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Abstract
The alternating direction method of multipliers (ADMM) is a powerful splitting algo-
rithm for linearly constrained convex optimization problems. In view of its popularity
and applicability, a growing attention is drawn toward the ADMM in nonconvex
settings. Recent studies of minimization problems for nonconvex functions include
various combinations of assumptions on the objective function including, in particular,
a Lipschitz gradient assumption. We consider the case where the objective is the sum
of a strongly convex function and a weakly convex function. To this end, we present
and study an adaptive version of the ADMM which incorporates generalized notions
of convexity and penalty parameters adapted to the convexity constants of the func-
tions.We prove convergence of the scheme under natural assumptions. To this end, we
employ the recent adaptive Douglas–Rachford algorithm by revisiting the well-known
duality relation between the classical ADMM and the Douglas–Rachford splitting
algorithm, generalizing this connection to our setting. We illustrate our approach by
relating and comparing to alternatives, and by numerical experiments on a signal
denoising problem.
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1 Introduction

By now, the alternating direction method of multipliers (ADMM) is a well-studied and
applied splitting algorithm. In particular, it is applied to the problem

min f (x) + g(z)
s.t. Mx = z,

x ∈ R
n, z ∈ R

m;
(P)

where f : R
n → ] − ∞,+∞] and g : R

m → ] − ∞,+∞] are proper, lower
semicontinuous and convex functions, and M ∈ R

m×n . The ADMM can be traced
back to 1975 in the studies of Glowinski and Marroco [26], and of Gabay and Mercier
[23]. It was revisited in the early 1980s in [21, 22]. The ADMM has been successfully
applied to a wide range of statistical and learning problems such as sparse regression,
signal and image processing, and support vectormachines, to name a few.An extensive
survey on the ADMM and its applications can be found in [10].

The ADMM can be viewed as an enhanced version of the method of multipliers
in the case where the objective function is separable. The augmented Lagrangian
associated with (P) is the function

Lγ (x, z, y) = f (x) + g(z) + 〈y, Mx − z〉 + γ

2
‖Mx − z‖2, (1)

where γ ≥ 0 is the penalty parameter and y ∈ R
m is the Lagrange multiplier.

By employing the method of multipliers, one solves (P) by iteratively minimizing
Lγ (x, z, y) over the (primal) variables x and z while updating the Lagrange multiplier
y (the dual variable). However, this requires to minimize the Lagrangian jointly in x
and z. In order to avoid this situation, the ADMM takes advantage of the separability
of the objective function and splits the minimization procedure into two separate
steps, one for each variable. Specifically, by fixing a positive penalty parameter γ , the
iterative step of the ADDM for solving (P) is

xk+1 = argmin
x∈Rn

Lγ (x, zk, yk), (2a)

zk+1 = argmin
z∈Rm

Lγ (xk+1, z, yk), (2b)

yk+1 = yk + γ (Mxk+1 − zk+1). (2c)

Convergence of this scheme is well established in the case where f and g are convex,
see, e.g., [10, § 3.2]. In nonconvex cases, it has been studied, e.g., [28, 30, 41, 42],
under various combinations of assumptions which include, in particular, a Lipschitz
continuity assumption on the gradient of f and/or g.

In the present study, we consider the case where f is strongly convex and g is
weakly convex such that the objective of (P) is convex on the constraint. We intro-
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duce an adaptive alternating direction method of multipliers (aADMM) for which we
incorporate a flexible range of penalty parameters adapted to the convexity constants
of the functions f and g. To this end, we revisit the well-known relation between the
classical ADMM and the Douglas–Rachford (DR) splitting algorithm [18, 31]. This
duality relation was first observed in [22, § 5.1] and later revisited by other authors,
see, e.g., [1, Appendix A] or [6, Remark 3.14]. A more detailed discussion regarding
the ADMM is available in [20] while [34] is a recent survey on equivalences and other
relations between splitting algorithms. We provide an analogous relation between our
aADMM and the recent adaptive Douglas–Rachford (aDR) algorithm [3, 16]. We
then employ this relation in order to derive convergence of our aADMM from the
convergence of the aDR.

We point out (see Remark 4.1) that in our strongly-weakly convex setting, the func-
tions f and g in problem (P) can be augmented into convex functions which transform
the problem into a convex one, admissible for the classical ADMM, with the same
minimizers, optimal values and computational difficulty level. However, the ADMM
for the augmented problem corresponds to aDouglas–Rachford algorithmwhich is not
in direct duality relations with the original strongly-weakly problem. Consequently,
this theoretical aspect is lacking. Instead, we preserve and analyze the original prob-
lem. Our approach does yield a natural duality relation with a corresponding aDR
algorithm which is instrumental in our convergence analysis. An additional benefit
of our approach is that we relax and improve previously imposed assumptions on
the strongly-weakly convex scenario such as in [33, 44] (see Remarks 5.1 and 5.2).
Finally, although augmentation is a viable option in the strongly-weakly convex set-
ting, application of the adaptive algorithms to the original problem has its own merit
and by now was studied in a number of recent publications such as [2, 3, 16, 17, 25,
27, 32, 44, 45], to name a few.

Our main result is Theorem 5.1, where we provide convergence of the aADMM.
Moreover, in order to show how our framework generalizes and relaxes the framework
of the classical convexADMM,we incorporate in our convergence analysis the relaxed
assumptions regarding the convexity of f and g while not imposing further on top
of the traditional constraint qualifications of the ADMM. To this end, we revisit and
incorporate in our analysis some of the most commonly imposed assumptions and
conditions on the classical ADMM. For the sake of accessibility and convenience, we
summarize and unify our analysiswith these classical conditions into an integrated tool
in Corollary 5.1 for the aADMM and, in particular, in Corollary 5.2 for the classical
ADMM.

Finally, we illustrate computational aspects of both approaches (our aADMM and
the classical ADMM on an equivalent modified problem) by numerical experiments
on a signal denoising problem with a weakly convex regularization term.

The remainder of the paper is organized as follows. In Sect. 2, we recall basic defini-
tions and preliminary results. In Sect. 3, we recall notions of generalized monotonicity
and the convergence of the adaptive Douglas–Rachford algorithm. In Sect. 4, we intro-
duce our adaptive ADMM, we analyze some of its basic properties and we discuss
conditions and constraint qualifications. The convergence of the scheme is established
in Sect. 5. In Sect. 6, we conduct numerical experiments on a signal denoising prob-
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lem with a weakly convex regularization term. Finally, we conclude our discussion in
Sect. 7.

2 Preliminaries

Throughout, 〈·, ·〉 denotes the inner product in R
n with induced norm ‖ · ‖ defined by

‖x‖ = √〈x, x〉, x ∈ R
n .We setR+ := {r ∈ R : r ≥ 0} andR++ := {r ∈ R : r > 0}.

Let M ∈ R
m×n . Then ran M , ker M and ‖M‖ denote, respectively, the range, the null

space and the matrix 2-norm of M . Let C ⊆ Rn be a set. The closure, the interior
and the relative interior of C are denoted by clC , int C and riC , respectively. We
denote by A : R

n ⇒ R
n a set-valued operator that maps any point x ∈ R

n to a set
A(x) ⊆ R

n . In the case where A is single-valued, we write A : R
n → R

n . The graph,
the domain, the range, the set of fixed points and the set of zeros of A, are denoted,
respectively, by gra A, dom A, ran A, Fix A and zer A, i.e.,

gra A := {
(x, u) ∈ R

n × R
n : u ∈ A(x)

}
, dom A := {

x ∈ R
n : A(x) �= ∅}

,

ran A := {
x ∈ R

n : x ∈ A(z) for some z ∈ R
n}

,

Fix A := {
x ∈ R

n : x ∈ A(x)
}

and zer A := {
x ∈ R

n : 0 ∈ A(x)
}
.

The inverse of A, denoted by A−1, is the operator defined via its graph by gra A−1 :=
{(u, x) ∈ R

n × R
n : u ∈ A(x)}. We denote the identity mapping by Id. The resolvent

of the operator A : R
n ⇒ R

n with parameter γ > 0 is the operator Jγ A defined by

Jγ A := (Id+γ A)−1.

The λ-relaxed resolvent of A with parameter γ > 0 is the operator Jλ
γ A defined by

Jλ
γ A := (1 − λ) Id+λJγ A.

Definition 2.1 Let D ⊆ R
n be a nonempty set. The mapping T : D → R

n is said to
be

(i) Lipschitz continuous with Lipschitz constant l > 0 if

‖T (x) − T (y)‖ ≤ l‖x − y‖, ∀x, y ∈ D;

(ii) nonexpansive if it is Lipschitz continuous with constant l = 1;
(iii) conically θ -averaged, where θ > 0, if there exists a nonexpansive mapping

R : D → R
n such that

T = (1 − θ)I + θ R.

Conically θ -averaged mappings were studied in [8], in which they were referred to as
conically nonexpansive mappings. They can be viewed as a natural extension of the
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classical θ -averaged mappings (see, e.g., [5, Definition 4.33]). Additional properties
and detailed discussions can be found in [3, 25].

An extended real-valued function f : R
n → ] − ∞,+∞] is said to be proper if

its (effective) domain, the set dom f := {x ∈ R
n : f (x) < +∞}, is nonempty. We

say that f is lower semicontinuous (l.s.c.) if, at any x̄ ∈ R
n ,

f (x̄) ≤ lim inf
x→x̄

f (x).

Let α ∈ R. We say that f is α-convex if f − α
2 ‖ · ‖2 is convex, equivalently, if

f ((1 − λ)x + λy) ≤ λ f (x) + (1 − λ) f (y) − α

2
λ(1 − λ)‖x − y‖2, ∀x, y ∈ R

n, λ ∈ [0, 1].

In particular, f is convex if and only if f is 0-convex. For an α-convex function f ,
we say that f is strongly convex if α > 0 and we say that f is weakly convex (or
hypoconvex) if α < 0. It follows that if f1 is α1-convex and f2 is α2-convex, then
f1 + f2 is (α1 + α2)-convex.
The function f is coercive if

lim‖x‖→∞ f (x) = +∞

and supercoercive if

lim‖x‖→∞
f (x)

‖x‖ = +∞.

One can verify that (see, e.g., [5, Corollary 11.17])

strong convexity �⇒ supercoercivity �⇒ coercivity.

