Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-022-02103-1

®

Check for
updates

New Interior-Point Approach for One- and Two-Class Linear
Support Vector Machines Using Multiple Variable Splitting

Jordi Castro’

Received: 17 January 2022 / Accepted: 24 August 2022
© The Author(s) 2022

Abstract

Multiple variable splitting is a general technique for decomposing problems by using
copies of variables and additional linking constraints that equate their values. The
resulting large optimization problem can be solved with a specialized interior-point
method that exploits the problem structure and computes the Newton direction with
a combination of direct and iterative solvers (i.e. Cholesky factorizations and precon-
ditioned conjugate gradients for linear systems related to, respectively, subproblems
and new linking constraints). The present work applies this method to solving real-
world binary classification and novelty (or outlier) detection problems by means of,
respectively, two-class and one-class linear support vector machines (SVMs). Unlike
previous interior-point approaches for SVMs, which were practical only with low-
dimensional points, the new proposal can also deal with high-dimensional data. The
new method is compared with state-of-the-art solvers for SVMs that are based on either
interior-point algorithms (such as SVM-OOPS) or specific algorithms developed by
the machine learning community (such as LIBSVM and LIBLINEAR). The compu-
tational results show that, for two-class SVMs, the new proposal is competitive not
only against previous interior-point methods—and much more efficient than they are
with high-dimensional data—but also against LIBSVM, whereas LIBLINEAR gen-
erally outperformed the proposal. For one-class SVMs, the new method consistently
outperformed all other approaches, in terms of either solution time or solution quality.

Keywords Interior-point methods - Support vector classifier - One-class support
vector machine - Multiple variable Splitting - Large-scale optimization

Mathematics Subject Classification 90C51 - 90C20 - 90C90 - 62H30

Communicated by Goran Lesaja.

B Jordi Castro
jordi.castro@upc.edu

Department of Statistics and Operations Research, Universitat Politecnica de Catalunya, UPC,
Barcelona, Catalonia

Published online: 29 September 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02103-1&domain=pdf
http://orcid.org/0000-0003-3573-4568

Journal of Optimization Theory and Applications

1 Introduction

Machine learning applications require the solution of a—usually large—optimization
problem [2]. In the case of support vector machines (SVM, one of the preferred tools
in machine learning), the optimization problem to be solved is convex and quadratic
[10]. SVMs can be used for either binary classification or novelty detection. When
used for binary classification, they are referred to as a support vector classifier or
two-class SVM [9]; for novelty (or outlier) detection, they are called one-class SVM
[8, 20]. Although in recent years they have been replaced by neural networks in some
applications (e.g. for image detection and classification), SVMs are still one of the
preferred techniques for text classification [2].

In this work, we present a new approach for solving real-world two-class and
one-class SVMs. It is based on reformulating the SVM problem by decomposing
it into smaller SVMs and using linking constraints to equate the values of the split
variables. The resulting optimization problem has a primal block-angular structure
which can be efficiently solved using the specialized interior-point method (IPM) of
[3-6]. The extensive computational experience in Sect. 4 shows that the new approach
can be competitive against state-of-the-art methods for two-class SVM and that it
outperformed all of them for one-class SVM.

Briefly, SVMs attempt to find a hyperplane separating two classes of multidimen-
sional points (two-class SVM), or points with some distribution from a set of outliers
(one-class SVM). For either one-class or two-class SVMs, we are given a set of p
d-dimensional points a; € R i=1,..., p. Each point could be related to some
item, and the d components of the point would be related to variables (named features
in machine learning jargon) for that item. In two-class SVMs, we also have a vector
y € R? of labels y; € {+1,—1},i = 1, ..., p, indicating whether point i belongs
to class “+41” or class “—1”. In some applications, points @; need to be previously
transformed by function ¢ : R — RY, especially if the two classes of points cannot
be correctly separated by a hyperplane. When dimension d is high, such a transfor-
mation is usually not needed, since a good separation hyperplane can be found. That
is, ¢ (x) = x, and we refer to this problem as the linear SVM. In this work, we focus
on linear SVMs.

1.1 The Two-Class SVM Optimization Problem

For the two-class SVM (or support vector classifier), we compute aplane w ' x+y = 0,
w e RY, y € R, such that points a; with y; = +1 should be in the half-plane
w'x + y > 1, and those points with label y; = —1 should be in the half-plane
w'x + y < —1. Slack variables s € R? are introduced to account for possible
misclassification errors if the data points are not linearly separable. At the same time,
we also attempt to maximize the distance between the parallel planes w'x +y = 1
and w'x 4+ y = —1, such that the two classes of points are far enough from each
other. This distance, named separation margin, is 2/||w| [10]. Using A € R? xd 10
define the matrix storing row-wise the p d-dimensional points a¢;,i = 1, ..., p, and
Y = diag(y) to define the diagonal matrix made from the vector of labels y, the primal
formulation of the two-class SVM problem is

@ Springer

Journal of Optimization Theory and Applications

1
min —w' w+ve's (1a)
w,y,s
subjectto Y(Aw +ye)+s>e (1b)
s >0, (1c)

where e € R? is a vector of 1s, and v is a fixed parameter to balance the two opposite
terms of the objective function: the first quadratic term maximizes the separation
margin, and the second term minimizes the misclassification errors.

Defining the vectors of Lagrange multipliers . € R” and 1 € R?, respectively, for
constraints (1b) and (1c¢), the Lagrangian function of (1) is

1
L(w,y,s, A, 1) = szw +vels — XT(Y(Aw +ye)+s—e)— ,lLTS, 2)

and the Wolfe dual of (1) becomes

max L(w,y,s, A, u) (3a)

W, Y, A, L
subjectto VyL()=w—A'YA)T =0 (3b)
V,L()=1Ty=0 (3c)
ViL()=ve—A—u=0 (3d)
A>0, u=0. (3e)

Using relations (3b)—(3e) in (3a), we obtain the dual problem (in minimization form)

1
m}jn EATYAATYA —2Te (4a)
subjectto ATy = (4b)
0<A <ve. (4¢)

The dual (4) is a convex quadratic optimization problem with only one linear constraint
and simple bounds. The linear constraint (4b) comes from V,, L(-). Therefore, if a
linear (instead of an affine) separation plane w'x = 0 is considered in the primal
formulation (that is, without the y term), the dual is only defined by (4a) and (4c). Such
a problem can be effectively dealt with by gradient and coordinate descent methods
[23]. This fact is exploited by some of the most popular and efficient packages in
machine learning (such as LIBLINEAR [11]). We note, however, that both problems
are slightly different, since they compute either a linear or an affine separation plane.

1.2 The One-Class SVM Optimization Problem

The purpose of the one-class SVM problem (introduced in [20]) is to find a hyperplane
w'x —y =0, w € RY, y € R, such that points in the half-plane w'x —y > 0

are considered as belonging to the same distribution, and the separation margin with

@ Springer

Journal of Optimization Theory and Applications

respect to the origin is maximized. Points that are not in the previous half-plane are
considered outliers. Defining, as in the two-class SVM problem, the matrix A € R? xd

whose row i contains point a;,i = 1, ..., p, the primal formulation of the one-class
SVM problem is
1
min —w'w— y + —e's (5a)
w,y,s 2 vp
subjectto Aw —ye+s >0 (5b)
s >0, (5¢)

where the positive components of s in the optimal solution would be associated with
outliers, and v € [0, 1] is a fixed parameter. It was shown in [20] that v is an upper
bound on the fraction of detected outliers in the optimal solution.

As in the two-class SVM problem, we can use Wolfe duality to compute the dual
of (5), thereby obtaining:

1
min —ATAATA (62)
A2
subjectto ATe=1 (6b)
1
0<XiA<—e. (6¢)
vp

One significant difference with respect to the two-class SVM problem is that the linear
constraint (6b) cannot be avoided by removing y from the primal formulation (5) (that
is, by computing a linear instead of an affine plane): if ¥ was removed, problem (5)
would have the trivial and useless solution w* = 0, s* = 0. As will be shown in the
computational results of Sect. 4, this fact has far reaching implications for methods
that solve (6) by means of coordinate gradient descent [8], as they may provide a poor
quality solution that is far from the optimal one.

1.3 Alternative Approaches for SVMs

Several approaches have been developed for solving the two-class SVM problem by
using either (1) or (4). We will avoid giving an extensive list and will focus instead
on only those based on IPMs (like ours) and those implemented in the current state-
of-the-art packages for SVMs that will be used in the computational results of this
work.

Since (1) and (4) are convex quadratic linearly constrained optimization problems,
they can be solved by a general solver implementing an [IPM. However, when using
either the primal or dual formulation, computing the Newton direction would mean
solving a linear system involving matrix AGA T € RP*? (where ® is some diagonal
scaling matrix that is different for each IPM iteration). For datasets with a large number
of points p, the Cholesky factorization can be prohibitive because matrices A are
usually quite dense. However, for low-rank matrices A which involve many points
and just a few variables (that is, p > d), a few very efficient approaches have been

@ Springer

Journal of Optimization Theory and Applications

devised. The first one was that of [12], who considered the dual problem (4) and
solved the Newton system by applying the Sherman—Morrison—Woodbury (SMW)
formula. In [12], the authors solved problems with millions of points but only d = 35
features. A similar approach was used in [13] for the solution of smaller (up to 68,000
points, and less than 1000 features) but realistic datasets. The product form Cholesky
factorization introduced in [14] for [IPMs with dense columns was applied in [15]
for solving the dual SVM formulation. This approach was shown to have a better
numerical performance than those based on the SMW formula, but no results for real
SVM instances were reported in [15]. State-of-the-art IPM solvers including efficient
strategies for dealing with dense columns (such as CPLEX) can also be used for
solving the primal formulation (1). Indeed, the computational results of Sect. 4 will
show that CPLEX 20.1 is competitive against specialized packages for both one-class
and two-class SVMs when d is small.

