk
〈z − zk+1, zk+1 − zk〉 for all z. (45)

This equality at k = i − 1 is

〈z − zi , Axi − b〉 = 1

σi−1
〈z − zi , zi − zi−1〉

= 1

2σi−1

(
‖z − zi−1‖2 − ‖z − zi‖2 − ‖zi − zi−1‖2

)
. (46)

The equality (45) at k = i − 2 is

〈z − zi−1, Axi−1 − b〉 = 1

σi−2
〈z − zi−1, zi−1 − zi−2〉

= θi−1

σi−1
〈z − zi−1, zi−1 − zi−2〉

= 1

σi−1
〈z − zi−1, z̄i − zi−1〉.

We evaluate this at z = zi and add it to the equality at z = zi−2 multiplied by θi−1:

〈zi − z̄i , Axi−1 − b〉 = 1

σi−1
〈zi − z̄i , z̄i − zi−1〉

= 1

2σi−1

(‖zi − zi−1‖2 − ‖zi − z̄i‖2 − ‖z̄i − zi−1‖2
)
. (47)
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Now, we combine (44) for k = i − 1, with (46) and (47). For i ≥ 1,

L(xi , z) − L(x, z̄i )

= f (xi ) + h(xi ) + 〈z, Axi − b〉 − f (x) − h(x) − 〈z̄i , Ax − b〉
≤ 1

τi−1

(
dp(x, xi−1) − dp(x, xi ) − dp(xi , xi−1)

)
+ 〈AT z̄i , x − xi 〉

+ 〈z, Axi − b〉 − 〈z̄i , Ax − b〉 + h(xi ) − h(xi−1) − 〈∇h(xi−1), xi − xi−1〉
= 1

τi−1

(
dp(x, xi−1) − dp(x, xi ) − dp(xi , xi−1)

)
+ 〈z − z̄i , Axi − b〉

+ h(xi ) − h(xi−1) − 〈∇h(xi−1), xi − xi−1〉
= 1

τi−1

(
dp(x, xi−1) − dp(x, xi ) − dp(xi , xi−1)

)

+ 〈zi − z̄i , A(xi − xi−1)〉 + 〈z − zi , Axi − b〉 + 〈zi − z̄i , Axi−1 − b〉
+ h(xi ) − h(xi−1) − 〈∇h(xi−1), xi − xi−1〉

= 1

τi−1

(
dp(x, xi−1) − dp(x, xi ) − dp(xi , xi−1))

)

+ 1

2σi−1

(
‖z − zi−1‖2 − ‖z − zi‖2 − ‖z̄i − zi−1‖2 − ‖z̄i − zi‖2

)

+ 〈AT (zi − z̄i ), xi − xi−1〉 + h(xi ) − h(xi−1) − 〈∇h(xi−1), xi − xi−1)〉
≤ 1

τi−1

(
dp(x, xi−1) − dp(x, xi ) − (1 − δ2)dp(xi , xi−1)

)

+ 1

2σi−1

(
‖z − zi−1‖2 − ‖z − zi‖2 − ‖z̄i − zi−1‖2

)
,

which is the desired result (43). The first inequality follows from (44). In the second to
last stepwe substitute (46) and (47). The last step uses the line search exit condition (41)
at k = i − 1. ��

6.2.3 Ergodic Convergence

We define the averaged primal and dual sequences

xavgk = 1∑k
i=1 τi−1

k∑
i=1

τi−1xi , z̄avgk = 1∑k
i=1 τi−1

k∑
i=1

τi−1 z̄i

for k ≥ 1. The ergodic convergence of (xavgk , z̄avgk ) is given in the following theorem.

Theorem 3 Suppose Assumptions 1 and 3 hold, and the stepsizes are selected by the
backtracking process with line search condition (41). The averaged iterates (xavgk , z̄avgk )

satisfy
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L(xavgk , z) − L(x, z̄avgk ) ≤ 1∑k
i=1 τi−1

(
dp(x, x0) + 1

2β
‖z − z0‖2

)
(48)

≤ 1

kτmin

(
dp(x, x0) + 1

2β
‖z − z0‖2

)
(49)

for all x ∈ dom f ∩ dom φp and all z. This holds for any δ ∈ (0, 1] in (41).