Let γ > 0. The proximal operator with parameter γ associated with the function
f is defined by

proxγ f : R
n ⇒ R

n : y �→ argmin
x∈Rn

{
f (x) + 1

2γ
‖x − y‖2

}
, ∀y ∈ R

n .

Let x ∈ dom f . The (convex) subdifferential of f at x is the set

∂ f (x) := {u ∈ R
n : 〈y − x, u〉 + f (x) ≤ f (y), ∀y ∈ R

n}.

The Fréchet subdifferential of f at x is the set

∂̂ f (x) :=
⎧
⎨

⎩
u ∈ R

n : lim inf
y→x
y �=x

f (y) − f (x) − 〈u, y − x〉
‖y − x‖ ≥ 0

⎫
⎬

⎭
.
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When f is differentiable at x , we denote its gradient at x by ∇ f (x). We recall the
following facts regarding subdifferentials and gradients.

Fact 2.1 Let f , g : R
n → ] − ∞,+∞] be proper and let M ∈ R

n×m.

(i) ∂ f (x) ⊆ ∂̂ f (x) for all x ∈ dom f .
(ii) If f is convex, then ∂̂ f (x) = ∂ f (x) for all x ∈ dom f .

(iii) If f is differentiable at x ∈ dom f , then ∂̂ f (x) = {∇ f (x)}.
(iv) 0 ∈ ∂ f (x̄) if and only if x̄ ∈ dom f minimizes f over R

n.
(v) 0 ∈ ∂̂ f (x̄) if f attains a local minimum at x̄ ∈ dom f .

(vi) If g is differentiable at x ∈ dom f ∩dom g, then ∂̂( f +g)(x) = ∂̂ f (x)+∇g(x).
(vii) If f and g are lower semicontinuous, then

∂̂ f (x) + ∂̂g(x) ⊆ ∂̂( f + g)(x) for all x ∈ dom f ∩ dom g.

(viii) If f is lower semicontinuous, then

MT ∂̂ f (Mx) ⊆ ∂̂( f ◦ M)(x) for all x ∈ R
m such that Mx ∈ dom f .

Proof (i): See, e.g., [36, Proposition 8.6]. (ii): See, e.g., [36, Proposition 8.12]. (iii):
See, e.g., [29, Proposition 1.1]. (iv): See, e.g., [5, Theorem 16.3]. (v): See, e.g., [29,
Proposition 1.10]. (vi): See, e.g., [29, Corollary 1.12.2]. (vii): See, e.g., [36, Corollary
10.9]. (viii): See, e.g, [36, Theorem 10.6]. ��

In order to carry out our analysis, we adopt the Fréchet subdifferential. However,
our approach is applicable if one adopts other notions of the subdifferentials, such
as the Mordukhovich subdifferential or the Clarke-Rockafellar subdifferential since
these notions coincide for α-convex functions (see [8, Proposition 6.3]).

Finally, let f , g : R
n → ] − ∞,+∞] be proper and convex. We recall that the

recession function of f is defined by

rec f : R
n → ] − ∞,+∞] : y �→ sup

x∈dom f
{ f (x + y) − f (x)},

the Fenchel conjugate of f is defined by

f ∗ : R
n → ] − ∞,+∞] : u �→ sup

x∈Rn
{〈u, x〉 − f (x)},

and the infimal convolution of f and g is defined by

f �g : R
n → [ − ∞,+∞] : x �→ inf

y∈Rn
{ f (y) + g(x − y)}.

3 GeneralizedMonotonicity and the Adaptive Douglas–Rachford
Algorithm

We recall the following notions of generalized monotonicity.
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Definition 3.1 Let A : R
n ⇒ R

n and let α ∈ R. Then A is said to be

(i) α-monotone if

〈x − y, u − v〉 ≥ α‖x − y‖2, ∀(x, u), (y, v) ∈ gra A;

(ii) α-comonotone if A−1 is α-monotone, i.e.,

〈x − y, u − v〉 ≥ α‖u − v‖2, ∀(x, u), (y, v) ∈ gra A.

An α-monotone (resp. α-comonotone) operator A is said to be maximally α-monotone
(resp. maximally α-comonotone) if there is no α-monotone (resp. α-comonotone)
operator B : R

n ⇒ R
n such that gra A is properly contained in gra B.

Remark 3.1 We note that in the case where α = 0 in Definition 3.1, both 0-
monotonicity and 0-comonotonicity simply mean monotonicity (see, for example,
[5, Definition 20.1]). In the case where α > 0, α-monotonicity is also referred to as
strong monotonicity (see, e.g., [5, Definition 22.1(iv)]) and α-comonotonicity is also
referred to as cocoercivity (see, e.g., [5, Definition 4.10(iv)]). In the case where α < 0,
α-monotonicity is also referred to as hypomonotonicity (or weak monotonicity) and
α-comonotonicity is also referred to as cohypomonotonicity (see, e.g, [13, Definition
2.2]).

Fact 3.1 (maximal monotonicity of the subdifferential) Let α ∈ R and suppose that
f : R

n →] − ∞,+∞] is α-convex. Then the Fréchet subdifferential of f , ∂̂ f : R
n ⇒

R
n, is maximally α-monotone.

Proof See, e.g., [16, Lemma 5.2]. ��
We recall that under certain assumptions on the monotonicity parameters, the resol-

vents of comonotone operators are conically averaged.

Fact 3.2 (resolvents of comonotone operators) Let α ∈ R and set γ > 0 such that
γ > −α. If A : R

n ⇒ R
n is α-comonotone, then

(i) Jγ A is single-valued and conically γ
2(γ+α)

-averaged;
(ii) dom Jγ A = R

n if and only if A is maximally α-comonotone.

Proof See [3, Propositions 3.7 and 3.8(i)] and [8, Proposition 3.7(v)&(vi)]. ��
Fact 3.3 (maximal comonotonicity) Let α ∈ R and A : R

n ⇒ R
n. The following hold.

(i) A is maximally α-comonotone ⇐⇒ A−1 is maximally α-monotone.
(ii) Suppose that α ≥ 0. Then

A is maximally α-comonotone ⇐⇒ A is α-comonotone
and maximally monotone.

Proof (i): Follows directly from Definition 3.1. (ii): Apply [16, Proposition 3.5(i)] to
the operator A−1 (alternatively, see [3, Proposition 3.2(ii)]). ��
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Lemma 3.1 (Closedness of graph) Let α ∈ R and let A : R
n ⇒ R

n be maximally
α-comonotone. Then gra A is closed.

Proof Let (xk, uk)
∞
k=0 ⊆ gra A such that (xk, uk) → (x, u) ∈ R

n × R
n . By employ-

ing Fact 3.3(i), we see that A−1 is maximally α-monotone, which is equivalent
to B := A−1 − α Id being maximally monotone. Consequently, gra B is closed
(see, for example, [5, Proposition 20.38]). Since (uk, xk − αuk)

∞
k=0 ⊆ gra B and

(uk, xk −αuk) → (u, x −αu), we conclude that (u, x −αu) ∈ gra B, which, in turn,
implies that (x, u) ∈ gra A. ��

We conclude this section by recalling the convergence of the adaptive Douglas–
Rachford (aDR) algorithm for maximally comonotone operators. The aDR can be
viewed as an extension of the classical Douglas–Rachford splitting algorithm [18,
31], originally utilized to find a zero of the sum of two maximally monotone operators
by employing their resolvents. The aDR algorithm was recently presented and studied
in [16] in order to find a zero of the sum of a strongly monotone operator and a
weakly monotone operator. This analysis was later extended in [3] to include, in
particular, the case of a strongly comonotone operator and a weakly comonotone
operator. Convergence results for the shadow sequence of the aDR (i.e., the image
of the aDR sequence under the resolvent) in infinite-dimensional spaces have been
recently provided in [2]. We recall the following fact regarding the convergence of the
aDR for comonotone operators.

Fact 3.4 (aDR for comonotone operators) Let α, β ∈ R be such that α + β ≥ 0.
Let A : R

n ⇒ R
n be a maximally α-comonotone operator and let B : R

n ⇒ R
n

be a maximally β-comonotone operator such that zer(A + B) �= ∅. Suppose that
(γ, δ) ∈ R

2++ satisfy

0 < γ + 2α = δ, if α + β = 0, (3a)

or (γ + δ)2 < 4(γ + α)(δ + β), if α + β > 0; (3b)

and set (λ, μ) ∈ R
2++ by

(λ − 1)(μ − 1) = 1 and δ = (λ − 1)γ. (4)

Set further κ ∈ ]0, κ[ where

κ :=
⎧
⎨

⎩

1, if α + β = 0;
4(γ + α)(δ + β) − (γ + δ)2

2(γ + δ)(α + β)
, if α + β > 0.

(5)

Finally, set x0 ∈ R
n and let (xk)

∞
k=0 be generated by the recurrence

xk+1 = TaDR(xk) := (1 − κ)xk + κ Jλ
γ A Jμ

δB(xk), k = 0, 1, 2, . . . . (6)

Then
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(i) xk → x
 ∈ Fix TaDR and JδB(x
) ∈ zer(A + B);
(ii) JδB(xk) → JδB(x
) ∈ zer(A + B);

(iii) JδB(xk) − Jγ A Jμ
δB(xk) → 0.

Proof We note that (3) implies that α + γ > 0 and δ + β > 0. In view of Fact 3.2,
Jγ A and JδB are single-valued with full domain and, consequently, the iteration in (6)
is well defined. By [3, Theorem 5.4], we arrive at

xk → x
 ∈ Fix TaDR and xk − TaDR(xk) → 0

which, combined with [16, Lemma 4.1], implies (i) and (iii). Finally, by invoking
Fact 3.2(i) we see that JδB is conically averaged. This implies that JδB is Lipschitz
continuous and, consequently, (ii) follows from (i). ��

4 Adaptive ADMM

The adaptive alternating direction method of multipliers requires natural generalized
convexity assumptions as well as traditional assumptions on (P). We divide these
conditions and constraint qualifications into three categories: generalized convexity
assumptions, existence of solutions for (P) and existence and well posedness of our
iterative steps. Compared with the traditional framework of the classical ADMM, we
show that our settings are more general and admit a wider class of functions within the
first categorywhilemaintaining traditional assumptions and constraint qualifications in
the second and third categories. To this end, we recollect the most common and widely
imposed conditions on the classical ADMM as well as equivalences and relations
between them. We divide our discussion into the following subsections: convexity
qualifications, critical points and minimizes, introduction of the aADMM, constraint
qualifications and related conditions for existence of our iterative steps.

