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Abstract
Enhanced index tracking problem is the issue of selecting a tracking portfolio to out-
perform the benchmark returnwith aminimum tracking error. In this paper, we address
the enhanced index tracking problem based on uncertainty theory where stock returns
are treated as uncertain variables instead of random variables. First, we propose a non-
linear uncertain optimization model, i.e., uncertain mean-absolute downside deviation
enhanced index tracking model. Then, we give the analytical solution of the proposed
optimization model when stock returns take linear uncertainty distributions. Based on
the solution, we find that tracking portfolio frontier is a continuous curve composed of
at most n − 1 different line segments. Furthermore, we give the condition that track-
ing portfolio return and risk increase with benchmark return and risk, respectively.
Finally, we offer some experiments and show that our proposed model is effective in
controlling the tracking error.

Keywords Portfolio selection · Uncertain programming · Enhanced index tracking
model · Uncertainty theory

Mathematics Subject Classification C61

1 Introduction

In the portfolio field, there are two investment strategies based on the index. One
is index tracking which is designed to replicate the performance of a given bench-
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mark. Another is enhanced index tracking (EIT) which aims to beat the benchmark
return while having a minimum tracking error. Since the enhanced index funds per-
form well and their scale grow rapidly in recent years [5, 15], the EIT strategy is
highly praised and has attracted scholars’ attention. Nowadays many scholars and
fund managers use optimization models to solve the EIT problem. An important work
is given by Beasley et al. [3] who propose a mixed-integer nonlinear programming
to track the index with fewer stocks whilst limiting total transaction cost. In addition,
Canakgoz and Beasley [4] present a mixed-integer linear programming formulation
for enhanced index tracking and propose a two-stage solution procedure. Then, var-
ious EIT optimization models are proposed to help investors build their portfolios
[8, 9, 27].

According to the way the tracking error is measured, EIT optimization models are
divided into different categories. The popular ones among them are mean-variance
EIT model [28] and mean-absolute deviation EIT model [30]. Compared with the
mean-variance EIT model, the mean-absolute deviation EIT model has an advan-
tage. The absolute deviation tracking error gives a more accurate description of the
investors’ risk attitude than the quadratic deviation [30]. Under the mean-absolute
deviation framework, scholars formulate many EIT optimization models. Guastaroba
and Speranza [10] minimize the absolute deviation between the historical values of the
tracking portfolio and the index and propose the mixed-integer linear programming
formulations for the EIT problem. Filippi et al. [5] propose an EIT model by setting
up the bi-objective programming: minimizing the absolute deviation tracking error
and maximizing a linear excess return subject to some real-life constraints. Strub and
Baumann [32] put forward a mixed-integer linear programming in which the sum of
absolute deviation tracking error and transaction cost is minimized subject to real-life
constraints.

The absolute deviation used in the above models is a symmetric tracking error
measure which contains upside (positive) and downside (negative) deviations from
the benchmark. In enhanced index tracking strategy, investors welcome the upside
deviation and do not want downside deviation. So the symmetric tracking error mea-
sure is no longer suitable. For this reason, some scholars begin to use downside risk
measures such as absolute downside deviation. The absolute downside deviation is
consistent with the investors’ perception of risk because most investors understand
risk as the potential underachievement of a target return by an asset [25]. By using
absolute downside deviation as the tracking error measure, Rudolf et al. [30] pro-
pose a linear EIT model and compare it with EIT models using other tracking error
measures. Lejeune [17] provides a game theoretical formulation for the EIT prob-
lem in which the minimum excess return over all allowable probability distributions
is maximized subject to the absolute downside deviation tracking error constraint.
Gaustaroba et al. [8] put forward an EIT model in which they maximize the ratio of
the upside and downside deviations between the tracking portfolio and the benchmark
returns.

In addition to constructing various EIT models, scholars also focus on the returns
and risks of the tracking portfolios because these two parameters are what investors
care about most. Roll [29] shows that the tracking portfolio is risky for investors
compared with standard Markowitz mean-variance portfolio and uses a constraint
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on the beta of the tracking portfolio to alleviate the overly risk problem. Then,
scholars begin to focus on how to reduce the risk of the tracking portfolio. Their
approaches are to impose a limit on the amount of risk that investors can take,
but differ on the measure of risk used. For example, papers [16], [1] and [2] add
tracking portfolio’s variance constraint, value-at-risk constraint and ex ante alpha
constraint, respectively, to reduce the tracking portfolio’s risk. Moreover, Maxwell et
al. [26] propose an alternative tracking portfolio which has lower absolute risk rela-
tive to the benchmark risk and which has the highest Sharpe ratio—i.e., located on a
capital market line tangential to the constant tracking error frontier, so it generates
the highest excess return per unit of absolute risk. These works provide insight-
ful findings on reducing tracking portfolio risk and improving tracking portfolio
performance.

In the above studies, probability theory is used as the mathematical tool. The appli-
cation premise of probability theory is that probability distributions estimated from
historical data are close enough to the real frequencies. However, there exists the sit-
uation in financial market where either no historical data are available (e.g., stocks
are newly listed) or the historical data cannot well reflect the future frequencies. For
example, the outbreak of COVID-19 has led to a series of unexpected events so that
historical data become invalid and distributions estimated from historical data cannot
be close enough to the frequencies of future returns. Besides, some empirical tests
show that in many cases observed data in financial market are not random variables.
For example, using two-sample Kolmogorov–Smirnov test, Ye and Liu [34] show US
Dollar to Chinese Yuan (USD-CNY) exchange rates cannot be treated as random vari-
ables because residuals from different parts are neither from the same population nor
white noise in the sense of probability theory. Similar tests also show that Alibaba
stock prices (see [23]) and GDP (see [35]) are not suitable to be treated as random
variables. Therefore, there does exist the situation where probability theory is not
applicable.

In order to handle this problem, Liu [19] proposes a new theory, i.e., uncertainty
theory. Uncertainty theory is a new branch of mathematics and is developed based
on four axioms. Like probability theory, uncertainty theory can help investors make
decisions in the state of indeterminacy but in different situation. Liu [22] points out
that people should use probability theory when the distribution is close enough to
the frequency. Otherwise, they should use uncertainty theory. We provide an example
here to show it. Consider that there are 20 stocks whose returns distribute uniformly
between 2 to 5 percent which is the real frequency and a benchmark return is 5 percent.
An investor uniformly allocates his/her money to the 20 stocks. Since the maximum
return of each stock is 5 percent, it is easy to get that the return of the portfolio
composed of these 20 stocks cannot exceed 5 percent, i.e.,

Pr{“ The return of the portfolio exceeds the benchmark "} = 0.

