
Journal of Optimization Theory and Applications (2023) 196:391–414
https://doi.org/10.1007/s10957-022-02100-4

Control of Partial Differential Equations via
Physics-Informed Neural Networks

Carlos J. García-Cervera1 ·Mathieu Kessler2 · Francisco Periago2

Received: 30 March 2022 / Accepted: 22 August 2022 / Published online: 17 September 2022
© The Author(s) 2022

Abstract
This paper addresses the numerical resolution of controllability problems for par-
tial differential equations (PDEs) by using physics-informed neural networks. Error
estimates for the generalization error for both state and control are derived from clas-
sical observability inequalities and energy estimates for the considered PDE. These
error bounds, that apply to any exact controllable linear system of PDEs and in any
dimension, provide a rigorous justification for the use of neural networks in this field.
Preliminary numerical simulation results for three different types of PDEs are carried
out to illustrate the performance of the proposed methodology.

Keywords Controllability of partial differential equations · Physics-informed neural
networks · Error estimates

Mathematics Subject Classification 93B05 · 93C20 · 65N15

1 Introduction

Since the pioneering theoretical works by Russell [37] and Lions [22], the numeri-
cal resolution of controllability problems for PDEs has faced a range of challenging

Communicated by Lorenz Biegler.

B Francisco Periago
f.periago@upct.es

Carlos J. García-Cervera
cgarcia@ucsb.edu

Mathieu Kessler
mathieu.kessler@upct.es

1 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

2 Department of Applied Mathematics and Statistics, Technical University of Cartagena, Campus
Muralla del Mar, 30202 Cartagena, Murcia, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02100-4&domain=pdf
http://orcid.org/0000-0002-7323-1809

392 Journal of Optimization Theory and Applications (2023) 196:391–414

difficulties which have been solved by using a number of sophisticated techniques
(see, e.g., [10, 11, 15, 29, 32, 46], among many others). All these methods require the
numerical approximation of some suitable PDEs, a task which is done by using classi-
cal methods in numerical analysis, mainly finite differences and finite elements. As a
consequence, the available methods for solving numerically controllability problems
for PDEs suffer from the well-known curse of dimensionality phenomenon. In plain
words, curse of dimensionality reflects the fact that doubling the number of degrees
of freedom in each spatial direction increases the solution complexity by a factor of
2d , with d being the spatial dimension. This makes classical numerical methods for
solving PDEs impractical when the spatial dimension is large.

On the other hand, during the last few years there has been a deep research effort in
developing numerical methods for solving PDEs by using techniques from machine
learning (ML) and artificial intelligence (AI). The main motivation for exploring the
use of these new techniques in approximating PDEs is not to try to find methods that
outperform classical methods (finite differences, finite elements, finite volumes, etc.)
in low spatial dimensions (d = 1, 2, 3), but to solve numerically high-dimensional
PDEs (d > 3), where the above-mentioned classical methods get stuck by the curse
of dimensionality.

Examples of fields where high-dimensional PDEs arise are, among others: radioac-
tive transport equation (d ≥ 5), kinetic models, e.g., the Boltzmann kinetic equations
(d = 6), computational finance, e.g., the nonlinear Black–Scholes equation for
pricing derivatives (d � 1), computational quantum chemistry, e.g., the nonlinear
Schrödinger equation in the quantum many-body problem (d � 1), and game theory,
e.g., the Hamilton–Jacobi–Bellman equation in dynamic programming [17]. Control
problems for parametric PDEs is another field where high dimension plays a crucial
role [20, 25, 26, 47].

Among the different deep-learning-based methods that have been recently pro-
posed to approximate numerically the solution of PDEs, it is worth to mention the
following: physics-informed neural networks (PINNs) [34], deep Ritz method [41],
methods based on the Feynman–Kac formula [5], and methods based on the solution
of backward stochastic differential equations [17]. See also [4, 6] for recent reviews.
Although thesemethods have shown an excellent performance at the level of numerical
simulation, the error analysis theory for these methods is essentially missing.

The above deep learning-based numerical schemes can be adapted to solve numer-
ically not only forward problems for PDEs, but also a number of related problems
involving PDEs such as inverse problems [27, 34] or random PDEs [43], among oth-
ers.

Up to the best knowledge of the authors, the numerical resolution of controllability
problems for PDEs by using ML has not been addressed so far.

The main goal of this paper is to explore the use of PINNs to approximate numeri-
cally the solution of controllability problems for PDEs.More precisely, a PINNs-based
algorithm that applies to both linear and nonlinear PDEs is proposed in Sect. 2. Then,
fostered by [27], error estimates for the so-called generalization error are provided
(Theorem 3.1). The proof of this result is based on energy estimates for the solution of
the considered PDE and on observability inequalities for its associated adjoint system.
From these error bounds, a convergence result of the control and state obtained by using

123

Journal of Optimization Theory and Applications (2023) 196:391–414 393

the proposed method to the control and state of the continuous problem is established
(Corollary 3.1). For the sake of clarity, in this preliminary work we focus on the case
of boundary Dirichlet control, but in a straightforward manner the ideas and methods
here proposed extend to other types of control actions. Also, for pedagogical reasons,
instead of presenting an abstract general framework, the methods and proofs are first
described for the two emblematic systems of the wave and heat equations and then
extended to more general PDE systems. Preliminary numerical experiments for three
different PDEs illustrate the performance of the proposed method. More precisely, the
accuracy of the method is tested on a simple model for the wave equation for which an
analytical solution is available. In a second experiment, a high-dimensional control-
lability problem for the heat equation is considered. The third experiment concerns a
semilinear PDE.

As the title indicates, this work is just a first step toward the numerical resolution of
controllability problems for high-dimensional PDEs and so further research is needed
to achieve a deeper understanding of the type of problems considered here.

Finally, for the sake of completeness, it is important to point out that the connec-
tion between different architectures of deep neural networks and controlled ordinary
differential equations has been recently studied in [9]. This is a novel research line
that also includes the analysis of the so-called neural differential equations by using
techniques coming from continuous control theory [1, 12, 13, 35, 36].

2 Problem Setup and Description of the PINNs Algorithm

From now on in this paper,Ω ⊂ R
d , d ∈ N, denotes a bounded domain with a smooth

boundary which is decomposed into two disjoint parts ΓD and ΓC . For any positive
time T , we denote by QT := Ω × (0, T). As is usual Δ := ∑d

j=1
∂2

∂x2j
stands for the

Laplacian operator.

2.1 Wave Equation

Given initial data (y0, y1) in suitable function spaces, the null controllability problem
for the wave equation amounts to finding a positive time T > 0 and a control function
u(x, t) such that the solution y(x, t) of the system

ytt − Δy = 0, in QT

y(x, 0) = y0(x), in Ω

yt (x, 0) = y1(x) in Ω

y(x, t) = 0, on ΓD × (0, T)

y(x, t) = u(x, t) on ΓC × (0, T)

(1)

satisfies

y(x, T) = yt (x, T) = 0 x ∈ Ω. (2)

123

394 Journal of Optimization Theory and Applications (2023) 196:391–414

Fig. 1 Illustration of a fully
connected deep feedforward
neural network with two input
channels x = (x, t), two hidden
layers (each one with 3 neurons)
and a scalar output ŷ(x, t; θ).
Input data pass through the net
by following (3). The set of free
parameters of the network is
denoted by θ

It is well known [22] that if the domain Ω satisfies the so-called geometrical con-
trollability condition (GCC) introduced by Bardos, Lebeau, and Rauch [3] and if(
y0, y1

) ∈ L2(Ω) × H−1(Ω), then, for T large enough, problem (1)–(2) has a solu-
tion u ∈ L2 (ΓC × (0, T)).