If we compare (48) and (33), we note that the two left-hand sides involve different dual
iterates (z̄avgk as opposed to zavgk ).

Proof From (43) in Lemma 5,

L(xi , z) − L(x, z̄i ) ≤ 1

τi−1

(
dp(x, xi−1) − dp(x, xi )

+ 1

2β
‖z − zi−1‖2 − 1

2β
‖z − zi‖2

)
.

Since L(u, v) is convex in u and affine in v,

(

k∑
i=1

τi−1)
(L(xavgk , z) − L(x, z̄avgk )

) ≤
k∑

i=1

τi−1(L(xi , z) − L(x, z̄i ))

≤ dp(x, x0) + 1

2β
‖z − z0‖2.

Dividing by
∑k

i=1 τi−1 gives (48). ��
Substituting x = x� and z = z� in (48) yields

f (xavgk ) + h(xavgk ) + 〈z�, Axavgk − b〉 − f (x�) − h(x�)

≤ 1∑k
i=1 τi−1

(
dp(x�, x0) + 1

2β
‖z� − z0‖2

)
,

since Ax� = b. More generally, suppose X ⊆ dom f ∩ dom φp is a compact convex
set containing an optimal solution x� in its interior, and Z = {z | ‖z‖ < γ } contains
a dual optimal z�, then the merit function η defined in (6) satisfies

η(xavgk , z̄avgk ) = sup
z∈Z

L(xavgk , z) − inf
x∈X

L(x, z̄avgk )

≤ 1∑k
i=1 τi−1

(
sup
x∈X

dp(x, x0) + 1

2β
(γ + ‖z0‖)2

)

≤ 1

kτmin

(
sup
x∈X

dp(x, x0) + 1

2β
(γ + ‖z0‖)2

)
.

The second line follows from (48) and the third line follows from Lemma 4.
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6.2.4 Monotonicity Properties and Convergence of Iterates

For x = x�, z = z�, the left-hand side of (43) is nonnegative and we obtain

dp(x�, xk+1) + 1

2β
‖z� − zk+1‖2

≤ dp(x�, xk) + 1

2β
‖z� − zk‖2 − (

(1 − δ2)dp(xk+1, xk) + 1

2β
‖z̄k+1 − zk‖2

)

≤ dp(x�, xk) + 1

2β
‖z� − zk‖2

for k ≥ 0. These inequalities hold for any value δ ∈ (0, 1]. In particular, the second
inequality implies that z̄i+1−zi → 0.When δ < 1 it also implies thatdp(xi+1, xi ) → 0
and, by the strong convexity assumption on φp, that xi+1 − xi → 0. With additional
assumptions similar to those in Sect. 5.2.3, one can show the convergence of iterates;
see [30, Section 3.3.4].

7 Bregman PD3O Algorithm

In this section, we propose the Bregman PD3O algorithm, another Bregman proximal
method for the problem (1). Bregman PD3O also involves two generalized distances,
dp and dd, generated by φp and φd, respectively, and it consists of the iterations

xk+1 = prox
φp
τ f (xk, τ AT zk + τ∇h(xk)) (50a)

zk+1 = proxφd
σ g∗

(
zk,−σ A(2xk+1 − xk + τ(∇h(xk) − ∇h(xk+1)))

)
. (50b)

The only difference between Bregman PD3O and Bregman primal Condat–Vũ algo-
rithm (18) is the additional term τ(∇h(xk)−∇h(xk+1)). Thus, the two algorithms (18)
and (50) reduce to the samemethod when h is absent from problem (1). The additional
term allows PD3O to use larger stepsizes than the Condat–Vũ algorithm. If we use the
same matrix norm ‖A‖ and Lipschitz constant L in the analysis for the two methods,
then the conditions are

Condat–Vũ : στ‖A‖2 + τ L ≤ 1
PD3O: στ‖A‖2 ≤ 1, τ ≤ 1/L.