If the 20 stock returns estimated from historical data distribute uniformly between 2
to 14 which is not close enough to the real frequency, treating stock returns as random
variables, we can get by simulation (3000 times) that
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Pr{“ The return of the portfolio exceeds the benchmark "} = 1

which says that it is sure that the portfolio return will exceed the benchmark. Then,
what if the 20 stock return distributions are treated as linear uncertainty distributions
on [2%, 14%]? Based on operational law of uncertain variables, we can infer that the
chance, expressed by uncertain measure, is 75%, i.e.,

M{“ The return of the portfolio exceeds the benchmark "} = 0.75.

Misusing probability theory, an event that is sure not to happen becomes sure to happen.
This is dangerous because people will not be alert to and prepare for a sure to happen
event and being off guard may lead to disastrous result. Though the result obtained
by uncertainty theory still deviates from the real case, it is due to the great errors in
the input. Uncertainty theory does not further magnify the errors in the input, and
the 25% chance can still alert the investors to prepare for the likely risk event. Thus,
we suggest employing uncertainty theory when the application premise of probability
theory cannot be satisfied.

Nowadays uncertainty theory has been applied in solving various optimization
problems [7, 21, 31]. Particularly, Huang [11] is the first to use uncertainty the-
ory to study portfolio selection systematically. Subsequently, scholars have studied
many portfolio problems based on uncertainty theory. Wang and Huang [33] dis-
cuss the effect of option on the portfolio performance and find that portfolios with
options gain higher expected returns than those without options. Huang and Yang
[13] study how the background risk affects investment decisions. They give prop-
erties of the portfolio efficient frontier when stock and background asset returns
all take normal uncertainty distributions and tell how background risk affects port-
folio selection decision. In order to reflect different attitudes toward risk in one
portfolio investment, Huang and Di [12] apply mental accounts to uncertain optimiza-
tion model. Besides, there are uncertain portfolio optimization models considering
the bankruptcy constraint [18], the borrowing constraint [24] and the entropy con-
straint [6]. Yet so far, no paper studies the EIT problem based on uncertainty
theory. However, there exist some situations in reality that the application premise
of probability theory cannot be satisfied and uncertainty theory is more suitable.
This motivates us to do the research of EIT model based on uncertainty the-
ory in which stock returns are treated as uncertain variables instead of random
variables.

The rest of the paper is organized as follows. In Sect. 2, we provide the necessary
knowledge of uncertainty theory for easy understanding of our paper. In Sect. 3, we
propose an uncertain mean-absolute downside deviation EIT model. In Sect. 4, we
study the form of the tracking portfolio frontier and its properties when stock returns
take linear uncertainty distributions. In Sect. 5, we show how the optimal tracking
portfolio’s return and risk change with the benchmark return distribution and the
tracking error tolerance level. In Sect. 6, we report on the computational experiments.
Finally, we conclude the paper in Sect. 7.
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2 Preliminaries

Uncertainty theory is found by Liu [19] in 2007 and subsequently studied by many
researchers. Nowadays uncertainty theory has become a branch of mathematics con-
cerned with the analysis of uncertain phenomena. To indicate the chance that an
uncertain event happens, a concept of the uncertain measure is defined.

Definition 2.1 [19] Let Γ be a nonempty set and L a σ -algebra over Γ . Each element
Λ ∈ L is called an event. A set function M{Λ} is called an uncertain measure if it
satisfies the following axioms:

(i) (Normality axiom) M{Γ } = 1 for the universal set Γ .
(ii) (Duality axiom) M{Λ} + M{Λc} = 1 for any Λ ∈ L.
(iii) (Subadditivity axiom) For every countable sequence of events{Λi }, we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

The triplet (Γ , L, M) is called an uncertainty space. Furthermore, Liu [20] defined
an uncertain product measure which produces the fourth axiom:

(iv) (Product axiom) Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, . . . , n.

Then, the product uncertain measure is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . , n, respectively.
Though probability measure meets the above normality, self-duality, and countable

subadditivity axioms, it is not a special case of uncertainty theory because the product
probability does not satisfy the product measure axiom of the uncertainty theory.

Theorem 2.1 [21] The uncertain measure is a monotone increasing set function. That
is, for any events Λ1 ⊂ Λ2, we have

M{Λ1} ≤ M{Λ2}.

Definition 2.2 [19] An uncertain variable is a measurable function ξ from an uncer-
tainty space (Γ , L, M) to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ ∈ Γ |ξ(γ ) ∈ B}

is an event.

Definition 2.3 [19] Let ξ and η be uncertain variables. We say ξ > η if ξ(γ ) > η(γ )

for almost all γ ∈ Γ .

In order to characterize uncertain variable, uncertainty distribution is defined as
follows:
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Definition 2.4 [19] The uncertainty distribution Φ : � → [0, 1] of an uncertain
variable ξ is defined by

Φ(t) = M{ξ ≤ t}

for any real number t .

An uncertainty distribution Φ is called regular if it is a continuous and strictly
increasing function concerning t at which 0 < Φ(t) < 1, and lim

t→−∞ Φ(t) = 0,

lim
t→+∞ Φ(t) = 1.

There are somepopularly used uncertain variables, one ofwhich is a linear uncertain
variable.Anuncertain variable is called a linear uncertain variable if it has the following
linear uncertainty distribution:

Φ(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, if t < a
t − a

b − a
, if a ≤ t ≤ b

1, otherwise.

The linear uncertain variable is denoted by L(a, b) where a and b are real numbers
with a < b.

Whenwe have the uncertainty distributions of the uncertain variables ξ1, ξ2, . . . , ξn ,
the operational law of them is given by [21] as follows:

Theorem 2.2 [21] Let ξ1, ξ2, . . . , ξn be independent uncertain variables with reg-
ular uncertainty distributions Φ1, Φ2, . . . , Φn, respectively. If f (ξ1, ξ2, . . . , ξn) is
strictly decreasing with respect to ξ1, ξ2, . . . , ξm and strictly increasing with respect to
ξm+1, ξm+2, . . . , ξn, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable with inverse
uncertainty distribution function

Ψ −1(α) = f (Φ−1
1 (1 − α), . . . , Φ−1

m (1 − α),Φ−1
m+1(α), . . . , Φ−1

n (α)), α < 1. (1)

The expected value and variance of an uncertain variable are defined as follows:

Definition 2.5 [19] Let ξ be an uncertain variable. Then, the expected value of ξ is
defined by

E[ξ ] =
∫ ∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (2)

provided that at least one of the two integrals is finite.