More recently, [21] suggested a separable reformulation of (4) by introducing the
extra free variables u. The resulting problem

min %u—ru —ATe
A
Aly=0
ATYr=u
0 <X <ve, ufree,

was efficiently solved when A is low-rank. This approach was implemented in the
SVM-OOPS package, and [21] extensively tested it against state-of-the-art machine
learning packages for SVMs, showing competitive results (but only for problems with
a few features). SVM-OOPS can be considered one of the most efficient specialized
IPM approaches for linear SVMs when d is small, and it will be one of the packages
considered in Sect. 4 for the computational results (but only for classification, since it
does not deal with one-class SVMs).

The two likely best packages for SVMs in the machine learning community are
LIBSVM [7] and LIBLINEAR [11]. Both will be used for comparison purposes in the
computational results of Sect. 4. LIBSVM solves the duals (4) and (6) (and can thus be
used for both two-class and one-class SVMs) without removing the linear constraint
(that s, it considers the y term of the primal formulation). It applies a gradient descent
approach combined with a special active set constraint technique named sequential
minimal optimization (SMO) [19], where all but two components of X are fixed, and
each iteration deals only with a two-dimensional subproblem. Each iteration of SMO
is very fast, but convergence can be slow. As will be shown in Sect. 4, LIBSVM is
generally not competitive against the other methods. On the other hand, it is the only
one that can efficiently deal with nonlinear SVMs—that is, when ¢ (x) is a general
transformation function.

LIBLINEAR [11] is considered the fastest package for linear SVMs. For two-class
SVMs, it solves either the primal or the dual formulation without the y variable.
For the primal formulation, it considers the following approximate unconstrained
reformulation:

@ Springer

Journal of Optimization Theory and Applications

1 4
mu%n szw +v Zmax(O, 1-— yinai)z.

i=1

The nondifferentiable max() term (known as hinge loss function in the machine learn-
ing field) must be squared to avoid differentiability issues with the first derivative (this
term, however, has no second derivative at 0). This unconstrained problem is solved
by a trust-region Newton method based on conjugate gradients while further using a
Hessian perturbation to deal with the second derivatives at 0. Due to the lack of y,
LIBLINEAR solves the dual formulation (4) without the linear constraint:

min 3ATY AATY) — 3 Te

0 <A <ve.

(N

This problem is solved using a coordinate gradient descent algorithm. For one-class
SVM, LIBLINEAR solves only the exact dual (6) (which includes the linear constraint)
by means of a coordinate descent algorithm [8]. Alternative approaches also considered
nondifferentiable formulations [1], but resulted less efficient than that implemented in
LIBLINEAR.

The rest of the paper is organized as follows: Section 2 introduces the multiple
variable splitting reformulation considered in this work for linear SVMs. Section 3
presents the specialized IPM that will be used for the efficient solution of the multiple
variable splitting reformulation of the SVM problem. Finally, computational results
for one-class and two-class SVMs using real datasets will be provided in Sect. 4,
showing the efficiency and competitiveness of this new approach.

2 Multiple Variable Splitting Reformulation of Linear SVMs

The approach introduced in this work consists of partitioning the dataset of p points
into k subsets of, respectively, p;, i = 1,..., k, points (where Z?:l pi = p). The
points in each subset and their labels are assumed to be stored, respectively, row-
wise in matrices A’ € R”*? and diagonally in matrices Y’ € RPi*Pi j =1,... k.
Considering k smaller SVMs, each with its own variables (wi, yi, si), i=1,...,k
(where w' € RY, yi € R and s' € RPi), problem (1) is equivalent to the following
multiple variable splitting formulation with linking constraints:

k k
min §<Elw’—rwl) /k—l—véle’—rs’ (8a)
1= 1=

(w5t

subject to Yi(Aiwi+yiei)+si zei i=1,...,k (8b)
s'>0 i=1,....k (8c)
w'=w T, oyl =it i=1,...,k—1, (8d)

@ Springer

Journal of Optimization Theory and Applications

where ¢/ € R”i is a vector of ones. Linking constraints (8d) impose the same hyper-
planes for the kK SVMs. Slacks s’ represent the potential misclassification errors, so
they are particular to the points of each subset and do not have to be included in the
linking constraints.

Similarly, the one-class SVM problem (5) can be reformulated as

k k
1))) 1 T .
min 5 (;1 wwi — y’) /k + o igl ey (9a)

(wi,yi.s)

subjectto Alw’ —ylel +5° >0 i=1,....k (9b)
s'>0 i=1,....k (9)
w = wtl, oyl =it i=1,....,k—1. (9d)

The constraints of problems (8) and (9) exhibit a primal block-angular structure.
Putting aside the linking constraints (8d) and (9d), the solution of either (8) or (9)

with an IPM requires k Cholesky factorizations involving A’ ®' AT € RPixp ,i =
1,...,k,ateachIPM iteration (®' being a diagonal scaling matrix that depends on the
particular iteration). If each subset has the same number of points, that is p; = p/k,
the complexity of the k Cholesky factorizations is

0 (k (%)3) =0 ('Z—S) <o(p), (10)

where O (p3) is the complexity of the Cholesky factorizations of the original formu-
lations (1) and (5). Of course, to benefit from (10), we need an IPM that can efficiently
deal with the linking constraints of primal block-angular optimization problems. Such
an approach is summarized in the next section.

3 The IPM for the Multiple Variable Splitting Reformulation of SVMs

After transforming (8b) and (9b) into equality constraints by adding extra nonnegative
variables &' € R”i,

YiA'W' +yle)+s' — =€, £ >0, i=1,...,k
Alw' —ylel 45—l =0, & >0, i=1,...,k,

problems (8) and (9) match the following general formulation of primal block-angular
optimization problems:

k
min Y fi(x) (11a)
i=0

@ Springer

Journal of Optimization Theory and Applications

M, x! bl
M, x2 b?
subject to = (11b)
M;, xk bk
Ly Ly ... Ly I x9 b0

O0<xj<ul jgF, xlifree jeF, i=0,....k (llo)

; T T T T _ . .
Vectors x! = (w' p! st g)T e RU=4H142pi j — 1 . k, contain all the
variables for the i-th SVM; and C? > fi R - R, i =0,...,k, are convex

separable functions. For SVM problems, they are quadratic functions:
i T LT . .
fixh)=c" x +§x Qix', Q; > 0 and diagonal, i=1,...,k, (12

whereas for i = 0 we have fo(x®) = 0. Matrices M; € R”*" and L; € R,

i =1,...,k, respectively, define the block-diagonal and linking constraints, where
m; = p; (the number of points in the i-th SVM) and / = (d + 1)(k — 1) is the number
of linking constraints defined in either (8d) or (9d). Vector b’ € R™ i =1, ...k, is

the right-hand side for each block of constraints, whereas »° € R is for the linking
constraints. In our case b' = ¢ for two-class SVM and b' = 0 for one-class SVM,
i = 1,...,k, whereas b° = 0 in both problems. x° € R/ are the slacks of the
linking constraints. The sets ' contain the indices of the free variables for each
block (corresponding to w' and y*). The upper bounds for each group of variables are

u e R%,i =0, ..., k; these upper bounds apply only to the components of x' that
are not in F* (that is, they apply only to s' and &'), and in our problem u' = 400
foralli = 1, ..., k. For the linking constraints, we have FO = @, that is, slacks x°

are bounded—otherwise the linking constraints could be removed. For problems with
equality linking constraints, as in our case, #° can be set to a very small (close to 0)
value.

The total numbers of constraints and variables in (11) are thus, respectively, m =
I+ ZLI m;andn =1+ Zf:l n;. Formulation (11) is a very general model which
accommodates to many block-angular problems. In this work, problem (11) is solved
by the specialized infeasible long-step primal-dual path-following IPM, which was
initially introduced in [3] for multicommodity network flows and later extended to
general primal block-angular problems [4, 6]. For the solution of SVM problems, we
extended the implementation of this algorithm in order to deal with free variables, as
described in [5].

For completeness, we will outline the path-following IPM used in this work, in order
to derive the particular structure of the systems of equations to be solved. A detailed
description of primal-dual path-following IPMs can be found in the monograph [22].
Problem (11) can be recast in general form as

@ Springer

Journal of Optimization Theory and Applications

1
min ¢ x+ ExTQx
subjectto Mx =b (13)

Ofx,-fu,-i¢.7:, x; free i € F,

where ¢ € R", Q € R"™" b € R", M € R™ ", and F denote the set of indices
of free variables. Matrix Q is diagonal with nonnegative entries for SVM problems.
LetZ € R”, v € R" ¥ and w € R" be the vectors of Lagrange multipliers of,
respectively, equality constraints, lower bounds, and upper bounds. To simplify the
notation, given any vector z € R" 171 the vector 7 € R" will be defined as

-)z fori ¢ F
“=00 forieF

and given any vector z € R”, the matrix Z € R"*" will be Z = diag(z).
For any © € R, the central path can be derived as a solution of the u-perturbed
Karush—Kuhn-Tucker optimality conditions of (13):

rp, = b— Mx =0, (14)
re = Qx+c—-MC—0+a =0, (15)
reo = ué—XYeé =0, (16)
rew = pé— (U —X)Qe =0, (17)
(x, v,) >0, (18)

The primal-dual path-following method consists in solving the nonlinear system (14)—
(18) by a sequence of damped Newton’s directions (with step-length reduction to
preserve the nonnegativity of variables), decreasing the value of w at each iteration.
On the left-hand side of (14)—(18), we have explicitly defined the residuals of the
current iterate rp, re, 'yy and ryg.

By performing a linear approximation of (14)—(18) around the current point, we
obtain the Newton system in variables Ax, A¢, Av and Aw. Applying Gaussian
elimination the Newton system can be reduced to the normal equations form (see, for
instance, [22] for details)

MOM A =g, (19)
where

g=r+MOUe+ U —X) 'rew — X 'rey) € R™,
O=00+QU-x)""+TxH ! e R", (20)

The values of Ax, Av and Aw can be easily computed once A¢ is known. Note that
® is a diagonal matrix since Q is diagonal.

