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Abstract
In this paper, we propose a new long-step interior point method for solving suffi-
cient linear complementarity problems. The new algorithm combines two important
approaches from the literature: the main ideas of the long-step interior point algorithm
introduced by Ai and Zhang and the algebraic equivalent transformation technique
proposed by Darvay. Similar to the method of Ai and Zhang, our algorithm also works
in a wide neighborhood of the central path and has the best known iteration complexity
of short-step variants. However, due to the properties of the applied transforming func-
tion in Darvay’s technique, the wide neighborhood definition in the analysis depends
on the value of the handicap. We implemented not only the theoretical algorithm but
a greedy variant of the new method (working in a neighborhood independent of the
handicap) in MATLAB and tested its efficiency on both sufficient and non-sufficient
problem instances. In addition to presenting our numerical results, we also make some
interesting observations regarding the analysis of Ai–Zhang type methods.

Keywords Mathematical programming · Linear complementarity problems · Interior
point algorithms · Algebraic equivalent transformation technique

1 Introduction

In this paper, we introduce a new long-step interior point method for solving linear
complementarity problems (LCPs). LCPs have a wide range of applications in numer-
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and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02121-z&domain=pdf
http://orcid.org/0000-0003-3688-412X


Journal of Optimization Theory and Applications

ous different fields, for example, solving the Arrow–Debreu market exchange model
with Leontief utilities [42], finding equilibrium points in bimatrix games [31], and
several engineering applications can be found in the survey [22]. The LCP class also
contains the linear programming problem and the quadratic programming problem
as special cases. Many of the classical applications and results can be found in the
monographs of Cottle et al. [8] and Kojima et al. [29].

In general, the LCP is an NP-complete problem [7], but many efficient algorithms
have been introduced assuming that the coefficient matrix has a special property. In
this paper, we suppose that the coefficient matrix is a P∗(κ)-matrix. In this case, a
nonnegative number κ can be assigned to the matrix, which is called its handicap.
With this assumption, several authors could introduce interior point algorithms that
are polynomial in the size of the problem and the handicap. However, de Klerk and
E.-Nagy [17] proved that there are matrices for which the value of the handicap is
exponential in the problem size.

Based on the used step length, interior point algorithms (IPAs) can be divided
into two main groups, short-step, and long-step methods. Even though long-step algo-
rithms perform better in practice, in general, for short-step variants, a better theoretical
complexity can be proved, i.e., for many years, there was a gap between theory and
practice. Several attempts have been made to resolve this issue based on self-regular
functions, kernel functions, and other techniques, e.g., [6, 35, 37].

Ai and Zhang [1] introduced a long-step IPA for solving monotone LCPs. Their
method works in a wide neighborhood of the central path and has the best known
theoretical complexity of short-step variants. Based on their approach, several authors
proposed long-step methods with the best known theoretical complexity, for different
problem classes, e.g., for linear optimization [15, 33, 41], horizontal linear comple-
mentarity problems (HLCPs) [38], symmetric cone Cartesian P∗(κ)-HLCPs [4, 5],
and also for semidefinite optimization [21, 32, 36].

Darvay [9] introduced the algebraic equivalent transformation (AET) technique to
determine new search directions for IPAs. His main idea was to apply a continuously
differentiable, invertible function ϕ to the centering equation of the central path prob-
lem. Then, by applying Newton’s method to this transformed system, the new search
directions can be determined. A new version of the AETmethod has been examined in
the paper of Darvay and Takács for linear optimization [16], based on a different rear-
rangement of the centering equation. Using this new type of transformation, recently
Darvay et al. introduced a predictor–corrector IPA for sufficient LCPs [13].

By changing the function ϕ, different methods can be introduced. Most IPAs from
the literature can be considered as a special case of the AET technique, with the
function ϕ(t) = t (in this case, the central path problem is not transformed). In his
first paper, Darvay applied the function ϕ(t) = √

t . This function has been used in
the paper of Darvay and Rigó as well [15], where they introduced an Ai–Zhang type
long-step IPA for linear optimization with the best known theoretical complexity, and
using the same function, Illés et al. recently proposed a predictor–corrector IPA in
[26]. This function has also been applied by Asadi and Mansouri to P∗(κ)-HLCPs
[3].

The function ϕ(t) = t − √
t has been proposed also by Darvay et al. [14], and in

the last few years, it has been applied in several different papers by Darvay and his
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coauthors. They introduced a corrector–predictor IPA for solving linear programming
problems [10] and proposed another corrector–predictor IPA for sufficient LCPs [12],
and they also presented a short-step IPA for sufficient LCPs [11].

Moreover, the function ϕ(t) =
√
t

2(1+√
t)

has been introduced by Kheirfam and

Haghighi [28], to solve P∗(κ)-LCPs with a short-step IPA.
In this paper, we also apply the AET technique, with the function ϕ(t) = t − √

t
and introduce an Ai–Zhang type long-step interior point method for solving sufficient
LCPs. This is the first such algorithm, to the best of our knowledge. We prove that
our IPA has the best known iteration complexity of short-step variants. This result can
be considered as the generalization of the IPA we introduced for linear optimization
in [20]. In addition to generalizing the algorithm, we could also improve some of our
estimations in [20], and for this reason, better parameter settings can be applied here.

Potra [38] proposed an Ai–Zhang type method forP∗(κ)-HLCPs. (AP∗(κ)-HLCP
can be equivalently reformulated as a P∗(κ)-LCP problem [2]). He did not apply the
AET method, i.e., in his case ϕ can be considered as the identity function. In that
case, the convergence and best known complexity of the method could be proved
using the original, κ-independent neighborhood of Ai and Zhang. For our method
using the function ϕ(t) = t − √

t , with the current estimations, the convergence
cannot be proved, assuming that the neighborhood does not depend on the handicap.
Still, the result is interesting because it shows that the AET technique can be applied
for Ai–Zhang type methods, even in the case of P∗(κ)-LCPs. Our main goal is to
identify a class of transforming functions, where, similar to the result of Potra, a κ-
independent neighborhood can be applied, and another wider class, where, similar to
the case examined in this paper, the analysis can be carried out only in a κ-dependent
neighborhood.

Throughout this paper, the following notations will be used. We denote scalars
and indices by lowercase Latin letters and vectors by bold lowercase Latin letters.
Matrices are denoted by uppercase Latin letters. We denote sets by capital calligraphic
letters. Rn+ denotes the set of n-dimensional vectors with strictly positive coordinates,
and R

n⊕ is the set of n-dimensional nonnegative vectors. Let f (x) be a univariate
function, and let x ∈ R

n be a given vector. Then, f (x) denotes the vector f (x) =
[ f (x1), . . . , f (xn)]�. Let u, v ∈ R

n be two given vectors. Then, uv is the Hadamard
product (namely, the componentwise product) of u and v. If vi �= 0 holds for all
indices i , then the fraction of u and v is the vector u/v = [u1/v1, . . . , un/vn]�. If
α ∈ R, let uα = [uα

1 , . . . , uα
n ]�.