Theorem 2.3 [21] Let ξ be an uncertain variable with a regular uncertainty distri-
bution Φ. If its expected value exists, then

E[ξ ] =
∫ 1

0
Φ−1(α)dα. (3)
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Definition 2.6 [19] Let ξ be an uncertain variable with finite expected value e. Then,
the variance of ξ is defined by

V [ξ ] = E[(ξ − e)2]. (4)

We offer relevant knowledge of uncertainty theory that will be used in this paper.
Formore expositions on uncertainty theory, the interested readers can consult Liu [21].
Uncertainty theory is a branch ofmathematics concernedwith the analysis of uncertain
phenomena. The uncertain variable is used to represent quantities with uncertainty. In
this paper, we treat the stock return and the benchmark return as uncertain variables.
According to knowledge of uncertainty theory and portfolio theory, we can derive
the tracking portfolio return and tracking error represented by uncertain variables. By
calculating the center and dispersion of these uncertain variables, we show investors
the tracking portfolio’s return and risk.

3 The Uncertain Mean-Absolute Downside Deviation EIT Model with
Linear Uncertainty Distributions

3.1 The Notations and Assumptions

As discussed in Introduction, we study the problem in the situationwhere stock returns
are treated as uncertain variables in this paper. Suppose there are n different stocks
in the asset universe. Different stocks mean that they have different returns and risks
and stocks with higher returns also have higher risks. This assumption is based on a
logic. If two stocks have the same return and risk, we think they are the same stock,
and if two stocks have the same return but different risks, the one with higher risk is
not good enough to enter the investor’s universe; similarly the one with lower return
and higher risk is also not good enough to enter the investor’s universe. Short-selling
is not allowed, which is the requirement of the stock market in many countries. Let
XI denote the benchmark with uncertain return rI . Let n × 1 vector XP denote the
tracking portfolio with uncertain return rP which is independent of rI . For example, rP
represents the return of a portfolio from Shanghai Stock Exchange and rI represents
NASDAQ-100 Index return, and they can be converted into independent variables
by using the factor method in [14]. Let xi denote the investment weight on stock
i(i = 1, . . . , n) in XP and xi are decision variables. Let ξi represent the uncertain
return of stock i . So rP = ∑n

i=1 xiξi . The excepted values of rP and rI are μP and
μI , respectively.

3.2 The Uncertain Model

The uncertain mean-absolute downside deviation EIT model is designed to maximize
the expected excess return over the benchmark subject to a fixed level of tracking
error. The expected excess return is E[rP ] − E[rI ] = E[∑n

i=1 xiξi ] − E[rI ]. The
tracking error is measured by absolute downside deviation between rP and rI . For
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simplicity, we write (rP − rI )− = min(rP − rI , 0). The tracking error function is
E[|(rP − rI )−|] = E[|(∑n

i=1 xiξi − rI )−|]. So we formulate the uncertain mean-
absolute downside deviation EIT model as follows:

max E[
n∑

i=1

xiξi ] − E[rI ]

subject to:E

[
|(

n∑
i=1

xiξi − rI )
−|
]

= D

n∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . , n,

(5)

where D is the tolerance level of the tracking error. In order to get the solution, we
give the deterministic form of the model below.

Theorem 3.1 Suppose stock returns ξi and the benchmark return rI have regular
uncertainty distributions Φi , i = 1, 2, ..., n, and ΦI , respectively. Then, model (5) is
equivalent to the following model:

max
∫ 1

0

n∑
i=1

xiΦ
−1
i (α)dα −

∫ 1

0
Φ−1

I (α)dα

subjectto :
∫ β

0

(
Φ−1

I (1 − α) −
n∑

i=1

xiΦ
−1
i (α)

)
dα = D

n∑
i=1

xiΦ
−1
i (β) − Φ−1

I (1 − β) = 0

n∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

(6)

Proof (i) Since xi > 0 and ξi have regular uncertainty distributions Φi , according
to Theorem 2.2, the inverse uncertainty distribution of

∑n
i=1 xiξi is

∑n
i=1 xiΦ

−1
i (α).

Then, according to Theorem 2.3, we have E[∑n
i=1 xiξi ] = ∫ 1

0

∑n
i=1 xiΦ

−1
i (α)dα and

E[rI ] = ∫ 1
0 Φ−1

I (α)dα.
(ii) Let η = ∑n

i=1 xiξi − rI and Ψ denote the uncertainty distribution of η. Since
we suppose that ξi is independent of rI , according to Theorem 2.2, we can have the
inverse uncertainty distribution of η is Ψ −1(α) = ∑n

i=1 xiΦ
−1
i (α) − Φ−1

I (1 − α).
Then, from Definition 2.5, we have
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E[|η−|] =
∫ +∞

0
M{|η−| ≥ t}dt −

∫ 0

−∞
M{|η−| ≤ t}dt

=
∫ +∞

0
M{η ≤ −t}dt

=
∫ 0

−∞
Ψ (t)dt

= −
∫ β

0
Ψ −1(α)dα,

(7)

where Ψ −1(β) = 0.
So we have

E[|(rP − rI )
−|] =

∫ β

0

(
Φ−1

I (1 − α) −
n∑

i=1

xiΦ
−1
i (α)

)
dα,

where
∑n

i=1 xiΦ
−1
i (β) − Φ−1

I (1 − β) = 0. 	


When stock returns all take linear uncertainty distributions, we further give the
deterministic of the model (5) below. In the following, a linear uncertainty distribution
is denoted by L(e − s, e + s) where e and s represent the distribution center and
distribution spread, respectively.

Theorem 3.2 Suppose stock returns ξi and the benchmark return rI take linear uncer-
tainty distributions, i.e., ξi ∼ L(ei − si , ei + si ) and rI ∼ L(eI − sI , eI + sI ),
respectively. Then, model (5) can be transformed into the following form:

max
n∑

i=1

xi ei − eI

subjectto :
(∑n

i=1 xi ei − eI −∑n
i=1 xi si − sI

)2
4(
∑n

i=1 xi si + sI )
= D

n∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

(8)

Proof (i) Let Φi and ΦI denote the uncertainty distributions of ξi and rI , respectively.
Since ξi ∼ L(ei − si , ei + si ), from the definition of linear uncertain variable, it can be
derived thatΦ−1

i (α) = 2siα+ei−si .Similarly,we can haveΦ−1
I (α) = 2sIα+eI−sI .