@ Springer

Journal of Optimization Theory and Applications

Free variables in F do not have associated Lagrange multipliers in w and v, and
then, according to (20), ©® 7 = Q}l (where © r and Q 7 are the submatrices of ® and
Q associated with free variables). For the variables w' that define the normal vector
of the SVM hyperplane, this is not an issue, since those variables have a nonzero entry
in matrix Q of the quadratic costs. However, the intercept ¥’ of the SVM hyperplane
has neither a multiplier in @ and v nor a quadratic entry in Q; thus, its associated
entry in the scaling matrix ® is 0, making it singular. This can be fixed by using the
regularization strategy for free variables described in [17]. A derivation and additional
details about the normal equations can be found in [22].

Exploiting the block structure of M and ® we have:

_M1®1M1T 1\/11@1[,1r

T X T
MOMTAL = MO M MO Ly At

21

| LiO1M] ... LM, O+ Yk L;6;L]]
[BCcl[aa]l_[=«
T D] AL] T L&)

where A¢) € RZZ’;I mi and Ay € R! are the components of A¢ associated with,
respectively, block and linking constraints; ®; = (Q; + Q,- (l}i — Xi)_1 + ’Y",-Xi_l)_l,
i =0,...,k, are the blocks of ®; and g = (ngg;)—r is the corresponding partition
of the right-hand side g. We note that matrix B is comprised of k diagonal blocks
M,-@l-MiT fori =1, ..., k, each of them associated with one of the subsets in which
the dataset of points was partitioned. By eliminating A¢; from the first group of
equations of (21), we obtain

(D—-C'"B7'C)A = (80— CTB 'g1) (22a)
BAg = (g1 — CAy). (22b)

The specialized IPM for this class of problems solves (22) by performing k Cholesky
factorizations for the k diagonal blocks of B and by using a preconditioned conjugate
gradient (PCG) for (22a). System (22a) can be solved by PCG because matrix D —
CTB~'C e R of (22a) (whose dimension is the number of linking constraints)
is symmetric and positive definite, since it is the Schur complement of the normal
equations (21), which are symmetric and positive definite. A good preconditioner
is, however, instrumental. We use the one introduced in [3], which is based on the
P-regular splitting theorem [18]. D — CTB~'C is a P-regular splitting, i.e. it is
symmetric and positive definite; D is nonsingular; and D + CTB~!C is positive
definite. Therefore, the P-regular splitting theorem guarantees that

0<pD'(Cc"B7IC) <1, (23)

@ Springer

Journal of Optimization Theory and Applications

where p(-) denotes the spectral radius of a matrix (i.e. the maximum absolute eigen-
value). This allows us to compute the inverse of D —C T B~!C as the following infinite
power series (see [3, Prop. 4] for a proof).

(D-CTB7 'Oy ' = <Z(D](CTB1C))i> DL (24)

i=0

The preconditioner is thus obtained by truncating the infinite power series (24) at
some term. In theory, the more terms that are considered, the fewer PCG iterations
that are required, although at the expense of increasing the cost of each PCG iteration.
Including only the first, and only the first and second terms of (24), the resulting
preconditioners are, respectively, D~! and (I + D~'(CTB~1C))D~!. As observed
in [5], D~! generally provided the best results for most applications, and it will be
our choice for solving SVM problems.

Although its performance is problem dependent, the effectiveness of the precondi-
tioner obtained by truncating the infinite power series (24) most often depends on two
criteria:

— First, the quality of the preconditioner relies on the spectral radius p(D™!
(CTB~1C)), which is always in (0, 1): the farther from 1, the better the pre-
conditioner [6]. The value of the spectral radius strongly depends on the particular
problem (even instance) being solved. Therefore, it is difficult to know a priori if
the approach will be efficient for some particular application. However, there are a
few results that justify its application for solving SVMs: Theorem 1 and Proposi-
tion 2 of [6] state that the preconditioner is more efficient for quadratic problems
(such as SVMs) than for purely linear optimization problems.

— Secondly, the structure of matrix D = ®¢ + Zle Li®iLlT, since systems with

this matrix have to be solved at each PCG iteration. Therefore, D has to be easily

formed and factorized. We show in the next subsection that building and factorizing
the matrices D that arise in SVMs are computationally fast operations.

3.1 The Structure of the Preconditioner D

According to (21), the preconditioner D is defined as
k
R*'5D=0¢+) Li&LS (25)

i=1

where, from (8d) and (9d), the structure of [Ly ... L] is
[Li... L] = ! -1 . (@6)

@ Springer

Journal of Optimization Theory and Applications

Algorithm Factorization of Z;c:l L;O;L] (matriz (27))
Input: ©;,i=1,...k
Output: Matrix R : Ei;l LiQiLZT = RRT, where
IES |
Sz D2
R = ", .. , S; and D; > 0 diagonal

Sk—2 Di_2
Sk—1 Dk—1

Dy = (01 + 69)1/?
fori=2tok—1

S; =-e;D!
D; = ((6; + ©;41) — 52)'/*
end for

End_al_gorithm

Fig. 1 Algorithm for efficiently computing the factorization of matrix (27)

From (26) by block multiplication we get

0;1+0; -6
-0 ©24+03 —063

k
ZLi®iLlT= . . . (27)
i=1 —Or—2 Ok 2+ 01 —Op_g

—O-1 O + O

Therefore, from (25), the preconditioner D is a t-shifted (symmetric and positive
definite) tridiagonal matrix, where t is the number of split variables (in the SVM
problem, t = d 4+ 1 is the number of components in (w, y) defining the separation
hyperplane). A ¢-shifted tridiagonal matrix is a generalization of a tridiagonal matrix
where the superdiagonal (nonzero diagonal above the main diagonal) and subdiagonal
(nonzero diagonal below the main diagonal) are shifted ¢ positions from the main
diagonal, i.e. elements (i, j) are non-zero only if |i — j| is either O or 7. Matrices with
such a structure can be efficiently factorized with zero fill-in by extending a standard
factorization for tridiagonal matrices. The algorithm in Fig. 1 shows the efficient
factorization of matrix (27).
The above discussion is summarized in the following result:

Proposition 1 For any two-class or one-class SVM problem based, respectively, on
the splitting formulations (8) and (9), the preconditioner D defined in (25)isa (d+1)-
shifted tridiagonal matrix of dimension (d + 1)(k — 1), where d + 1 is the number of
components in (w, y) and k is the number of subsets in which the points of the SVM
were partitioned.

Proof From (25), D is the sum of the diagonal matrix ®q and Z;{:l L,-(H),-Ll.T. Using

the structure of [L1 ... Li] in (25), by block multiplication we get that Zle L;®; LlT
is the tridiagonal matrix (27), where each diagonal matrix ®;, i = 1,...,k has
dimension d + 1. Therefore, D is a (d + 1)-shifted tridiagonal matrix. O

@ Springer

Journal of Optimization Theory and Applications

4 Computational Results

The specialized algorithm for SVMs detailed in Sect. 3 has been coded in C++ using
the BlockIP package [5], which is an implementation of the IPM for block-angular
problems. The resulting code will be referred to as SVM-BlockIP. SVM-BlockIP
solves both the two-class and one-class SVM models (8) and (9). The executable
file of SVM-BlockIP can be downloaded at http://www-eio.upc.edu/~jcastro/SVM-
BlockIP.html.

SVM-BlockIP is compared with the following solvers:

— The standard primal-dual barrier algorithm in CPLEX 20.1. In general this interior-
point variant is faster than the homogeneous-self-dual one, especially when a loose
optimality tolerance is considered (which is our case, as discussed below). For a
fair comparison, both the original compact SVM models (1) and (5) as well as the
new splitting ones (8) and (9) will be solved with CPLEX 20.1.

— SVM-OOPS [21] is a very efficient IPM based on a separable reformulation of
the dual of the two-class SVM compact model (4). SVM-OOPS does not solve
one-class SVM problems.

— LIBSVM [7] solves the dual compact models (4) and (6), so it can be used for both
two-class and one-class SVMs. It is based on a specialized algorithm developed
in the machine learning community for SVMs, which is called sequential minimal
optimization [19].

— LIBLINEAR [11] solves the compact models of two-class and one-class SVMs.
For two-class SVMEs, it can solve either the dual or the primal model, but without
the y variable (so the models solved by LIBLINEAR are a bit different—and
simpler—than those considered by the other solvers). For one-class SVMs, it
solves the dual (6) with a coordinate descent algorithm.

The same parameters (e.g. optimality tolerance) were used for all the solvers.

Itis in general not desirable (and indeed, not recommended) to compute an optimal
solution to an SVM optimization problem using a tight optimality tolerance because,
otherwise, the plane (w*, y*) may excessively fit to the dataset of points a;, i =
1, ..., p (named the training dataset), and it might not be able to properly classify
a new and different set of points (named the testing dataset). This phenomenon is
named overfitting in the data science community [10]. For this reason, SVM-BlockIP
and the rest of solvers will be executed with an optimality tolerance of 10~ It is worth
noting that loose optimality tolerances are more advantageous for SVM-BlockIP than
for the other interior-point solvers that rely only on Cholesky factorizations (CPLEX
20.1 and SVM-OOPS), namely because it has been observed [3—6] that SVM-BlockIP
needs a greater number of PCG iterations for computing the Newton direction when
approaching the optimal solution. A loose tolerance thus avoids SVM-BlockIP’s last
and most expensive interior-point iterations.

A loose optimality tolerance also allows using loose tolerances for solving PCG
systems. Indeed, the requested PCG tolerance is one of the parameters that most influ-
ence the efficiency of the specialized IPM. The PCG tolerance in the BlockIP solver
is dynamically updated at each interior-point iteration i as €; = max{f8¢;_1, min¢},
where € is the initial tolerance, min, is the minimum allowed tolerance, and 8 € [0, 1]

@ Springer

http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html
http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html

Journal of Optimization Theory and Applications

is a tolerance reduction factor at each interior-point iteration. For SVM-BlockIP, we
usedeg = 10~2 and B = 1,thatis, atolerance of 1 0~2 was used for all the interior-point
iterations. It is known that the resulting inexact Newton direction does not seriously
affect the convergence properties of IPMs [16].