Let I denote the index set I = {1, . . . , n}. We denote the positive and negative part
of the vector u by u+ and u−, i.e.,

u+ = max{u, 0} ∈ R
n and u− = min{u, 0} ∈ R

n,

where the maximum and minimum are taken componentwise. We use the standard
notation ‖u‖ for the Euclidean norm of u, ‖u‖1 = ∑n

i=1 |ui | denotes the Manhattan-
norm of u, and ‖u‖∞ = maxni=1 |ui | is the infinity norm of u. The matrix diag(u) is
the diagonal matrix with the elements of the vector u in its diagonal. Finally, e denotes
the vector of all ones.
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This paper is organized as follows. Section 2 summarizes the most important prop-
erties of LCPs and the related matrix classes. In Sect. 3, we give an overview of the
algebraic equivalent transformation technique and the method of Ai and Zhang. In
Sect. 4, we introduce a new, Ai–Zhang type wide neighborhood and describe our new
algorithm. In Sect. 5, we prove that the method is convergent and has the best known
iteration complexity. Section 6 presents our numerical results. In Sect. 6.2, we make
some interesting observations on the coordinates of the vector v. Section 7 summarizes
our results.

2 The Linear Complementarity Problem

Let us consider the linear complementarity problem (LCP) in the following form:

−Mx + s = q

xs = 0

x, s ≥ 0,

⎫
⎪⎬

⎪⎭

where M ∈ R
n×n and q ∈ R

n are given, and our goal is to find a vector pair (x, s) ∈
R
n × R

n that satisfies the system.
LetF = {(x, s) : −Mx+s = q, x ≥ 0, s ≥ 0} denote the set of feasible solutions,

F+ = {(x, s) ∈ F : x > 0, s > 0} the set of strictly positive feasible solutions and
F∗ = {(x, s) ∈ F : xs = 0} the set of solutions to the linear complementarity
problem.

The class of sufficient matrices has been introduced by Cottle et al. [8]. A matrix
M ∈ R

n×n is column sufficient if the following implication holds for all x ∈ R
n :

If xi (Mx)i ≤ 0 for all i ∈ I then xi (Mx)i = 0 for all i ∈ I.

M is row sufficient if MT is column sufficient, and a matrix M is sufficient if it is
both row and column sufficient.

Kojima et al. [29] introduced the class of P∗(κ)-matrices. Let κ be a given nonneg-
ative number. A matrix M ∈ R

n×n is a P∗(κ)-matrix, if

x�Mx + 4κ
∑

i∈I
(x(Mx))+i ≥ 0

holds for all x ∈ R
n . This class can be considered as the generalization of positive

semidefinite matrices since P∗(0) is the set of positive semidefinite matrices.
The smallest κ value for which M is a P∗(κ)-matrix is called the handicap of M .

The matrix class P∗ can be defined in the following way:

P∗ :=
⋃

κ≥0

P∗(κ).

123



Journal of Optimization Theory and Applications

Kojima et al. [29] proved that if a matrix belongs to the set P∗, then it is column
sufficient. Later, Guu and Cottle [24] showed that a P∗-matrix is also row sufficient,
meaning that all P∗-matrices are sufficient. Väliaho [39] proved the other inclusion;
therefore, the class of sufficient matrices is equivalent to the class of P∗-matrices.

2.1 The Central Path Problem

The central path problem of LCP can be formulated as follows:

−Mx + s = q

xs = νe

x, s > 0,

⎫
⎪⎬

⎪⎭
(1)

where ν > 0 is a given parameter.
The next theorem highlights the importance of the P∗ matrix class. Illés et al. [27]

gave an elementary proof of these statements in an unpublished manuscript in 1997.
The proof can be found in [34].

Theorem 2.1 [27, Corollary 4.1] Let us consider a linear complementarity problem
with aP∗(κ) coefficientmatrix M. Then, the following three statements are equivalent:

1. F+ �= ∅.
2. ∀ w ∈ R

n+ ∃! (x, s) ∈ F+ : xs = w.
3. ∀ ν > 0 ∃! (x, s) ∈ F+ : xs = νe.

According to the last statement, for P∗(κ) linear complementarity problems, when
F+ �= ∅, the central path exists and it is unique.Moreover, as ν tends to 0, the solutions
of the central path problem (1) converge to a solution of the LCP.

From now on, we assume that the coefficient matrix M of the LCP is sufficient,
more precisely P∗(κ); furthermore, F+ �= ∅ and an initial point (x0, s0) ∈ F+ is
given.

3 The Theoretical Background of the Algorithm

As it has already beenmentioned in the introduction, our method combines two impor-
tant results from the literature, the algebraic equivalent transformation (AET) tech-
nique proposed by Darvay [9] and the main approach of the long-step IPA introduced
by Ai and Zhang [1].

According to the AET technique, we apply a continuously differentiable function
ϕ : (ξ,∞) → R with ϕ′(t) > 0 for all t ∈ (ξ,∞), ξ ∈ [0, 1) to the central path
problem (1):

−Mx + s = q

ϕ
(xs

ν

)
= ϕ (e)

x, s > 0.

⎫
⎪⎪⎬

⎪⎪⎭

(2)
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If we apply Newton’s method to system (2), we obtain

−MΔx + Δs = 0

sΔx + xΔs = ν
ϕ(e) − ϕ

( xs
ν

)

ϕ′ ( xs
ν

) =: aϕ.

⎫
⎪⎬

⎪⎭
(3)

As can be seen from the previous formulation, the right-hand side of the system
(3) depends on the choice of the function ϕ, and by modifying ϕ, we can determine
different search directions and introduce new interior point algorithms.

One of the important ideas ofAi andZhangwas to decompose theNewton directions
into positive and negative parts and use different step lengths for the two components.
Namely, we consider the following two systems:

−MΔx− + Δs− = 0

sΔx− + xΔs− = a−
ϕ

} −MΔx+ + Δs+ = 0

sΔx+ + xΔs+ = a+
ϕ ,

}

(4)

where a+
ϕ and a−

ϕ are the positive and negative parts of the vector aϕ , respectively.
It is important to notice that the coordinates ofΔx+ are not necessarily nonnegative,

since this is the solution of the system with the positive part of aϕ on the right-hand
side (we have a subscript in the notation, instead of a superscript). The similar can be
stated for Δx−, Δs+ and Δs− as well.

If α1 and α2 are given step lengths, after solving the systems (4), we can calculate
the new iterates as

x(α) := x + α1Δx− + α2Δx+ and s(α) := s + α1Δs− + α2Δs+.

To simplify the analysis of interior point methods, we usually work with a scaled
version of the Newton-system. To determine the scaled systems from (4), we introduce
the following notations:

v =
√
xs
ν

, d =
√
x
s
,

dx+ = vΔx+
x

, ds+ = vΔs+
s

, dx− = vΔx−
x

,ds− = vΔs−
s

.

Let D = diag(d) and M = DMD, then the scaled systems can be written as

−Mdx− + ds− = 0

dx− + ds− = p−
ϕ

} −Mdx+ + ds+ = 0

dx+ + ds+ = p+
ϕ ,

}

where

pϕ = ϕ(e) − ϕ(v2)
vϕ′(v2)

.