The PINNs approach for solving direct and inverse problems for PDEs [34] is next
adapted to approximate numerically the control u(x, t) of problem (1)–(2). Roughly
speaking, in the PINNs approach the solution is approximated by a neural network and
the equations are imposed, in the least square sense, at a collection of nodal points.
In the machine learning language, PINNs approach is composed of the following four
main steps: (1) design an artificial neural network ŷ (x, t; θ) as a surrogate of the true
solution y(x, t), (2) consider a training set that is used to train the neural network, (3)
define an appropriate loss function which accounts for residuals of the PDE, initial,
boundary, and final conditions, and (4) train the network by minimizing the cost
function defined in the previous step. From the training process, optimal parameters
defining the neural network ŷ (x, t; θ) are computed and eventually are used to get
predictions about the state y(x, t) and the control u(x, t), which is approximated as
the trace of ŷ (x, t; θ) on the boundary ΓC . Next, we give details on these steps:
Step 1: Neural Network Among different possibilities, we consider a deep feedfor-
ward neural network (also known in the literature as a multilayer perceptron (MLP))
with d + 1 input channels x = (x, t) ∈ R

d+1 and a scalar output ŷ (see Fig. 1). More
specifically, ŷ (x, t; θ) is constructed as

input layer: N 0(x) = x = (x, t) ∈ R
d+1

hidden layers: N �(x)=σ
(
W�N �−1(x)+b�

)
∈ R

N� , �=1, · · · , L − 1

output layer: ŷ (x; θ) = N L(x) = W LN L−1(x) + bL ∈ R,

(3)

where

– N � : Rdin → R
dout is the � layer with N� neurons,

– W� ∈ R
N�×N�−1 and b� ∈ R

N� are, respectively, the weights and biases so that

θ =
{
W�, b�

}

1≤�≤L
are the parameters of the neural network, and

– σ is an activation function, which acts component-wise. Throughout this paper, we
consider smooth activation functions such as hyperbolic tangent σ(s) = tanh(s),
with s ∈ R.

123

Journal of Optimization Theory and Applications (2023) 196:391–414 395

Fig. 2 Illustration of a training
dataset (based on Sobol points)
in the domain
Q2 = (0, 1) × (0, 2). Interior
points are marked with circles
and boundary points in blue
color

Step 2: Training Dataset A dataset T of scattered data is selected in the interior
domain Tint ⊂ QT and on the boundaries TΓD ⊂ ΓD × (0, T), Tt=0 ⊂ Ω × {0},
Tt=T ⊂ Ω ×{T }. Thus, T = Tint ∪ TΓD ∪ Tt=0 ∪ Tt=T (see Fig. 2 for an illustration).
The number of selected points in Tint is denoted by Nint . Analogously, Nb is the
number of points on the boundary ΓD , and N0 and NT stand for the number of points
in Tt=0 and Tt=T , respectively. The total number of collocation nodes is denoted by
N , and we write TN instead of T to indicate clearly the number of points N used
hereafter.
Step 3: Loss Function A weighted summation of the L2 norm of residuals for the
equation, boundary, initial, and final conditions is considered as the loss function to
be minimized during the training process. It is composed of the following six terms:
given a neural network approximation ŷ (as constructed in (3)), define

Lint (θ; Tint) =
Nint∑

j=1

w j,int|ŷt t (x j ; θ) − Δŷ(x j ; θ)|2, x j ∈ Tint,

LΓD

(
θ; TΓD

) =
Nb∑

j=1

w j,b|ŷ(x j ; θ)|2, x j ∈ TΓD ,

Lpos
t=0 (θ; Tt=0) =

N0∑

j=1

w j,0|ŷ(x j ; θ) − y0(x j)|2, x j ∈ Tt=0,

Lvel
t=0 (θ; Tt=0) =

N0∑

j=1

w j,0|ŷt (x j ; θ) − y1(x j)|2, x j ∈ Tt=0,

Lpos
t=T (θ; Tt=T) =

NT∑

j=1

w j,T |ŷ(x j ; θ)|2, x j ∈ Tt=T ,

Lvel
t=T (θ; Tt=T) =

NT∑

j=1

w j,T |ŷt (x j ; θ)|2, x j ∈ Tt=T ,

123

396 Journal of Optimization Theory and Applications (2023) 196:391–414

Fig. 3 PINN algorithm for approximating the exact state and control for the wave equation. The neural
network ŷ (x, t, θ) is required to satisfy, in the least squares sense, the PDE, initial conditions, boundary
condition and exact controllability conditions. Then, the residual on training points L (θ;T) is minimized
to get the optimal set of parameters θ∗ of the neural network. This leads to the PINN exact state ŷ

(
x, t; θ∗)

.
Finally, the PINN exact control û

(
x, t; θ∗)

is obtained as the trace of the PINN state on the boundary
control region ΓC

where w j,int, w j,b, w j,0, and w j,T are the weights of the quadrature rules.
The loss function used for training is

L (θ; T) = Lint (θ; Tint)
+LΓD

(
θ; TΓD

)

+Lpos
t=0 (θ; Tt=0) + Lvel

t=0 (θ; Tt=0)

+Lpos
t=T (θ; Tt=T) + Lvel

t=T (θ; Tt=T) . (4)

Notice that no boundary condition is imposed on ΓC . As is usual in the field of
machine learning, all the derivatives included in the loss function are computed by
using automatic differentiation [2].
Step 4: Training ProcessThe final step in the PINN algorithm amounts tominimizing
(4), i.e.,

θ∗ = argmin
θ

L (θ; T) . (5)

The approximation û(t; θ∗) of the control u(x, t) is then obtained as the restriction of
ŷ(x, t; θ∗) to the boundary ΓC , i.e.,

û(x, t; θ∗) = ŷ(x, t; θ∗), x ∈ ΓC , 0 ≤ t ≤ T . (6)

See Fig. 3 for an schematic diagram of the proposed algorithm.

Remark 2.1 Notice that the PINN algorithm proposed above is, in spirit, in the same
line as the one considered in [30], where an error function is minimized in the sense
of least squares. As a consequence, if this error function reaches the zero value, then
the controllability condition is satisfied. A major difference with respect to classical
numerical methods for control of PDEs is that the PINN-based approach is mesh-free
as it does not require a (finite element) mesh for numerical approximation. Moreover,

123

Journal of Optimization Theory and Applications (2023) 196:391–414 397

the function that is used for numerical approximation is a neural network as opposed
to (piece-wise) polynomials, that are the usual models of choice.