4.1 Convexity Assumptions

One of the underlying assumptions for the classical ADMM is that the functions f
and g in (P) are proper, lower semicontinuous and convex. We adapt to a wider class
of functions via the following natural assumption.

Assumption 4.1 Let M ∈ R
m×n be a nonzero matrix. We assume that the function

f : R
n →]−∞,+∞] is proper, lower semicontinuous and α-convex, and g : R

m →
] − ∞,+∞] is proper, lower semicontinuous and β-convex where α, β ∈ R are
parameters such that

α ≥ 0 and α + β‖M‖2 ≥ 0.

In order to characterize the solutions of (P) under Assumption 4.1, we will employ
the following lemma.
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Lemma 4.1 Let M ∈ R
m×n. Suppose that g : R

m →] − ∞,+∞] is a β-convex
function where β < 0. Then g ◦ M is β‖M‖2-convex.

Proof Let x, y ∈ R
n and λ ∈ [0, 1]. Then the β-convexity of g implies that

(g ◦ M)
(
(1 − λ)x + λy

) = g
(
(1 − λ)Mx + λMy

)

≤ (1 − λ)g(Mx) + λg(My)

− β

2
λ(1 − λ)‖Mx − My‖2

≤ (1 − λ)(g ◦ M)(x) + λ(g ◦ M)(y)

−
(β

2
‖M‖2

)
λ(1 − λ)‖x − y‖2,

i.e., g ◦ M is β‖M‖2-convex. ��
Lemma 4.2 Let Assumption 4.1 hold. Then (x
, z
) is a solution of (P) if and only if

Mx
 = z
 and 0 ∈ ∂( f + g ◦ M)(x
).

Proof We note that (P) is equivalent to the unconstrained optimization problem of
minimizing f + g ◦ M over R

n . We claim that f + g ◦ M is a convex function. Indeed,
under Assumption 4.1, if β ≥ 0, then f as well as g are convex and so is f + g ◦ M .
If β < 0, then Lemma 4.1 implies that g ◦ M is β‖M‖2-convex. Consequently, we
see that f + g ◦ M is (α + β‖M‖2)-convex. In particular, f + g ◦ M is convex since
α+β‖M‖2 ≥ 0. Finally, by recalling Fact 2.1(iv), we conclude that the minimizers of
(P) are characterized by the first-order optimality condition 0 ∈ ∂( f + g ◦ M)(x
).��
Remark 4.1 (on strongly-weakly convex settings) Under Assumption 4.1, problem (P)
can be referred to as a strongly-weakly convex problem, see, e.g., [16, 27]. Splitting
methods for this problem require computability of subdifferentials and their resolvents.
We observe that by setting

f̃ := f + β

2
‖M(·)‖2 and g̃ := g − β

2
‖ · ‖2,

(P) is equivalent to

min
(

f̃ (x) + g̃(z)
)

s.t. Mx = z. (P̂)

UnderAssumption 4.1, both f̃ and g̃ are convex. Indeed, a straightforward verification
implies that g̃ is convex. Furthermore, if β ≥ 0, then f̃ is convex because f and
β
2 ‖M(·)‖2 are convex. If β < 0, then β

2 ‖M(·)‖2 is β‖M‖2-convex by Lemma 4.1.
We note that f is α-convex and α + β‖M‖2 ≥ 0, so f̃ is (α + β‖M‖2)-convex, in
particular, convex.

Consequently, one can apply the classical ADMM to (P̂) in order to solve (P)
with a similar computational difficulty level. A similar strategy was pointed out as an
alternative to the adaptive DR algorithm in [16, Remark 4.15].

123



Journal of Optimization Theory and Applications (2022) 195:1019–1055 1029

Remark 4.2 (A non-symmetric scenario)Wewould like to emphasize that this approach
is not symmetricwith respect to theweakly-strongly convexity assumptions, that is, we
do not allow f to be weakly-convex. The main reason is that even in the case where
g is strongly convex, we cannot guarantee the strong convexity of the composition
g ◦ M , as we did with the weak convexity in Lemma 4.1. Thus, we do not assess the
convexity of the equivalent problem (P̂) discussed in Remark 4.1.

We will experiment with the approach outlined in Remark 4.1 in Sect. 6. However,
from the theoretical perspective, we pursue a different path: We do not modify (P),
instead, we provide an adaptive version of the ADMM which is admissible under the
strongly-weakly convex setting of (P). To this end, we provide duality relations with
the recent adaptive DR algorithm [16] which, in turn, are instrumental in the proof
of convergence of our adaptive scheme. One of the justifications of our approach is
that it complements and extends the natural and well-known duality relation between
the classical ADMM and the classical DR algorithm to the strongly-weakly convex
setting. Experiments with our approach and some comparisons to the approach in
Remark 4.1 are also included in Sect. 6. In particular, we highlight the flexibility in
the choice of parameters in our aADMM.

4.2 Critical Points

We address the issue of critical points and saddle points of the Lagrangian L0 in (1),
as well as their relations to the solutions of (P), under Assumption 4.1.

Definition 4.1 (critical points) We say that the tuple (x
, z
, y
) ∈ R
n × R

m × R
m is

a critical point of the (unaugmented) Lagrangian L0 of (P) if

− MT y
 ∈ ∂ f (x
), y
 ∈ ∂̂g(z
) and Mx
 − z
 = 0. (7)

We also recall that (x
, z
, y
) is a saddle point of L0 if

L0(x
, z
, y) ≤ L0(x
, z
, y
) ≤ L0(x, z, y
), ∀(x, z, y) ∈ R
n × R

m × R
m .

Lemma 4.3 Let Assumption 4.1 hold. If (x
, z
, y
) is a critical point of L0, then
(x
, z
) is solution of (P).

Proof In view of (7), and by recalling Fact 2.1(viii) and (vii), we see that

0 = −MT y
 + MT y
 ∈ ∂ f (x
) + MT ∂̂g(Mx
)

⊆ ∂ f (x
) + ∂̂(g ◦ M)(x
) ⊆ ∂̂( f + g ◦ M)(x
).

Consequently, by combining Lemma 4.2 and Fact 2.1(ii), we derive that (x
, z
) solves
(P). ��

We see that any critical point produces a solution of (P). The converse implication,
however, requires a constraint qualification.
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Lemma 4.4 Suppose that Assumption 4.1 and one of the following assertions hold:

(i) 0 ∈ ri(dom g − M(dom f ));
(ii) ri(dom g) ∩ ri(M(dom f )) �= ∅;

(iii) int(dom g) ∩ M(dom f ) �= ∅ or (dom g) ∩ int(M(dom f )) �= ∅.

Then the existence of critical points of L0 is equivalent to the existence of solutions of
(P).

Proof (⇒): Follows from Lemma 4.3.
(⇐): We note that either (ii) or (iii) implies (i) (see, e.g., [5, Proposition 6.19]). Set

f̃ and g̃ to be the convex functions in Remark 4.1. We observe that dom f = dom f̃ ,
dom g = dom g̃, and that

∂ f̃ = ∂ f + βMT M , ∂ g̃ = ∂̂g − β Id .

Since the constraint qualification 0 ∈ ri(dom g̃−M(dom f̃ )) is satisfied, by employing
subdifferential calculus (see [5, Theorem 16.47]) we arrive at

∂( f + g ◦ M) = ∂( f̃ + g̃ ◦ M)

= ∂ f̃ + MT ◦ ∂ g̃ ◦ M

= ∂ f + βMT M + MT ◦ ∂̂g ◦ M − βMT M

= ∂ f + MT ◦ ∂̂g ◦ M .

Finally, by invoking Lemma 4.2, if (x
, z
) is a solution of (P), then

z
 = Mx
 and 0 ∈ ∂( f + g ◦ M)(x
) = ∂ f (x
) + MT ◦ ∂̂g ◦ M(x
).

Consequently, there exists y
 ∈ R
m such that (x
, z
, y
) is a critical point of L0. ��

The notion of a critical point and the one of a saddle point coincide in the case where
both functions f and g are convex. We now show that in the case where convexity is
absent, saddle points are still critical points.

Lemma 4.5 (Critical points vs saddle points) Let f : R
n →] − ∞,∞] and g :

R
m →] − ∞,∞] be proper. Then, the saddle points of L0 are also critical points. If,

in addition, f and g are convex, then any critical point of L0 is a saddle point.

Proof Let x
 ∈ dom( f ), z
 ∈ dom(g). Then

f (x
)+ g(z
) + 〈y, Mx
 − z
〉 ≤ f (x
) + g(z
) + 〈y
, Mx
 − z
〉, ∀y ∈ R
m,

(8a)

⇐⇒ 〈y − y
, Mx
 − z
〉 ≤ 0, ∀y ∈ R
m, (8b)

⇐⇒ Mx
 = z
. (8c)

Moreover,

f (x
) + g(z
) + 〈y
, Mx
 − z
〉 ≤ f (x) + g(z) + 〈y
, Mx − z〉, (9)
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for all (x, z) ∈ R
n × R

m , is equivalent to

f (x
) + 〈y
, Mx
〉 ≤ f (x) + 〈y
, Mx〉, ∀x ∈ R
n,

and g(z
) − 〈y
, z
〉 ≤ g(z) − 〈y
, z〉, ∀z ∈ R
m,

i.e.,

−MT y
 ∈ ∂ f (x
) and y
 ∈ ∂g(z
) ⊆ ∂̂g(z
).

Hence, if (x
, z
, y
) is a saddle point, then (x
, z
, y
) is a critical point of L0.
Conversely, if, in addition, f and g are convex and if (x
, z
, y
) is a critical point

of L0, then

Mx
 = z
 , −MT y
 ∈ ∂ f (x
) and y
 ∈ ∂̂g(z
) = ∂g(z
),

which implies (8a) and (9), i.e., (x
, z
, y
) is a saddle point of L0. ��
In view of the relations between the critical points of L0 and the solutions of (P),

we impose the existence of a critical point in our convergence analysis.

Assumption 4.2 The Lagrangian L0 has a critical point.