123



Journal of Optimization Theory and Applications

In this paper, we focus on the function ϕ(t) = t − √
t , which has been introduced

by Darvay et al. for linear optimization [14]. In this case,

pϕ = 2(v − v2)
2v − e

.

Since we fixed the function ϕ, from now on we simply use the notation p instead of
pϕ .

Throughout the analysis, we need to ensure that p is well defined. Therefore, we
assume that vi > 1/2 is satisfied for all i ∈ I.

Because of the decomposition applied inAi–Zhang typemethods,we also introduce
the notation for the index sets I+ and I−. Let I+ = {i ∈ I : xi si ≤ τμ} = {i ∈ I :
vi ≤ 1}, and I− = I \ I+. Notice that under the assumption vi > 1/2 for all index
i ∈ I, the nonnegativity of a coordinate pi is equivalent to i ∈ I+.

The vector p has been defined as a componentwise transformation of the vector v;
therefore, let p denote the transforming function, namely for which p(vi ) = pi holds
for all vi ∈ (1/2,∞), i.e.,

p :
(
1

2
,∞

)

→ R, p(t) = 2(t − t2)

2t − 1
.

In the analysis, we use some estimations on the function p, namely for all t ∈ (1/2,∞)

p(t) ≥ 2(1 − t), (5)

p(t) ≥ −t, (6)

p(t) ≥ 1 − t2

t
. (7)

From now on, we fix the value of ν as τμ, where τ ∈ (0, 1) is a given update

parameter, andμ = xT s
n , i.e., if in the current iteration we are in the point (x, s) ∈ F+,

then our goal is to take a step toward the τμ-center, that is, toward the solution of the
central path problem (1) for ν = τμ.

4 The Algorithm

The neighborhood we use is based on the approach of Ai and Zhang [1]; however,
we slightly modified their definition. To achieve the desired complexity, we limit only
the norm of the positive part of the vector p, while the paper of Ai and Zhang uses
the norm of the vector vp+. Furthermore, our definition depends on the handicap of
the matrix and 0 < β < 1/2 is a given real number. Due to the properties of the
function ϕ(t) = t − √

t , we also need to ensure that the technical condition v > 1/2e
is satisfied throughout the iterations; therefore, it is also included in the definition of
the neighborhood:

W(τ, β, κ) =
{

(x, s) ∈ F+ : ∥∥p+∥∥ ≤ β

1 + 4κ
and v >

1

2
e
}

.
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The wide neighborhood N−∞(1 − τ) has been introduced by Kojima et al. [30]:

N−∞(1 − τ) = {(x, s) ∈ F+ : xs ≥ τμe}.

The following lemma shows that W(τ, β, κ) is indeed a wide neighborhood.

Lemma 4.1 Let 0 < τ < 1 and 0 < β < 1/2 be given parameters, and let γ =
τ
(
1 − β

2(1+4κ)

)2
. Then,

N−∞(1 − τ) ⊆ W(τ, β, κ) ⊆ N−∞(1 − γ )

holds.

Proof If (x, s) ∈ N−∞(1 − τ), then (τμ − xi si )+ = 0 for all i ∈ I, therefore ‖p+‖ =
0 < β/(1 + 4κ). The condition v > 1/2e is also satisfied since v2i = (xi si )/(τμ) ≥
1 > 1/4 for all i ∈ I.

For the other inclusion, let (x, s) ∈ W(τ, β, κ) and assume that there exists an index

i ∈ I for which xi si < γμ holds. In this case, v2i = xi si
τμ

<
γ
τ

=
(
1 − β

2(1+4κ)

)2
.

Using (5), we get

pi = p(vi ) ≥ 2(1 − vi ) > 2

(

1 −
√

γ

τ

)

= β

1 + 4κ
,

which is a contradiction. ��

Remark 4.1 Let γ̃ = τ (1 − β/2)2. Since γ > γ̃ , W(τ, β, κ) ⊆ N−∞(1 − γ̃ ) also
holds.

In the next corollary, we give lower and upper bounds on the coordinates of v.

Corollary 4.1 If (x, s) ∈ W(τ, β, κ) then

1. 1 − β
2(1+4κ)

≤ vi ≤ 1 for all i ∈ I+,
2. 1 < vi ≤ √

n/τ for all i ∈ I−.

Proof The first statement follows from the second inclusion of Lemma 4.1. Further-
more, vi ≤ √

n/τ is satisfied for all i ∈ I, since

∑

i∈I
v2i =

∑

i∈I

xi si
τμ

= 1

τμ
xT s = n

τ
. (8)

��
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Since we have already defined all main elements of our method, we are ready to
give its pseudocode:

Input: a sufficient matrix M ∈ R
n×n , and q ∈ R

n

an update parameter 0 < τ < 1, a neighborhood parameter 0 < β < 1,
an accuracy parameter ε > 0,

an initial point (x0, s0) ∈ W(τ, β, κ) with μ0 = xT0 s0
n .

x := x0, s := s0 and μ := μ0
while xT s > ε do

Determine Δx+,Δs+ and Δx−,Δs− by solving systems (4);
α2 := 1 and
α1 := argmin

α1∈(0,1]
{
μ(α) = (x(α)T s(α))/n : (x(α), s(α)) ∈ W(τ, β, κ)

}
;

x := x(α);
s := s(α);

μ := xT s
n ;

end
Algorithm 1: Outline of the algorithm

5 Analysis of the Algorithm

The next lemma contains some well-known results from the theory of interior point
algorithms for the Newton-system of sufficient LCPs. The proof of the first and third
statements can be found in [29], and for the second statement, see, for example, [23,
Lemma 2].

Lemma 5.1 Let us consider the following system:

−MΔx + Δs = 0

sΔx + xΔs = a,

where M is a P∗(κ)-matrix, x, s ∈ R
n+ and a ∈ R

n are given vectors.

1. The system then has a unique solution (Δx,Δs).
2. The next estimations hold for the solutions of the above system:

‖ΔxΔs‖r ≤ 21/r + 4κ

4

∥
∥
∥
∥

a√
xs

∥
∥
∥
∥

2

for r = 1, 2,∞,

where 1/∞ := 0.

3. −κ

∥
∥
∥ a√

xs

∥
∥
∥
2 ≤ ΔxTΔs ≤ 1

4

∥
∥
∥ a√

xs

∥
∥
∥
2
.

Weneed to prove that after an iteration the decrease in the duality gap is suitable and
that the new iterate will also be in the neighborhood. Therefore, we examine the new
iterate after taking a Newton-step with step length α = (α1, α2), where α1, α2 ∈ (0, 1]
are given.
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Let us introduce the following notations:

dx(α) = α1dx− + α2dx+, ds(α) = α1ds− + α2ds+,

h(α) = τμv2 + α1τμvp− + α2τμvp+.

Using these notations, x(α)s(α) = (x+α1Δx− +α2Δx+)(s+α1Δs− +α2Δs+) can
be written as

x(α)s(α) = h(α) + τμdx(α)ds(α).