For the computational results, we considered a set of 19 standard SVM instances.
Their dimensions are reported in Table 1. Columns p and d show the number of
points and features, respectively. The instances are divided into two groups according
to their number of features, since previous interior-point approaches for SVM could
handle only instances with a few features. Column % is the number of subsets of points
considered, and each instance was tested with different values. Rows with k = 1
(that is, without splitting) refer to the compact formulations (1) and (5), while for
k > 1 the row is associated with the splitting models (8) and (9). The cases with k = 1
(compact model) were solved with CPLEX, SVM-OOPS, LIBSVM and LIBLINEAR;
when k > 1, only CPLEX and SVM-BlockIP can be used. Since very dense matrices

AT AT in the interior-point method may be provided by submatrices A’ (which are
related to the splitting model’s i-th subset of p; points), the value of k¥ > 1 was
selected so that p/k (= p;) was always less than 1000 (we observed that the dense

factorization of A' A’ was too expensive for dimensions greater than 1000). For
instances with a large number of points, two values of k were tested (one being ten

times greater than the other); increasing k reduces the dimensions of systems A’ A’ T
at the expense of increasing the number of variables and linking constraints of the
splitting formulation. As a rule of thumb, as as will be shown below, the best results
with the splitting formulation are obtained with the greatest k when d is small, and
with the smallest k when d is large. Finally columns “n.vars.”, “n.cons.” and [give,
respectively, the numbers of variables, constraints (excluding linking constraints) and
linking constraints, which are computed, also respectively, as (d + 1)k + 2p, p, and
(d + 1)(k — 1). This set of SVM instances includes the full version of the four largest
(out of the five) cases tested in [21]. It is worth noting that SVM-BlockIP was extended
with dense matrix operations (in addition to the default sparse ones in the BlockIP
IPM package) in order to handle problems with very dense matrices of points A'.
Executions with both sparse and dense matrices were considered only for four of the
instances in Table 1 (namely, “gisette”, “madelon”, “sensit”, and “usps”).

The instances tested are in the format used by the standard SVM packages LIBSVM
[7] and LIBLINEAR [11], and they were retrieved from https://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/. Points a; € R, i =1,..., p in those instances
were properly scaled by the authors of LIBSVM and LIBLINEAR, such that most
features are in the range of [—1, 1]. In those instances, for two-class SVM, the value
of parameter v was 1 for all the solvers; for one-class SVM, v = 0.1 was used.

From the previous original instances, we generated a second set of cases by applying
an alternative (linear) scaling to the original features. In most cases of the new linear
scaling, features were concentrated within the interval [0, 0.001]. This second set of
instances has the same dimensions as those in Table 1. As a result of the new scaling,
the optimal normal vector w* will take larger values, so the quadratic term in the
objective function will be larger. To compensate for this fact, a value of v = 1000 was
used for two-class SVM. For one-class SVM, we used the same value of v = 0.1 that

@ Springer

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Journal of Optimization Theory and Applications

668°001 €78°8L 9r9°8ST 0001
6666 €78°8L 9vL*L91 001

0 €78°8L LyL'LST I 001 €78°8L ysuos
LY1T yCI8 80581 0T

0 ¥C18 19€°91 I 418! ¥TI8 swooJysnwu
61T T9S°T 00009 0002891 000T
611°6ST 000°09 00T°9LT 00¢

0 000°09 18L°0C1 I 08L 00009 USAS-ppo-Istuw
6171951 000°09 000891 000¢
61%°SS1 000°09 00T°9LT 00¢

0 000°09 18L°0C1 I 08L 000°09 GII-GoT-IsTuL
60SY 000T 0106 01

0 000T 10s¥ I 00S 000T uofspewt
LL6'TT 066°6Y 086°CC1 0001
LLTT 066°6 08T°01 001

0 0666 €00°001 I [4¢ 06661 [uud(t
Sr6'61S C10°18S ¥20TILT 000°01
S¥6'vS T10°18S YTO°LITT 0001

0 T10°18S 6L0°C91°1 I ¥S T10°18S ad£ya00
Sl 069 0lvl C

0 069 socl I 4! 069 uelfensne
9L8°€TT 196°C¢ TTresl 0001
9LTTI 196°C¢ TTSLL 00T

0 195°C€ 9¥T'S9 1 €Tl 196°C¢ Boe (seImeay moy) p [[ews
1 'SU0d"U ‘SIBA'U bl P d Qouejsuy

SQOUBISUT N A S JO SUOISUAWI(] | 3|qel

pringer

as

Journal of Optimization Theory and Applications

170°8€6°0C 60€TL 819°€0I°IT 0001
176vL0°T 60€TL 81S°0¥TT 001
0 60€TL LLS'S91 I 856°0C 60€TL wrs-real
€9S°L18'81 0T ¥8T'SE6'ST 00¥%
EVTTYS'l 0T ¥96°626°1 (04
0 wToe TTL'LS 1 9€T' LY wToe [A21
88¥°CS8 TS 96661 TLYLYTYS 0¥
0 96661 P81°G6€°1 I 161°66€°1 96661 ogsmau
0¢IL 8¢ 9eE Y1 C
0 8¢ 90¢CL I 6¢CIL 8¢ 09|
660°S61 0009 001°CIS 001
600°SY 0009 01079 01
0 0009 T00°LT I 000S 0009 onesis
600°81 9 YEI'0T 01
0 9 (Yav4 I 000T 9 120ued-uoj0d p o3re|
668°6S 6vL'6Y 869°6S1 002
0 6vL'6Y 66L°66 I 00¢ 6vL'6Y egm
6CL8 99¢L T9L°€T 0¢
0 99¢L £60°61 I 00¢ 99¢L epm
60LT LLYT ¥96L ()1
0 LLYT SY4Y I 00€ LLYT elM
£PYST 16CL wsToY 001
€1ee 16CL TSTLT 0l
0 16CL 6€8 V1 1 9¢¢ 162L sdsn
i 'SU0d'U "SIBA'U bl P d Qoue)suf

penunuod | a|qel

-
I
50
=)
k=
a,
7
Al

Journal of Optimization Theory and Applications

was used for the original instances, since v is related to the upper bound on the fraction
of detected outliers in the one-class SVM problem. The increase in the quadratic term
due to the new scaling turned out to be very advantageous for SVM-BlockIP, since
(as was proven in [6, Prop. 2]) the quadratic terms in the objective function of (11)
reduce the spectral radius (23), thus making the preconditioner more efficient. The set
of scaled instances can be retrieved from the SVM-BlockIP webpage http://www-eio.
upc.edu/~jcastro/SVM-BlockIP.html.

The next two subsections show the computational results for, respectively, two-class
SVM and one-class SVM, using both the original datasets, and those with the new
scaling. All the computational experiments in this work were carried out on a DELL
PowerEdge R7525 server with two 2.4 GHz AMD EPYC 7532 CPUs (128 total cores)
and 768 Gigabytes of RAM, running on a GNU/Linux operating system (openSuse
15.3), without exploitation of multithreading capabilities.

4.1 Results for Two-Class SVM Instances

Tables 2 and 3 show the results obtained for two-class SVM with, respectively, the
original and scaled instances. For all the solvers (namely, SVM-BlockIP, CPLEX 20.1,
LIBSVM, and LIBLINEAR), the tables provide: the number of iterations (columns
“it”), solution time (columns “CPU”), objective function achieved (columns “obj”),
and accuracy of the solution provided (columns “acc%’). The accuracy is the per-
centage of correctly classified points (of the testing dataset) using the hyperplane
provided by the optimal solution (which was computed with the training dataset); that
is, the accuracy is related to the the optimal solution’s usefulness for classification
purposes. For SVM-BlockIP, the tables also provide the overall number of PCG iter-
ations (columns “PCGit”). The CPU time of the fastest execution for each instance
is marked in boldface, excluding the LIBLINEAR time, since it solved the simpler
problem (7) whereas the other solvers dealt with (1) or (4).

SVM-BlockIP allows computing both the Newton direction (19) and the predictor-
corrector direction [22], both of which were tried for solving SVM problems.
Although, in general, predictor-corrector directions are not competitive for PCG-based
IPMs because they force using twice the PCG at each interior-point iteration, in some
cases they provided the fastest solution. Those cases are marked with an “*” in their
“CPU” columns.