Remark 4.3 Assumption 4.2 is standard in the analysis of the ADMM and its variants
in the convex framework. In this case, Lemma 4.5 implies that it is equivalent to the
existence of saddle points, which is assumed in several classical studies such as [10,
20, 21].

Other authors obtain the existence of critical/saddle points from the nonemptyness
of the solution set of (P) when combined with one of the constraint qualifications in
Lemma 4.4. For instance, the Slater constraint qualification in Lemma 4.4(ii) is used
in [11, 14] while [9, 34] incorporate the assumption in Lemma 4.4(i).

We now relate the critical points of the Lagrangian to the zeros of Q + S, where Q
and S are the operators defined by

Q : R
m ⇒ R

m : y �→
{
−Mx : −MT y ∈ ∂ f (x)

}
= (−M) ◦ (∂ f )−1 ◦ (−MT )(y),

(10a)

S : R
m ⇒ R

m : y �→ {
z : y ∈ ∂̂g(z)

} = (̂∂g)−1(y). (10b)

We will address the convergence of our aADMM by applying the adaptive DR algo-
rithm [16] to Q and S. This is a natural extension of the classical relation between the
ADMMand the DR algorithm in the convex case (see, e.g., [20, 34]) to our generalized
setting.

Proposition 4.1 The Lagrangian L0 has a critical point if and only if zer(Q + S) �= ∅,
where Q and S are the operators defined in (10). More precisely, y
 ∈ zer(Q + S) if
and only if there exist x
 ∈ R

n and z
 ∈ R
m such that (x
, z
, y
) is a critical point

of L0.
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Proof We observe that y
 ∈ zer(Q + S) if and only if there exists z
 ∈ R
m such that

z
 ∈ S(y
) and − z
 ∈ Q(y
). (11)

The definition of Q and S implies that (11) is equivalent to y
 ∈ ∂̂g(z
) and the
existence of x
 ∈ R

n such that z
 = Mx
 and −MT y
 ∈ ∂ f (x
), that is, (x
, z
, y
)

is a critical point of L0. ��

4.3 The Algorithm

We now formulate our adaptive version of the Alternating Direction Method of Mul-
tipliers, aADMM for short. The steps of the aADMM are analogous to the steps of the
classical ADMM in (2); however, the aADMM is admissible in the strongly-weakly
convex setting and it accommodates different penalty parameters in the twominimiza-
tion steps. Specifically, we set an initial point (x0, z0, y0) ∈ R

n × R
m × R

m and two
parameters γ, δ > 0. Then the aADMM iterates according to the recurrences

xk+1 = argmin
x∈Rn

Lγ (x, zk, yk), (12a)

zk+1 = argmin
z∈Rm

Lδ(xk+1, z, yk), (12b)

yk+1 = yk + δ(Mxk+1 − zk+1), (12c)

equivalently,

xk+1 = argmin
x∈Rn

{
f (x) + γ

2

∥∥∥Mx − zk + yk

γ

∥∥∥
2
}

, (13a)

zk+1 = argmin
z∈Rm

{
g(z) + δ

2

∥∥∥Mxk+1 − z + yk

δ

∥∥∥
2
}

, (13b)

yk+1 = yk + δ(Mxk+1 − zk+1). (13c)

Clearly, by letting γ = δ, we obtain the steps of the original ADMM. Similar to
the ADMM, the aADMM is only valid if the xk-step in (12a) and the zk-step in (12b)
(equivalently, (13a) and (13b), respectively) are well defined. We will examine this
issue in relation to the operators Q and S in (10). Our next argument follows the
footsteps of [22] (see also [20]). It forms a foundation for convergence analysis of the
aADMM by providing a sufficient condition for the existence of the z-update via the
maximal comonotonicity of S.

Lemma 4.6 (Existence of the z-update) Let g : R
m →]−∞,∞] be proper, β-convex

and lower semicontinuous. Let xk+1 ∈ R
n, yk ∈ R

m and δ > max{0,−β}. Then
the operator S defined by (10b) is maximally β-comonotone. Consequently, JδS is
single-valued with full domain and zk+1 defined in (12b) is uniquely determined by

zk+1 = 1

δ

(
Id−JδS

)
(yk + δMxk+1),
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and

yk+1 = yk + δ(Mxk+1 − zk+1) = JδS(yk + δMxk+1).

Proof Since g is β-convex, Fact 3.1 implies that ∂̂g is maximally β-monotone. Con-
sequently, it follows from Fact 3.3(i) that S = (̂∂g)−1 is maximally β-comonotone.

Now, since δ > −β, Fact 3.2 implies that JδS is single-valued and has full domain.
Furthermore, since g is β-convex and δ > −β, the function inside the argmin in (12b)
is convex. By employing Fact 2.1 (iv) and then (vi), we see that

zk+1 satisfies (12b) ⇐⇒ 0 ∈ ∂̂g(zk+1) − yk − δ(Mxk+1 − zk+1)

⇐⇒ yk+1 ∈ ∂̂g(zk+1)

⇐⇒ zk+1 ∈ S(yk+1)

⇐⇒ yk+1 + δzk+1 ∈ (Id+δS)(yk+1)

⇐⇒ yk+1 = JδS(yk+1 + δzk+1) = JδS(yk + δMxk+1)

which completes the proof. ��
We now provide a general condition for the existence of the x-update. We dedicate

Section 4.4 to a detailed discussion of cases where this condition is satisfied.

Lemma 4.7 Let M ∈ R
m×n be nonzero and let f : R

n →] − ∞,∞] be proper, lower
semicontinuous and α-convex, where α ∈ R+. Then the operator Q defined in (10a)
is α

‖M‖2 -comonotone.

Proof Let (y1,−Mx1), (y2,−Mx2) ∈ gra Q. Then (x1,−MT y1), (x2,−MT y2) ∈
gra ∂ f . Since f is α-convex, Fact 3.1 implies that ∂ f is α-monotone. Consequently,

〈x1 − x2,−MT (y1 − y2)〉 ≥ α‖x1 − x2‖2,

which implies that

〈−M(x1 − x2), y1 − y2〉 ≥ α

‖M‖2 ‖M‖2‖x1 − x2‖2 ≥ α

‖M‖2 ‖M(x1 − x2)‖2.

Thus, Q is α
‖M‖2 -comonotone. ��

Lemma 4.8 (Conditions for the existence of the x-update) Let f : R
n →]−∞,∞] be

proper, convex and lower semicontinuous. Let M ∈ R
m×n be nonzero. Let yk, zk ∈ R

m

and γ > 0. Then the following assertions are equivalent.

(i) xk+1 satisfies (12a);
(ii) xk+1 ∈ (∂ f )−1(−MT vk), where vk = yk + γ (Mxk+1 − zk);
(iii) vk = Jγ Q(yk − γ zk), where Q is defined by (10a).

Consequently, xk+1 in (12a) exists for all (yk, zk) if and only if Jγ Q has full domain.
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Proof By invoking Fact 2.1 (iv) and (vi), we see that

xk+1 satisfies (12a)

⇐⇒ 0 ∈ ∂ f (xk+1) + MT yk + γ MT (Mxk+1 − zk)

⇐⇒ − MT vk ∈ ∂ f (xk+1) where vk = yk + γ (Mxk+1 − zk)

⇐⇒ xk+1 ∈ (∂ f )−1(−MT vk) where yk − γ zk − vk = −γ Mxk+1

⇐⇒ yk − γ zk − vk ∈ −γ M ◦ (∂ f )−1 ◦ (−MT )(vk)

⇐⇒ yk − γ zk ∈ (Id+γ Q)(vk)

⇐⇒ vk = Jγ Q(yk − γ zk). (14)

In (14), we employed the single-valuedness of Jγ Q which follows from Lemma 4.7
when combined with Fact 3.2(i). ��

4.4 Constraint Qualifications for the x-update

While the z-update is already well defined under a generalized convexity assumption
(by Lemma 4.6), the x-update depends on the resolvent of Q having full domain (by
Lemma4.8).We nowdiscuss constraint qualifications for themaximal comonotonicity
of Q, which, in turn, guarantees full domain of its resolvent. To this end, we assume
that

Assumption 4.3 The following constraint qualification holds:

0 ∈ ri(dom f ∗ − ran MT ). (15)

Assumption 4.3 is satisfied in several cases which we detail in the following lemma.
Some of the historical context and references to such cases in the classical ADMM
literature are provided in Remark 4.4.

Lemma 4.9 (Sufficient conditions for Assumption 4.3) Let f : R
n →] − ∞,+∞] be

proper, convex and lower semicontinuous. Let M ∈ R
m×n. Then each of the following

conditions implies (15):

(i) ri(dom f ∗) ∩ ran MT �= ∅.
(ii) ri(ran ∂ f ) ∩ ran MT �= ∅.
(iii) (rec f )(x) > 0 for all x ∈ ker M \{x ∈ R

n : −(rec f )(−x) = (rec f )(x) = 0}.
(iv) f is coercive (in particular, supercoercive).
(v) f is strongly convex.
(vi) MT M is invertible.

Proof (i): By [35, Corollary 6.6.2],

ri(dom f ∗ − ran MT ) = ri(dom f ∗) − ran MT .

Consequently, (i) follows from [5, Corollary 6.15].
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(ii): By invoking (i) , it suffices to show that

ri(dom f ∗) = ri(ran ∂ f ). (16)

Indeed, by [5, Proposition 16.4(i) and Corollary 16.18(i)],

ri(dom f ∗) ⊆ dom ∂ f ∗ ⊆ dom f ∗.

Now, by employing [35, Theorem 6.3],

cl(dom f ∗) = cl(dom ∂ f ∗) and ri(dom f ∗) = ri(dom ∂ f ∗).

Finally, since dom ∂ f ∗ = ran ∂ f , we arrive at (16).
(iii): We consider the function F = f + h, where h = η‖M(·) − a‖2 for some

a ∈ R
m and η > 0. By [5, Proposition 9.30(vi)],

rec F = rec f + rec h.

Moreover, since ‖ · ‖2 is supercoercive, [5, Proposition 9.30(vii) and Example 9.32]
imply that

(rec h)(x) :=
{
0, if Mx = 0,
+∞, otherwise.