According to the proof of Theorem 3.1, we have the objective function.
(ii) When η ∼ L(e − s, e + s), we can get the uncertainty distribution of η. Then,

according to equation (7), we calculate and get
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E[|η−|] =
⎧⎨
⎩

(e − s)2

4s
when e > 0, s > 0, e < s,

0 when e > 0, s > 0, e > s.

Remember that η = rP−rI . If e > 0, s > 0 and e > s, it means that rP−rI > 0which
is equivalent to rP > rI . According to Definition 2.3, the situation that rP − rI > 0 is

rare in reality. So the following discussions are in the situation that E[|η−|] = (e − s)2

4s
where e > 0, s > 0 and e < s. Since ξi and rI are linear uncertain variables and xi > 0,
it can be proven that

n∑
i=1

xiξi − rI ∼ L
(

n∑
i=1

xi ei − eI −
(

n∑
i=1

xi si + sI

)
,

n∑
i=1

xi ei − eI +
(

n∑
i=1

xi si + sI

))
.

So we have

E

[
|
(

n∑
i=1

xiξi − rI

)−
|
]

=
(∑n

i=1 xi ei − eI −∑n
i=1 xi si − sI

)2
4(
∑n

i=1 xi si + sI )
. 	


3.3 The Solution

In order to solve model (8), we introduce the following constraint:

θ = 1

4(
∑n

i=1 xi si + sI )
. (9)

Adding Eq. (9) to model (8), model (8) is equivalent to the following form:

max
n∑

i=1

xi ei − eI

subject to:

(
n∑

i=1

xi ei − eI −
n∑

i=1

xi si − sI

)2

θ = D

n∑
i=1

xi = 1

4

(
n∑

i=1

xi si + sI

)
θ = 1

xi ≥ 0, i = 1, 2, . . . , n.

(10)
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To solve the model (10), we first need to obtain the KT points. Using Lagrange mul-
tipliers for the constraints in model (10), respectively, we have the Lagrangian:

L(xi , ρ, λ, θ) = −
⎛
⎝ n∑
i=1

xi ei − eI

⎞
⎠− ρ1

⎛
⎜⎝
⎛
⎝ n∑
i=1

xi ei − eI −
n∑

i=1

xi si − sI

⎞
⎠
2

θ − D

⎞
⎟⎠

− ρ2

⎛
⎝ n∑
i=1

xi − 1

⎞
⎠− ρ3

⎛
⎝4

⎛
⎝ n∑
i=1

xi si + sI

⎞
⎠ θ − 1

⎞
⎠− λ1x1 − · · · − λnxn .

(11)

The necessary KT optimality conditions are

∂L

∂xi
= −ei − 2ρ1θ(ei − si )

⎛
⎝ n∑
i=1

xi ei − eI −
n∑

i=1

xi si − sI

⎞
⎠− ρ2 − 4θρ3si − λi = 0, (12)

∂L

∂ρ1
=
⎛
⎝ n∑
i=1

xi ei − eI −
n∑

i=1

xi si − sI

⎞
⎠
2

θ − D = 0, (13)

∂L

∂ρ2
=

n∑
i=1

xi − 1 = 0, (14)

∂L

∂ρ3
= 4

⎛
⎝ n∑
i=1

xi si + sI

⎞
⎠ θ − 1 = 0, (15)

∂L

∂θ
= −ρ1

⎛
⎝ n∑
i=1

xi ei − eI −
n∑

i=1

xi si − sI

⎞
⎠
2

− 4ρ3

⎛
⎝ n∑
i=1

xi si + sI

⎞
⎠ = 0, (16)

λi xi = 0, (17)
xi ≥ 0, (18)
λi ≥ 0, i = 1, 2, . . . , n. (19)

Note that there are 2n + 2 unknown quantities (xi , λi , ρ2, ρ3, i = 1, 2, . . . , n) in
2n + 2 simultaneous equations (Formulas (12),(14),(15),(17)-(19)). Inspired by the
solving method in [13], we can get the solution of the 2n + 2 simultaneous equations,
i.e., KT point shown by formula (20). In order to get θ , we substitute (20) into Eq.
(13). Then, we have equations (21)-(23) and θ is decided by them. Note that θ has two
values, so we have two KT points. Next, we need to judge whether the KT points are
the optimal solution of themodel (10). According to second-order sufficient condition,
the one that makes ∇2

xx L positive definite is the θ we need, and the corresponding KT
point is the optimal solution. So we get the optimal solution of model (10), i.e.,

XP
∗ = [0 · · · x∗

j · · · x∗
k · · · 0]T , where

[
x∗
j

x∗
k

]
=

⎡
⎢⎢⎣
4θsk − (1 − 4θsI )

4θ(sk − s j )
(1 − 4θsI ) − 4θs j

4θ(sk − s j )

⎤
⎥⎥⎦ , (20)

16(P − eI − sI N )2θ2 + 8
(
(P − eI − sI N )(N − 1) − 2D

)
θ + (N − 1)2 = 0,

(21)

P = e j sk − eks j
sk − s j

, (22)
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N = ek − e j
sk − s j

. (23)

Observing (20), the optimal tracking portfolio contains two stocks: the j-th and the
k-th. Note that stock weights are affected by θ that is decided by (21)–(23). So the
parameters eI , sI and D affect the proportions of stocks j and k. If any of the above
parameters changes, the weights of stocks j and k will change. If these parameters
change toomuch, the optimal tracking portfoliomay choose another two stocks instead
of stocks j and k.

4 The Return and Risk of the Tracking Portfolio

In Sect. 3, we have derived the optimal tracking portfolio’s composition. In this section,
we are concerned with the return and risk of the optimal tracking portfolio. As we
mentioned in Introduction, the downside deviation is risk to investors and upside
deviation is desired by investors. Soportfolio risk ismeasuredby the absolute downside
deviation between the portfolio’s return and its expected return (hereinafter referred
to as ADD) in this section.

4.1 The Risk of the Tracking Portfolio

Consider an uncertain variable ξ with a finite expected return E[ξ ]. The absolute
downside deviation between the uncertain variable and its expected value is given by

ADD[ξ ] = E
[
|(ξ − E[ξ ])−|

]
,

where (ξ − E[ξ ])− = min(ξ − E[ξ ], 0). As a tool of risk measure, ADD has the
following property.