(51)

The range of possible parameters is illustrated in Fig. 7.
In Sect. 7.1, we provide the detailed convergence analysis of the Bregman PD3O

method. The connections between Bregman PD3O and several other Bregman proxi-
mal methods are discussed in Sect. 7.2.
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Fig. 7 Acceptable stepsizes in Condat–Vũ algorithms and PD3O. We assume the same matrix norm ‖A‖
and Lipschitz constant L are used in the analysis of the two algorithms. The light gray region under the blue
curve is defined by the inequality for the Condat–Vũ algorithms in (51). The region under the red curve
shows the values allowed by the stepsize conditions for PD3O.

Assumption 4

(4.1) The kernel functions φp and φd are 1-strongly convex with respect to norms ‖ · ‖
and ‖ · ‖d, respectively:

dp(x, x ′) ≥ 1

2
‖x − x ′‖2, dd(z, z′) ≥ 1

2
‖z − z′‖2d (52)

for all (x, x ′) ∈ dom dp and (z, z′) ∈ dom dd. The assumption that the strong
convexity constants are one can be made without loss of generality, by scaling
the distances.

(4.2) The gradient of h is L-Lipschitz continuous with respect to the Euclidean norm:
dom h = Rn and

h(y) − h(x) − 〈∇h(x), y − x〉 ≤ L

2
‖y − x‖2, for any x, y ∈ dom h. (53)

(4.3) The parameters τ and σ satisfy

στ‖A‖2 ≤ 1, τ ≤ 1/L. (54)

(4.4) The primal–dual optimality conditions (3) have a solution (x�, z�) with x� ∈
dom φp and z� ∈ dom φd.

Note that (53) is a stronger assumption than (21). (Combinedwith the first inequality
in (52), it implies (21).) We will use the following consequence of (53) [38, Theorem
2.1.5]:

h(y) − h(x) − 〈∇h(x), y − x〉 ≥ 1

2L
‖∇h(y) − ∇h(x)‖2 for allx,y. (55)

123



964 Journal of Optimization Theory and Applications (2023) 196:936–972

7.1 Convergence Analysis

7.1.1 A Primal–Dual Bregman Distance

We introduce a primal–dual kernel

φpd3o(x, y, z) = 1

τ
φp(x) + 1

σ
φd(z) + τ

2
‖y‖2 − 〈y, x〉 − 〈z, A(x − τ y)〉,

where σ, τ > 0. If φpd3o is convex, the generated Bregman distance is given by

dpd3o(x, y, z; x ′, y′, z′)

= 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) + τ

2
‖y − y′‖2

− 〈y − y′, x − x ′〉 − 〈z − z′, A(x − x ′)〉 + τ 〈z − z′, A(y − y′)〉. (56)

The following lemma gives a sufficient condition for the convexity of φpd3o.

Lemma 6 Suppose (52) holds. The kernel function φpd3o is convex if στ‖A‖2 ≤ 1,
where ‖A‖ is defined in (22) with ‖ · ‖p = ‖ · ‖.

Proof It is sufficient to show that dpd3o is nonnegative:

dpd3o(x, y, z; x ′, y′, z′)

≥ 1

2τ
‖x − x ′‖2 + τ

2
‖AT (z − z′)‖2 + τ

2
‖y − y′‖2

− 〈y − y′, x − x ′〉 − 〈z − z′, A(x − x ′)〉 + τ 〈z − z′, A(y − y′)〉
= 1

2

∥∥∥ 1√
τ

(x − x ′) − √
τ(y − y′) − √

τ AT (z − z′)
∥∥∥2

≥ 0. (57)

In step 1, we use the strong convexity assumption (52), the definition of ‖A‖ (22) with
‖ · ‖p = ‖ · ‖, and the assumption στ‖A‖2 ≤ 1. The bound on dd(z, z′) follows from

1

σ
dd(z, z′) ≥ 1

2σ
‖z − z′‖2d ≥ ‖AT (z − z′)‖2

2σ‖A‖2 ≥ τ

2
‖AT (z − z′)‖2. ��

Note that the convexity of φpd3o only requires the first inequality in the stepsize con-
dition (54). Although the Bregman PD3O algorithm (50) is not the Bregman proximal
point method for the Bregman kernel φpd3o, the distance dpd3o will appear in the key
inequality (58) of the convergence analysis.