Hence, (iii) implies that (rec F)(x) > 0 for all vectors x ∈ R
n except those satisfying

− rec F(−x) = rec F(x) = 0. By [35, Corollary 13.3.4(b)], this is equivalent to

0 ∈ ri(dom F∗). (17)

On the other hand, since dom h∗ = ran MT , by employing [5, Proposition 12.6(ii)]
we see that

dom f ∗ − ran MT = dom f ∗ + ran MT = dom f ∗ + dom h∗ = dom( f ∗�h∗).

Now, since h has full domain, 0 ∈ int(dom f − dom h). Consequently, by [36, Theo-
rem 11.23(a)] we arrive at f ∗�h∗ = ( f + h)∗ which, in turn, implies that

dom f ∗ − ran MT = dom( f ∗�h∗) = dom( f + h)∗ = dom F∗. (18)

By combining (17) and (18) we obtain (15).
(iv): If f is coercive, then [5, Proposition 14.16] implies that 0 ∈ int(dom f ∗) ⊆

ri(dom f ∗). Since, clearly, 0 ∈ ran MT , we employ (i) and conclude (15).
(v): Follows from (iv) since every strongly convex function is coercive.
(vi): If MT M is invertible, then ran MT = R

n . Since dom f ∗ �= ∅, (15) follows
trivially. ��
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We now prove the existence of the x-update via maximal comonotonicity of Q
which is guaranteed by Assumptions 4.1 and 4.3.

Lemma 4.10 (Existence of the x-update under constraint qualifications) Let M ∈
R

m×n be nonzero and let f : R
n →] − ∞,∞] be proper, lower semicontinuous, and

α-convex for some α ∈ R+. Let Assumption 4.3 hold. Then the operator Q defined
in (10a) is maximally α

‖M‖2 -comonotone. Consequently, the x-update in (12a) is well
defined and

yk + γ (Mxk+1 − zk) = Jγ Q(yk − γ zk).

Proof Since f is convex, proper and lsc, so is f ∗ (see, e.g., [5, Proposition 13.13]).
Consequently, since Assumption 4.3 holds, the constraint qualifications in the chain
rule [35, Theorem 23.9] (see also [5, Corollary 16.53]) are met for the convex function
f ∗ and the linear operator −MT and we obtain

∂( f ∗ ◦ (−MT )) = (−M) ◦ (∂ f ∗) ◦ (−MT ) = (−M) ◦ (∂ f )−1 ◦ (−MT ) = Q.

(19)

We see that Q is the subdifferential of the proper, convex and lower semicontinuous
function f ∗ ◦ (−MT ) and, as such, Q is maximally monotone by Fact 3.1. It now
follows that Q is maximally α

‖M‖2 -comonotone by Lemma 4.7 and Fact 3.3(ii).
Finally, Fact 3.2 implies that Jγ Q is single-valued with full domain. The existence

of the x-update now follows from Lemma 4.8. ��
Remark 4.4 Assumption 4.3 and several of the constraint qualification in Lemma 4.9
have been widely used for the analysis of the classical ADMM in the literature. In this
relation, we list some classical and recent references:

(i) In [22], the convergence of the ADMM for the variational inequality problem

find x, w ∈ R
n such that

w ∈ A(x) and 〈w, y − x〉 + g(My) − g(Mx) ≥ 0, ∀y ∈ R
n;

was established. One of the assumptions is that either A is strongly monotone
or MT M is an isomorphism (see [22, Theorem 5.1]). When applied to problem
(P), these assumptions become

f is strongly convex or MT M is invertible,

which implies Assumption 4.3 by Lemma 4.9 (v) and (vi).
(ii) [10] is one of themost widely cited studies of the ADMM. Therein, no conditions

are imposed (apart from the existence of saddle points; see Remark 4.3) in order
to derive convergence of the ADMM. However, it was pointed out in [11] that
this may fail since in this case the steps of the ADMM may not be well defined,
i.e., the argmins may not exist. In particular, for the existence of xk+1, the authors
of [11] require the condition in Lemma 4.9(iii) (see [11, Assumption 1]).
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(iii) In [38], the condition in Lemma 4.9(i) was imposed to guarantee the existence
of xk+1.

(iv) In [19], the condition in Lemma 4.9(ii) was utilized in order to obtain the chain
rule in (19). It was referred to as dual normality (see [19, Definition 3.22 and
Proposition 3.30]). The argument therein also follows directly from [35, Theo-
rem 23.9]. The chain rule leads to the maximal monotonicity of Q, which, in
turn, guarantees the existence of xk+1.

(v) The invertibility of MT M in Lemma 4.9(vi) is, arguably, the most common
assumption for the convergence of ADMM in the literature. Indeed, it is assumed
in [1, 9, 14, 21, 34], to name a few.

Although MT M being invertible or f being strongly convex are two of the more
restrictive conditions in Lemma 4.9, as we show next, they do provide an addi-
tional strength: uniqueness of the x-update which, in turn, implies convergence of
the sequence (xk)

∞
k=0. Assumption 4.3 alone only guarantees the convergence of the

sequence (Mxk)
∞
k=0 (see Theorem 5.1).

Lemma 4.11 (Criteria for uniqueness of the x-update) Let M ∈ R
m×n be nonzero

and let f : R
n →] − ∞,∞] be proper, lower semicontinuous and α-convex, where

α ∈ R+. Set

vk := Jγ Q(yk − γ zk) where Q is the operator defined in (10a).

The following hold.

(i) If α > 0 (i.e., f is strongly convex), then (∂ f )−1 is Lipschitz continuous and the
x-update in (12a) is uniquely defined by

xk+1 = (∂ f )−1(−MT vk).

(ii) If MT M is invertible, then the x-update in (12a) is uniquely defined by

xk+1 = (MT M)−1MT
(
1
γ
(vk − yk) + zk

)
.

Proof By employing Lemma 4.9(v) and Lemma 4.9(vi), respectively, we see that the
conditions in (i) and (ii) imply Assumption 4.3. Consequently, Lemma 4.10 implies
that the x-update in (12a) is well defined and

vk := yk + γ (Mxk+1 − zk) = Jγ Q(yk − γ zk).

Now, if f is α-strongly convex (α > 0), then by combining Fact 3.1 with Fact 3.3(i)
we see that (∂ f )−1 is maximally α-comonotone. Consequently, (∂ f )−1 is Lipschitz
continuous, in particular, single-valued. It follows that the inclusion in Lemma 4.8(ii)
is an equality, i.e.,

xk+1 = (∂ f )−1(−MT vk).
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If MT M is invertible, since vk = yk + γ (Mxk+1 − zk), we conclude that

xk+1 = (MT M)−1(MT M)xk+1 = (MT M)−1MT
(
1
γ
(vk − yk) + zk

)
,

which completes the proof. ��
Remark 4.5 We note that Lemma 4.11 is directly implied by (13a). Indeed, if f is
strongly convex or M has full column rank (i.e., MT M is invertible), then the function
inside the argmin in (13a) is strongly convex, which, in turn, implies existence and
uniqueness of minimizers.

5 Convergence of the aADMM

In order to obtain convergence of the aADMM, we adapt γ and δ to the convexity
parameters of the two functions f and g. We will employ the following lemma in
order to guarantee existence of such parameters.

Lemma 5.1 (Existence of parameters) Let α, β ∈ R such that α + β > 0. Then for
every γ, δ ∈ R++ the following assertions are equivalent.

(i) 2δ(α + β) + (γ + δ)2 < 4(γ + α)(δ + β).
(ii) δ + 2β > 0 and

γ ∈]δ + 2β − √
2(α + β)(δ + 2β), δ + 2β + √

2(α + β)(δ + 2β)[.

Proof A straightforward computation implies that

2δ(α + β) + (γ + δ)2 < 4(γ + α)(δ + β)

⇐⇒ γ 2 − 2(δ + 2β)γ + (δ + 2β)(δ − 2α) < 0

⇐⇒
{

δ + 2β > 0,
δ + 2β − √

2(α + β)(δ + 2β) < γ < δ + 2β + √
2(α + β)(δ + 2β);

which completes the proof. ��
Theorem 5.1 (convergence of the aADMM) Suppose that Assumptions 4.1, 4.2 and
4.3 hold. Let δ > max{0,−2β} and set

γ = δ + 2β, if α + β‖M‖2 = 0, (20a)

γ ∈]max{0, δ + 2β − Δδ}, δ + 2β + Δδ[, if α + β‖M‖2 > 0; (20b)

where

Δδ := 1

‖M‖
√
2

(
α + β‖M‖2) (δ + 2β).
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Set (x0, z0, y0) ∈ R
n ×R

m ×R
m and let (xk, zk, yk)

∞
k=0 be generated by the aADMM

(12). Then

Mxk → Mx
, zk → z
 and yk → y
,

where (x
, z
, y
) is a critical point of L0(x, z, y). Consequently, (x
, z
) is a solution
of (P).

Proof Let Q and S be defined by (10). Our aim is to establish that the sequence
generated by the aADMM (12) corresponds to the sequence generated by the aDR (6)
when applied to Q and S. Note that zer(Q + S) �= ∅ due to Assumption 4.2 and
Proposition 4.1.

On the one hand, for any β, it holds that max{0,−2β} ≥ max{0,−β}. So δ >

max{0,−β}. Consequently, Lemma 4.6 implies that S is maximally β-comonotone
and that the z-update in (12b) is uniquely defined by

yk+1 = JδS(yk+1 + δzk+1).

On the other hand, Lemma 4.10 implies that Q is maximally α
‖M‖2 -comonotone, that

the x-update in (12a) is well defined and

vk := yk + γ (Mxk+1 − zk) = Jγ Q(yk − γ zk).

Set wk := yk + δzk for each k = 0, 1, 2, . . .. Set further

λ := 1 + δ

γ
and μ := 1 + γ

δ
.

Then, clearly, λ,μ satisfy (4). We employ JδS and Jγ Q in order to compute
Jλ
γ Q

(
Jμ
δS(wk)

)
via the following steps:

JδS(wk) = JδS(yk + δzk) = yk,

Jμ
δS(wk) = (1 − μ)wk + μJδS(wk)

= (1 − μ)(yk + δzk) + μyk

= yk + (1 − μ)δzk

= yk − γ zk,

Jγ Q
(
Jμ
δS(wk)

) = Jγ Q(yk − γ zk) = vk,

and so, Jλ
γ Q

(
Jμ
δS(wk)

) = (1 − λ)Jμ
δS(w

k) + λJγ Q
(
Jμ
δS(w

k)
)

= (1 − λ)(yk − γ zk) + λvk

= yk + δzk + λ(vk − yk)

= wk + λ(vk − yk).
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We also observe that

wk+1 = yk+1 + δzk+1 = yk + δMxk+1 = yk + (λ − 1)γ Mxk+1

= yk + (λ − 1)(vk − yk + γ zk) = yk + (λ − 1)(vk − yk) + δzk

= wk + (λ − 1)(vk − yk).