Theorem 4.1 Suppose ξ1 and ξ2 are two independent uncertain variables. Then,
ADD[ξ1 + ξ2] ≤ ADD[ξ1] + ADD[ξ2].
Proof We rewrite the ADD as follows:

ADD[ξ ] = E[max{0, E[ξ ] − ξ}].

Consider,

ADD[ξ1 + ξ2] = E[max{0, E[ξ1 + ξ2] − ξ1 − ξ2}]
= E[max{0, E[ξ1] − ξ1 + E[ξ2] − ξ2}].

It is a straightforward that, max{0, a+b} ≤ max{0, a}+max{0, b} ∀a, b ∈ R. Thus,

ADD[ξ1 + ξ2] = E[max{0, E[ξ1] − ξ1 + E[ξ2] − ξ2}]
≤ E[max{0, E[ξ1] − ξ1}] + E[max{0, E[ξ2] − ξ2}]

123



Journal of Optimization Theory and Applications (2022) 195:723–747 735

= ADD[ξ1] + ADD[ξ2]. 	

If ξ1 and ξ2 in Theorem 4.1 are regarded as stocks’ uncertain returns, it gives an

implication that the ADD of a diversified portfolio cannot be greater than the sum
of ADD of the individual assets. This is consistent with the real-world behavior of
portfolios that diversification leads to the reduction of risk.

Remember that rP is tracking portfolio’s uncertain return and μP is its expected
return. So we can get the risk of the tracking portfolio as

ADD[rP ] = E[|(rP − μP )−|].

Then, according to Definition 2.5, the ADD of the tracking portfolio can be calculated
via

ADD[rP ] =
∫ μP

−∞
Φ(r)dr , (24)

where Φ(·) is the uncertainty distribution of rP . Formula (24) will facilitate the cal-
culation of tracking portfolio’s risk.

4.2 The Frontier of the Tracking Portfolio

In this section, we analyze the tracking portfolio frontier in the mean-ADD space. The
frontier can give investors a panoramic viewof portfolio return and risk. FromSect. 3.3,
we know that the optimal tracking portfolio contains stocks j and k. So the optimal
tracking portfolio’ uncertain return is r∗

P = x∗
j ξ j+x∗

k ξk . Since ξ j ∼ L(e j−s j , e j+s j )
and ξk ∼ L(ek − sk, ek + sk), it can be proven that

r∗
P ∼ L

(
x∗
j e j + x∗

k ek − (x∗
j s j + x∗

k sk), x
∗
j e j + x∗

k ek + (x∗
j s j + x∗

k sk)
)
. (25)

According to (25), we have known the uncertainty distribution of r∗
P . Then, according

to Theorem 2.3, we can get the expected return of the optimal tracking portfolio

μ∗
P = x j e j + xkek . (26)

And according to formula (24), we can get the ADD of the optimal tracking portfolio

ADD[r∗
P ] = (x j s j + xksk)/4. (27)

Substitute Eq. (20) into Eqs. (26) and (27), then we have

μ∗
P = P + N

(
1

4θ
− sI

)
, (28)

ADD[r∗
P ] = 1

4

(
1

4θ
− sI

)
, (29)
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where P , N and θ are decided by Eqs. (21)–(23). Equations (28) and (29) give the
optimal tracking portfolio’s return and risk, respectively. According to Eqs. (28) and
(29), we can easily get the tracking portfolio frontier

ADD[r∗
P ] = μ∗

P − P

4N
. (30)

Note that Eq. (30) shows the tracking portfolio frontier when the optimal tracking
portfolio contains stocks j and k. If the optimal tracking portfolio chooses another
stocks, what happens to the frontier? The following theorem will answer it.

Theorem 4.2 Consider there are n > 2 candidate stocks in the asset pool. The tracking
portfolio frontier ofmodel (10) is a continuous curve composedof atmost n−1different
line segments in the mean-ADD space.

Proof Denote e1 < · · · < e j < · · · < ek < · · · < el < · · · < en . When optimal
tracking portfolio contains the j-th and k-th stocks, we have Eq. (26). Since x j > 0
and xk > 0, according to Eq. (26), we get e j ≤ μ∗

P ≤ ek . When μ∗
P ∈ [e j , ek],

we know that the frontier takes the form of (30) where P = P1 = e j sk − eks j
sk − s j

and

N = N1 = ek − e j
sk − s j

.

As μ∗
P increases, e.g., μ∗

P ∈ [ek, el ], model (10) may select the k-th and the l-th
stocks. And we can prove that the frontier takes the form of (30) where P = P2 =
eksl − elsk
sl − sk

and N = N2 = el − ek
sl − sk

when μ∗
P ∈ [ek, el ].

When μ∗
P = ek , ADD[r∗

P ] calculated by
μ∗
P − P1
4N1

and
μ∗
P − P2
4N2

are the same. It

means that the frontier is a continuous curve that is composed of two line segments
when μ∗

P ∈ [e j , el ]. As μ∗
P changes from e1 to en , the frontier becomes a continuous

curve composed of different line segments.
Next prove that the frontier is composed of at most n − 1 line segments. Note that

points e1 . . . e j . . . en divide the interval [e1, en] into n − 1 intervals. And model (10)
has only one optimal solution when μ∗

P belongs to each interval. Meanwhile, there
exists the possibility that model (10) has the same optimal solution when μ∗

P belongs
to several different adjacent intervals. So the tracking portfolio frontier is composed
of at most n − 1 different line segments. 	


As shown in Theorem 4.2, the tracking portfolio frontier is linear shape in the
mean-ADD space. It is different from traditional parabolic shape like the Markowitz
efficient frontier in the mean-variance space. We believe that this linear relationship is
due to the use of ADD as risk measure. Since both mean and ADD are the first-order
moments of an uncertain variable, it is reasonable to be a linear relationship between
them.
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5 Comparative Statics

We are interested in how the optimal tracking portfolio’s return and risk respond to
the changes in benchmark and tracking error tolerance level D. All the discussions
are based on the situation that model (10) still selects the same stocks j and k when
changes occur in benchmark and D. If model (10) selects other stocks, e.g., stocks k
and l, a similar conclusion will be obtained.