From Table 2, itis observed that SVM-BlockIP was not competitive against the other
solvers for instances with a small number of features (first rows in the table). In general,
SVM-OOPS provided the fastest executions in six of these instances, CPLEX in four,
and LIBSVM in three. All solvers converged to solutions of similar objective functions
for all the instances but three (namely “covtype”, “madelon”, and “mushrooms”),
in which LIBLINEAR and LIBSVM (after a large number of iterations) stopped at
non-optimal points. However, it is worth noting that the accuracy of LIBLINEAR and
LIBSVM in two of these three instances was still good. Furthermore, when the number
of features increase (last rows of Table 2), SVM-OOPS was unable to solve five out
of the six instances; LIBSVM was the fastest approach in three of these instances; and
CPLEX in two (but in those two, SVM-BlockIP reported a similar time). In two cases

@ Springer

http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html
http://www-eio.upc.edu/~jcastro/SVM-BlockIP.html

ions

icat

tion Theory and Appl

imiza

Journal of Opti

868 CLII'LT 1L 16l 88 O€EIILT 9TR0I S89FF TS8 ¥HEERT 6'S L 00TILT 68 8l — I YSUdS
— — — 00 LT 9 T8 00 91 971 €I 0z
07001 §9L 00 € 0°001 §9°L 1'0 881 07001 00 TO0 ¥ t — I swoomsnu
— — — GEILYL LTI8 ST #06 6'600°SI €STL8 LTO'EST 00T 000T
— — — L'SSTST LIS 11 $06 861971 80Tl TLST 9§ 00T
06 TLILYL 9§ vI6l $06 SEILYPI OTE00T 6T8ELE S06 T999CT 8€S O §LILYI 88T I1 — 1 U9AR-ppO-ISTULL
— — — 868T61 LTOL ¥T 088 8'SLL'6T TSILY 8TT'BLT 00T 000T
— — — 0T6T6I 9IFS TI 088 80SE'6I 108 ¥9ST 8¢ 00T
088 98LT6l 9L 00£T 088 FPLIT6L S6STHI 16T°00S 188 L0TTOT 0°€S O S$6LT6I $0E Tl — [§I-ges-stuw
— — — 99111 ¥L 0l OLS +T0I1 L8F 8809 6C o1
€6 §CT PPET 0000001 0TS §€°60T°61 9'6€ 00000001 €S THLIT 80 S L¥II €8 0l — I uofopew
— — — §6T68 L9l 01 TT6 TTP6S 919T OSKLS L9 0001
— — — T0668 60T 11 1T6 16788 ¢85 €L0T 1€ 001
126 66858 10 88 176 81868 $91 ¥8€6 TT6 S0016 LO I1 T0658 90 8I — I Juud(t
— — — 00 TLS L TIS 00 TEL S9L TE 000°01
— — — 00 €6881 9 TIS 00 §¢IT or 61 0001
€9L §L6E6LEE €€ LET €9L §S8I6'LEE 0'99S°ET 009TIT 0001 00 €8 9 P — I adfya00
— — — €00z 1000 I8 TSIT 10 LL ST z
098 9661 00 YOI 098 0661 00 L6€ €06 €I 00 9 000C 10 Of — 1 uerensne
— — — GTI9L'TT TET 01 0S8 9080°TT 9TT €ITE SE 0001
— — — L9EY'I1 LI 01 0S8 0°€6LTl TII 6v9 8T 001
068 LTEVIT 10 6vE 068 80K II Ty 029°1€ 068 €LYOTI O L ¥EEF Il 970 81 — I 6
%99e flgo ndd w90 fgo ndd w90 fgo ndd n fgo ndd I pooe [go ndd wodd n
AVANITEI'T INASEI'T SdOO-IWAS 102 X41dD dDPIOIG-INAS ¥ QoueIsu|

(9ouB)SUT OB IO UOTINOIXA ISAISE] JO D 2Y) 20BJP[Oq UT) SIUB)SUT [BUISLIO [N AS SSL[-0M] JOJ SINSAY ¢ d|qel

pringer

As

Journal of Optimization Theory and Applications

966 119 91 ST 966 18SST T1'89F 9£99 L €19ST €961 L — I 0gsmou
— — — 00 T0 01 €68 00 C0 v8 8l 4
¥'6L 00 00 6 8 00 T0 ve i 00 10 01 — I 9|
— — — L0 ¥1ISL 8 LL6 L0 €LST Tesy 8T 001
— — — L0 6€I8 L 8L6 L0 #TTST LL9 Tl 0l
9'L6 L0 8¢ SL ¥L6 L0 €I €I€T i L0 08Ly L — I anosis
— — — 00 T0 9 0001 00 0 61y 6 0Ol
0001 00 00 LI 000l 00 00 L9 07001 00 9T ¥ 00 00 6 — [100UED-UOJOD
— — — 89961 9L9 91 L8 8TSEl LISTT L8T961 8El 00T
L'86 €L8FI €0 S6€ L'86 0SSPl 80T +099L L'86 6T091 TLT ¥ €6LSI 91 I — I egm
— — — L'€TT YT 11 186 00T 6'S ec 8¢ 0¢
¥86 TTIZ 00 66 ¥86 vl TO ¥9¥T ¥86 06Cc Tl Tl L1 Tel 6 — I epMm
— — — €9 90 0l 816 0°€9 L0 LT 8T 0l
L'L6 S€9 00 € LL6 679 00 908 8L6 8L9 +0 Ol 679 ST 6 — I e[
— — — LUyl 61 Tl S68 I60vl (4 S6S1 8T 001
— — — Ll STl 6 868 89Kl «bIT v0S ST 01
006 S€IPl 'l €86C L'68 1TIPI 'L 8TE'sy 106 100ST LT 6 9CTIPL I'Lgl 8 — I sdsn
— — — €6LTLT SIT Ol 6S8 6S669C 00T LLE TT 0001
— — — T'€0ELT SL9 Ol 868 OLESLT +0€ll sty vl 001
9998 a0 ndd w900 o ndd w900 f[go na> n f[go ndd w gooe f[gpo ndd> DA w
AVANITEIT INASETT SAOO-NAS 10T XA1dD dDIPOIG-INAS ¥ QoueIsu|

penunuod ga|qel

pringer

As

Journal of Optimization Theory and Applications

yutod pewndo-uou e ye paddoys YVANITEIT 10 INASHI Tg

10A10sa1d 1°07 X TdD AQq PARUIWI[S SHUTRNSUOD PUB SUWN[OD [[B :)[NSAI SUOIA =

SdOO-INAS WM po[le} uonnooxy

UOTIOIIP 101021109-10301paId [im paureIqo JPOo[g-INAS PIM I[N 1Sog
(dPYOOIF-INAS 10§) UnI 10U sem 110 (IVANITEAIT WASEIT ‘SAOO-INAS 10F) JGR[IZAL 10U JJ ST (IIA[0S) JO UONPUIGUIOD TR[nONIL]—

— — — 89pES L'8PS9El Ol 686 TIL8F 0T1S96 L99°SE 00T 0001
— — — ESPES 890F9El Il 8L6 9S6LT 6TS 669% 1L 001
686 LTPES 80 0f 686 L6EES 9659 €L8°01 L I'SPES 1T8F16 8 — [wis-ear
— — — LSPLI 09K0€ 8 €96 1'TO81 T8EIL I¥€9 11l 00%
— — — L9¥L1 1980C L €96 1'8PLI S'€T L s or
€96 YSPLI €0 LT €96 9EPLL 08L €20 L SSHLL YSLYT 6 — I 1491
— — — €195T POI0E 8 966 EVILT 6S0EL SSIL - +01 or
9998 fgo ndd 1w ooe fgo ndd o ogoe g0 ndd u fqo ndo o gdoe fqo ndd> 1OdDd n
AVANITEIT INASEI'T SAOO-NAS 10T XATdO dDPOIF-INAS ¥ oouesuy

panunuod g 3jqel

pringer

as

Journal of Optimization Theory and Applications

L'P8 LOFO'E €76 LLS'EE L'P8 LOHO0'E TES8 TLIGL 9¥8 LOHRI'E §L O LOH0'E 86 1T — I suos
— — — 90+99'[6T 91 €96 90+¢'T LT 6€ 0T 0T
T86 90991 8T TOO'LT €86 90+29'T TIT 0611 1'86 90+9'T €0 O 90+99'[o L — [swoorysnw
— — — LOO6'T 9TC6 81 068 LO+O9'T STI 8IT 8T 000T
— — — LOF6T 9GIS T1 068 LO+e0T 81T 87 91 00T
068 LOHO6'T 6'St 6LS'61 068 LOHO6'T LIS T€6°TT 1°68 LOHR0T I'L8 LI LO+O6] 8'8C 11 — [USAS-ppo-Istuw
— — — LOST OLP6 61 098 LOOP'T 9ST 0€l 8¢ 000T
— — — LO+ST GTIS [1 T98 LO+99T TOT I ¥I 00T
T98 LOHOST 6°6S FEEHT TO8 LOHOST THIOI 1TEST 098 LOHR9T v¥L #1 LOHOST LY 6 — I SI-ges-siuw
— — — 90+30°C 98 L €LS 9061 x9T 81 ¥ o1
896 90+90C 81 608¢ S8 90+90CT 9T 000 L'6S 90+0T 60 ¥ 90+0°T 8¢ ¥ — 1 uofopewt
— — — 90+9L'6 L'ST 01 S06 LO+0'T «I'T TE 9 0001
— — — LO+O0'T 00F 1T $06 LOF0T «€L LT L 001
S'06 90+2L'6 $'ST 098°CI S06 90+oL'6 #'E€l 8LTS S06 LOTR0'T 90 9 LO+o0'L 0 0l — I [uuoft
— — — 80+98°¢ ¥ H80I 681 0TS 80+I'T 6€C TEL €T 00001
— — — 80+90Y ¥'TCh'EC 98 1'¥S 80+F'E 8691 TOI LI 0001
8'89 80+OL'E I'€8F SEV' ¥ 889 80+OL'E 9°ELL6 TH6'ETT SOL 80+6'€ 9TI 6 80+98'E TS 01 — I ad£ya00
— — — S0+98°G 0 6 O0LS SO+9%6'S 070 6 9 4
0°LS SO+98'S 10 66T°CT 0°LS SO+98'S 0°0 LOE O'LS SOH96'S 070 S SO+98°S o s — I uerensne
— — — LO+Og] S'6c 81 OF8 LOYCT L0 0¢ €1 0001
— — — LO+Og'T I'TC T1 T'¥8 LOTFT €€ 0T Tl 001
0%8 LOHOC'T 6 8E€8°TT 6°€8 LOHOCT L'TE €¥6L T'¥8 LOFOFT LT €1 LOHOET S0 SI — I eGe
9%99e fgo ndd 9008 o ndd 9008 [qgo ndd [go ndd I o0 [qgo NdD M1OOd ¥
AVANITAIT INASEI'T SdOO-INAS 10T X4'1dD dPPOIF-INAS y QoueIsu]