7.1.2 One-Iteration Analysis

Lemma 7 Under Assumption 4, the iterates xk+1, zk+1 generated by Bregman
PD3O (50) satisfy

L(xk+1, z) − L(x, zk+1) ≤ dpd3o
(
x,∇h(x), z; xk,∇h(xk), zk

)
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− dpd3o
(
x,∇h(x), z; xk+1,∇h(xk+1), zk+1

)
− dpd3o

(
xk+1,∇h(x), zk+1; xk,∇h(xk), zk

)
(58)

for all x ∈ dom f ∩ dom φp and z ∈ dom g∗ ∩ dom φd.

Proof Recall that Bregman PD3O differs from the Bregman primal Condat–Vũ algo-
rithm (18) only in an additional term in the dual update. The proof in Sect. 6.2.2
therefore applies up to (29), with

x̃ = 2xk+1 − xk + τ(∇h(xk) − ∇h(xk+1)), z̃ = zk .

Substituting the above (x̃, z̃) into (29) and applying the definition of d− (24) yields

L(xk+1, z) − L(x, zk+1)

≤ d−(x, z; xk, zk) − d−(x, z; xk+1, zk+1) − d−(xk+1, zk+1; xk, zk)

− τ 〈AT (z − zk+1),∇h(xk) − ∇h(xk+1)〉
+ h(xk+1) − h(x) + 〈∇h(xk), x − xk+1〉

= d−(x, z; xk, zk) + τ

2
‖∇h(x) − ∇h(xk)‖2

− 〈(x − τ AT z) − (xk − τ AT zk),∇h(x) − ∇h(xk)〉
−

(
d−(x, z; xk+1, zk+1) + τ

2
‖∇h(x) − ∇h(xk+1)‖2

− 〈
x − τ AT z − (xk+1 − τ AT zk+1),∇h(x) − ∇h(xk+1)

〉)

−
(

d−(xk+1, zk+1; xk, zk) + τ

2
‖∇h(x) − ∇h(xk)‖2

− 〈
(xk+1 − τ AT zk+1) − (xk − τ AT zk),∇h(x) − ∇h(xk)

〉)

− (h(x) − h(xk+1) − 〈∇h(xk+1), x − xk+1〉 − τ

2
‖∇h(x) − ∇h(xk+1)‖2)

= dpd3o(x,∇h(x), z; xk ,∇h(xk), zk) − dpd3o(x,∇h(x), z; xk+1,∇h(xk+1), zk+1)

− dpd3o(xk+1,∇h(x), zk+1; xk,∇h(xk), zk)

− (h(x) − h(xk+1) − 〈∇h(xk+1), x − xk+1〉 − τ

2
‖∇h(x) − ∇h(xk+1)‖2)

≤ dpd3o(x,∇h(x), z; xk ,∇h(xk), zk) − dpd3o(x,∇h(x), z; xk+1,∇h(xk+1), zk+1)

− dpd3o(xk+1,∇h(x), zk+1; xk,∇h(xk), zk)

≤ dpd3o(x,∇h(x), z; xk ,∇h(xk), zk) − dpd3o(x,∇h(x), z; xk+1,∇h(xk+1), zk+1).

Step 3 follows from definition of dpd3o (56). In step 4, we use the Lipschitz condi-
tion (55) and the second inequality in the stepsize condition (54). The last step follows
from the fact that dpd3o is nonnegative (57). ��
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7.1.3 Ergodic Convergence

Theorem 4 Under Assumption 4, Bregman PD3O iterates (50) satisfy

L(xavgk , z) − L(x, zavgk ) ≤ 3

k

(2
τ

dp(x, x0) + 1

σ
dd(z, z0)

)
,

for all x ∈ dom f ∩ dom φp and all z ∈ dom g∗ ∩ dom φd, where the averaged
iterates are defined in (32).