Corollary 5.1 Let (x, s) ∈ W(τ, β, κ) and α1, α2 ∈ (0, 1] be given. Then,

‖dx(α)ds(α)‖r ≤ 21/r + 4κ

4

(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)

for r = 1, 2,∞,

where 1/∞ := 0, and

−κ

(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)

≤ dx(α)Tds(α) ≤ 1

4

(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)

.

Proof The vector dx(α)ds(α) is the same as τμΔxαΔsα , where Δxα and Δsα are the
solutions of the system

−MΔx + Δs = 0

sΔx + xΔs = τμv(α1p− + α2p+),

}

since I− ∩ I+ = ∅.
If we apply Lemma 5.1 to the above system, we get

‖dx(α)ds(α)‖r ≤ 21/r + 4κ

4

∥
∥α1p− + α2p+∥∥2 ,

since τμv√
xs

= √
τμ.

Furthermore,
∥
∥α1p− + α2p+∥∥2 = α2

1

∥
∥p−∥∥2 + α2

2

∥
∥p+∥∥2 by the orthogonality of

p− and p+. According to the definition of the neighborhood W(τ, β, κ),
∥
∥p+∥∥2 ≤

β2

(1+4κ)2
. Moreover,

∥
∥p−∥∥2 =

∑

i∈I−
p2(vi ) ≤

∑

i∈I−
v2i ≤ n

τ
.

In the first inequality we applied (6), and the second follows from (8).
From these estimations, the first statement of the corollary follows. The inequalities

regarding the scalar product dx(α)Tds(α) can be proved similarly. ��
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Weneed to give a lower boundon the coordinates ofh(α). The proof of the following
two statements remains the same as it was in the LP case [20]; therefore, we do not
present them here. Later on, the analysis becomesmore complicated than in [20], since
the search directions here are not orthogonal.

Lemma 5.2 [20, Lemma 2] hi (α) ≥ τμ holds for all i ∈ I−.

In the following lemma, we give a strictly positive lower bound for all coordinates
of h(α).

Lemma 5.3 [20, Lemma 3] If (x, s) ∈ W(τ, β, κ), then h(α) ≥ γμe, and conse-
quently h(α) > 0.

From now on, we use the step lengths α1 = 1
1+4κ

√
βτ
n and α2 = 1. From α2 = 1,

it follows that
hi (α) ≥ τμ (9)

holds for all indices, not just for the ones in I−. Indeed, by the inequality (7), we get
hi (α) = τμ(v2i + α2vi pi ) ≥ τμ(1 − (1 − α2)vi pi ) for all i ∈ I+.

We have to prove that the new iterates are strictly positive, i.e., x(α) > 0 and
s(α) > 0 holds.

Lemma 5.4 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then,

x(α)s(α) ≥
(

1 − β + β2

4(1 + 4κ)

)

τμe.

Proof By applying (9) and then Corollary 5.1, we get the following:

x(α)s(α) = h(α) + τμdx(α)ds(α) ≥ τμe − τμ ‖dx(α)ds(α)‖∞ e

≥ τμe − 1

4(1 + 4κ)
(β + β2)τμe =

(

1 − β + β2

4(1 + 4κ)

)

τμe.

��
To prove that the new iterates (x(α) and s(α)) are strictly positive, we can apply

Proposition 3.2 by Ai and Zhang [1]. They analyze the case of monotone LCPs, but the
properties of the coefficient matrix do not have any role in their proof, and therefore,
it can be used in this more general setting as well.

Proposition 5.1 [1, Proposition 3.2] Let (x, s) ∈ F+ and (Δx,Δs) be the solution of
the system

−MΔx + Δs = 0

sΔx + xΔs = z,

If z + xs > 0 and (x + t0Δx)(s + t0Δs) > 0 holds for some t0 ∈ (0, 1], then
x + tΔx > 0 and s + tΔs > 0 for all t ∈ (0, t0].
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To prove the positivity of the vectors x(α) and s(α), we apply Proposition 5.1 with
z = τμ(α1vp− + α2vp+). Since z + xs = h(α) > 0 by Lemma 5.3, it is enough
to prove that their Hadamard product is positive. This is satisfied for all β ∈ [0, 1],
because in this case

1 − β + β2

4(1 + 4κ)
≥ 1 − β + β2

4
> 0

holds.

5.1 Estimation of the Change in the Duality Gap

The next two lemmas examine the change in the duality gap μ(α) = x(α)T s(α)
n after

the Newton-step.

Lemma 5.5 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then,

μ(α) ≤
(

1 − α1

(
8

9
(1 − τ) − √

βτ − 1 + β

4

))

μ. (10)

Proof By the definition of μ(α),

μ(α) = μ + α1τμ

n
vTp− + α2τμ

n
vTp+ + τμ

dx(α)Tds(α)

n
.

First, we give an upper bound on the expression vTp+:

vTp+ = ∥
∥vp+∥∥

1 ≤ √
n
∥
∥vp+∥∥ ≤ √

n
∥
∥p+∥∥ ≤ √

n
β

1 + 4κ
. (11)

The first equality holds since the vector vp+ is nonnegative, and the first estimation
can be shown using the Cauchy–Schwartz inequality. The second inequality can be
verified using the property that vi ≤ 1 when i ∈ I+ and for the last estimation, we
used the definition of the neighborhood W(τ, β, κ).

We can estimate the term vTp− using vi > 1 for all i ∈ I−:

vTp− =
∑

i∈I−
vi p(vi ) =

∑

i∈I−

2v2i
(1 + vi )(2vi − 1)

(1 − v2i )

≤
∑

i∈I−

8

9
(1 − v2i ) ≤

∑

i∈I

8

9
(1 − v2i ) = 8

9
n

(

1 − 1

τ

)

. (12)

Combining (11) and (12), and using Corollary 5.1, we obtain

μ(α) ≤ μ + α1τμ

n

8

9
n

(

1 − 1

τ

)

+ α2τμ

n

√
n

β

1 + 4κ
+ τμ

4n

(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)
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= μ

(

1 − α1
8

9
(1 − τ) + α2τ√

n

β

1 + 4κ
+ α2

1

4
+ α2

2
β2τ

4n(1 + 4κ)2

)

. (13)

Since α2 = 1 = (1 + 4κ)
√

n
βτ

α1, we get

μ(α) ≤ μ

(

1 − α1
8

9
(1 − τ) + α1

√
βτ + α2

1

4
+ α2

1
β

4

)

≤
(

1 − α1

(
8

9
(1 − τ) − √

βτ − 1 + β

4

))

μ.

��

This result shows that the step length α1 is responsible for the decrease in the duality
gap in our analysis, i.e., by choosing its value properly, we can prove the convergence
and desired complexity of the method. According to our estimation (13), the terms
multiplied by α2 increase the duality gap, but this step length has an important role
in ensuring that the new iterates remain in the neighborhoodW(τ, β, κ), as it will be
discussed later.

For the correctness of our algorithm,weneed to ensure that the duality gap decreases
after every iteration.

