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Abstract
We revisit the optimal control problem with maximum cost with the objective to pro-
vide different equivalent reformulations suitable to numerical methods. We propose
two reformulations in terms of extended Mayer problems with state constraints, and
another one in terms of a differential inclusionwith upper-semi-continuous rightmem-
ber without state constraint. For the latter we also propose a scheme that approximates
frombelow the optimal value. These approaches are illustrated and discussed in several
examples.
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1 Introduction

We consider the optimal control problem which consists in minimizing the maximum
of a scalar function over a time interval
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inf
u(·) ess supt∈[t0,T ] y(t),

where y(t) = θ(t, ξ(t)) and ξ(·) is the solution of a controlled dynamics ξ̇ = φ(ξ, u),
ξ(t0) = ξ0. This problem is not in the usual Mayer, Lagrange or Bolza forms of the
optimal control theory and therefore is not suitable to use the classical necessary opti-
mality conditions of Pontryagin’s maximum principle or existing solving algorithms
(based on direct method, shooting or Hamilton–Jacobi–Bellman equation). However,
this problem falls into the class of optimal control with L∞ criterion, for which sev-
eral characterizations of the value function have been proposed in the literature [3, 4,
12]. Typically, the value function is solution, in a general sense, of partial differential
equation of the form

min
(
∂t V + inf

u
∂ξV .φ(ξ, u), V − θ

)
= 0

without boundary condition. Nevertheless, although necessary optimality conditions
and numerical procedures have been formulated [2, 8, 9, 11], there is no practical
numerical tool to solve such problems as it exists for Mayer problems, to the best
of our knowledge. The aim of the present work is to study different reformulations
of this problem into Mayer form in higher dimension with possibly state or mixed
constraints, for which existing numerical methods can be used. Indeed, it has already
been underlined in the literature that discrete-time optimal control problems with
maximum cost do not satisfy the principle of optimality but can be transformed into
problems of higher dimension with additively separable objective functions [14, 15].
We pursue here this idea but in the continuous time framework, which faces the lack
of differentiability of the max function.

This manuscript is organized as follows. In Sect. 2, we establish the setup and
the hypotheses of this article, and define the problem. In Sect. 3, we provide equiv-
alent formulations of the studied problem in the form of two Mayer problems with
fixed initial condition, and under state or mixed constraint. In Sect. 4, we propose
another formulation in terms of differential inclusion but without constraints, and then
we show how the optimal value can be approximated from below by a sequence of
more regular Mayer problems. Section 5 is devoted to numerical illustrations.We con-
sider two problems for which the optimal solution can be determined explicitly (one
borrowed from epidemiology), which allows to estimate and compare the numerical
performances of the different formulations. These problems have been chosen linear
with respect to the control variable in order to present discontinuous optimal controls,
which are known to be numerically more sensitive. More precisely, the optimal solu-
tion of the first problem has pure bang–bang controls, while the second one possesses
a singular arc. We discuss the issues arising in the numerical implementations of the
different formulations and compare numerically with L p approximations. Finally, we
discuss in Sect. 6 about the potential merits of the different formulations as practical
methods to compute optimal solution of L∞ control problems.
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2 Problem and Hypotheses

We shall consider autonomous dynamical systems defined on an invariant domain D
of R

n+1 of the form

ẋ = f (x, y, u),

ẏ = g(x, y, u), (1)

(where g is a scalar function) where the values of the control u(·) belong to a given set
U ⊂ R

p. More specifically, throughout the paper, we shall assume that the following
properties are fulfilled.

Assumption 1 i. U is a compact set.
ii. The maps f and g are C1 on D ×U .
iii. The maps f and g have linear growth, that is there exists a number C > 0 such

that

|| f (x, y, u)|| + |g(x, y, u)| ≤ C(1 + ||x || + |y|), (x, y) ∈ D, u ∈ U .

For instance, y(·) can be a smooth output of a dynamics

ẋ = f (x, u), y = h(x),

which can be rewritten as

ẋ = f (x, u),

ẏ = g(x, u) := ∇h(x)T · f (x, u).

Let U be the set of measurable functions u(·) : [0, T ] �→ U and consider (x0, y0) ∈
D, T > 0. Under the usual arguments of the theory of ordinary differential equations,
Assumption 1 ensures that for any u(·) ∈ U there exists a unique absolutely continuous
solution (x(·), y(·)) of (1) on [0, T ] for the initial condition (x(0), y(0)) = (x0, y0)
(see, for instance, [10]). Define then the solutions set

S : = {(x(·), y(·)) ∈ AC([0, T ], R
n+1), sol. of (1) for u(·) ∈ U with (x(0), y(0))

= (x0, y0)}.