Remark 2.2 As is well known, the different terms that appear in the loss function
(4) do not have the same strength, in general. At the practical level, this difficulty
may be overcome by introducing additional weighting parameters in front of those
terms. These would be new hyperparameters that the machine-learning-based algo-
rithm ought to learn. It is clear that the introduction of these parameters does not affect
the convergence results in the next section.

2.2 Heat Equation

Similar to the case of thewave equation, given an initial datum y0 in a suitable function
space, the null controllability problem for the heat equation amounts to finding a
positive time T > 0 and a control function u(x, t) such that the solution y(x, t) of the
system

yt − Δy = 0, in QT

y(x, 0) = y0(x), in Ω

y(x, t) = 0, on ΓD × (0, T)

y(x, t) = u(x, t) on ΓC × (0, T)

(7)

satisfies

y(x, T) = 0, x ∈ Ω. (8)

It is well known [21] that if y0 ∈ L2(Ω), then, for any T > 0, problem (7)–(8) has a
solution u ∈ L2 (ΓC × (0, T)).

The numerical approximation of problem (7)–(8) follows the same steps 1–4 as in
the case of the wave equation. The only element to be modified is the loss function,
which in this case is defined as the sum of

Lint (θ; Tint) =
Nint∑

j=1

w j,int|ŷt (x j ; θ) − Δŷ(x j ; θ)|2, x j ∈ Tint,

LΓD

(
θ; TΓD

) =
Nb∑

j=1

w j,b|ŷ(x j ; θ)|2, x j ∈ TΓD ,

Lt=0 (θ; Tt=0) =
N0∑

j=1

w j,0|ŷ(x j ; θ) − y0(x j)|2, x j ∈ Tt=0,

Lt=T (θ; Tt=T) =
NT∑

j=1

w j,T |ŷ(x j ; θ)|2, x j ∈ Tt=T .

123

398 Journal of Optimization Theory and Applications (2023) 196:391–414

2.3 Extension to General Evolution PDE Systems

Consider now a general evolution system of the form

yt + Ay = 0, in QT

y(x, 0) = y0(x), in Ω

y(x, t) = 0, on ΓD × (0, T)

y(x, t) = u(x, t) on ΓC × (0, T) ,

(9)

where A is a generic (linear or nonlinear) operator, and the state y = y(x, t) is, in
general, a vector function.

As in the preceding two cases, the goal is to find a positive time T and a control
function u(x, t) such that the solution to (9) satisfies

y(x, T) = 0, x ∈ Ω. (10)

The PINNs algorithm described above for the wave and heat equations also applies in
this general framework with few changes. Actually, the only step that must be updated
is the one corresponding to the loss function that now takes the form:

Lint (θ; Tint) =
Nint∑

j=1

w j,int‖ŷt (x j ; θ) − Δŷ(x j ; θ)‖2, x j ∈ Tint,

LΓD

(
θ; TΓD

) =
Nb∑

j=1

w j,b‖ŷ(x j ; θ)‖2, x j ∈ TΓD ,

Lt=0 (θ; Tt=0) =
N0∑

j=1

w j,0‖ŷ(x j ; θ) − y0(x j)‖2, x j ∈ Tt=0,

Lt=T (θ; Tt=T) =
NT∑

j=1

w j,T ‖ŷ(x j ; θ)‖2, x j ∈ Tt=T ,

where ‖ · ‖ stands for the Euclidean norm.

3 Estimates on Generalization Error

This section aims at obtaining error estimates for the so-called generalization error for
both control and state. The generalization error for the control variable u is defined
by

Egener (u) := ‖u − û‖, (11)

where u = u(x, t) is the exact control of minimal L2-norm of the continuous problem,
û = û

(
x, t; θ∗) is its numerical approximation obtained from the algorithm proposed

123

Journal of Optimization Theory and Applications (2023) 196:391–414 399

above, and ‖ · ‖ is an appropriate norm. The generalization error for the state variable
is similarly defined.

The generalization error (11) is typically decomposed into approximation error,
which is due to the choice of the hypothesis space (two-layer, multilayer, residual,
convolutional neural networks, etc.), and estimation error, due to the fact that the
surrogate control û is computed from a finite dataset. Of course, the generalization
error also depends on a crucial way on the specific algorithm proposed for training. In
particular, PINN solutions obtained from the proposedmethod are obtained by solving
highly nonconvex optimization problems that typically get stuck in local minima.
Estimating this optimization error is a very challenging open problem.

Error estimates for the approximation error of some hypothesis spaces are by now
well known. For instance, for the case of Barron space of two-layer neural networks,
the approximation error in the L2-norm scales asO

(
m−1/2

)
, withm being the number

of neurons in the network, and independently of the dimension d. As for the estimation
error, it is also known that the Rademacher complexity of Barron space, which controls
the estimation error, is controlled by a Monte Carlo rate O

(
N−1/2

)
, where N is the

number of sampling points used for training. We refer the reader to [42] and the
references therein for more details on this issue. In particular, these results support the
choice of multilayer neural networks of Sect. 2.

Regarding the PINNs algorithm for solving PDEs, convergence results w.r.t. the
number of sampling points used for training have been recently obtained in [38] for
the case of second-order linear elliptic and parabolic equations with smooth solutions.
It is also worth to mentioning article [27] where error estimates, in terms of training
error and the number of sampling points, are derived for the generalization error of a
class of data assimilation problems.

Following [27], we next prove error estimates for control and state and for the class
of controllability problems considered here. The two key ingredients to get such error
bounds are observability inequalities and error estimates for quadrature rules. The
precise observability inequalities that are needed in our cases will be detailed in the
next subsections. Concerning quadrature error estimates, these are very well known
in the literature but for the sake of completeness, we now recall some basic concepts
and results on this issue.

3.1 Error Estimates for Quadrature Rules

For a given function f : D ⊂ R
d → R, a quadrature rule approximating the integral

f :=
∫

D
f (x) dx

is defined by

f N :=
N∑

j=1

w j f (x j),

123

400 Journal of Optimization Theory and Applications (2023) 196:391–414

where (x j , w j), 1 ≤ j ≤ N , are the nodes and weights of the quadrature rule.
Quadrature errors depend on the specific rule used, on the smoothness of the function
f and on the dimension d. For regular functions and low dimensions, one typically
may use Gauss or Clenshaw–Curtis rules. Rules based on low discrepancy sequences
such as Sobol sequences are the rules of choice for intermediate dimensions [39]. In
both cases, error estimates for these quadrature rules take the general form

| f − f N | ≤ CqN
−α, α > 0, (12)

where α depends on the regularity of f and the constant Cq = Cq(d), which also
depends on f and its derivatives, explodes as d → ∞. Monte Carlo integration is
immune to the curse of dimensionality and applies to non-smooth integrands. As is
well known, the error estimate in that case is as in (12) where Cq is independent of
the dimension d and α = 1/2.