Corollary 5.2 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n , α2 = 1, β ∈ (

0, 1
2

]
, τ ∈

(
0, 1

4

]
and βτ ≤ 1

16 . Then,

μ(α) < μ

holds.

Proof The following expression is monotone decreasing both in τ and β; thus, con-
sidering the upper bounds β ≤ 1

2 , τ ≤ 1
4 and βτ ≤ 1

16 , we get a positive lower bound
on it:

8

9
(1 − τ) − √

βτ − 1 + β

4
≥ 1

24
> 0.

Therefore, the statement holds by Lemma 5.5. ��

To ensure that the iterates stay in the neighborhood W(τ, β, κ), we need a lower
bound on the duality gap after a Newton-step.

Lemma 5.6 Let (x, s) ∈ W(τ, β, κ), then

μ(α) ≥
(

1 − α1 − κτ

(
α2
1

τ
+ α2

2β
2

n(1 + 4κ)2

))

μ.
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Proof

μ(α) = μ + α1τμ

n
vTp− + α2τμ

n
vTp+ + τμ

dx(α)Tds(α)

n

≥ μ + α1τμ

n
vTp− − κτμ

n

(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)

≥
(

1 − α1 − κτ

(
α2
1

τ
+ α2

2β
2

n(1 + 4κ)2

))

μ,

where we used the estimation

α1τμ

n
vTp− = −α1τμ

n

∑

i∈I−

2vi (v2i − vi )

2vi − 1
≥ −α1τμ

n

∑

i∈I
v2i ≥ −α1μ,

that follows from (6) and (8). ��

5.2 The New Iterates Stay in the NeighborhoodW(�,ˇ,�)

To guarantee that the new points after taking the Newton-step stay in the neighborhood
W(τ, β, κ), we need to choose the values of the parameters τ and β properly.

First, we need to ensure that all coordinates of the vector v(α) =
√

x(α)s(α)
τμ(α)

are
greater than 1/2.

Lemma 5.7 Let (x, s) ∈ W(τ, β, κ), α1 = 1
1+4κ

√
βτ
n and α2 = 1. Then,

v(α) >
1

2
e.

Proof Using Lemma 5.4 and Corollary 5.2, we obtain

v2(α) = x(α)s(α)

τμ(α)
≥ 1 − β + β2

4(1 + 4κ)
≥ 1 − β + β2

4
. (14)

To prove the statement, it is enough to show that

1 − β + β2

4
>

1

4
,

which is satisfied for all β ∈ [0, 1]. ��
Finally, we need to show that

∥
∥p(α)+

∥
∥ ≤ β

1+4κ holds. To be able to prove this, we
need the following technical lemma:

Lemma 5.8 Let α1 = 1
1+4κ

√
βτ
n and (x, s) ∈ W(τ, β, κ). Then

‖(τμ(α)e − h(α))+‖ ≤ β

1 + 4κ
τμ(α) (1 − α2) .
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Proof By Lemma 5.2, we have τμ(α) − hi (α) ≤ 0 for all i ∈ I−, therefore, we need
to consider indices only from I+.

From (7), it follows that

1 − v2i ≤ pivi for all i ∈ I+. (15)

For all i ∈ I+, hi (α) = τμ(v2i + α2vi pi ). Using this definition, Corollary 5.2 and
(15), we obtain

τμ(α) − hi (α) = τμ(α) − τμ
(
v2i + α2vi pi

)
≤ τμ(α)

(
1 − v2i − α2vi pi

)

≤ τμ(α)pivi (1 − α2) ≤ τμ(α)pi (1 − α2) .

This, together with the definition ofW(τ, β, κ), yields

‖(τμ(α)e − h(α))+‖ ≤ τμ(α)‖p+‖ (1 − α2) ≤ β

1 + 4κ
τμ(α) (1 − α2) . ��

This result shows that if we fix the value of α2 as 1, then τμ(α) − hi (α) ≤ 0 holds
for the indices from I+ as well, i.e., ‖(τμ(α)e − h(α))+‖ = 0 in this case. This also
follows from (9).

Lemma 5.9 Let β ∈ (
0, 1

2

]
, τ ∈ (

0, 1
4

]
and βτ ≤ 1

16 . If α1 = 1
1+4κ

√
βτ
n , α2 = 1 and

(x, s) ∈ W(τ, β, κ), then the new point (x(α), s(α)) ∈ W(τ, β, κ).

Proof We need to prove that

∥
∥p(α)+

∥
∥ =

∥
∥
∥
∥
∥

(
2v(α)(e − v(α))

2v(α) − e

)+∥∥
∥
∥
∥

≤ β

1 + 4κ
.

We can give an upper bound on the norm in the following way:

∥
∥p(α)+

∥
∥ =

∥
∥
∥
∥
∥

(
2v(α)(e − v(α))

2v(α) − e

)+∥∥
∥
∥
∥

=
∥
∥
∥
∥

2v(α)

(2v(α) − e) (e + v(α))

(
e − v2(α)

)+∥∥
∥
∥

≤
∥
∥
∥
∥

2v(α)

2v2(α) + v(α) − e

∥
∥
∥
∥∞

∥
∥
∥
∥

(
e − v2(α)

)+∥∥
∥
∥ . (16)

Let q : ( 12 ,∞
) → R and q(t) = 2t

2t2+t−1
. This function is strictly decreasing in its

domain; therefore, using the discussed lower bound of v(α) (14) and substituting the
upper bound of β, the first term in (16) can be estimated as

∥
∥
∥
∥

2v(α)

2v2(α) + v(α) − e

∥
∥
∥
∥∞

≤ q

⎛

⎝

√

1 − β + β2

4

⎞

⎠ < 1.19. (17)
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For the other term, we use Corollary 5.1 and Lemma 5.8:

∥
∥
∥
∥

(
e − v2(α)

)+∥∥
∥
∥ = 1

τμ(α)

∥
∥(τμ(α)e − x(α)s(α))+

∥
∥

≤ 1

τμ(α)

(∥
∥(τμ(α)e − h(α))+

∥
∥ + τμ

∥
∥(dx(α)ds(α))−

∥
∥
)

≤ 1

τμ(α)

[
β

1 + 4κ
τμ(α) (1 − α2) + τμ

(
1√
8

+ κ

)(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)]

= β

1 + 4κ
(1 − α2) + μ

μ(α)

(
1√
8

+ κ

)(

α2
1
n

τ
+ α2

2
β2

(1 + 4κ)2

)

. (18)

From Lemma 5.6, we have

μ

μ(α)
≤ 1

1 − α1 − κτ

(
α2
1
τ

+ α2
2β

2

n(1+4κ)2

) ≤ 1

1 − 1
1+4κ

√
βτ
n − 2βτκ

n(1+4κ)2

≤ 1

1 − √
βτ − 1

8βτ
,

since

κ

(1 + 4κ)2
≤ 1

16

for all κ values. Using the previous estimation and using α2 = 1, from (18) we obtain

∥
∥
∥
∥

(
e − v2(α)

)+∥∥
∥
∥ ≤ β

1 + 4κ

1

1 − √
βτ − 1

8βτ

1 + 4κ√
8

1

1 + 4κ
(1 + β)

= β

1 + 4κ

1

1 − √
βτ − 1

8βτ

1 + β√
8

.