Weconsider then the optimal control problemwhich consists inminimizing the “peak”
of the function y(·)

P : inf
u(·)∈U

(
max
t∈[0,T ] y(t)

)
= inf

(x(·),y(·))∈S

(
max
t∈[0,T ] y(t)

)
.
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3 Formulations with Constraint

A first approach considers the family of constrained sets of solutions

Sz := {(x, y) ∈ S, y(t) ≤ z, t ∈ [0, T ]}, (z ∈ R)

and to look for the optimization problem

inf{z; Sz 	= ∅}.

This problem can be reformulated as a Mayer problem

P0 : inf
u(·)∈U

z(T )

for the extended dynamics in D × R

ẋ = f (x, y, u),

ẏ = g(x, y, u),

ż = 0,

under the state constraint

C : z(t) − y(t) ≥ 0, t ∈ [0, T ],

where z(0) is free. Direct methods can be used for such a problem. However, as z(0)
is free, solutions are not sought among solutions of a Cauchy problem, which prevents
using other methods based on dynamic programming such as the Hamilton–Jacobi–
Bellman equation.

We propose another extended dynamics in D × R with an additional control v(·)
with values in [0, 1]

ẋ = f (x, y, u),

ẏ = g(x, y, u),

ż = max(g(x, y, u), 0)(1 − v). (2)

Let V be the set of measurable functions v : [0, T ] �→ [0, 1]. Note that under
Assumption 1, for any (x0, y0, z0) ∈ D × R and (u, v) ∈ U × V , there exists an
unique absolutely solution (x(·), y(·), z(·)) of (2) on [0, T ] for the initial condition
(x(0), y(0), z(0)) = (x0, y0, z0). Here, we fix the initial condition with z0 = y0 and
consider the Mayer problem

P1 : inf
(u(·),v(·))∈U×V

z(T ) under the constraint C

and shows its equivalence with problem P . We first consider fixed controls u(·).
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Proposition 3.1 For any control u(·) ∈ U , the optimal control problem

inf
v∈V

z(T ) under the constraint C (3)

admits an optimal solution. Moreover, an optimal solution verifies

z(T ) = max
t∈[0,T ] y(t) (4)

and is reached for a control v(·) that takes values in {0, 1}.
Proof From equations (2), one get that any solution z(·) is non-decreasing, and as z
satisfies the constraint z ≥ y, we deduce that one has

z(T ) ≥ max
t∈[0,T ] y(t) (5)

for any solution of (2), and thus

max
t∈[0,T ] y(t) ≤ inf

v∈V
z(T ) under the constraint z(t) ≥ y(t), t ∈ [0, T ].

Let x(·), y(·) be the solution of (1) for the control u(·) and let I be the set of invisible
points from the left of y, that is

I := {
t ∈ (0, T ), y(t ′) > y(t) for some t ′ < t

}
.

Consider then the control

v(t) =
{
1, t ∈ int I ,

0, t /∈ int I .
(6)

When I is empty, y(·) is a non-decreasing function and, when v(t) = 0 for all t ∈
[0, T ], one has z(t) = y(t) for any t ∈ [0, T ]. Therefore, one has

z(T ) = y(T ) = max
t∈[0,T ] y(t).

When I is non-empty, there exists, from the sun rising Lemma [17], a countable set
of disjoint non-empty intervals In = (an, bn) of [0, T ] such that
– the interior of I is the union of the intervals In ,
– one has y(an) = y(bn) if bn 	= T ,
– if bn = T , then y(an) ≥ y(bn).

Note that when t /∈ int I , one has y(t) ≥ y(t ′) for any t ′ ≤ t . Therefore, the solution
z with control (6) verifies

z(t) =
{
y(t), t /∈ int I ,

y(an), t ∈ In for some n,
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Fig. 1 Illustration of the
function z (in red) corresponding
to a function y (in blue) with the
control given by expression (6)

(see Fig. 1 as an illustration). Let t̄ be the largest time in [0, T ] such that

y(t̄) = max
t∈[0,T ] y(t),

which implies that any point t ′ > t̄ in [0, T ] is invisible from the left. Therefore, one
has z(T ) = z(t̄). As for any t z(t) is equal to y(τ ) for some τ , one has necessarily
z(t̄) ≤ y(t̄). Thus, from (5) we obtain

max
t∈[0,T ] y(t) = z(T )

and deduce

max
t∈[0,T ] y(t) = inf

v(·)∈V
z(T ) under the constraint C.