3.2 Wave Equation

The generalization error in the control variable u due to the PINN algorithm proposed
in Sect. 2.1 is defined as

Egener (u) := ‖u − û‖L2(ΓC ;(0,T)), (13)

where u = u(t) is the exact control of the continuous problem (1)–(2) and û =
û

(
t; θ∗) is its numerical approximation given by (6).
Similarly, the generalization error for the state variable is defined by

Egener (y) := ‖y − ŷ‖C(0,T ;L2(Ω))∩C1(0,T ;H−1(Ω)). (14)

As is usual in machine learning’s terminology, the so-called training error for PINNs
algorithm is given by

Etrain := Etrain, int + Etrain, boundary + Etrain, initialpos + Etrain, initialvel
+Etrain, finalpos + Etrain, finalvel, (15)

where

Etrain, int = (
Lint

(
θ∗; Tint

))1/2

Etrain, boundary = (
LΓD

(
θ∗; TΓD

))1/2

Etrain, initialpos = (
Lpos
t=0

(
θ∗; Tt=0

))1/2

Etrain, initialvel = (
Lvel
t=0

(
θ∗; Tt=0

))1/2

Etrain, finalpos = (
Lpos
t=T

(
θ∗; Tt=T

))1/2

Etrain, finalvel = (
Lvel
t=T

(
θ∗; Tt=T

))1/2

(16)

and θ∗ is as in (5).

123

Journal of Optimization Theory and Applications (2023) 196:391–414 401

Next,we recall classical observability and energy inequalities for thewave equation:

Lemma 3.1 Let us assume that the domain Ω satisfies the geometrical control-
lability condition [3], and let T > 0 be large enough. Given initial and final
conditions (z00, z

1
0), (z

0
T , z1T) ∈ L2 (Ω) × H−1 (Ω), there exists a control function

v ∈ L2 (ΓC ; (0, T)) such that the solution z(x, t) of the system

ztt − Δz = 0, in QT

z(x, 0) = z00(x), in Ω

zt (x, 0) = z10(x) in Ω

z(x, t) = 0, on ΓD × (0, T)

z(x, t) = v(x, t) on ΓC × (0, T)

(17)

satisfies

z(x, T) = z0T (x), zt (x, T) = z1T (x, T), x ∈ Ω. (18)

Moreover,

‖v‖L2(ΓC ;(0,T)) ≤ Co

(
‖z00‖L2(Ω) + ‖z10‖H−1(Ω) + ‖z0T ‖L2(Ω) + ‖z1T ‖H−1(Ω)

)
,

(19)

for a positive constant Co = Co(Ω, T)which depends onΩ and T , but is independent
of the initial and final data.

Lemma 3.2 Let
(
z00, z

1
0

) ∈ L2(Ω) × H−1(Ω) and g ∈ L2 (∂Ω × (0, T)). Consider
the non-homogeneous system

ztt − Δz = f (x, t), in QT

z(x, 0) = z00(x), in Ω

zt (x, 0) = z10(x) in Ω

z(x, t) = g(x, t), on ∂Ω × (0, T).

(20)

Then, there exists a positive constant Ce = Ce(Ω, T) such that

‖z‖C(0,T ;L2(Ω)) + ‖zt‖C(0,T ;H−1(Ω))

≤ Ce

(
‖z00‖L2(Ω) + ‖z10‖H−1(Ω) + ‖g‖L2(∂Ω×(0,T))

)
. (21)

We are now in a position to estimate the generalization error for our PINNs-based
algorithm.

Theorem 3.1 Let y = y(x, t) ∈ C2
(
QT

)
be a classical solution of (1)–(2), and let

ŷ = ŷ(x, t; θ∗) its PINN approximation obtained by the method proposed in Sect. 2.1.

123

402 Journal of Optimization Theory and Applications (2023) 196:391–414

It is assumed that ŷ ∈ C2
(
QT

)
. Let u = u(x, t) and û = û

(
x, t; θ∗) be the exact

control of the continuous system (1)–(2) and its PINN approximation, respectively.
Then, the following estimate for the generalization error in the control variable holds:

Egener (u) ≤ C
(
Etrain, int + C1/2

qint N
−αint/2
int

+Etrain, boundary + C1/2
qb N−αb/2

b

+Etrain, initialpos + C1/2
qip N

−αi p/2
0

+Etrain, initialvel + C1/2
qiv N

−αiv/2
0

+Etrain, finalpos + C1/2
q f pN

−α f p/2
T

+Etrain, finalvel + C1/2
f v N

−α f v/2
T

)
, (22)

where C = C(Ω, T), and consequently C = C(d) also depends on the spatial
dimension d. The constants Cq− and exponents α− are the ones associated with
quadrature rules as in (12).

A similar estimate, with different constants, also holds for the generalization error
in the state variable, as given by (14).

Proof Let y = y − ŷ and u = u − û be the error in the state and control variables,
respectively. By linearity, y solves

ytt − Δy = ŷt t − Δŷ, in QT

y(x, 0) = y0(x) − ŷ(x, 0), in Ω

yt (x, 0) = y1(x) − ŷt (x, 0) in Ω

y(x, T) = ŷ(x, T), in Ω

yt (x, T) = ŷt (x, T) in Ω

y(x, t) = ŷ(x, t), on ΓD × (0, T)

y(x, t) = u(x, t) − ŷ(x, t) on ΓC × (0, T).

(23)

Again by linearity, y(x, t; θ) is decomposed as y = y1 + y2, where y1 and y2 are,
respectively, solutions to

y1t t − Δy1 = 0, in QT

y1(x, 0) = y0(x) − ŷ(x, 0), in Ω

y1t (x, 0) = y1(x) − ŷt (x, 0) in Ω

y1(x, t) = 0, on ΓD × (0, T)

y1(x, t) = u(x, t) − ŷ(x, t) on ΓC × (0, T)

(24)

and

123

Journal of Optimization Theory and Applications (2023) 196:391–414 403

y2t t − Δy2 = ŷt t − Δŷ, in QT

y2(x, 0) = 0, in Ω

y2t (x, 0) = 0 in Ω

y2(x, T) = ŷ(x, T) − y1(x, T), in Ω

y2t (x, T) = ŷt (x, T) − y1t (x, T), in Ω

y2(x, t) = ŷ(x, t), on ΓD × (0, T)

y2(x, t) = 0 on ΓC × (0, T).

(25)

By applying the observability inequality (19) to system (24), and the energy estimate
(21) to (25),

‖u − û‖L2(ΓC ;(0,T))

≤ Co

(
‖y0 − ŷ(0)‖L2(Ω) + ‖y1 − ŷt (0)‖H−1(Ω) + ‖y1(T)‖L2(Ω) + ‖y1t (T)‖H−1(Ω)

)

≤ Co

(
‖y0 − ŷ(0)‖L2(Ω) + ‖y1 − ŷt (0)‖L2(Ω) + ‖ŷ(T)‖L2(Ω) + ‖ŷt (T)‖L2(Ω)

+‖y2(T)‖L2(Ω) + ‖y2t (T)‖H−1(Ω)

)

≤ Co

(
‖y0 − ŷ(0)‖L2(Ω) + ‖y1 − ŷt (0)‖L2(Ω) + ‖ŷ(T)‖L2(Ω) + ‖ŷt (T)‖L2(Ω)

+Ce

(
‖ŷ‖L2(ΓD×(0,T)) + ‖ŷt t − Δŷ‖L2(0,T ;L2(Ω))

))
. (26)

Estimate (22) then follows by applying (12). The corresponding estimate for the gen-
eralization error (14) is an immediate consequence of (21) and (22). �

Although it has not beenwritten explicitly hereinabove, it is clear that generalization
errors depend on the specific type and size of neural network as well as on the type
and number of quadrature nodes which are selected from the very beginning. Thus,
denoting byHm the hypothesis space considered for numerical approximation, where
m denotes the number of neurons (or free parameters) in the neural network, and by N
the number of collocation points used for quadrature, to make explicit this dependence
we write

Egener (u) = Em,N
gener (u) and Egener (y) = Em,N

gener (y) .