(9douB)sSUT YOra J0J UOTINOIXA JSASE] JO D)) 0BIP[Oq UT) SOIUBISUT PA[LIS JNAS SSL[O-0M] JOJ SINSAY € d|qe]

pringer

as

Journal of Optimization Theory and Applications

€Y6 LOH0T STIT L96TI v#6 LOH0T +'11S TOT8 L LOYIT €896 ¢ — I Ogsmau
— — — T0—20T 10 9 TI6 T0—=0T 10 8L ¥l T
788 T0—0'T 00 11 T8 T0—201T 10 Ig L W—20¢ 10 ¢ — I 19|
— — — S0+e8'6 098 8 €L6 SO+96 TE 85 61 001
— — — S0+8'6 ¥evl L SL6 SO+86 «I'8 T 6 Ol
Y16 S0+98'6 T'¥I €4T0l +'L6 SO+8'6 €Th 616 TL6 900 6+IE 11 90+0T 0+S S — onosi3
— — — I0¥I'E TO 9 0001 T10+I'¢ TO LLS O Ol
0001 T0+I'E 00 79 0001 T0+2T'€ 00 SL 0°001 T0+ge T9 11 10+1'€ 00 L — [100UBDd-UO[0D
— — — 90+26'T T'0IT 8T 0L6 SO+ €% 61T O 00T
0L6 90+6'T 8T 00TLL 0°L6 90+6'T 8L SSLI 0°L6 90+1'€ €ST v€ 90+96T 81 LI — 1 egm
— — — SORET 9¢ 0T 0L6 SOHWF «50 T8 6 0F
0L6 SOHECY €T $LOOL 0L6 SOHET TO 1€C 0L6 SOH9T 80 L SOHYY +01 L — I epm
— — — SOMFT 90 IT 0L6 SO+9T 10 T 6 Ol
0L6 SO+FT TO 1TIT 0L6 SOHYT 00 ¥L 0L6 SOWST TO S SOHYT €T vl — 1 e|m
— — — 90+eg'e L8 IT 998 90+¢'¢ +1 TT 0 001
— — — 90+¢'E L'€T 01 +'98 90+3€°€ x0T 8¢ L 0l
998 90+C’E T6 00STT 998 90+9¢’c T'IT LLIT #98 90+34'€ O 8 90+3¢’€ Ty ¢ — 1 sdsn
— — — LO0'E L'ES 61 LP8 LOFOE «L6 SE OT 0001
— — — LOHOTE S8 €I 9P8 LOTOI'E «€69 1T L 001
%99 fgo nddD w908 fgo ndd W %ooe fgo ndd n lgo ndd 1 9o lgo NdDO MOdd N
AVANITAIT INASEI'T SdOO-NAS 10T Xd41dD dDPOIF-INAS ¥ QoueIsu|

penunuod ¢ a|qel

pringer

as

Journal of Optimization Theory and Applications

SdOO-INAS PIM pole} Uonnooxy
UOTIOAIP 10)921100-10)91paxd Y)Im paure)qo Jroo[g-INAS WM I[NsaT 1,

(dP1POIF-INAS 105) Un1 Jou seas 3110 (YVANITEAIT WASEIT ‘SIOO-INAS 103) JGR[IEAL 10U 1D ST (YIIA[0S) JO UONBUIGUIOD Te[noNIed—

YTL LOH6E T16 LOV'LT

S16 LO+ET TTI LTSI

YTL LOH6E §LLLT 69YHT

LOHI6'E TSES'S6Y 8€ T69 ¥0+0T 966 L8C ¢ 0001
LOH6'E O0°LO1°0TE LT T69 SO+HSE sbvl ¢ v 001
LOHTY 8P8YOY € - [uws-Teat
LO+o¢'T TLISS 91 €16 LOHI'T S6C 6c €¢I 00V
LO+o¢'] 8'¢cce 11 816 LOHTT «6'L ve ¢l or
LO+eE' T Logct v — 1 [Ad1
LO+20°T ¥'96L9 61 L'S6 SOt°6'8 «8'18 s 9 OF

%99e flgo ndd n

%€ [qo NdD u

fqo ndo n gooe fgo NdD MODd W

AVANITLI'T

['0C Xd1dD dPIPOII-INAS o *dueIsu]

panunuod ¢ 3jqe]

pringer

As

Journal of Optimization Theory and Applications

100000 100000
SVM-BlockiP SVM-BlockiP mmmm
CPLEX mmmm CPLEX
SVM-00PS == SVM00PS =
10000 LIBSVM 10000 LIBSVM

1000 1000

CPU seconds (log scale)

& & & & o P & 28 S D b o o S P S S P P P @ e ® D o
S W R PR SRR SRR S e I IR R R PR IR ORI
5 o %v(waﬂw - Fofe™ Ve & o e e o & o o €
S > B (S N
RS L

(a) (b)

Fig. 2 CPU seconds (in log scale) required by SVM-BlockIP, CPLEX, SVM-OOPS and LIBSVM for
two-class SVM, with the original instances in Table 2 (plot a) and the scaled instances in Table 3 (plot b)

SVM-BlockiP SVM-BlockiP mmmm
LIBLINEAR LIBLINEAR
SVM-00PS SVM-00PS

9 o R N S Y
P, Nve\\@ﬁ/b&) &&\ 6‘2\@« R g\%“(\ RCas =
IS o <

8 O
& o « &
e

0P S (@ D P O B ® S e 0 P S i
Lt d@%"&\\@ NGt T o W
N @ ST S o <
* PR &
o

(a) (b)

Fig. 3 Accuracies (in %) provided by solutions with SVM-BlockIP, LIBLINEAR and SVM-OOPS for
two-class SVM, with the original instances in Table 2 (plot a) and the scaled instances in Table 3 (plot b)

(namely “rcv1” and “real-sim”), SVM-BlockIP obtained the fastest solutions in 23.5
and 524.9 seconds while CPLEX needed 2086.1 and 91,482.1 seconds. The fastest
solution times—for any k—with SVM-BlockIP, CPLEX, SVM-OOPS and LIBSVM,
are summarized in plot (a) of Fig. 2. LIBLINEAR was excluded from the comparison
because it solved the slightly different problem (7). CPU times are in log scale. Note
that there is no information for SVM-OOPS and the five rightmost instances, since,
due to their large number of features, it could not solve them. Similarly, plot (a) of
Fig. 3 shows the accuracy of the solutions obtained with SVM-BlockIP, LIBLINEAR
(whose accuracies are similar to those of LIBSVM), and SVM-OOPS. It is evident
that, in general, all methods provided similar accuracies (unlike for “covtype” and
“mushrooms”, where SVM-BlockIP underperformed the other solvers).

The results in Table 3 show a different behaviour of the solvers in the scaled dataset.
For the instances with a few features, CPLEX, SVM-OOPS and LIBSVM were not
significantly affected; for the instances with large d (last rows in the table), the CPU
times increased notably for CPLEX and LIBSVM, whereas SVM-OOPS was once
again unable to solve most of the problems. The coordinate gradient descent algorithm
of LIBLINEAR significantly increased the CPU time for all the instances, indepen-
dently of the number of features. However, the CPU times for SVM-BlockIP dropped
drastically, thereby allowing it to solve the scaled dataset in a fraction of the times it
required for the original dataset, which are reported in Table 2. SVM-BlockIP was the
most efficient approach (including LIBLINEAR) in most cases, especially when the

@ Springer

Journal of Optimization Theory and Applications

number of features was large. For example, for the instances “rcv1” and “real-sim”,
SVM-BlockIP required, respectively, 7.9 and 14.4 seconds whereas CPLEX needed,
respectively, 1236.7 and 40,484.8 seconds for k = 1, and 3223.8 and 320,107.0 sec-
onds for the same k > 1 used with SVM-BlockIP. This fact can be explained by the
higher importance of the quadratic term in the objective function due to the scaling
(which is reflected in the larger objective values in Table 3 as compared to those in
Table 2). Plot (b) of Fig. 2 shows the best CPU time, for any value of k, of SVM-
BlockIP, CPLEX, SVM-OOPS and LIBSVM for the scaled dataset. LIBLINEAR is
again excluded because it solves the simpler problem (7). Comparing plots (a) and (b)
of Fig. 2 is clearly observed that the solution times with SVM-BlockIP significantly
dropped for the scaled dataset. The downside of the scaling was that the accuracy
decreased slightly in several instances (although it increased in a few, such as for
problem “leu”), as can be observed in plot (b) of Fig. 3.

4.2 Results for One-Class SVM Instances

Tables 4 and 5 give the results of one-class SVM for, respectively, the original and
scaled instances. SVM-OOPS does not solve the one-class SVM problem, so it is
excluded from the comparison in those tables. The meaning of the columns is the
same as in the previous Tables 2 and 3. For one-class SVM, the accuracy is measured
as the percentage of dataset points that are not considered novelty or outliers; that is,
100 minus the accuracy is the percentage of detected outliers or novelty points. Since
a value of v = 0.1 was used for one-class SVM (which is an upper bound on the
fraction of detected outliers), accuracies should theoretically be greater than or equal
to 90%.

Looking at Tables 4 and 35, it is clearly observed that LIBSVM and LIBLINEAR
could not solve any instance, and their objective values were very different from those
reported by CPLEX and SVM-BlockIP (which, in addition, were similar). Indeed,
the solutions reported by LIBSVM and LIBLINEAR had very poor accuracy, usually
around 50%, which means that the reported hyperplane is not useful for outlier or
novelty detection. Such a different behaviour of LIBSVM and LIBLINEAR between
two-class (where they provided high-quality hyperplanes) and one-class SVM is likely
explained by the existence of constraint (6b), which complicates solving (6) by means
of a coordinate gradient algorithm.