This upper bound is amonotone increasing function of β and τ , so using their maximal
values and the assumption that βτ ≤ 1

16 , we can get the following upper bound

1

1 − √
βτ − 1

8βτ

1 + β√
8

≤ 1

1 − 1/4 − 1/128

3/2√
8

≈ 0.7146 < 0.72. (19)

Using (17) and (19), we get

∥
∥p(α)+

∥
∥ < 1.19 · 0.72 · β

1 + 4κ
<

β

1 + 4κ
;

therefore, the new point is in the neighborhood W(β, τ, κ). ��
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5.3 The Complexity of the New Algorithm

Theorem 5.1 Let β ∈ (
0, 1

2

]
, τ ∈ (

0, 1
4

]
such that βτ ≤ 1

16 , furthermore α1 =
1

1+4κ

√
βτ
n , α2 = 1, and suppose that a starting point (x0, s0) ∈ W(τ, β, κ) is given.

The algorithm then provides an ε-optimal solution in

O

(

(1 + 4κ)
√
n log

xT0 s0
ε

)

iterations.

Proof According to Lemma 5.5, the following holds for the duality gap in the kth
iteration:

xTk sk
n

= μk ≤ μk−1

(

1 − α1

[
8

9
(1 − τ) − √

τβ

])

≤ μ0

(

1 − α1

[
8

9
(1 − τ) − √

τβ

])k

.

By rearranging, we get

xTk sk ≤
(

1 − α1

[
8

9
(1 − τ) − √

τβ

])k

μ0n.

Therefore, xTk sk ≤ ε holds if

(

1 − α1

[
8

9
(1 − τ) − √

τβ

])k

μ0n ≤ ε

is satisfied.
Taking the natural logarithm of both sides yields

k log

[

1 − α1

(
8

9
(1 − τ) − √

τβ

)]

+ log(μ0n) ≤ log ε.

Using the inequality − log(1 − ϑ) ≥ ϑ , it is enough to prove that

−kα1

(
8

9
(1 − τ) − √

τβ

)

+ log(μ0n) ≤ log ε.

The last inequality is satisfied when

k ≥ (1 + 4κ)

√
n

βτ

1
8
9 (1 − τ) − √

τβ
log

(
xT0 s0

ε

)

,

and this proves the statement. ��
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6 Numerical Results

We tested and analyzed our algorithm in four different aspects. Usually, the handicap
of the coefficient matrix is not known in advance, and the only algorithm that has been
introduced to determine it has exponential running time [40]. Thus, in most cases, the
theoretical algorithms for solving sufficient linear complementarity problems cannot
be implemented directly. Moreover, we cannot make computations with an arbitrary
large handicap because it would result in a step length that is too small; namely,
it would be considered zero by the computer. Therefore, first, we show numerical
results related to a greedy version of the algorithm (usually, for most IPAs, these
variants are implemented in practice). Second, we present results about the theoretical
algorithm for test problems where we know the exact value of the handicap of the
coefficientmatrix.We show interesting observations and raise some questions towhich
the answers can lead to a better analysis of the method. Then we compare the greedy
algorithm for ϕ(t) = t (its theoretical version was investigated by Potra [38]) and for
our algorithm with ϕ(t) = t −√

t on larger-sized instances. We will see that the latter
function also has a justification for usage. Finally, we compare the running times of
the greedy algorithm for different parameter settings (we considered different values
of the parameters β and τ ).

6.1 Greedy Algorithm

For the numerical tests, we implemented the following greedy variant of our algorithm:

Input: a matrix M ∈ R
n×n , and q ∈ R

n

an update parameter 0 < τ < 1, a neighborhood parameter 0 < β < 1,
an accuracy parameter ε > 0,

an initial point (x0, s0) ∈ W(τ, β, 0) with μ0 = xT0 s0
n .

x := x0, s := s0 and μ := μ0
while xT s > ε do

Determine Δx+,Δs+ and Δx−,Δs− by solving systems (4);
α2 := 1;
Let α1 be the largest value such that (x(α), s(α)) ∈ W(τ, β, 0) and the
duality gap does not increase;
x := x(α);
s := s(α);

μ := xT s
n ;

end
Algorithm 2: Pseudocode of the greedy variant

As can be seen from the pseudocode, in this case,we ignore the value of the handicap
and take the largest step so that the new iterates remain in the neighborhoodW(τ, β, 0).
For safety reasons, we also check whether the duality gap actually decreases after an
iteration (it is known from the theory of sufficient LCPs that the duality gap is not
monotonically decreasing in the value of α1, and we take a larger step than the one
that we proved the convergence for). During our numerical tests, this latter condition
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was never restrictive, i.e., the step length was always determined by the constraint on
the neighborhood.

We tested our method for both sufficient and non-sufficient LCPs, even though in
the second case we have no theoretical proof that interior point methods work (in
general it is not necessarily true that the central path exists and it is unique).

The sufficient matrices that we used are the following (square matrices of order n):

– ENM_SU: 82 matrices were constructed by E.-Nagy of order 3 ≤ n ≤ 10 [18].
– MGS_SU: 58 matrices were generated by Morapitiye and Illés of order 10 ≤ n ≤
700 [25].

– EV_SU: 90 sufficient matrices with n = 1000, 5000, 10000, constructed by
E.-Nagy and Varga [18].

– Lower triangular P-matrices (all of their principal minors are positive) introduced
by Csizmadia:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
...

...
...

. . .
...

−1 −1 −1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It was shown by E.-Nagy that its handicap is exponential in the size of the matrix,
more precisely, κ = 22n−8 − 0.25 [19].

The examined non-sufficient matrices were also collected on webpage [18]:

– ENM_NSU: 80 instances of order 3 ≤ n ≤ 10.

We calculated the right-hand sides as −Me + e = q; therefore, x0 = e and s0 = e
are feasible starting vectors and are in the neighborhood W(τ, β, 0).

For the numerical tests, we used the settings β = τ = 0.25 and ε = 10−5. Table 1
shows our numerical results for different sets of test problems. These are average
values, except for Csizmadia-matrices.

The sufficient LCPs determined by using the ENM_SU and MGS_SU matrices
could be solved easily; the running time was less than 1 second even for the largest,
700 × 700 problem instance.

We could only solve problem instances with Csizmadia-matrices up to the size
150 × 150, and the number of iterations is larger than the average calculated for the
MGS_SU instances of similar size. In the case of the 200× 200 problem instance, the
step length α1 at the first iteration is too small and cannot be handled numerically.

To understand this behavior better, we resolved the same problems (q = −Me+ e)
using different starting points. Let x0 = λe (λ ∈ (0, 1]), and s0 = q + Mx0, namely
(s0)i = 1 + (i − 2) · (1 − λ) for all i ∈ {1, . . . , n}. For λ = 1, we get back the case
x0 = s0 = e.