Consequently, by setting κ := λ−1
λ

= δ
γ+δ

∈ ]0, 1[ and by recalling (6) we arrive at

TaDR(wk) := (1 − κ)wk + κ Jλ
γ Q

(
Jμ
δS(w

k)
) = wk + (λ − 1)(vk − yk) = wk+1.

(21)

Summing up, the sequence (wk)
∞
k=0 is generated by the aDR algorithm applied to

S and Q.
We now apply Fact 3.4 to the two operators Q and S. To this end, it suffices to

check that the conditions in Fact 3.4 for the parameters, i.e., conditions (3) and (5) for
α

‖M‖2 , β, γ, δ, and κ , are met. By Assumption 4.1,

α

‖M‖2 + β ≥ 0.

If α
‖M‖2 + β = 0, then (20a) implies δ = γ − 2β = γ + 2 α

‖M‖2 , that is, (3a) is
satisfied.

If α
‖M‖2 + β > 0, then, by Lemma 5.1, we see that (20b) implies that

2δ

(
α

‖M‖2 + β

)
+ (γ + δ)2 < 4

(
γ + α

‖M‖2
)

(δ + β) (22a)

⇐⇒ δ

γ + δ
<

4
(
γ + α

‖M‖2
)

(δ + β) − (γ + δ)2

2(γ + δ)
(

α
‖M‖2 + β

) =: κ.

(22b)

On the one hand, (22a) implies

(γ + δ)2 < 4

(
γ + α

‖M‖2
)

(δ + β),

which leads to (3b). On the other hand, (22b) implies that 0 < κ < κ , i.e., (5) is
satisfied.

Consequently, we meet all of the conditions in order to apply Fact 3.4: Fact 3.4(i)
implies that wk → w
 ∈ Fix TaDR while Fact 3.4(ii) implies that

yk = JδS(wk) → JδS(w
) =: y
 ∈ zer(Q + S).
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By the convergence of wk and yk , we see that

zk = 1

δ
(wk − yk) → 1

δ
(w
 − y
) =: z
.

Finally, Fact 3.4(iii) implies that yk − vk → 0, thus, vk → y
 and

Mxk → z
.

We prove that there exists x
 ∈ R
n such that Mx
 = z
 and that (x
, z
, y
) is a

critical point. Indeed, we note that

(yk, zk)
∞
k=0 ⊆ gra S and (vk,−Mxk+1)

∞
k=0 ⊆ gra Q. (23)

By taking limits in (23) and by recalling Lemma 3.1, we conclude that (y
, z
) ∈ gra S
and (y
,−z
) ∈ gra Q, equivalently,

y
 ∈ ∂̂g(z
) and − MT y
 ∈ ∂ f (x
),

for some x
 such that z
 = Mx
. Finally, sincewenowhave a critical point (x
, z
, y
),
we invoke Lemma 4.3 which concludes the proof. ��
Remark 5.1 (on the strongly-weakly convex assumption) In the strongly-weakly con-
vex settings, certain assumptions are usually imposed on the parameters (α, β). In our
adaptive approach, Assumption 4.1 requires

α + β‖M‖2 ≥ 0.

This is an improvement of [44, Assumption 3.1(i)] for the ADMM, which can be
reformulated in the form

α + β‖M‖2 > 0. (24)

In a different algorithmic approach, the convergence of thePrimal-Dual Hybrid Gradi-
ent method for the strongly-weakly convex settingwas established in [33] by assuming
(24) (see [33, Theorem 2.3]). Summing up, we see that our analysis is applicable in
the setting of the classical ADMM for convex functions (i.e., α = β = 0) while [33,
44] are not. This observation aligns with the analysis of the adaptive DR algorithm in
[3, 16] (see [16, Remark 5.5]).

Remark 5.2 (parameters in the classical ADMM) We consider the classical ADMM
in the case of strong convexity α +β‖M‖2 > 0. We then set γ = δ ∈ R++ for δ such
that δ + 2β > 0 and

δ + 2β −
√

2

(
α

‖M‖2 + β

)
(δ + 2β) < δ < δ + 2β +

√

2

(
α

‖M‖2 + β

)
(δ + 2β).
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which is equivalent to

δ > max

{
−2β,

−2αβ

α + β‖M‖2
}

= −2αβ

α + β‖M‖2 , if β ≤ 0.

This range of parameters improves the results in [44] which require (see [44, Assump-
tion 3.1(ii)])

δ > −2β + 8β2‖M MT ‖
α + β‖M‖2 = −2αβ

α + β‖M‖2 + 6β2‖M‖2
α + β‖M‖2 .

Remark 5.3 (Self-duality of the aDR) In the proof of Theorem 5.1, we have shown
that the aADMM algorithm is, in fact, a dual aDR iteration. We now discuss the case
where M = Id in (P). In this case, it is known that the classical DR is self-dual in the
sense of [19, Proposition 3.43], see also, [4, Corollary 4.3]. It is not difficult to show
that the adaptive DR is also self-dual. Indeed, in the case where M = Id, iteration (21)
is the aDR applied to the operators

S = (̂∂g)−1 and Q = (− Id) ◦ (∂ f )−1 ◦ (− Id).

Therefore, one easily checks that

JδS = Id−δ

(
prox 1

δ
g

)
◦

(
1

δ
Id

)
, (25a)

Jγ Q = Id+γ

(
prox 1

γ
f

)
◦

(
− 1

γ
Id

)
. (25b)

By substituting (25) into (21) and taking into account (4) and the change of variable
tk := 1

δ
wk , we obtain the scheme

tk+1 = (1 − κ)tk + κ R2(R1(t
k)),

where

R1 : = (1 − λ) Id+λ prox 1
δ

g
,

R2 : = (1 − μ) Id+μ prox 1
γ

f
.

We see that the aADMM with M = Id is the aDR in [16, Theorem 5.4] applied to g
and f with parameters (δ−1, γ −1, λ, μ) ∈ R

4++ and κ = λ−1
λ

∈ ]0, 1[.

In Theorem 5.1, we see that the sequence (Mxk)
∞
k=0 converges; however, there is

no indication as to whether (xk)
∞
k=0 converges or not. Similarly to the classical case

(see, for instance, [1, Proposition 2.2] and [39, Proposition 2]), this can be remedied
if we assume that MT M is invertible or f is strongly convex (α > 0).
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Theorem 5.2 (convergence of the aADMMunder stronger assumptions) Suppose that
Assumptions 4.1, 4.2 and one of the following conditions hold:

(i) f is strongly convex (i.e., α > 0),
(ii) MT M is invertible.

Let δ > max{0,−2β} and let γ > 0 satisfy (20). Set (x0, z0, y0) ∈ R
n × R

m × R
m

and let (xk, zk, yk)
∞
k=0 be generated by the aADMM (12). Then

xk → x
, zk → z
 and yk → y
,

where (x
, z
, y
) is a critical point of L0(x, z, y). Consequently, (x
, z
) is a solution
of (P).

Proof By employing Lemmas 4.9(v) and 4.9(vi), respectively, we see that the condi-
tions in (i) and (ii) imply Assumption 4.3. Consequently, we employ Theorem 5.1 in
order to obtain a critical point (x
, z
, y
) of L0(x, z, y) where

Mxk → Mx
, zk → z
 and yk → y
.

Set vk := yk +γ (Mxk+1 − zk), k = 0, 1, . . .. Then vk → y
. If f is strongly convex,
then, by employing Lemma 4.11(i), we conclude that (∂ f )−1 is Lipschitz continuous
and

xk+1 = (∂ f )−1(−MT vk) → (∂ f )−1(−MT y
) = x
.

Suppose now that MT M is invertible. Then, by employing Lemma 4.11(ii), we con-
clude that

xk+1 = (MT M)−1MT
(
1
γ
(vk − yk) + zk

)
→ (MT M)−1MT z
 = x
,

which completes the proof. ��

5.1 Summary: Existence and Convergence

For the sake of convenience and accessibility, we recollect and unify all of the con-
ditions from our discussion regarding the existence of a solution of (P) and the
convergence of the aADMM and the ADMM.

Corollary 5.1 (existence and convergence of aADMM) Let M ∈ R
m×n be a nonzero

matrix, let f : R
n →] − ∞,+∞] be proper, lower semicontinuous and α-convex,

and let g : R
m →] − ∞,+∞] be proper, lower semicontinuous and β-convex where

α, β ∈ R are parameters such that

α ≥ 0 and α + β‖M‖2 ≥ 0.

Suppose that one of the following conditions holds:
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(A.1) the Lagrangian L0 has a critical point,
(A.2) the Lagrangian L0 has a saddle point,
(A.3) problem (P) has an optimal solution and 0 ∈ ri(dom g − M(dom f ));

and that one of the following conditions holds:

(B.1) 0 ∈ ri(dom f ∗ − ran MT ),
(B.2) ri(ran ∂ f ) ∩ ran MT �= ∅,
(B.3) (rec f )(x) > 0 for all x ∈ ker M\{x ∈ R

n : −(rec f )(−x) = (rec f )(x) = 0},
(B.4) f is coercive (in particular, supercoercive),
(B.5) α > 0 (i.e., f is strongly convex),
(B.6) MT M is invertible.

Let δ > max{0,−2β} and set

γ = δ + 2β, if α + β‖M‖2 = 0,

γ ∈]max{0, δ + 2β − Δδ}, δ + 2β + Δδ[, if α + β‖M‖2 > 0;

where

Δδ := 1

‖M‖
√
2

(
α + β‖M‖2) (δ + 2β).

Set (x0, z0, y0) ∈ R
n ×R

m ×R
m and let (xk, zk, yk)

∞
k=0 be generated by the aADMM

(12). Then

Mxk → Mx
, zk → z
 and yk → y
,

where (x
, z
, y
) is a critical point of L0(x, z, y). Consequently, (x
, z
) is a solution
of (P). If, in particular, (B.5) or (B.6) holds, then xk → x
.