Unlike LIBSVM and LIBLINEAR, SVM-BlockIP was able to compute a fast and
good solution for all the instances. For the original datasets in Table 4, SVM-BlockIP
and CPLEX had similar performance for the instances with few features. However,
for the instances with a large number of features (last rows in Table 4), SVM-BlockIP
was generally much more efficient than CPLEX. For example, for the cases “gisette”,
“news20”, “rcvl”, and “real-sim” the best SVM-BlockIP times were, respectively,
40.5, 109.8, 7.4 and 22.2 seconds, whereas CPLEX required, respectively, 1104.9,
3141.7,2624.1 and 71,227.9 seconds. This difference in performance between SVM-
BlockIP and CPLEX slightly increased even for the scaled instances in Table 5. The
fastest executions—for any value of k—with SVM-BlockIP and CPLEX are shown
in plots (a) (for the original instances) and (b) (for the scaled instances) of Fig. 4. The

@ Springer

Journal of Optimization Theory and Applications

LTy ¢SLOSTS6'E8TT 0T €1 LTy ¢S'LOSTS6'€8T'T L'69T TEIL L'SE— 0901 — I VIsuds
— — €r— TTOl 16 Th— «61 9T 6 0T
8'c §T60L°0E8T 00 96 6¢F §T60L0E8T 80 868 €r— T0€l — [swoorysnu
— — L'S— 612LT €16 L'S— TTL L8819¢ 000C
— — L'S— v8ISTI L6 96— Tl 9¢v8T 00T
€S sPYSYTPP90T Il 6€ €7TS sPPSHTPP90T €61S 1LPS SS— vTeel — [USAQ-pPO-ISIULLL
— — L'S— §0TLTl €16 L'S— SIL L8819¢ 000T
— — L'S— 18ISII L6 96— O1v 9¢r8T 00T
SIS sPYSYTIPo0T T'T 6€ SIS sPPSHTPPo0T 1028 T1LPS SS— 9geel — I SI-Gos-Istuw
— — COPELS8E— €6 €l STSOOPS089T— 0€ 10181 Ol
TTS §T0S9'C90E8T09ET 10 ¥ TTS ¢TT69°S90°€8T09€°T $0 18I £005°900°6S— 86 I — 1 uofopewt
— — 00— L0l 9 666 00— T'L LYCI €1 0001
— — 00— €€ 9 $S6 00— =€l 6I€ L 001
0¥l §PLOT69S T T°0 LSE OFI §PLOT69S T +'61 9678 00— +0 L — I [uuoft
— — 0T— 989 6 668 01— L6V ¥SS €T 00001
— — 0T—009vC 8 L€6 0T— €10 T10€CI 0001
'Sk §I'SSEIOT6SLE 0T 6T 'Sk g0'8SETIT'6SL'E S'OLTE TOL'SS 01— LSTI — I ad£1a00
— — TI— T00I 8.6 I'T— 10 0SIS8I z
TSy §TEOLS 00 8S TSH §TEOLS 00 L8 TIl— 1011 — I uerensne
— — 0C— T8I L 806 0CT— ¥'€ 9LLST 0001
— — 0C— L€l L TI6 0CT— 0 €12l 001
€8T §0'80V'TCY'IT 00 6T €8T §O80V'TT 1T TLL 0£0€ 0T— S0¢€Il — I vee
%99 f[qo ndD 1 %doe f[go ndO n fgo NdD 1 oo lgo NdDMDOd n
AVANITAIT INASEI'T 1'0T Xa'1dD dPPOII-INAS b QoueIsu|

(9our)SUT YOBA I0J UOTINOAXA 1SISEJ JO NJD Y 20BJP[Oq UT) SIOUB)SUT [BUISTIO N A S SSB[O-0UO JOJ S)NSAY § d|qel

pringer

as

Journal of Optimization Theory and Applications

06 §6€8TIY 1 6 88P §6'E€8T TP €vPL 6€61 00— LIPIE TI — I 0zsmau
— — €or— 0 6 00 €0b— 10 08 9 T
Ty §8186 10 9IT Tl §8186 10 ST €O0p— o L — 1 09|
— — SObT— TOISIL €I $88 LvThl— «S0F 6L €1 001
— — 99vE— 6F0IT O 888 CLIPI— «L961 611 8 OI
I'€S §OP8EOVISIS 8T TE I'€S ¢6€8EOPISIS OTy 9SS $T 8€IL 01 — I onesi3
— — 00— TO 8 1186 00 «T0 LSF 8 Ol
1'99 00 00 0ST S+9 00 10 €6 00 00 ¢ — [19dUBD-UO[Od
— — 00 LTE 9 T68 10 66 08 ¥l 00T
6°¢l §LTS6I 10 81 €l §L'TS61 18T 80S¥ 00 01 9 — I egMm
— — 00 91 S 818 00 «90 91 L 0f
671 §€78 00 91 vyl §€78 €0 €08 00 8L S — I epm
— — 00 ¥0 S 888 00 «¢0 901 L Ol
49! 8T 00 €I €91 8T 10 ILE 00 o1 ¢ — I e[m
— — 06l— 6Ll 61 9.8 68— €6 $9L 9T 001
— — L8l 0Tc 81 LL8 L8I— «01C L&y ¥I OI
61§ §99LL°TSTOT TO 9¢ 61§ ¢99LLTSTOI TE TOL 98I— 10€C #1 — I sdsn
— — p9e— 60C 01 8.6 06— €11 L6 6 0001
— — L9g— L9 0l 8L6 trE— «SLL 6 6 001
%99 lgo nddD n 9ooe fgo ndd n fqo ndd . 9%oe fgo ndd 1OOd N
AVANITAIT INASEI'T 107 Xd41dD dDIPOIF-INAS Y QoueIsu|

ponunuod {9|qel

pringer

As

Journal of Optimization Theory and Applications

wutod pewndo-uou e je paddors YVANITAIT 10 INASHI Tg

UOTOAIIP J0301109-10301paid Yatm paure}qo JIO0Ig-INAS UM I[Nsax1sag
(dPYPOIF-INAS 10§) UnI Jou ses 3110 (JVANITEIT INASEIT ‘SdOO-NAS 103) S[QRIIPAT JOU 19UJ1 ST (YI9A[0S) JO UOTRUIGUIOD TR[NONIT]—

— — 00— $0999¢1 01 606 00— 679 €8 TCT 0001
— — 00 89IL6L 9 966 00 W 9 Il 001
TEE SOL9TLY L0 9T €€ ¢hLOT'LY T€9L 9TIL 00 6LTIL 9 [wis-[ear
— — 00— YIIy 11 188 00— 6Ly €L L1 00F
— — 00— I've9C 6 6'€6 00 v'L ¢ ¢l oy
vrS gPIEETI €0 91 ¥¥S OTECTT 0Ly 88TC 00— 992LT 01 I [Ad1
— — 00— 19866 S1 968 00 8601 [0 or
%99€ fgo ndd . pooe fgo ndd n fqo ndo n 9%oe fqo ndd MHdd n
AVANITAIT INASEIT 1'0T XATdD dPPOIG-INAS ¥y doueisu]

panunuod { 3jqe]

pringer

as

Journal of Optimization Theory and Applications

679 NE I'T 0 649 sI'1T 1'6L 0 00 LS o1 — I 1ISUds
— — 10 €1 ¥ 0001 00 %60 Lr ¢ 0T
8'Sy NA4 00 0 8¢t N4 70 0 10 o+ — I swooysnu
— — 00 €T€9 0 0001 00 =9% 81 ¢ 0002
— — 00— 00¢S TI 000 00 «L¥I LS 00T
LIS ¢8€TT I'T 1 009 §€80¢ TIgE 66¥C 00— gec 6 — [UdAd-ppo-stuw
— — 00 T'€€9 0 0001 00 =S¥ 81 ¢ 0002
— — 00— €€€S TI 000l 00 «T¥I vl ¢ 00T
01S ¢8'€TT 'l 1 TPS €80 $8TE 66¥C 00— g€ 6 — I G)I-Ga3-1stuw
— — 00— S6 8 000 00 «xLT 91 ¢ 01
SIS §ST 10 0 SIS §S°C 0 0 00— €8 0l — I uofepew
— — 00— 0SI 01 0001 00 =071 AN 0001
— — 00— 1'0c 01 000 00 xC9 91 ¢ 001
LTl sLYE 10 0 LTl sLYE [9S 0 00 €0 L — I Juuoft
— — 00 0€L 01 0001 00 x90I €9 00001
— — 00 66191 S 0001 00 16 T 9 0001
6'6Y §EEL6E 01 1 TSy gESPIS 800l ¥ISTI 00 v S — I ad£ya00
— — 00 0 6 0001 00 10 6 L T
TYL 00 00 0 T¥L 00 00 0 00— 0 8 — I uerensne
— — 00 TTC 01 0001 00 =50 0c 9 0001
— — 00— €0T Tl 000l 00 «€£T 0c ¢ 001
S'Ly §LTE 0 0 SLy §LTE LS 0 00 ¥0 01 — I eGe
9%99e lgo ndd n 9doe fqo ndo n fqo ndd n @o%e [go ndd MHdDd N
AVANITAIT INASEI'T 1°0C XA 1dD dPPOIF-INAS y QoueIsu]

(9our)SUT YOBA I0J UOTINOIXA 1SAISEJ JO D Y 20BJP[Oq UT) SIOUEB)SUT PA[BIS JNAS SSB[O-0UO JOJ S)NSAY G d|qel

pringer

as

Journal of Optimization Theory and Applications

— — 00 L¥69¢ O 0001 00 =TSS w S o
8'eh §9C ST 0 8¢ 9T S8 0 00 8865C 6 — I Ozsmau
— — 8T 0 8 6SS TOLC— 10 WS z
6TS §6LbEE 0 €L 6T g6LbEE 10 S8 8I€Cc— o 8 — I 09|
— — 00— 0T 11 000l 00 971 YL S 001
— — 00— FPLI 6 0001 00 %59 61 ¢ o1
0°0S LTl S0 1 0T §0FC S91 € 00— S6L 8 — I onesi3
— — 91— T0 9 €06 91— 1'0 8 L o1
I'LE §S°19 00 €I 00S §S°19 00 ¥¢ 91— 00 8 — [Jooued-uojod
— — 00 €TS Tl 0001 00 €T vT S 00T
S6T €61 o 0 <6t §€6L €€ 0 00 | S — I egm
— — 10 ¥ ¥ 0001 00 %€0 LS 0¢
908 §70 00 0 908 §70 €0 0 00 88 9 — I epm
— — 00 S0 L 000l 00 10 I 6 o1
8L 10 00 0 S§IL 10 00 0 00 4) — I e[m
— — 00— I'cc 81 0001 00 Tl € S 00l
— — 10 8Tl ¥ 0001 00 %£6 0c ¢ o1
9Ts §79 70 0 9TS §9 0C 0 00 100l 9 — I sdsn
— — 00 T8C 01 0001 00 x9L LT § 0001
— — 00— 9L T 0001 00 «b6S 0T S 001
%99 fgo ndd w pooe fgo ndd n fqo ndo m 9o0e fgo ndd MOdd N
AVANITEIT INASEI'T 1'0 Xd1dD dDIPOIF-INAS ¥ QoueIsu|

penunuod g a|qel

pringer

as

Journal of Optimization Theory and Applications

wutod pewndo-uou e je paddors YVANITAIT 10 INASHI Tg

UOTOAIIP J0301109-10301paid yitm paure}qo JIo0Ig-INAS UM I[Nsa11sag .
(dIYOOIG-INAS 10§) UNI 10U Ses 31 10 (JVANITEIT INASEIT ‘SAOO-NAS 103) S[QUIIPAT JOU 19UJ1 ST (YIIA[OS) JO UOTRUIGUIOD TR[NONIT]—