�

Remark 3.1 The proof of Proposition 3.2 gives an optimal construction of z(·) which
is the lower envelope of non decreasing continuous functions above the function y(·),
as depicted in Fig. 1. However, there is no uniqueness of the optimal control v(·). Any
admissible solution z(·) that is above y(·) and such that z(t) = ŷ for t ≥ t̂ = min{t ∈
(0, T ], y(t) = ŷ}, where ŷ := maxs∈[0,T ] y(s), is also optimal.

We then obtain the equivalence between problemsP1 andP in the following sense.

Proposition 3.2 If (u�(·), v�(·)) is optimal for Problem P1, then u�(·) is optimal for
ProblemP . Conversely, if u�(·) is optimal for ProblemP , then (u�(·), v�(·)) is optimal
for Problem P1 where v�(·) is optimal for the problem (3) for the fixed control u�(·).

Let us give another equivalent Mayer problem but with a mixed constraint.
(This will be useful in the next section.) We consider again the extended dynam-
ics (2), with a control v(·) which values belong to [0, 1] and the initial conditions
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(x(0), y(0), z(0)) = (x0, y0, y0). Define then the mixed constraint

Cm : max(y(t) − z(t), 0)(1 − v(t)) + z(t) − y(t) ≥ 0, a.e. t ∈ [0, T ]

and the optimal control problem

P2 : inf
(u(·),v(·))∈U×V

z(T ) under the constraint Cm .

Proposition 3.3 Problems P1 and P2 are equivalent.

Proof One can immediately see that for any admissible solution that satisfies constraint
C, the constraint Cm is necessarily fulfilled as max(y − z, 0) is identically null.

Conversely, fix an admissible control u(·) and consider a control v(·) that satisfies
Cm . We show that this implies that the solution (y(·), z(·)) verifies necessarily z(t) ≥
y(t) for any t ∈ [0, T ]. If not, consider the non-empty set

E := {t ∈ [0, T ]; z(t) − y(t) < 0}

which is open as z− y is continuous. Note that one has ż(t)− ẏ(t) ≥ 0 for a.e. t ∈ E .
Therefore z − y is non decreasing in E and we deduce that for any t ∈ E , the
interval [0, t] is necessarily included in E , which then contradicts the initial condition
z(0) = y(0). �

4 FormulationWithout State Constraint

We posit � = (x, y, z) ∈ D × R and consider the differential inclusion

�̇ ∈ F(�) :=
⋃

(u,v)∈U×[0,1]

⎡
⎣

f (x, y, u)

g(x, y, u)

h(x, y, z, u, v)

⎤
⎦ (7)

with

h(x, y, z, u, v) = max(g(x, y, u), 0)(1 − v�R+(z − y)),

where �R+ is the indicator function

�R+(ζ ) =
{
1, ζ ≥ 0,

0, ζ < 0.

Let �0 = (x0, y0, y0) and denote by S
 the set of absolutely continuous solutions of
(7) with �(0) = �0 ∈ D × R. We consider the Mayer problem

P3 : inf
�(·)∈S


z(T ).
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Assumption 2

∀(x, y) ∈ D, G(x, y) :=
⋃
u∈U

[
f (x, y, u)

g(x, y, u)

]
is convex.

Proposition 4.1 Under Assumption 2, problem P3 admits an optimal solution. More-
over, any optimal solution �(·) = (x(·), y(·), z(·)) verifies

z(T ) = max
t∈[0,T ] y(t)

with (x(·), y(·)) solution of (1) for some control u(·) ∈ U that in turn is optimal for
problem P .

Proof We fix the initial condition �(0) = �0 and consider the augmented dynamics

�̇ ∈ F†(�) :=
⋃

(u,v,α)∈U×[0,1]2

⎡
⎣

f (x, y, u)

g(x, y, u)

h†(x, y, z, u, v, α)

⎤
⎦ (8)

with

h†(x, y, z, u, v, α) = (1 − α)h(x, y, z, u, v) + αmax
w∈U h(x, y, z, w, 0).