5.1 Changes in the Benchmark

Remember that the benchmark return rI takes a linear uncertainty distribution L(eI −
sI , eI + sI ) where eI and sI represent the distribution center and distribution spread,
respectively. The analysis is to address how the optimal tracking portfolio’s return
and risk change with the benchmark return’s distribution center eI . First, we get the
derivatives of Eqs. (28) and (29) with respect to eI which are

∂μ∗
P

∂eI
= ∂μ∗

P

∂θ

∂θ

∂eI
= − N

4θ2
∂θ

∂eI
, (31)

∂ADD[r∗
P ]

∂eI
= ∂ADD[r∗

P ]
∂θ

∂θ

∂eI
= − 1

16θ2
∂θ

∂eI
. (32)

Then, we rewrite Eq. (21) as follows:

F(θ) = 16(P − eI − sI N )2θ2 + 8
(
(P − eI − sI N )(N − 1) − 2D

)
θ + (N − 1)2 = 0.

(33)

After some rearrangements, implicit differentiation of (33) with respect to eI yields

∂θ

∂eI
= − F ′

eI (θ)

F ′
θ (θ)

= 2θ

P − eI − sI N − (N − 1)/4θ
. (34)

Please remember the assumption we make in Sect. 3 that stocks with higher returns
also have higher risks. So we have N > 0 according to Eq. (23). And from Eq. (9),
we know θ > 0. So we have the following results.

(i) Situation A: P − eI − sI N − (N − 1)/4θ < 0 holds. Then, we get
∂θ

∂eI
< 0.

Therefore,
∂μ∗

P

∂eI
> 0 and

∂ADD[r∗
P ]

∂eI
> 0.

(ii) Situation B: P − eI − sI N − (N − 1)/4θ > 0 holds. Then, we get
∂θ

∂eI
> 0.

Therefore,
∂μ∗

P

∂eI
< 0 and

∂ADD[r∗
P ]

∂eI
< 0.

We now turn to analyze how the optimal tracking portfolio’s return and risk change
with benchmark return’s distribution spread sI . The derivatives of equations (28) and
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(29) with respect to sI are

∂μ∗
P

∂sI
= ∂μ∗

P

∂θ

∂θ

∂sI
− N , (35)

∂ADD[r∗
P ]

∂sI
= ∂ADD[r∗

P ]
∂θ

∂θ

∂sI
− 1

4
. (36)

Implicit differentiation of (33) with respect to sI yields

∂θ

∂sI
= 2θN

P − eI − sI N − (N − 1)/4θ
. (37)

Substituting Eq. (37) into Eqs. (35) and (36) and rearranging, we have

∂μ∗
P

∂sI
= −N · P − eI − sI N + (N + 1)/4θ

P − eI − sI N − (N − 1)/4θ
, (38)

∂ADD[r∗
P ]

∂sI
= −1

4
· P − eI − sI N + (N + 1)/4θ

P − eI − sI N − (N − 1)/4θ
. (39)

Substitute Eq. (20) into
∑n

i=1 x
∗
i ei and

∑n
i=1 x

∗
i si , then we get

∑n
i=1 x

∗
i ei = P −

sI N + N/4θ and
∑n

i=1 x
∗
i si = 1/4θ − sI . After some rearrangements, we can have

P − eI − sI N + (N + 1)/4θ =
n∑

i=1

x∗
i ei − eI + (

n∑
i=1

x∗
i si + sI ). (40)

Remember that the benchmark return rI takes a linear uncertainty distribution L(eI −
sI , eI + sI ). If eI > sI , it means that rI > 0 which is rare in reality. We only consider
the case where eI < sI . In equation (40), it is easy to prove that

∑n
i=1 x

∗
i ei − eI +

(
∑n

i=1 x
∗
i si + sI ) > 0. So we can get P − eI − sI N + (N + 1)/4θ > 0. Note that

N > 0. So the following results are obtained.

(i) When Situation A holds, we get
∂μ∗

P

∂sI
> 0 and

∂ADD[r∗
P ]

∂sI
> 0.

(ii) When Situation B holds, we get
∂μ∗

P

∂sI
< 0 and

∂ADD[r∗
P ]

∂sI
< 0.

5.2 Changes in the Tracking Error Tolerance Level

Now, we discuss how the optimal tracking portfolio’s return and risk change with
tracking error tolerance level D. We get the derivatives of equations (28) and (29)
with respect to D which are

∂μ∗
P

∂D
= ∂μ∗

P

∂θ

∂θ

∂D
= − N

4θ2
∂θ

∂D
, (41)

∂ADD[r∗
P ]

∂D
= ∂ADD[r∗

P ]
∂θ

∂θ

∂D
= − 1

16θ2
∂θ

∂D
. (42)
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Implicit differentiation of (33) with respect to D yields

∂θ

∂D
= − F ′

D(θ)

F ′
θ (θ)

= 1

(P − eI − sI N + N−1
4θ )(P − eI − sI N − N−1

4θ )
. (43)

Similarly, we substitute Eq. (20) into
∑n

i=1 x
∗
i ei and

∑n
i=1 x

∗
i si . After some rear-

rangement, we get the following formula

P − eI − sI N + N − 1

4θ
=

n∑
i=1

x∗
i ei − eI −

(
n∑

i=1

x∗
i si + sI

)
. (44)

Remember that the stock return ξi ∼ L(ei − si , ei + si ), i = 1, 2, . . . , n. If ei >

si , it means that ξi > 0 which is rare in reality. Then, we only consider the case
where ei < si . In Eq. (44), since ei < si and eI < sI , it is easy to prove that∑n

i=1 x
∗
i ei − eI − (

∑n
i=1 x

∗
i si + sI ) < 0. Then, we get P − eI − sI N + N − 1

4θ
< 0.

So the following results are obtained.

(i) When Situation A holds, we get
∂θ

∂D
> 0. Therefore,

∂μ∗
P

∂D
< 0 and

∂ADD[r∗
P ]

∂D
< 0.

(ii) When Situation B holds, we get
∂θ

∂D
< 0. Therefore,

∂μ∗
P

∂D
> 0 and

∂ADD[r∗
P ]

∂D
> 0.

The above analysis shows that when D changes, μ∗
P and ADD[r∗

P ] both change.
But there is one thing to note. The change of D does not affect the slope of tracking
portfolio frontier in mean-ADD space when tracking portfolio contains stocks j and
k. Observing frontier formula (30), we see that the slope is independent of D. If
tracking portfolio contains other stocks, e.g., stocks k and l, a similar conclusion will
be obtained.