Proof From (58) in Lemma 7, since L(u, v) is convex in u and concave in v,

L(xavgk , z) − L(x, zavgk ) ≤ 1
k

∑k
i=1

(L(xi , z) − L(x, zi )
)

≤ 1
k

(
d(x, z; x0, z0) − d(x, z; xk, zk)

)
≤ 1

k d(x, z; x0, z0)

≤ 2
k

(
1
τ

dp(x, x0) + 1
σ

dd(z, z0)
)

for all x ∈ dom f ∩ dom φp and z ∈ dom g∗ ∩ dom φd. The third inequality follows
from (56):

dpd3o(x, y, z; x ′, y′, z′)

≤ 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) + τ

2
‖y − y′‖2 + ‖y − y′‖‖x − x ′‖

+ ‖A‖‖x − x ′‖‖z − z′‖d + ‖A‖‖y − y′‖‖z − z′‖d
≤ 1

τ
dp(x, x ′) + 1

σ
dd(z, z′) + τ

2
‖y − y′‖2 + 1

2τ
‖x − x ′‖2 + τ

2
‖y − y′‖2

+ 1

2τ
‖x − x ′‖2 + 1

2σ
‖z − z′‖2d + 1

2τ
‖y − y′‖2 + 1

2σ
‖z − z′‖2d

≤ 3

τ
dp(x, x ′) + 3

σ
dd(z, z′) + 3τ

2
‖y − y′‖2. ��

7.2 Relation to Other Bregman Proximal Algorithms

The proposed algorithm (50) can be viewed as an extension to PD3O (12) using
generalized distances and reduces to several Bregman proximal methods by reduction.
These algorithms can also be organized into a diagram similar to Fig. 3. Figure 8 starts
fromBregmanPD3O (50) and summarizes its connection to several Bregman proximal
methods.

When h = 0, (50) reduces to Bregman PDHG, and when g = 0, the Bregman
proximal gradient algorithm. The Bregman Loris–Verhoeven algorithm is Bregman
PD3O with f = 0, and has been discussed in [17] under the name NEPAPC. Setting
A = I (with σ = 1/τ ), we obtain a new variant of the Bregman proximal gradient
algorithm. The difference between this variant of the Bregman proximal gradient
algorithm and the Bregman reduced Loris–Verhoeven algorithm with shift obtained
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Fig. 8 Proximal algorithms derived from Bregman PD3O.

in Sect. 5.3 is the additional term τ(∇h(xk) − ∇h(xk+1)), the same as the difference
between (18) and (50). When the Euclidean proximal operator is used, (50) (with
f = 0, A = I and σ = 1/τ ) reduces to the proximal gradient method. However,
the new method does not seem to be equivalent to the classical Bregman proximal
gradient algorithm due to the lack of Moreau decomposition in the generalized case.
Finally, setting A = I (and σ = 1/τ ) in (50) gives a Bregman Davis–Yin algorithm.

8 Numerical Experiment

In this section, we evaluate the performance of the Bregman primal Condat–Vũ algo-
rithm (18), Bregman dual Condat–Vũ algorithm with line search (40), and Bregman
PD3O (50). The main goal of the example is to validate and illustrate the difference
in the stepsize conditions (51) and the usefulness of the line search procedure. We
consider the convex optimization problem

minimize ψ(x) = λ‖Ax‖1 + 1
2‖Cx − b‖2

subject to 1T x = 1, x � 0,
(59)

where x ∈ Rn is the optimization variable, C ∈ Rm×n , and A ∈ R(n−1)×n is the
difference matrix
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A =

⎡
⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎦ . (60)

This problem is of the form of (1)with f (x) = δH (x), g(y) = λ‖y‖1, h(x) = 1
2‖Cx−

b‖2, and δH is the indicator function of the hyperplane H = {x ∈ Rn | 1T x = 1}. We
use the relative entropy distance

dp(x, y) =
n∑

i=1

(xi log(xi/yi ) − xi + yi ), dom dp = Rn+ × Rn++

in the primal space. This distance is 1-strongly convex with respect to �1-norm [5]
(and also �2-norm).With the relative entropy distance, all the primal iterates xk remain
feasible. In the dual space we use the Euclidean distance. Thus, thematrix norm (22) in
the stepsize condition (25) for theBregmanCondat–Vũ algorithms is the (1,2)-operator
norm ‖A‖1,2 = maxi ‖ai‖ = √

2, where ai is the i th column of A. In the Bregman
PD3O algorithm, we use the squared Euclidean distance dp(x, y) = 1

2‖x − y‖2, and
the matrix norm in the stepsize condition (54) is the spectral norm ‖A‖2. For the
difference matrix (60), ‖A‖2 is bounded above by 2, and very close to this upper
bound for large n.