Next, the behavior of the generalization errors is analyzed when the size m of single-
layer neural networks goes to infinity and so does the sampling size (N → ∞).

Let us consider the hypothesis space of single-layer neural nets

Hm :=
{

ym(x) :=
m∑

i=1

aiσ (ωi x + bi) : x,ωi ∈ R
d+1, ai , bi ∈ R

}

.

The training process (5) may be rewritten in the equivalent form

ŷm,N = arg min
ym∈Hm

L (ym; TN) . (27)

123

404 Journal of Optimization Theory and Applications (2023) 196:391–414

From now on it is assumed that the optimization problem (27) has a solution. Other-
wise, one can always add a regularization term of the form ‖θ‖2.

We now recall the following universal approximation theorem due to Pinkus [33,
Th. 4.1].

Theorem 3.2 Let f ∈ Ck(Rd+1). Assume that the activation function σ ∈ Ck(R) is
not a polynomial. Then, for any compact set K ⊂ R

d+1 and any ε > 0 there exists
m ∈ N and ym ∈ Hm such that

max
x∈K |Dl f (x) − Dl ym(x)| ≤ ε

for all multiindex l ≤ k.

Corollary 3.1 Assume that the activation function σ ∈ Ck(R) is not a polynomial.
With the same assumptions as in Theorem 3.1 and considering subsequences, still
labeled by m and N, one has

lim
N→∞ lim

m→∞ Em,N
gener (u) = lim

N→∞ lim
m→∞ Em,N

gener (y) = 0. (28)

Proof Let us fix ε > 0.We apply Theorem 3.2 for K = QT and f = y, solution of the
controllability problem (1)–(2). Then, there exist m = m(ε) ∈ N and corresponding
ym ∈ Hm such that

‖(ym)t t − Δym‖L2(0,T ;L2(Ω)) + ‖ym‖L2(ΓD×(0,T))

+‖y0 − ym(0)‖L2(Ω) + ‖y1 − (ym)t (0)‖L2(Ω)

+‖ym(T)‖L2(Ω) + ‖(ym)t (T)‖L2(Ω)

≤ ε/2. (29)

Each of the terms in the left-hand side of (29) is now expressed by using a quadrature
rule with collocation nodes TN . Then, taking into account the optimality of ŷm,N , as
given by (27), one deduces that the sum of training errors that appear in the right-hand
side of (22) is less than or equal to ε/2.

Moreover, for fixed m = m(ε), there exists N such that the sum of quadrature
errors in (22) is also less than or equal to ε/2. Thus, Em,N

gener (u) ≤ ε. The arbitrariness
of ε gives the result for the generalization error in the control variable. The case of the
state variable is completely analogous. �

3.3 Extension to Other PDE Systems and Neural Network Architectures

It is clear that the arguments and conclusions of Theorem 3.1 and Corollary 3.1 extend
to any linear system of PDEs for which observability as well as energy inequalities
similar to those in (19) and (21) hold. Linearity of the PDE is used in an essential way
in the proof of Theorem 3.1. Thus, a different argument is needed to extend this result
to the case of nonlinear PDEs.

123

Journal of Optimization Theory and Applications (2023) 196:391–414 405

The proof of Corollary 3.1 relies on the universal approximation theorem by Pinkus
for the case of single-layer neural networks. Thus, the conclusion of Corollary 3.1 also
holds for other neural network architectures for which such a density result is true.

4 Numerical Experiments

In this section, we test the performance of the proposed method in three exact control-
lability problems. The first experiment aims at checking the accuracy of the method
on a very simple controllability problem for the wave equation for which an exact
solution is explicitly known. In the second experiment, the high-dimensional situa-
tion is tested on a controllability problem for the heat equation. The last experiment
considers a semilinear wave equation.

As indicated at the beginning of Sect. 3, the optimization error due to the gradient-
based algorithms used for training is a key ingredient in the total error associated with
the proposed PINN algorithm. This error has not been accounted for in Theorem 3.1
and Corollary 3.1. However, the numerical simulation results presented in this section
do incorporate this error. As a consequence, simulation results are unable to illustrate
with accuracy the theoretical findings of Sect. 3. The gap between the theoretical error
estimates and the simulation results is accounted for by the optimization error in the
training process.

In all experiments that follow, a multilayer neural network, as described in Sect. 2,
with the tanh as activation function, is used. Sobol quadrature nodes [39] are employed
for training the neural network. The training process, i.e., minimization of L (θ; TN),
is carried out with theADAMoptimizer [19] with learning rate 10−3 for the first 20000
epochs. Then, a L-BFGS optimizer [7] is employed to accelerate convergence. The
required gradients are computed by using automatic differentiation [2]. The descent
algorithm is initialized with Glorot uniform [14]. As is well known, results obtained
from gradient-based optimizers depend on initialization. A common practice to deal
with this issue is to perform an emsemble training [24]. However, the use of this and
other more sophisticated techniques (residual-based adaptive refinement (RAR) [23],
dropout [40], batch normalization [18], etc.) is not the purpose of this paper which
aims at illustrating the possible use of PINNs in the topic of controllability of PDEs.

4.1 Experiment 1: LinearWave Equation

We consider the control system (1)–(2) in the domain Ω = (0, 1) for the data

y0(x) = sin (πx) , y1(x) = 0, 0 ≤ x ≤ 1,

and for the control time T = 2. An explicit solution of the problem is easily obtained
by using D’Alembert formula. Indeed, by considering the function

123

406 Journal of Optimization Theory and Applications (2023) 196:391–414

ỹ0(x) =
{
sin (πx) , −1 ≤ x ≤ 1
0, elsewhere,

the explicit exact state is given by

y(x, t) = 1

2

(
ỹ0(x − t) + ỹ0(x + t)

)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 2, (30)

and the exact control is

u(t) =
⎧
⎨

⎩

1
2 y

0 (1 − t) , 0 ≤ t ≤ 1

− 1
2 y

0 (t − 1) , 1 ≤ t ≤ 2.
(31)

Remark 4.1 We notice that the control given by (31) is the one of minimal L2-norm.
This is no longer true if the initial velocity y1 is different from zero (see [16], Section
4.1 for details).

The efficiency of the proposed PINN-based algorithm in approximating the solu-
tion to this problem is analyzed next. The generalization error in the control variable
Egener(u) := ‖u − û‖L2(0,T), L

2-relative error ‖u − û‖L2(0,T)/‖u‖L2(0,T), and total
training error Etrain := L

(
θ∗; TN

)
are computed for several values of the total number

N of training points and several architectures of the neural network. The effect of reg-
ularization, where the term λreg‖θ‖22 is added to the loss function (4), with λreg > 0,
is also studied.