6 Numerical Examples

6.1 Computational Results of Uncertain Mean-Absolute Downside Deviation EIT
Model with Linear Uncertainty Distributions

In order to clearly illustrate the modeling idea and the research results, we present
some numerical examples. Suppose stock and benchmark returns take linear uncer-
tainty distributions which are shown in Table 1. According to four prospectuses
of enhanced index funds coded 008593, 015148, 007994, 001556 in China’s secu-
rities market, the annual tracking error should not exceed 7.75%. So we set the
tolerance level of tracking error at 5% in our proposed model, i.e., D = 0.05.
First, we give the computational results of the optimal tracking portfolio. By solv-
ing model (8) with computer, we obtain the optimal tracking portfolio’s composition,
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Table 1 Uncertain distributions
of stock and the benchmark
returns

Stock i e s Uncertainty distributions

1 0.059 0.089 L(−0.030, 0.148)

2 0.075 0.110 L(−0.035, 0.185)

3 0.114 0.156 L(−0.042, 0.270)

4 0.120 0.169 L(−0.049, 0.289)

5 0.150 0.205 L(−0.055, 0.355)

6 0.168 0.231 L(−0.063, 0.399)

Benchmark 0.080 0.120 L(−0.040, 0.200)

0.025 0.03 0.035 0.04 0.045 0.05 0.055
The ADD of tracking portfolio
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The tracking portfolio frontier

Fig. 1 The tracking portfolio frontier

i.e., XP
∗ = (0, 0, 0, 0.2031, 0, 0.7969)T . The expected return of the optimal

tracking portfolio is μ∗
P = 0.1582, and the ADD is ADD[r∗

P ] = 0.0546.
Then to give investors a panorama of the relationship between portfolio risk and

return, we give the tracking portfolio frontier. Figure 1 shows the tracking portfolio
frontier in mean-ADD space. In Fig. 1, the tracking portfolio frontier is an increasing
curve. With the increase in ADD, the optimal tracking portfolio’s expected return
increases.

In order to test how the relevant parameters affect the optimal tracking portfolio’s
return and risk, we change the values of eI , sI and D and do the sensitivity analysis.
There is one thing to note.When one parameter changes, the others remain unchanged.
Table 2 shows the effect of eI on the optimal tracking portfolios. As shown in Table 2,
μ∗
P and ADD[r∗

P ] increase with eI . Table 3 shows the effect of sI on the optimal
tracking portfolio. As shown in Table 3, μ∗

P and ADD[r∗
P ] increase with sI . Table 4

shows the effect of D on the optimal tracking portfolio. As the increase of D, μ∗
P

and ADD[r∗
P ] both decrease. The above experimental results are consistent with our

theoretical analysis.
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Table 2 The effect of eI on the
optimal tracking portfolio

eI Obj . μ∗
P ADD[r∗

P ]
0.075 0.0601 0.1351 0.0471

0.076 0.0636 0.1396 0.0486

0.077 0.0671 0.1441 0.0500

0.078 0.0707 0.1487 0.0515

0.079 0.0744 0.1534 0.0530

0.080 0.0782 0.1582 0.0546

Note: D = 0.05 and sI = 0.12

Table 3 The effect of sI on the
optimal tracking portfolio

sI Obj . μ∗
P ADD[r∗

P ]
0.115 0.0640 0.1440 0.0500

0.116 0.0667 0.1467 0.0509

0.117 0.0695 0.1495 0.0518

0.118 0.0724 0.1524 0.0527

0.119 0.0753 0.1553 0.0536

0.120 0.0783 0.1558 0.0546

Note: D = 0.05 and eI = 0.08

Table 4 The effect of D on the
optimal tracking portfolio

D Obj . μ∗
P ADD[r∗

P ]
0.050 0.0783 0.1582 0.0546

0.051 0.0662 0.1462 0.0507

0.052 0.0555 0.1355 0.0472

0.053 0.0457 0.1257 0.0441

0.054 0.0367 0.1167 0.0412

0.055 0.0283 0.1083 0.0384

Note: eI = 0.08 and sI = 0.12

6.2 Comparison between Uncertain Mean-Absolute Downside Deviation EIT
Model and Other Uncertain EIT Models

As mentioned in Introduction, EIT models can be classified according to the tracking
error measures. In this section, we compare our proposed model with uncertain mean-
absolute deviation EIT model (hereinafter referred to as Model I) and uncertain mean-
standard deviation EITmodel (hereinafter referred to asModel II). InModel I, tracking
error is measured by absolute deviation between tracking portfolio and benchmark
returns. And in Model II, tracking error is measured by standard deviation of the
difference between these two quantities. Models I and II are in the following forms:
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Model I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[
n∑

i=1

xiξi ] − E[rI ]

subject to:

E

[
|

n∑
i=1

xiξi − rI |
]

= D1

n∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . , n,

Model I I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[
n∑

i=1

xiξi ] − E[rI ]

subject to:√√√√V [
n∑

i=1

xiξi − rI ] = D2

n∑
i=1

xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

Table 5 shows the comparison results between different uncertain EIT models. In
Table 5, the first column is the objective value which represents the expected excess
return of the optimal tracking portfolio over the benchmark. The second column is
the tracking error in our proposed model, and the third and fourth columns are the
tracking errors inModels I and II, respectively. As shown in Table 5, the tracking error
of our proposed model is smaller than that of Model I or II with the same expected
excess return. Considering that we use absolute downside deviation to measure the
tracking error, even if we divide D1 and D2 by 2, the tracking error of our model is
still smaller than that of the other two models. This shows that our model is effective
in controlling the tracking error.

6.3 The Discussion on the Cardinal Constraint

The cardinal constraint is a common constraint in EIT model (see [4]). To show the
effect of the cardinal constraint, we do more experiments. We increase the number
of candidate stocks from the original 6 to 100. Table 6 shows the returns of the 100
stocks. The benchmark return and tracking error tolerance level remain unchanged.
We add the cardinal constraint in our uncertain EIT model and do the experiments in
two cases.
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Table 5 The comparison results
between different uncertain EIT
models

Obj . D D1 D2

0.0783 0.0500 0.1776 0.1946

0.0662 0.0510 0.1668 0.1847

0.0555 0.0520 0.1577 0.1763

0.0457 0.0530 0.1495 0.1686

0.0367 0.0540 0.1423 0.1615

0.0283 0.0550 0.1360 0.1554

0.0206 0.0560 0.1307 0.1499

0.0135 0.0570 0.1259 0.1449

0.0069 0.0580 0.1212 0.1403

0.0008 0.0590 0.1178 0.1360

eI = 0.08 and sI = 0.12

Case 1: The proposed uncertain EIT model is solved with the cardinal constraint
that there should be an investment in at most 30 stocks with at least a 2% allocation
in each stock.