The Lipschitz constant for h with respect to the �1-norm is the largest absolute value
of the elements inCT C , i.e., L1 = maxi, j |(CT C)i j |. This value is used in the stepsize
condition (25) for the Bregman Condat–Vũ algorithms. The Lipschitz constant with
respect to the �2-norm is L2 = ‖C‖22, which is used in the stepsize condition (54) for
Bregman PD3O.

The matrix norms and Lipschitz constants are summarized as follows:

matrix norm Lipschitz constant
Bregman Condat–Vũ ‖A‖1,2 = √

2 L1 = maxi, j |(CT C)i j |
Bregman PD3O ‖A‖2 ≤ 2 L2 = ‖C‖22.

In the example, we use the exact values of L1 and L2,
The Bregman proximal operator of f has a closed-form solution:

proxφ
f (y, a)k = yke−ak∑n

i=1 yi e−ai
, k = 1, . . . , n,

where yi is the i th entry of y, and the (Euclidean) proximal operator of g∗ is the
projection onto the infinity norm ball {z | ‖z‖∞ ≤ λ}.

The experiment is carried out in Python 3.6 on a desktop with an Intel Core i5
2.4GHz CPU and 8GB RAM. We set m = 500 and n = 10, 000. The elements in the
matrix C ∈ Rm×n and b ∈ Rm are randomly generated from independent standard
Gaussian distributions. For the constant stepsize option, we choose
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Fig. 9 The blue and red curves show the boundaries of the stepsize regions for Bregman Condat–Vũ
algorithms and Bregman PD3O, respectively. The blue and red points indicate the chosen parameters
in (61) (red for PD3O, blue for Condat–Vũ). In the Bregman dual Condat–Vũ algorithm with line search,
the stepsizes are selected on the dashed straight line. The solid line segment shows the range of stepsizes
that were selected, with dots indicating the largest, median, and smallest stepsizes.

Condat-Vũ σ = L1/2 τ = 1/(2L1)

PD3O σ = L2/4 τ = 1/L2.
(61)

These two choices, as well as the range of possible parameters, are illustrated in
Fig. 9. The two choices are on the blue and red curve, respectively, and satisfy the
requirement (51) with equality. For the line search algorithm, we set θ̄k = 1.2 to
encourage more aggressive updates, and β = σ−1/τ−1 = L2

1, which is consistent
with the choice in (61).

We solve the problem (59) using theBregmanprimalCondat–Vũ algorithm (18), the
Bregman dual Condat–Vũ algorithm with line search (40), and Bregman PD3O (50).
Figure 10 reports the relative distance between the function values to the optimal value
ψ�, which is computed via CVXPY [22]. Comparison between the Bregman primal
Condat–Vũ algorithm and Bregman PD3O shows that Bregman PD3O converges
faster. Figure 10 also compares the performance between the Bregman primal Condat–
Vũ algorithm with constant stepsizes and Bregman dual algorithm with line search.
One can see clearly that the line search significantly improves the convergence. On the
other hand, the line search does not add much computation overhead, as the plots of
the CPU time and the number of iterations are roughly identical. In these experiments,
Bregman PD3O and the Bregman dual Condat–Vũ algorithm with line search have a
similar performance, without one algorithm being conclusively better than the other.

9 Conclusions

Wepresented twovariants ofBregmanCondat–Vũ algorithms, introduced a line search
technique for the Bregman dual Condat–Vũ algorithm for equality-constrained prob-
lems, and proposed a Bregman extension to PD3O. Many open questions remain. It
is unclear how to use Bregman distances in PDDY, and how to extend the line search
technique to Bregman PD3O, the Bregman primal Condat–Vũ algorithm, and the
more general problem (1). Moreover, in the current backtracking technique the ratio
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Fig. 10 Comparison of three algorithms (Bregman primal Condat–Vũ, Bregman dual Condat–Vũ with line
search, and Bregman PD3O) in terms of objective values. The top two figures plot the relative error of the
function value versus CPU time and number of iterations for one problem instance (59), respectively. The
bottom two figures correspond to another problem instance.

of the primal and dual stepsizes is fixed. A further improvement would be to relax this
constraint [1, 36].
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