Once the training process is finished and the optimal set of parameters θ∗ is obtained,
the PINN control û(t; θ∗) = ŷ

(
1, t; θ∗) is computed on a uniform mesh of size

h = 0.02 in the segment (1, t), 0 ≤ t ≤ 2. Both the generalization error and the
L2-relative error are then approximated by using the same mesh. The training points
are split into interior and boundary points as follows: for a given positive integer
N0, 3N0 points are located on the boundary and N 2

0 in the interior domain. Thus,
N = N 2

0 + 3N0.
Tables 1 and 2 collect simulation results for a multilayer neural network composed

of 4 hidden layers and 50 neurons in each layer. It is observed that both the gener-
alization error and the L2-relative error slowly decrease as the number of training
points increases. The comparison between Tables 1 and 2 shows that regularization
does not increase the level of accuracy. Table 3 displays simulation results for the
case of a single-layer architecture having the same number of neurons as in the multi-
layer neural network considered in Tables 1 and 2. It is observed that the single-layer
architecture provides slightly less accurate results.

Figure 4 shows the exact control (31) and the PINN control û
(
t; θ∗), and the error

between exact and PINN states.
The effect of increasing the depth (number of hidden layers) and width (number of

neurons for layer) of the neural network has been also tested. We have observed that
the level of accuracy in the solutions is not improved significantly. This is in agreement
with previous studies (see, e.g., [23]) that show that a relative small neural network is
able to approximate with accuracy of smooth solutions of PDEs.

123

Journal of Optimization Theory and Applications (2023) 196:391–414 407

Table 1 Experiment 1 (linear wave equation): No regularization. Number of training points N versus
generalization error Egener(u), L2- relative error and training error Etrain for a multilayer neural network
composed of 4 hidden layers and 50 neurons in each layer

N = 130 N = 700 N = 2650 N = 5850 N = 10300

Egener(u) 9.08 × 10−1 1.365 × 10−1 1.20 × 10−1 6.98 × 10−2 2.37 × 10−2

‖u−û‖L2(0,T)
‖u‖L2(0,T)

2.58 × 10−1 3.88 × 10−2 3.39 × 10−2 1.98 × 10−2 6.74 × 10−3

Etrain 4.72 × 10−7 4.68 × 10−6 2.16 × 10−6 4.40 × 10−6 3.86 × 10−6

Table 2 Experiment 1 (linear wave equation): Regularization with λreg = 10−7. Number of training points
N versus generalization error Egener(u), L2- relative error and training error Etrain for a multilayer neural
network composed of 4 hidden layers and 50 neurons in each layer

N = 130 N = 700 N = 2650 N = 5850 N = 10300

Egener(u) 1.09 × 100 1.44 × 10−1 1.20 × 10−1 9.48 × 10−2 6.51 × 10−2

‖u−û‖L2(0,T)
‖u‖L2(0,T)

3.11 × 10−1 4.10 × 10−2 2.08 × 10−2 2.69 × 10−2 1.85 × 10−2

Etrain 2.37 × 10−7 6.10 × 10−7 1.06 × 10−6 1.47 × 10−6 1.41 × 10−6

Table 3 Experiment 1 (linear wave equation): No regularization. Number of training points N versus
generalization error Egener(u), L2- relative error and training error Etrain for a single-layer neural network
composed of 200 neurons

N = 130 N = 700 N = 2650 N = 5850 N = 10300

Egener(u) 3.06 × 10−1 2.35 × 10−1 2.10 × 10−1 3.33 × 10−1 1.68 × 10−1

‖u−û‖L2(0,T)
‖u‖L2(0,T)

8.69 × 10−2 6.68 × 10−2 5.95 × 10−2 9.47 × 10−2 4.79 × 10−2

Etrain 6.95 × 10−5 2.73 × 10−4 5.72 × 10−4 1.39 × 10−3 4.23 × 10−4

Fig. 4 Experiment 1 (linearwave equation).Comparison between exact control u(t) andPINN (or predicted)
control û(t; θ∗) (left), and error between exact state and PINN state, i.e., y(x, t)− ŷ(x, t; θ∗) (right) Neural
network composed of 4 hidden layers and 50 neurons in each layer. No regularization. Number of training
points N = 10300

123

408 Journal of Optimization Theory and Applications (2023) 196:391–414

Fig. 5 Experiment 2 (linear heat equation). PINN (or predicted) state (left) and PINN control (right). Neural
network composed of 5 hidden layers and 100 neurons in each layer. Number of training points N = 10300

4.2 Experiment 2: Linear Heat Equation

In this experiment, we consider the heat system (7)–(8) for Ω = (0, 1)d and d =
1, 5, 10, and 20.
The One-Dimensional case For comparison purposes, the case d = 1 is addressed
next. The first mode of the Laplacian y0(x) = sin (πx), 0 < x < 1, is taken as
the initial condition. On x = 0, a zero Dirichlet boundary condition is imposed. The
control function acts on the extreme x = 1. In order to have a better control of the
diffusion, the Laplacian Δ is replaced by κΔ, with κ = 0.25. The control time is
T = 0.5. This experiment has been previously considered in [30, Subsection 5.1].
Figure 5 shows the predicted state (left) and control (right) obtained from the PINN
algorithm described in Sect. 2.2, and for a feedforward neural network composed
of 5 hidden layers and 100 neurons in each layer. The number of training points
is N = 10300. Once the training process is completed, the training error for the
controllability condition y(x, T) = 0, 0 < x < 1, which provides an approximation
of ‖y (·, T) ‖L2(Ω) is 1.17×10−5. It is observed in Fig. 6 that both the PINNcontrol and
state have a similar profile as in [30, Figures 2 and 4 (left)]. However, no oscillations
near the final time appear in the PINN control. This is not contradictory with the results
in [30] since it is well known that no uniqueness of null controls holds.
The Multi-dimensional Case In order to check the accuracy of the proposed method
in high dimensions, we consider the following control to the trajectory problem for
Ω = (0, 1)d and T = 1:

yt − Δy = 0, in QT := Ω × (0, T)

y(x, 0) = ‖x‖2
d , in Ω

y(x, t) = u(x, t) on ∂Ω × (0, T)

y(x, T) = ‖x‖2
d + 2 in Ω.

(32)

123

Journal of Optimization Theory and Applications (2023) 196:391–414 409

Table 4 Experiment 2 (linear heat equation): Dimension versus L2-relative error in the state variable and
training error Etrain. Multilayer neural network composed of 4 hidden layers and 50 neurons in each layer.
Number of training points N = 23000

dimension d 1 5 10 20

‖y−ŷ‖L2(Ω×(0,T))
‖y‖L2(Ω×(0,T))

9.6 × 10−4 1.45 × 10−3 2.86 × 10−3 3.2 × 10−2

Etrain 1.54 × 10−7 2.58 × 10−7 3.15 × 10−7 1.26 × 10−7

This problem has an explicit solution [28], which is given by y(x, t) = ‖x‖2
d + 2t ,

x ∈ Ω . The control function is obtained as the trace of y on ∂Ω . Table 4 displays
simulation results for L2- relative error in the state variable and training error. It is
observed that even for high dimensions the relative error in the state variable is very
low. Accuracy is similar to the one obtained for forward PDEs via PINNs [28].