Proof Clearly, Assumption 4.1 holds. By Lemma 4.4 and Lemma 4.5, each one of the
conditions (A.1)–(A.3) implies Assumption 4.2. Finally, by Lemma 4.9, each one of
the conditions (B.1)–(B.6) impliesAssumption 4.3.We conclude the proof by invoking
Theorem 5.1 and Theorem 5.2. ��

As we point out in Remark 5.1, our assumptions on (P) extend the framework of
the classical ADMM for two convex functions.

Corollary 5.2 (existence and convergence of ADMM) Let M ∈ R
m×n be a nonzero

matrix and let f : R
n →] − ∞,+∞] and g : R

m →] − ∞,+∞] be proper, lower
semicontinuous and convex. Suppose that one of the following conditions holds:

(A.1) the Lagrangian L0 has a saddle point (equivalently, a critical point),
(A.2) problem (P) has an optimal solution and 0 ∈ ri(dom g − M(dom f ));

and that one of the following conditions holds:

(B.1) 0 ∈ ri(dom f ∗ − ran MT ),
(B.2) ri(ran ∂ f ) ∩ ran MT �= ∅,
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(B.3) (rec f )(x) > 0 for all x ∈ ker M\{x ∈ R
n : −(rec f )(−x) = (rec f )(x) = 0},

(B.4) f is coercive (in particular, supercoercive),
(B.5) f is strongly convex,
(B.6) MT M is invertible.

Let γ > 0. Set (x0, z0, y0) ∈ R
n × R

m × R
m and let (xk, zk, yk)

∞
k=0 be generated by

the ADMM (2). Then

Mxk → Mx
, zk → z
 and yk → y
,

where (x
, z
, y
) is a critical point of L0(x, z, y). Consequently, (x
, z
) is a solution
of (P). If, in particular, (B.5) or (B.6) holds, then xk → x
.

Proof The proof follows from Corollary 5.1 when we set α = β = 0. ��

5.2 Optimality Conditions and Stopping Criteria

By following [10, § 3.3], we discuss the primal-dual residual stopping criteria for the
aADMM which we will employ in Sect. 6 for our numerical experiments.

By Definition 4.1, (x
, z
, y
) is a critical point if

0 ∈ ∂ f (x
) + MT y
, (26a)

0 ∈ ∂̂g(z
) − y
, (26b)

Mx
 − z
 = 0. (26c)

Clearly, the sequence rk := Mxk−zk canbeviewedas residual for (26c).Byoptimality
at each step in (12), we obtain

0 ∈ ∂ f (xk+1) + MT yk + γ MT (Mxk+1 − zk),

0 ∈ ∂̂g(zk+1) − yk − δ(Mxk+1 − zk+1).

We note that yk+1 = yk + δ(Mxk+1 − zk+1). Consequently,

0 ∈ ∂ f (xk+1) + MT yk+1 − δMT (Mxk+1 − zk+1) + γ MT (Mxk+1 − zk),

0 ∈ ∂̂g(zk+1) − yk+1.

Wesee that (26b) holds at each stepwhereas for (26a)wewillmonitor the dual residual

sk+1 := − δMT (Mxk+1 − zk+1) + γ MT (Mxk+1 − zk)

=MT (γ zk − δzk+1 − (γ − δ)Mxk+1).

We will therefore employ the primal-dual residual stopping criteria
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‖rk‖ := ‖Mxk − zk‖ ≤ εprimal, (27a)

‖sk‖ := ‖MT (γ zk−1 − δzk − (γ − δ)Mxk)‖ ≤ εdual, (27b)

for some fixed εprimal > 0 and εdual > 0. We note that the case where δ = γ in (27)
coincides with the primal-dual stopping criteria employed for the classical ADMM
(see [10, § 3.3]). Finally, εprimal and εdual may be chosen using absolute and relative
tolerances, for example,

εprimal = √
m εabs + εrel max{‖Mxk‖, ‖zk‖},

εdual = √
n εabs + εrel‖MT zk‖,

where m and n are the dimensions of the matrix M .

Remark 5.4 (Stopping criteria from the aDR perspective)As a counterpart,we examine
the stopping criteria from the perspective of the aDR algorithm. By employing the
notations in the proof of Theorem 5.1, we consider

wk := yk + δzk �⇒ yk = JδS(w
k).

Since wk → w
 ∈ Fix TaDR, it is reasonable to employ the Cauchy-type stopping
criteria

‖wk+1 − wk‖ ≤ εaDR. (28)

We observe that

rk = δ−1(yk − yk−1),

sk = MT ((δ − γ )Mxk − δzk + γ zk) + MT γ (zk−1 − zk)

= MT (δ − γ )rk + MT γ (zk−1 − zk).

Consequently, (27) is equivalent to ‖yk+1 − yk‖ and ‖zk+1 − zk‖ being small. By the
triangle inequality,

‖wk+1 − wk‖ ≤ ‖yk+1 − yk‖ + δ‖zk+1 − zk‖. (29)

On the other hand, since zk ∈ S(yk) and since S is maximally β-comonotone, we
obtain

‖wk+1 − wk‖2 = ‖(yk+1 − yk) + δ(zk+1 − zk)‖2
= ‖yk+1 − yk‖2 + δ2‖zk+1 − zk‖2 + 2δ〈yk+1 − yk, zk+1 − zk〉
≥ ‖yk+1 − yk‖2 + δ(δ + 2β)‖zk+1 − zk‖2. (30)

In view of (29) and (30), we see that the Cauchy stopping criteria (28) with appropri-
ately chosen εaDR is equivalent to (27), which justifies the use of primal-dual residual
stopping criteria.
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6 Numerical Experiments

We now examine the applicability and efficiency of our aADMM with numerical
experiments. To this end, we focus on a total variation signal denoising problem for
which the classical ADMM has been widely used (see, e.g., [12, 14, 15, 40] and the
references therein). All of our codes are in Python 3.7. The datasets generated during
and/or analyzed during the current study are available from the corresponding author
on reasonable request.

Suppose that a discretized observed signal φ̂ ∈ R
n is the result of

φ̂ = φ + ξ,

where φ ∈ R
n is the original signal and ξ ∈ R

n is a Gaussian noise with 0 mean and
variance σ 2. The objective of the denoising is to obtain an accurate approximation of
φ from φ̂. A common approach consists of solving the total variation regularization
problem [37] (see, e.g., [10, §6.4.1])

min
x∈Rn

1

2
‖x − φ̂‖2 + ωP(Dx), (31)

where ω > 0 is the regularization parameter, P : R
n−1 → R+ is a penalty function

in order to induce sparsity and D ∈ R
n×(n−1) is the total variation matrix defined

component-wise by

Di j :=
⎧
⎨

⎩

1, if j = i;
−1, if j = i + 1;
0, otherwise.

We observe that problem (31) is of the form (P) when we let

f := 1

2
‖ · −φ̂‖2, g = ωP(·), and M := D.

Moreover, the particular structure of this problem enables an easy computation of the
ADMM iteration, as we show next.

x-update for quadratic functions Since f is a quadratic function, the x-update of
the ADMM and the aADMM can be obtained via the solution of a system of linear
equations. More precisely, steps (2a) and (12a) are computed by solving the linear
system

(Id+γ MT M)xk+1 = MT (γ zk − yk) + φ̂.

z-update as a proximal step The minimization step with respect to z can be computed
via the proximity operator of g. Indeed, (12b) reduces to

zk+1 = prox 1
δ

g(Mxk+1 + δ−1yk) = prox ω
δ

P (Mxk+1 + δ−1yk), (32)
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Table 1 Three penalty functions and the corresponding thresholding mappings

Penalty function Thresholding mapping

Hard

p(H)(x) =
{
0, if x = 0,

1, otherwise.
prox

γ p(H) (x) =

⎧
⎪⎨

⎪⎩

0, if |x | <
√
2γ ,

{0, x}, if |x | = √
2γ

x, if |x | >
√
2γ

Soft

p(S)(x) = |x | prox
γ p(S) (x) =

{
0, if |x | ≤ γ,

sign(x)(|x | − γ ), otherwise.

Firm

p(F)
ζ (x) :=

{
|x | − x2

2ζ , if |x | ≤ ζ,
ζ
2 , otherwise.

prox
γ p(F)

ζ

(x) =

⎧
⎪⎨

⎪⎩

0, if |x | ≤ γ,
sign(x)(|x |−γ )ζ

ζ−γ
, if γ < |x | < ζ,

x, otherwise.

whereas for (2b) one only replaces δ by γ in (32).
We assume that the penalty function is separable in the sense that there exists

p : R → R+ such that

P(z) =
n−1∑

i=1

p(zi ), for all z = (z1, . . . , zn−1) ∈ R
n−1.

The proximal mapping of P , usually referred to as thresholding or shrinkage, can be
computed component-wise. The type of penalty function chosen in (31), together with
the regularization parameter ω, has a significant impact on the quality of the denoised
solution. In Table 1, we list three types of penalty functions and their corresponding
thresholding mappings (see, e.g., [43]).

The hard penalty is associated with the l0-norm, it is the one to impose sparsity
on the solution. Since the hard penalty is nonconvex (in fact, it is not α-convex for
any choice of α ∈ R), there is no guarantee for the convergence of the ADMM when
applied to this problem. As an alternative, the l0-norm is replaced by the l1-norm,
leading to the proximal mapping known as soft thresholding. Although convex, this
penalty may yield to biased solutions when the variation of the original signal is large.
In order to obtain less biased solutions, some weakly convex penalties, such as the
firm thresholding [24], associated to a minimax concave penalty, arises as a tradeoff
between the hard and the soft thresholdings (see Fig. 1).