As can be observed from Table 2, for the smaller problem instances the required
number of iterations decreases aswe decrease the value ofλ. However, it is not possible
to choose arbitrarily small values for λ if we want to have a special starting point in the
neighborhoodW(τ, β, 0). Therefore, for larger problems, this approach is impractical
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Table 1 Numerical results with
q = −Me + e, x0 = e and
s0 = e

n Iteration Time (s) n Iteration Time (s)

ENM_SU matrices ENM_NSU matrices

3 5.80 0.0066 3 6.20 0.0051

4 5.90 0.0076 4 6.60 0.0052

5 6.00 0.0088 5 6.10 0.0050

6 6.10 0.0064 6 6.10 0.0053

7 6.30 0.0069 7 6.30 0.0056

8 6.90 0.0065 8 6.60 0.0058

9 6.73 0.0058 9 7.20 0.0069

10 7.82 0.0092 10 7.75 0.0067

MGS_SU matrices Csizmadia-matrices

10 7.20 0.0063 10 12 0.0103

20 7.90 0.0106 20 15 0.0123

50 6.80 0.0108 30 19 0.0187

100 7.30 0.0158 40 23 0.0242

200 8.20 0.0332 50 27 0.0400

500 9.20 0.1879 100 47 0.0860

700 10.00 0.4079 150 66 0.1606

but shows that the frequently applied starting point x0 = s0 = e may not be the best
choice for the problem instances generated using the Csizmadia-matrices.

We also examined another set of LCPs using the Csizmadia-matrices, but in this
case, we modified not just the starting points but the right-hand side vector q as well.
Let x0 = e and s0 = ηe (η ≥ 1), and q = −Me + ηe. For η = 1, we get back our
original case x0 = s0 = e. Since q ≥ 0 holds for the modified LCPs as well, their
solution is still x = 0.

Table 2 Results for the Csizmadia-instances with modified starting points

n λ = 0.97 λ = 0.99 λ = 1
Iteration Time (s) Iteration Time (s) Iteration Time (s)

10 11 0.9467 11 0.0290 12 0.0156

20 14 0.0389 15 0.0163 15 0.0155

30 15 0.0238 17 0.0246 19 0.0191

40 17 0.0225 20 0.0434 23 0.0250

50 19 0.0264 23 0.0410 27 0.0320

100 27 0.0959 35 0.0617 47 0.0960

150 31 0.1047 45 0.1288 66 0.1258

200 – – 53 0.1675 – –

250 Not in W(τ, β, 0) 62 0.1942 – –
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Table 3 Results for theLCPs generated using theCsizmadia-matrices,withmodified right-hand side vectors

n η = 1 η = 10 η = 50 η = 100
Iteration Time (s) Iteration Time (s) Iteration Time (s) Iteration Time (s)

10 12 0.0156 8 0.9576 8 0.0269 8 0.0266

20 15 0.0155 9 0.0362 9 0.0124 9 0.0136

30 19 0.0191 10 0.0172 9 0.0126 9 0.0152

40 23 0.0250 11 0.0156 9 0.0145 9 0.0192

50 27 0.0320 11 0.0187 9 0.0167 9 0.0172

100 47 0.0960 14 0.0877 11 0.0335 10 0.0273

150 66 0.1258 17 0.0792 12 0.032 11 0.0304

200 – – 20 0.1319 12 0.0394 12 0.0416

250 – – 23 0.0759 13 0.0511 12 0.0491

300 – – 24 0.1364 13 0.0855 12 0.0727

400 – – 31 0.3055 13 0.1217 13 0.1189

500 – – 37 0.458 16 0.2221 14 0.1851

600 – – 43 0.8769 17 0.3631 14 0.3031

700 – – 50 1.3263 18 0.5291 15 0.4418

1000 – – – – 21 1.3917 17 1.0954

1500 – – – – 30 4.5627 20 3.2659

As can be seen from Table 3, by increasing η it is possible to solve significantly
larger problem instances. The reason for failure is always the too small initial step
length α1.

Even though our analysis only works for sufficient LCPs, we also tested the algo-
rithm for non-sufficient problem instances. Surprisingly, we could solve almost all
problems correctly and the behavior of the algorithmwas quite similar to the sufficient
case. There were only two problematic instances out of the 80 (ENM_NSU_10_07
and ENM_NSU_10_08); the LCPs generated using these matrices could not be solved
by our method. (Here also, the step length α1 at the first iteration was too small and
could not be handled numerically.) The results are shown in the third part of Table 1.

6.2 Observations Regarding the Coordinates of the Vector v

To be able to further examine the behavior of our theoretical algorithm, we calculated
the handicap for some of the smaller testmatrices. Thiswaywe could run the algorithm
exactly as it is described in our analysis and make some important observations that
raise interesting questions regarding the theoretical analysis.

We used the parameter settings β = τ = 0.25 and ε = 10−5. First we used the
starting points x0 = e, s0 = e (and calculated q as q = −Me + e). The numerical
results are summarized in Table 4 (for instances from dimension 5, 6 and 7), and Fig. 1
shows the change in the coordinates of the vector v during the iterations. As expected,
the numbers of iterations are significantly larger than in the greedy case, and they
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Table 4 Numerical results obtained with the theoretical algorithm (x0 = e and s0 = e)

Instances Handicap vmin vmax Iterations Time (s)

ENM_SU_7_01 1.07 1.9993 2.0007 1121 0.0346

ENM_SU_7_02 2.63 1.9989 2.0005 2454 0.0565

ENM_SU_7_03 1.42 1.9993 2.0007 1420 0.0358

ENM_SU_7_04 2.58 1.9993 2.0006 2411 0.0751

ENM_SU_7_05 1.13 1.9963 2.0033 1172 0.1218

Csizmadia_5 3.75 1.9946 2.0038 2809 0.0521

Csizmadia_6 15.75 1.9981 2.0012 12,506 0.1309

Csizmadia_7 63.75 1.9993 2.0004 54,686 0.4528

depend on the value of the handicap (since the step length depends on the handicap as
well).

In the case of the Csizmadia-matrix, Fig. 1 shows that one of the coordinates (the
first one) converges remarkably slower than the others, due to the properties of the
Newton directions. This is the main reason why we experienced numerical issues with
these starting points.

With these starting points, at the beginning vi =
√

1
τ

= 2 holds for all coordinates
of the vector v. It can be seen from Table 4 and Fig. 1 that the coordinates remain in
a really narrow interval around 2. However, in our analysis we use the upper bound

vi ≤
√

n
τ
, according to Corollary 4.1. The value of this upper bound for n = 7 and

τ = 0.25 is
√
28 ≈ 5.2915, which is significantly larger than what we experienced in

practice, even in this small dimension.
Furthermore, all coordinates of v are greater than 1; therefore, all iterates remain

in the narrower neighborhood N−∞(1 − τ) and never actually get to a point from the
setW(β, τ, κ) \ N−∞(1 − τ), i.e., in practice the algorithm works in a κ-independent
neighborhood when the starting points are well centered.