4.3 Experiment 3: A SemilinearWave Equation

Next, we consider a nonlinear situation, precisely the case of a semilinear wave equa-
tion. Positive results on the exact controllability for semilinear wave equations have
been obtained, among others, in [31, 44, 45].

In this experiment, the following null controllability problem for a semilinear wave
equation is considered:

ytt − yxx = 4y2, in (0, 1) × (0, 2)
y(x, 0) = 1.5 sin (3πx) , in (0, 1)
yt (x, 0) = x2 in (0, 1)
y(0, t) = 0, on (0, 2)
y(1, t) = u(t) on (0, 2) ,

y(x, 2) = yt (x, 2) = 0 in (0, 1) .

(33)

This problem has been previously studied in [8, Subsection 4.2.1].
The proposed PINN-based algorithm has been tested for different neural network

architectures and number of training points. Table 5 collects the simulation results for
all contributions in training error as in (16). Recall that Etrain, int is the training error
associated with the residual of the PDE, Etrain, boundary corresponds to the boundary
condition at x = 0, Etrain, initialpos and Etrain, initialvel are, respectively, the training errors
for initial position and velocity, and finally, Etrain, finalpos and Etrain, initialvel are the train-
ing errors for the controllability condition at the control time T = 2. It is observed
in Table 5 that increasing the number of training points does not reduce significantly
training errors. This is in accordance with previous studies (see, e.g., numerical exper-
iments in [27]). Recall that the training error includes the optimization error due to
the gradient-based descent algorithms used for minimization of the highly nonconvex
loss function (4) for which we have no information.

Figure 6 displays numerical simulation results obtained for a multilayer neural
network composed of 5 hidden layers and 100 neurons in each layer. For this particular

123

410 Journal of Optimization Theory and Applications (2023) 196:391–414

Table 5 Experiment 3 (semilinear wave equation): Training error versus number of training points N for a
neural network composed of 5 hidden layers and 100 neurons per layer

N = 700 N = 2650 N = 5850 N = 10300

Etrain, int 4.6 × 10−5 5.67 × 10−5 3.74 × 10−5 6.36 × 10−5

Etrain, boundary 6.0 × 10−5 7.05 × 10−5 5.76 × 10−5 9.12 × 10−5

Etrain, initialpos 1.05 × 10−4 1.05 × 10−4 8.44 × 10−5 1.22 × 10−4

Etrain, initialvel 5.08 × 10−2 5.08 × 10−2 5.0 × 10−2 5.0 × 10−2

Etrain, finalpos 3.01 × 10−6 3.87 × 10−6 2.18 × 10−7 4.02 × 10−7

Etrain, initialvel 1.47 × 10−5 2.17 × 10−5 3.27 × 10−5 6.43 × 10−5

Fig. 6 Experiment 3 (semilinear wave equation). PINN (or predicted) state ŷ(x, t; θ∗) (left) and PINN
control û(t; θ∗) (right). Neural network composed of 5 hidden layers and 100 neurons in each layer.
Number of training points N = 5850

example, no explicit solution is known so that it is not possible to check the accuracy of
the method. In addition, as it was mentioned in the preceding experiment, the control
is not unique. Nonetheless, comparison between Figs. 6 and 2 in [8] shows that the
results are very similar.

5 Conclusions

Even though highly accurate methods are available for approximating numerically
a wide range of controllability problems for PDEs, the applicability of these meth-
ods to high-dimensional problems is questionable due to the well-known curse of
dimensionality phenomenon.

The present paper provides a first attempt to overcome this difficulty. It relies on the
use of modern deep-learning-based methods, in particular on the so-called physics-
informed neural networks. More precisely, a PINNs-based method has been proposed
for the numerical approximation of controllability problems for PDEs both linear and

123

Journal of Optimization Theory and Applications (2023) 196:391–414 411

nonlinear. The problem is formulated as theminimization, in the sense of least squares,
of a loss function that accounts for the residual of the PDE and its initial, boundary,
and final conditions. The main novelties here with respect to more classical numerical
methods in control of PDEs are as follows: (i) a feedforward neural network is used for
approximating both the state and the control variables, and (ii) themethod ismesh-free.
In addition, it is important to emphasize that although deep-learning-based methods
have found great success in many applications, no theoretical results have appeared in
the literature in this field so far. In this respect, estimates for the generalization error
(in both control and state variables) in terms of training and quadrature errors have
been obtained in this paper. It is also proved that the training error vanishes as the size
of the neural network and the number of training points go to infinity. An important
feature of these theoretical results is that they apply to any controllability problem for
a linear PDE and in any dimension and so PINNs qualify as a promising tool to deal
with high-dimensional problems.

The accuracy in our numerical experiments is similar to the one obtained by using
the PINN algorithm [34] for solving forward problems for PDEs. This is not surprising
since the proposed method is a PINN-based algorithm for solving PDEs where final
conditions are added to the picture and the control is obtained as the trace of the
solution of the PDE.

There are many interesting questions that remain open. Some of them are:

– Since the constants that appear in our estimates on generalization error are based on
energy and observability inequalities, they depend on the spatial dimension d. To
what extent these estimates break the curse of dimensionality is a very interesting
open problem.

– Although it was proved that training error converges to zero as the size of network
and the number of the training points increase, up to the best knowledge of the
authors, estimating training error is also a very challenging open problem. It is
clear that training errors can be estimated a posteriori. Nonetheless, a posteriori
estimates of training errors are, in general, not sharp as the training error incorpo-
rates errors due to the numerical approximation of highly nonconvex optimization
problems whose solutions get stuck in local minima. This issue has been observed
in our numerical experiments where increasing the size of the neural network and
the number of training points produces a very slow decreasing of the training error.

– Proving error estimates for generalization error in the case of controllability prob-
lems for nonlinear PDEs andother types of control actions (e.g., distributed control)
are also interesting open problems.

Reproducibility

The implementation of the numerical experiments presented in Sect. 4 has been per-
formed with the user-friendly Python library DeepXDE [23], which is available at
https://github.com/lululxvi/deepxde. Python scripts for the three experiments can be
downloaded from https://github.com/fperiago/deepcontrol.