We observe that the firm penalty function p(F)
ζ (x) is weakly convex with parameter

−1
ζ
. Indeed, one verifies that the function p(F)

ζ (x) + x2
2ζ is convex either by direct

computation or via a more general argument such as [7, Theorem 5.4].
Since f is 1-strongly convex, Assumption 4.1 holds whenever ζ ≥ 4ω since

1 − ‖D‖2ω

ζ
≥ 0 ⇐⇒ ζ ≥ ‖D‖2ω

and the fact that ‖D‖ ≤ 2.
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(a) Penalty functions (b) Thresholding mappings

Fig. 1 Illustration of the hard, soft and firm penalty (with ζ = 4) functions and the corresponding thresh-
olding mappings (with γ = 2)

Experiment 1: Convex versusWeakly Convex Penalties

In our first experiment, we aim to show that using a weakly convex penalty function
may produce more accurate solutions than the l1-norm in certain circumstances. To
this end, we employ generated1 block signals (piecewise constant signals) to which
we add a gaussian noise with standard deviation σ = 0.5. Given a generated noisy
signal, for 50 values of the penalty parameter ω equally distributed in the interval
[0.1, 5], we compute two solutions of problem (31), one with respect to the soft
thresholding (convex) and another with respect to the firm one (weakly convex) with
ζ = 4ω. In order to measure the quality of the reconstruction of a denoised signal
x = (x1, . . . , xn) ∈ R

n with respect to the original signal φ = (φ1, . . . , φn) ∈ R
n ,

we employ the mean absolute error (MAE), defined by

MAE(x, φ) = 1

n

n∑

i=1

|xi − φi |.

The results for a signal of sizen = 256 are shown inFig. 2a.We see that theweakly con-
vex penalty (firm) achieves more accurate solutions. Indeed, the MAE of the solution
produced by the firm thresholding is always smaller than that of the soft thresholding,
except for small values of ω for which the quality of both solutions is deficient. In
order to visualize the performance of each penalty function, we plot in Fig. 2b the
denoised solutions for ω = 2, as well as the original and the noisy signals. We see that
the firm thresholding produces less biased solutions at the break points of the signal,
in particular, at the break points corresponding to relatively short pieces, where the
true variation of the original signal is large.

1 Signals were generated with the Python package PyWavelets https://pywavelets.readthedocs.io/.
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(a) MAE with respect to ω (b) Original, noised and denoised signals for ω = 2

Fig. 2 Denoising of a block signal of size n = 256 with soft and firm thresholdings. aMean absolute error
of the solutions for each penalty type with respect to the regularization parameter ω. b Plot of the original,
noised and the two denoised signals for ω = 2

We repeated the experiment for different signal size n and different variance of the
noise σ . The results are similar: the firm thresholding produces solutions with less
error for all large enough values of the penalty parameter ω. Due to the similarity, we
do not include these in this presentation.

For denoising with the soft thresholding, we used the classical ADMM, whereas
for the firm denoising we employed the aADMM. In this experiment, we focused on
the quality of the solutions produced by each penalty function in order to motivate the
application of weakly convex functions, rather than the algorithm performance. In our
second experiment, we do focus on the performance of the algorithm.

Experiment 2: ADMMVersus aADMM

We now examine the efficiency of the aADMM for signal denoising with weakly
convex penalty. We focus on solving the total variation regularization problem (31)
with firm thresholding.We consider generated block signals of different sizes n, noised
with a Gaussian error of standard deviation σ . For every size, we set the parameters

σ := 0.5, ω := 2 and ζ := 4ω = 8. (33)

As noted in Remark 4.1, we can apply the classical ADMM to problem (31) with a
weakly convex penalty P(F)

ζ via a convex reformulation. Thus, we compare the perfor-
mance between the ADMMand the aADMM. For each n ∈ {1000, 2000, . . . , 10000},
we generated 10 noisy signals randomly. Then, for each of these noisy signals, we run
the ADMM with 10 random starting points, for each γ ∈ {0.2, 0.4, . . . , 7.0}. At each
instance, the aADDMwas also launched for the same value of γ , while the parameter
δ in the z-update step was set to

δ := γ − 2β = γ + 2ω

ζ
= γ + 1

2
(34)
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Fig. 3 Median of 100 ratios between the median (among 50 instances) of iterations required to converge
by aADMM and classical ADMM, with respect to the penalty parameter γ , for denoising signals of sizes
1000, 2000, . . . , 10000 with firm thresholding

so that the conditions for convergence in (20) hold. For both algorithms, we employ the
primal-dual residuals stopping criteria fromSect. 5.2wherewe set εabs = εrel := 10−4.

The results of the experiments are shown in Fig. 3:We plot themedian ratio between
the number of iterations required by aADMM and ADMMwith respect to γ , for each
size. A ratio less than one indicates that the aADMM converged faster. While, on
average, both algorithms behave similarly for large values of γ , the superiority of
aADMM for small values of γ , where the ratio is always smaller than 1, is evident in
this experiment.

In Fig. 4, we plot the percentiles 0, 5, . . . , 95 and 100 of the ratios between the
numbers of iterationswith respect to γ (for all sizes). This plot exhibits a small variance
of the ratio, which demonstrates that the medians in Fig. 3 are suitable representatives.
Indeed, the curve for 95%-percentile still lies close to 1, which indicates that the
aADMM is at least comparable with (or even better than) the ADMM within 95% of
the times. In fact, the curve for the 70%-percentile lies entirely below 1. This implies

Fig. 4 Percentile of all 1000 ratios between the numbers of iterations of aADMM and classical ADMM,
with respect to the penalty parameter γ for denoising signals with firm thresholding
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(a) n = 1000 (b) n = 5000 (c) n = 10000

Fig. 5 Median (among 100 instances) of iterations required to converge by aADMM and ADMM, with
respect to the penalty parameter γ , for denoising signals of sizes 1000, 5000 and 10000 with firm thresh-
olding

that for all tested values of γ and all instances, the aADMM was at least as fast as the
ADMM 70% of the time.

Finally, in order to better analyze the results, we further examine the outputs for
n = 1000, n = 5000 and n = 10000 in Fig. 5. Instead of the ratios between both
algorithms, we plot the median of the number iterations required by each of the algo-
rithms separately. On the one hand, we confirm our previous conclusions: for every
fixed value of γ , the aADMM is as rapid as the classical ADMM (and much faster for
small γ ). On the other hand, if one was able to predict the optimal choice for γ , then
both algorithms perform similarly. However, the optimal γ is unknown.

Experiment 3: Comparison between ADMM, aADMM and PDHGM

Weconcludeour experiments by incorporating theprimal-dual hybrid gradient method
[33], denoted PDHGM in short, into our comparison. For this experiment, we used
the parameter setting in (33) but with ζ := 9 so that the restriction in (24) holds. This
is required for the convergence of PDHGM in the strongly-weakly convex setting.

For a generated noised block signal of length n = 1000, we run ADMM, aADMM
and PDHGM. For ADMM and aADMM, the parameter γ was optimally chosen
according to the results obtained in Fig. 5, while δ in the aADMM was computed
as in (34). The parameters of the PDHGM did not seem to have a big effect on
the convergence rate in this experiment. Nevertheless, we roughly tuned them for
best performance. The same experiment was repeated for a larger signal of length
5000. The results for both signals are shown in Fig. 6. We observe superiority of the
ADMM/aADMM compared to the PDHGM in these particular instances, with a slight
advantage for the aADMM over the classical ADMM, which is in agreement with our
previous results.

7 Conclusions

We provided an adaptive version of the alternating direction method of multipliers for
solving linearly constrained optimization problems where the objective is the sum of
a weakly convex function and a strongly convex function. Convergence of our scheme
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(a) n=1000 (b) n=5000

Fig. 6 Comparison between ADMM, aADMM and PDHGM for denoising two signals of sizes 1000 and
5000. For each algorithm we plot max{‖Mxk+1 − zk+1‖, ‖xk+1 − xk‖, ‖zk+1 − zk‖} with respect CPU
time in seconds

was derived as dual to the convergence of the adaptive Douglas–Rachford splitting
algorithm. Consequently, the theory regarding the dual relations between the classical
ADMM and the classical DR algorithm have been extended to and established in
the strongly-weakly convex framework. In the process, we have also relaxed stronger
assumptions imposed in other studieswhere theADMMwas applied in this framework
(see Remarks 5.1 and 5.2).

The performance of our scheme was tested in numerical experiments of signal
denoising. In our experiments, we observed that the aADMM outperforms the clas-
sical ADMM in terms of the required number of iterations. However, our numerical
experiments are far from providing a complete computational study. A detailed and
comprehensive numerical analysis will be the subject matter of future studies.

Acknowledgements We would like to thank the referee for their valuable and constructive comments,
corrections and suggestions. Sedi Bartz was partially supported by a Simons Foundation Collaboration
Grant for Mathematicians, Grant 854168, and by a UMass Lowell faculty startup Grant. Rubén Campoy
was supported, in part, by a postdoctoral fellowship of UMass Lowell, and by the Ministry of Science,
Innovation andUniversities of Spain and theEuropeanRegionalDevelopment Fund (ERDF) of theEuropean
Commission, Grant PGC2018-097960-B-C22 and by the Generalitat Valenciana (AICO/2021/165). Hung
M. Phan was partially supported by Autodesk, Inc. via a gift made to the Department of Mathematical
Sciences, UMass Lowell. Sedi Bartz and Hung M. Phan were partially supported by a Seed Grant from the
Kennedy College of Sciences, UMass Lowell.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


1054 Journal of Optimization Theory and Applications (2022) 195:1019–1055

References

1. Aspelmeier, T., Charitha, C., Luke, D.R.: Local linear convergence of the ADMM/Douglas-Rachford
algorithms without strong convexity and application to statistical imaging. SIAM J. Imaging Sci. 9(2),
842–868 (2016)

2. Bartz, S., Campoy, R., Phan,H.M.:Demiclosedness principles for generalized nonexpansivemappings.
J. Optim. Theory Appl. 186(3), 759–778 (2020)

3. Bartz, S., Dao, M.N., Phan, H.M.: Conical averagedness and convergence analysis of fixed point
algorithms. J. Glob. Optim. 82(2), 351–373 (2022)

4. Bauschke, H.H., Boţ, R.I., Hare, W.L., Moursi, W.M.: Attouch-Théra duality revisited: paramono-
tonicity and operator splitting. J. Approx. Theory 164(8), 1065–1084 (2012)

5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
2nd edn. Springer, Berlin (2017)

6. Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solving feasibility and best
approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015)

7. Bauschke, H.H., Lucet, Y., Phan, H.M.: On the convexity of piecewise-defined functions. ESAIM
Control Optim. Calc. Var. 22, 728–742 (2016)

8. Bauschke, H.H., Moursi, W.M., Wang, X.: Generalized monotone operators and their averaged resol-
vents. Math. Program., ser. B 189, 55–74 (2021)
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