We observed the same phenomenon for linear programming problemswhile prepar-
ing the numerical tests for our recent paper [20], where we had test problems with
several thousands of variables. There we applied the self-dual embedding technique;
therefore, we could use the starting point x0 = e, s0 = e, similar to the LCP case
examined in this paper, i.e., the starting points were well centered in both cases. Based
on these numerical tests, the size of this interval around 1/

√
τ seems to be independent

of the problem size.
This raises the question whether it would be possible to give constant lower and

upper bounds on the coordinates of v, assuming that the starting point is well centered,
i.e., to show that the algorithm is convergent and has the desired complexity using the
neighborhood Nv(ν, ν̄) = {(x, s) ∈ F+ : νe ≤ v ≤ ν̄e}, where 1 ≤ ν ≤ 1/

√
τ ≤ ν̄

are given parameters.
The coordinates of v for the 5 × 5 Csizmadia-problems with three different (not

well-centered) starting points are shown in Fig. 2. We kept the right-hand side as
q = −Me + e. The starting points were x0 = 0.9e and s0 = [0.9, 1, 1.1, 1.2, 1.3]T ,
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Fig. 1 Coordinates of v with the theoretical step length (x0 = e and s0 = e)

Fig. 2 Coordinates of v with the theoretical step length for not well-centered starting points, solving the
5 × 5 Csizmadia-problem

x0 = [0.8, 0.6, 0.5, 0.5, 0.6731]T and s0 = [0.8, 0.8, 1.1, 1.6, 2.2731]T , x0 =
[1.7, 1.72, 1.73, 1.74, 1.75]T and s0 = [1.700, 2.1900, 2.3230, 1.8491, 0.3435]T ,
respectively. Here the intervals around 2 become narrower as the algorithm proceeds,
and the coordinates are concentrated around this value in the end.

6.3 Comparison with the Case'(t) = t

To examine the practical role of applying the transforming function ϕ(t) = t−√
t , we

compared our numerical results with the case ϕ(t) = t , i.e., when the AET technique
is not applied. As mentioned before, Potra [38] proposed an Ai–Zhang type method
for P∗(κ)-HLCPs without the AET technique, i.e., with ϕ(t) = t .

Since the sizes and, therefore, the running times were very small for the known
problem instances, we generated larger sufficientmatrices to compare the performance
of the twomethods. The results are shown in Table 5. The shorter running time for each
instance is highlighted by bold letters. The number of iterations was the same in almost
all cases, and the average running times were also similar. However, in this regard, the
function t − √

t performed slightly better for the 1000 × 1000 and 10,000 × 10,000
size test problems.

In general, based on our current numerical results and other results for different
types of algorithms from the AET literature, it cannot be stated that, in general, one
transforming function would outperform another. For different problem instances, dif-
ferent functions can give the best results. In the case of the instance EV_SU_10000_1,
the running time for ϕ(t) = t was more than 66 s less than that of the other method.
However, in the case of EV_SU_10000_11, the running time was more than 67 s
less in the second case. It is an important open question in connection with the AET
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Fig. 3 Suitable parameter pairs (β, τ )

technique to determine which transforming function would give the best results for a
given problem instance.

6.4 The Neighborhood and Update Parameters

Usually, in the analysis of Ai–Zhang type methods, the value of the neighborhood and
update parameters are chosen as equals to make it easier to check certain conditions.
This subsection aims to examine whether this is a good choice in practice.

We can determine all parameter pairs (β, τ ) that are suitable from the point of view
of our analysis by using the upper bounds obtained in Lemmas 5.5 and 5.9. Based on
these results, the blue area in Fig. 3 shows values of the parameters forwhich the duality
gap decreases, and for the values from the green area, the new iterates remain in the
neighborhoodW(τ, β, κ). Therefore, the parameter values for which both conditions
are satisfied (i.e., the duality gap decreases and the new iterates remain in W) are in
the intersection of the blue and green areas. Since we applied upper bounds in the
calculations, these are subsets of the actual parameter settings that would be suitable
for the algorithm.

We examined five different parameter settings for LCPs. Table 6 shows the average
iteration numbers and running times for the LCPs constructed using the previously
mentioned sufficient and non-sufficient matrices, and calculating the right-hand side
of the system as q = −Me + e. In this way, the starting point x0 = e and s0 = e is
suitable in all cases. The value of the precision parameter was ε = 10−5.

The minimum number of iterations and the smallest running time are highlighted
in bold letters in each row. As can be seen from Table 6, the best average iteration
numbers and running times were both achieved in the first case for most test problems,
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when the value of the neighborhood parameter was relatively large, and the value of
the update parameter was small. The settings applied in the theoretical analysis are
shown in the last two columns for reference.

For the Csizmadia problem instances, the number of iterations is the smallest for
the first setting, similar to the previous problems. However, the running time is slightly
smaller in the case of β = 0.5 and τ = 0.2 in most cases. We performed similar tests
for LP problems from the Netlib library, where we found that the best setting was
β = 0.5 and τ = 0.2 in almost all cases. This difference requires further examination.

The results were similar to those of the ENM_SU, ENM_NSU, and MGS_SU
instances; in almost all cases, the first parameter setting gave the best results. We ran
these numerical tests for some of the larger EV test instancesmentioned in the previous
subsection, and these experiments also gave similar results.

7 Conclusion

We introduced a new Ai–Zhang type long-step interior point method forP∗(κ)-LCPs.
The new IPA uses the AET technique with the function ϕ(t) = t − √

t . We proved
that the method is convergent and has the best known iteration complexity.

An interesting question regarding the analysis is whether it would be possible to
carry it out in a κ-independent neighborhood. In the case of ϕ(t) = t , Potra [38]
could prove the convergence and best known complexity of an Ai–Zhang type IPA for
LCPs in a κ-independent neighborhood, but he did not apply the AET technique (i.e.,
considered the case of ϕ(t) = t).

In the near future, we would like to investigate Ai–Zhang type methods with dif-
ferent transforming functions forP∗(κ)-LCPs. These two existing results suggest that
there are some functions where a κ-independent neighborhood can be applied, and
for other functions, the convergence and desired complexity can only be proved if we
assume the κ-dependency of the neighborhood.

We implemented both the theoretical and a greedy variant of the IPA in MATLAB
and tested the greedy variant on both sufficient and non-sufficient problem instances.
The greedy method was very effective on most test problems. Furthermore, we com-
pared the Ai–Zhang type IPAs using ϕ(t) = t and ϕ(t) = t −√

t . The performance of
the two methods was similar, but there were some instances where one outperformed
the other. It is an important open question in connection with the AET technique to
determine which transforming function would give the best results for a given problem
instance.

We ran the theoretical variant of the algorithm for some smaller problem instances
(where we calculated the handicap in advance) and investigated the change in the
coordinates of the vector v. We found that when the starting points are well centered,
the coordinates remain in a really narrow interval around

√
1/τ . This phenomenon

raises some interesting theoretical questions that we would like to investigate in the
future.

We also examined the practical role of the neighborhood and the update parameters.
We found that instead of choosing the two parameters as equals (β = τ ), we should
choose a relatively large value for the neighborhood parameter β and a small value
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for the update parameter τ . The results in the case of the Csizmadia-problems were
different; this requires further examination.
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