123

https://github.com/lululxvi/deepxde
https://github.com/fperiago/deepcontrol

412 Journal of Optimization Theory and Applications (2023) 196:391–414

Acknowledgements This research was supported by Fundación Séneca (Agencia de Ciencia y Tecnología
de la Región de Murcia (Spain)) under contract 20911/PI/18 and grant number 21503/EE/21 (mobility
program Jiménez de la Espada). F. Periago acknowledges the hospitality of the Mathematics Department
at University of California, Santa Barbara, where part of this work was carried out. The authors also thank
professor Lu Lu for very fruitful comments on the use of DeepXDE.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bárcenas-Petisco, J.A.: Optimal control for neural ode in a long time horizon and applications
to the classification and simultaneous controllability problems. https://hal.archives-ouvertes.fr/hal-
03299270/ (2022)

2. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in Machine
Learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

3. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabi-
lization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

4. Beck, C., Martin, H., Jentzen, A., Benno, K.: An overview on deep learning-based approximation
methods for partial differential equations. arXiv:2012.12348 (2021)

5. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving the Kolmogorov PDE by means of
deep learning. J. Sci. Comput. 88(3), 1–28 (2021)

6. Blechschmidt, J., Ernst, O.G.: Threeways to solve partial differential equationswith neural networks—
a review. GAMM-Mitt 44(2), 1–29 (2021)

7. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimiza-
tion. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

8. Cavalcanti,M.,Cavalcanti,V.D.,Rosier,C.,Rosier, L.:Numerical control of a semilinearwave equation
on an interval. In: Auriol, J., Deutscher, J., Mazanti, G., Valmorbida, G. (eds.) Advances in Distributed
Parameter Systems, pp. 69–89. Springer, Cham (2022)

9. Cuchiero, C., Larsson, M., Teichmann, J.: Deep neural networks, generic universal interpolation, and
controlled ODEs. SIAM J. Math. Data Sci. 2(3), 901–919 (2020)

10. Castro, C., Micu, S.: Boundary controllability of a linear semi-discrete 1-D wave equation derived
from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

11. Ervedoza, S., Zuazua, E.: Numerical Approximation of Exact Controls for Waves. Springer Briefs in
Mathematics, vol. 38. Springer, Berlin (2013)

12. Esteve, C., Geshkovski, B., Pighin, D., Zuazua, E.: Large-time asymptotics in deep learning.
arXiv:2008.02491 (2021)

13. Esteve-Yagüe, C., Geshkovski, B.: Sparse approximation in learning via neural odes. arXiv:2102.13566
(2021)

14. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks.
AISTATS (2010)

15. Glowinski, R., Li, C., Lions, J.L.: A numerical approach to the exact boundary controllability of the
wave equation (I). Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7, 1–76
(1990)

16. Gugat,M.:Optimal boundary control and boundary stabilization of hyperbolic systems. SpringerBriefs
in Control, Automation and Robotics. Springer (2015)

123

http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr/hal-03299270/
https://hal.archives-ouvertes.fr/hal-03299270/
http://arxiv.org/abs/2012.12348
http://arxiv.org/abs/2008.02491
http://arxiv.org/abs/2102.13566

Journal of Optimization Theory and Applications (2023) 196:391–414 413

17. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. PANS 115(34), 8505–8510 (2018)

18. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal
covariate shift. PMLR 37, 448–456 (2015)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference
on Learning Representations (2015)

20. Lazar, M., Zuazua, E.: Greedy controllability of finite dimensional linear systems. Automatica 74,
327–340 (2016)

21. Lebeau, G., Robbiano, L.: Contrôle exact de L’equation de la chaleur. Commun. Partial Differ. Equ.
20(1–2), 335–356 (1995)

22. Lions, J.L.: Controllabilité exacte, perturbations et stabilization de systémes distribués, vol. I. Masson,
Paris (1988)

23. Lu, L.,Meng, X.,Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential
equations. SIAM Rev. 63(1), 208–228 (2021)

24. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dynamics. J. Comput.
Phys. 410, 109339 (2020)

25. Marín, F.J., Martínez-Frutos, J., Periago, F.: Robust averaged control of vibrations for the Bernoulli–
Euler beam equation. J. Optim. Theory Appl. 174(2), 428–454 (2017)

26. Martínez-Frutos, J., Periago, F.: Optimal control of PDEs under uncertainty. An introduction with
application to optimal shape design of structures. Springer Briefs in Mathematics. BCAM Springer
Briefs. Springer (2018)

27. Mishra, S., Molinaro, R.: Estimates on generalization error of physics-informed neural networks for
approximating a class of inverse problems for PDEs. IMA J. Numer. Anal. 00, 1–42 (2021)

28. Mishra, S., Molinaro, R.: Estimates on generalization error of physics-informed neural networks for
approximating PDEs. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drab093

29. Münch, A.: A uniformly controllable and implicit scheme for the 1-D wave equation. Math. Model.
Numer. Anal. 39(2), 377–418 (2006)

30. Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least squares
and variational approach. Eur.J. Appl. Math. 25(3), 277–306 (2014)

31. Münch, A., Trélat, E.: Constructive exact control of semilinear 1D wave equations by a least-squares
approach. SIAM J. Control Optim. 60(2), 652–673 (2022)

32. Pedregal, P., Periago, F., Villena, J.: A numerical method of local energy decay for the boundary
controllability of time-reversible distributed parameter systems. Stud. Appl. Math. 121(1), 27–47
(2008)

33. Pinkus, A.: Approximation theory of theMLPmodel in neural networks. Stud. ActaNumer. 8, 143–195
(1999)

34. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019)

35. Ruiz-Balet, D., Zuazua, E.: Neural ode control for classification, approximation and transport.
arXiv:2104.05278 (2021)

36. Ruiz-Balet, D., Affili, E., Zuazua, E.: Interpolation and approximation via momentum resnets and
neural odes. Syst. Control Lett. 162, 105182 (2022)

37. Russell, D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential
equations. Stud. Appl. Math. LI I(3), 189–211 (1973)

38. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks
for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28(5), 2042–2074
(2020)

39. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7(4), 784–802 (1967)

40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

41. Weinan, E., Yu, B.: The deep Riesz method: a deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat. 6, 1–12 (2018)

42. Weinan, E., Chao, M., Wojtowytsch, S., Lei, W.: Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t. CSIAM Trans. Appl. Math. 1(4),
561–615 (2020)

123

https://doi.org/10.1093/imanum/drab093
http://arxiv.org/abs/2104.05278

414 Journal of Optimization Theory and Applications (2023) 196:391–414

43. Zhang, D., Lu, L., Guo, L., Karniadakis, G.E.: Quantifying total uncertainty in physics-informed neural
networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108850 (2019)

44. Zuazua, E.: Exact controllability for the semilinear wave equation. J. Math. Pures Appl. 69(9), 1–31
(1990)

45. Zuazua, E.: Exact boundary controllability for the semilinear wave equation. In: Nonlinear partial
Differential Equations and Their Applications. Vol. 220 of Pitman Res. Notes Math. Ser., Longman
Sci. Tech., Harlow, 357–391 (1991)

46. Zuazua, E.: Propagation, observation, control and numerical approximation of waves approximated by
finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

47. Zuazua, E.: Averaged control. Automatica 50, 3077–3087 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Control of Partial Differential Equations via Physics-Informed Neural Networks
	Abstract
	1 Introduction
	2 Problem Setup and Description of the PINNs Algorithm
	2.1 Wave Equation
	2.2 Heat Equation
	2.3 Extension to General Evolution PDE Systems

	3 Estimates on Generalization Error
	3.1 Error Estimates for Quadrature Rules
	3.2 Wave Equation
	3.3 Extension to Other PDE Systems and Neural Network Architectures

	4 Numerical Experiments
	4.1 Experiment 1: Linear Wave Equation
	4.2 Experiment 2: Linear Heat Equation
	4.3 Experiment 3: A Semilinear Wave Equation

	5 Conclusions
	Reproducibility
	Acknowledgements
	References