Case 2: The proposed uncertain EIT model is solved with the cardinal constraint
that there should be an investment in at most 50 stocks with at least a 1% allocation
in each stock.

The obtained results in two cases are presented in Table 7. Here, K represents the
cardinal constraint. For example, K = 30 means that the number of stocks in the
tracking portfolio is 30 for the given problem. By comparing the results, we find that
when the number of stocks in the tracking portfolio increases, the risk of the tracking
portfolio decreases. This is in line with the statement “diversification reduces portfolio
risk."

7 Conclusions

In financialmarket, there exists the situationwhere probability theory is not applicable.
In this situation, it is more appropriate to treat the stock return as uncertain variable
and employ the uncertainty theory. Under uncertainty theory framework, this paper
has studied the EIT problem.We have proposed an uncertain mean-absolute downside
deviation EIT model and given the optimal tracking portfolio when stock returns take
linear uncertainty distributions. By using the ADD as the portfolio risk measure, we
have given the form of the tracking portfolio frontier in mean-ADD space and found
that the frontier is a continuous curve composed of different line segments. Moreover,
we have analyzed the effects of benchmark return distribution and tracking error
tolerance level on the optimal tracking portfolio’s return and risk. The experimental
results are consistent with our theoretical analysis.

There are many things to do in the future. Under uncertainty theory framework, we
will formulate a bi-objective EIT model considering reality constraints and present an
algorithm to solve the proposed model.
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Table 6 Uncertain returns of 100 stocks

Stock i e s Stock i e s Stock i e s

1 0.013 0.093 2 0.014 0.094 3 0.015 0.095

4 0.016 0.096 5 0.017 0.097 6 0.018 0.098

7 0.019 0.099 8 0.020 0.1 9 0.030 0.11

10 0.035 0.115 11 0.046 0.126 12 0.047 0.127

13 0.049 0.129 14 0.050 0.13 15 0.059 0.139

16 0.061 0.141 17 0.062 0.142 18 0.063 0.143

19 0.084 0.164 20 0.09 0.17 21 0.092 0.172

22 0.094 0.174 23 0.098 0.178 24 0.107 0.187

25 0.115 0.195 26 0.118 0.198 27 0.128 0.208

28 0.138 0.218 29 0.152 0.232 30 0.157 0.237

31 0.159 0.239 32 0.160 0.24 33 0.161 0.241

34 0.165 0.245 35 0.170 0.25 36 0.183 0.263

37 0.184 0.264 38 0.185 0.265 39 0.187 0.267

40 0.197 0.277 41 0.198 0.278 42 0.2 0.28

43 0.202 0.282 44 0.206 0.286 45 0.208 0.288

46 0.212 0.292 47 0.215 0.295 48 0.217 0.297

49 0.220 0.3 50 0.233 0.313 51 0.236 0.316

52 0.239 0.319 53 0.242 0.322 54 0.244 0.324

55 0.249 0.329 56 0.252 0.332 57 0.256 0.336

58 0.260 0.34 59 0.264 0.344 60 0.265 0.345

61 0.267 0.347 62 0.27 0.35 63 0.274 0.354

64 0.276 0.356 65 0.278 0.358 66 0.281 0.361

67 0.285 0.365 68 0.290 0.37 69 0.291 0.371

70 0.296 0.376 71 0.298 0.378 72 0.300 0.38

73 0.303 0.383 74 0.306 0.386 75 0.308 0.388

76 0.322 0.402 77 0.324 0.404 78 0.325 0.405

79 0.328 0.408 80 0.346 0.426 81 0.352 0.432

82 0.354 0.434 83 0.360 0.44 84 0.367 0.447

85 0.370 0.45 86 0.373 0.453 87 0.375 0.455

88 0.378 0.458 89 0.380 0.46 90 0.381 0.461

91 0.382 0.462 92 0.383 0.463 93 0.384 0.464

94 0.386 0.466 95 0.387 0.467 96 0.389 0.469

97 0.390 0.47 98 0.391 0.471 99 0.392 0.472

100 0.399 0.479
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Table 7 Results for uncertain EIT model with the cardinal constraint

K Return/risk 1 2 3 4 5 6 7 8 9 10

30 0.276/0.089 0.02 0 0 0 0 0 0 0 0.02 0

50 0.269/0.087 0.01 0 0 0.01 0.01 0 0.01 0 0 0.02

11 12 13 14 15 16 17 18 19 20

0 0 0.02 0 0 0 0.03 0 0 0

0 0 0 0 0 0 0 0.02 0.02 0.02

21 22 23 24 25 26 27 28 29 30

0.03 0 0 0 0 0 0 0 0 0

0 0 0 0.01 0 0 0 0.02 0.02 0

31 32 33 34 35 36 37 38 39 40

0.02 0 0 0.02 0 0 0.03 0 0 0.04

0.02 0 0 0 0 0.02 0 0.03 0 0.01

41 42 43 44 45 46 47 48 49 50

0.02 0 0 0 0 0 0 0 0 0

0 0.01 0.03 0 0.02 0 0 0 0.03 0.03

51 52 53 54 55 56 57 58 59 60

0.04 0 0 0 0 0 0 0 0.04 0.05

0 0.01 0 0.01 0.02 0.01 0 0.01 0.02 0

61 62 63 64 65 66 67 68 69 70

0 0 0 0.02 0.03 0 0 0.03 0.05 0.03

0 0.01 0.02 0.02 0 0.02 0 0.01 0.03 0

71 72 73 74 75 76 77 78 79 80

0 0.04 0 0.05 0.04 0 0 0 0 0

0.01 0 0 0.02 0 0.03 0.01 0.02 0 0

81 82 83 84 85 86 87 88 89 90

0.02 0 0 0.04 0.02 0.03 0 0 0 0

0.03 0.03 0 0 0.03 0.02 0.02 0.02 0.02 0.03

91 92 93 94 95 96 97 98 99 100

0.05 0 0 0 0.02 0 0.06 0.04 0 0.05

0 0.03 0 0.03 0 0 0 0.03 0.03 0.03
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