43 ! 90 0

Tys §L'0 0 0

0l
01
8
01
8
L

00 *9'¥C LT 9 0001
00 =Gl 81 S 001
— I wis-[ear
00 £ 81 91 9 00r
00 Y Ll S [U%
— I [AD1

%99%e fgo ndd n

u

n

fqo ndd 1odd n

AVANITAI'T

INASHI'T

['0C Xd1dD

dDIOIg-INAS ¥y eoumsup

penunuod g a|qel

pringer

As

Journal of Optimization Theory and Applications

100000 100000
SVM-BlockIP SVM-BlockiP mmmm
PLEX mmmm CPLEX

10000 10000

1000 1000

GPU seconds (log scale)
CPU seconds (log scale)

1
R o s S D 0) O & & & ¢ o D b
Bq@ & ﬁ,z o ‘2@ wa‘ pa— y &e Z’é\ @ ﬁm o @\5\«\ @ @ &vz o oS 0 9 ,;a:aﬁ&@&o \e&ﬁm o
o &
o 8

a° ﬁ é K 36 &enés“
“‘ et

(a) (b)

Fig. 4 CPU seconds (in log scale) required by SVM-BlockIP and CPLEX for one-class SVM, with the
original instances in Table 4 (plot a) and the scaled instances in Table 5 (plot b)

SVM-BlockiP SVM-BlockiP
LIBLINEAR LIBLINEAR
LiBSVM == LiBSVM B

% accuracy
% accuracy
3

0
S & & S 0 0P ¢ ® @ o 8o g P B P P e @ go
“qa\“\ S o o éz\o 5,00 5 B O #\@eﬁﬂ o &\e P “‘W S
¢ « «
oo™ 6\

& AM S p
e\ ¢
(a) (b)

Fig. 5 Accuracies (in %) provided by solutions with SVM-BlockIP, LIBLINEAR and LIBSVM for one-
class SVM, with the original instances in Table 4 (plot a) and the scaled instances in Table 5 (plot b)

CPU times for LIBSVM and LIBLINEAR are not given since they did not solve the
optimization problem. It is clearly observed that SVM-BlockIP is much more efficient
than CPLEX for the (rightmost) instances with a large number of features.

As for the accuracies, it can be observed in plot (a) of Fig. 5 that SVM-BlockIP
generally provided values of around 90% (as expected by theory) for the runs in
Table 4, except for the instances “madelon” and “colon-cancer” (in the latter it was
outperformed even by LIBSVM and LIBLINEAR). For the scaled instances in Table
5, SVM-BlockIP accuracies were even higher, about 100% in most cases, as shown
in plot (b) of Fig. 5. Whether SVMs with such high accuracies are useful in practice
for novelty detection is a question beyond the scope of this work, which only focuses
on the efficient solution of the SVM as an optimization problem.

5 Conclusions

For large-scale optimization problems arising from data science and machine learning
applications, first-order coordinate descent algorithms are traditionally considered to
be superior to second-order methods (in particular, to interior-point methods). For the
particular case of two-class and one-class SVMs, we have shown in this work that a
specialized interior-point method for an appropriate multiple variable splitting refor-
mulation of the SVM problem can provide decent results when compared to the best

@ Springer

Journal of Optimization Theory and Applications

machine learning tools (i.e. LIBLINEAR). More importantly, when the optimization
problem involves at least a single linear constraint (as in the dual of the one-class SVM
problem), we have shown that the second-order interior-point method is very efficient
and provides high-quality solutions, whereas the (far from optimal) solutions obtained
by first-order algorithms (i.e. LIBSVM and LIBLINEAR) are not useful in practice.
In addition, when working with high-dimensional data, the new approach presented
in this work outperformed to a large degree the best interior-point methods for SVM
(namely, CPLEX 20.1 and SVM-OOPS).

Acknowledgements This research has been supported by the MCIN/AEI/FEDER project RTI2018-
097580-B-100. We thank Diego Judrez for his help in the implementation of some routines of SVM-BlockIP.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Astorino, A., Fuduli, A.: Support vector machine polyhedral separability in semisupervised learning.
J. Optim. Theory Appl. 164, 1039-1050 (2015). https://doi.org/10.1007/s10957-013-0458-6
2. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM
Rev. 60, 223-311 (2018). https://doi.org/10.1137/16M 1080173
3. Castro, J.: A specialized interior-point algorithm for multicommodity network flows. STAM J. Optim.
10, 852-877 (2000). https://doi.org/10.1137/S1052623498341879
4. Castro, J.: An interior-point approach for primal block-angular problems. Comput. Optim. Appl. 36,
195-219 (2007). https://doi.org/10.1007/s10589-006-9000- 1
5. Castro, J.: Interior-point solver for convex separable block-angular problems. Optim. Methods Softw.
31, 88-109 (2016). https://doi.org/10.1080/10556788.2015.1050014
6. Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular
problems. Math. Program. 130, 415445 (2011). https://doi.org/10.1007/s10107-010-0341-2
7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 1-27 (2011). https://doi.org/10.1145/1961189.1961199
8. Chou, H.-Y., Lin, P.-Y., Lin, C.-J.: Dual coordinate-descent methods for linear one-class SVM and
SVDD. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 181-189
(2020). https://doi.org/10.1137/1.9781611976236.21
9. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273-297 (1995). https://doi.org/10.
1007/BF00994018
10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/
CB09780511801389
11. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear
classification. J. Mach. Learn. Res. 9, 1871-1874 (2008)
12. Ferris, M., Munson, T.: Interior point methods for massive support vector machines. SIAM J. Optim.
13, 783-804 (2003). https://doi.org/10.1137/S1052623400374379
13. Gertz, E.M., Griffin, J.D.: Support vector machine classifiers for large data sets. Argonne National
Laboratory, Technical Report ANL/MCS-TM-289. https://www.osti.gov/biblio/881587 (2005)

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10957-013-0458-6
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/S1052623498341879
https://doi.org/10.1007/s10589-006-9000-1
https://doi.org/10.1080/10556788.2015.1050014
https://doi.org/10.1007/s10107-010-0341-2
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1137/1.9781611976236.21
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1017/CBO9780511801389
https://doi.org/10.1137/S1052623400374379
https://www.osti.gov/biblio/881587

Journal of Optimization Theory and Applications

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Goldfarb, D., Scheinberg, K.: A product-form Cholesky factorization method for handling dense
columns in interior point methods for linear programming. Math. Program. 99, 1-34 (2004). https://
doi.org/10.1007/s10107-003-0377-7

Goldfarb, D., Scheinberg, K.: Solving structured convex quadratic programs by interior point methods
with application to support vector machines and portfolio optimization. IBM Research Report RC23773
(W0511-025) (2005)

Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic
programming. SIAM J. Optim. 23, 1510-1527 (2013). https://doi.org/10.1137/120886017
Mészdros, C.: On free variables in interior point methods. Optim. Methods Softw. 9, 121-139 (1998).
https://doi.org/10.1080/10556789808805689

Ortega, J.M.: Introduction to Parallel and Vector Solutions of Linear Systems. Frontiers of Computer
Science, Springer, Boston (1988). https://doi.org/10.1007/978-1-4899-2112-3

Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Scholkopf,
B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, 185-20.
MIT Press, Cambridge (1999)

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J.: Estimating the support of a high-dimensional
distribution. Neural Comput. 13, 1443-1471 (2001). https://doi.org/10.1162/089976601750264965
Woodsend, K., Gondzio, J.: Exploiting separability in large-scale linear support vector machine train-
ing. Comput. Optim. Appl. 49, 241-269 (2011). https://doi.org/10.1007/s10589-009-9296-8
Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997). https://doi.org/10.1137/
1.9781611971453

Wright, S.J.: Coordinate descent algorithms. Math. Program. 151, 3-34 (2015). https://doi.org/10.
1007/s10107-015-0892-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1007/s10107-003-0377-7
https://doi.org/10.1007/s10107-003-0377-7
https://doi.org/10.1137/120886017
https://doi.org/10.1080/10556789808805689
https://doi.org/10.1007/978-1-4899-2112-3
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1007/s10589-009-9296-8
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3

	New Interior-Point Approach for One- and Two-Class Linear Support Vector Machines Using Multiple Variable Splitting
	Abstract
	1 Introduction
	1.1 The Two-Class SVM Optimization Problem
	1.2 The One-Class SVM Optimization Problem
	1.3 Alternative Approaches for SVMs

	2 Multiple Variable Splitting Reformulation of Linear SVMs
	3 The IPM for the Multiple Variable Splitting Reformulation of SVMs
	3.1 The Structure of the Preconditioner D

	4 Computational Results
	4.1 Results for Two-Class SVM Instances
	4.2 Results for One-Class SVM Instances

	5 Conclusions
	Acknowledgements
	References