Under Assumption 2, the values of F† are convex compact. One can straightfor-
wardly check that the set-valuedmap F† is upper semi-continuous1 with linear growth.
Therefore, the reachable set S†


 (T ) (where S†

 denotes the set of absolutely continuous

solutions of (8) with�(0) = �0) is compact (see, for instance, [1, Proposition 3.5.5]).
Then, there exists a solution��(·) = (x�(·), y�(·), z�(·)) of (8)whichminimizes z(T ).

Note that any admissible solution (x(·), y(·), z(·)) of system (2) that satisfies the
constraint Cm belongs to S
 ⊂ S†


 . We then get the inequality

z�(T ) ≤ inf{z(T ); (x(·), y(·), z(·)) sol. of (2) with Cm}. (9)

Let us show that any solution �(·) = (x(·), y(·), z(·)) in S
 verifies

z(T ) ≥ max
t∈[0,T ] y(t). (10)

We show that one has z(t) ≥ y(t) for any t ∈ [0, T ]. We proceed by contradiction,
as in the proof of Proposition 3.3. If the set E = {t ∈ (0, T ); z(t) − y(t) < 0}
is non-empty, one has ż(t) − ẏ(t) ≥ 0 for a.e. t ∈ E which implies, by continuity,
that one has z(0) − y(0) < 0 which contradicts the initial condition z(0) = y(0).

1 A set-valued map F : X � X is upper semi-continuous at ξ ∈ X if and only if for any neighborhood
N of F(ξ), there exists η > 0 such that for any ξ ′ ∈ BX (ξ, η) one has F(ξ ′) ⊂ N (see, for instance, [1]).
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Moreover, as the map h is nonnegative, z(·) is non decreasing and we conclude that
(10) is verified.

On another hand, thanks to Assumptions 1 and 2, we can apply Filippov’s lemma
to the set-valued map G, which asserts that (x(·), y(·)) is solution of (1) for a certain
u(·) ∈ U . With(10), we obtain

z�(T ) ≥ max
t∈[0,T ] y

�(t) ≥ inf
u∈U

{
max
t∈[0,T ] y(t); (x(·), y(·)) sol. of (1)

}
(11)

where (x�(·), y�(·)) is solution of (1) for a certain u�(·) ∈ U .
Finally, inequalities (9) and (11) with Propositions 3.2 and 3.3 show that z�(T )

is reached by a solution of (2) under the constraint Cm and that u�(·) is optimal for
problem P . We also conclude that the optimal value z�(T ) is reached by a solution in
S
, which is thus optimal for problem P3. �
Remark 4.1 Let us stress that the function h is not continuous, which does not allow to
use Filippov’s lemma for the set valued map F . This means that one cannot guarantee
a priori that an absolutely continuous solution �(·) = (x(·), y(·), z(·)) can be synthe-
sized by a measurable control (u(·), v(·)). Proposition 4.1 shows that (x(·), y(·)) is
indeed a solution of system (1) for a measurable control u(·), but one cannot guarantee
a priori that z(·) can be generated by a measurable control v(·), which is irrelevant for
our purpose.

We end this section by exhibiting an approximation scheme from below of the opti-
mal cost. These approaches are of major interest for minimization problems because,
since upper bounds are commonly obtained via any sub-optimal control of problem
P0, P1, P2 or P3 (provided typically by a numerical scheme), they are useful to frame
the optimal value of the problem. This will be illustrated in Section 5.

Let us consider the family of dynamics parameterized by θ > 0

ẋ = f (x, y, u),

ẏ = g(x, y, u),

ż = hθ (x, y, z, u, v), (12)

with

hθ (x, y, z, u, v) = max(g(x, y, u), 0)(1 − v e−θ max(y−z,0)).

Here the expression e−θ max(y−z,0) plays the role of an approximation of �R+(z − y)
when θ tends to +∞.

We then define the family of Mayer problems

Pθ
3 : inf

�(·)∈Sθ

z(T ),

where Sθ denotes the set of absolutely continuous solutions �(·) = (x(·), y(·), z(·))
of (12) for the initial condition �(0) = �0. Let us underline that, for problems

123



962 Journal of Optimization Theory and Applications (2022) 195:953–975

with Lipschitz dynamics and without state constraints, necessary conditions based on
Pontryagin’s maximum principle can be derived, leading to shooting methods that
are known to be very accurate. They can be initialized from numerical solutions of
problems P1 or P2 that in turn can be obtained, for instance, through direct methods.

Proposition 4.2 Under Assumption 2, consider any increasing sequence of numbers
θn (n ∈ N) that tends to +∞. For each n ∈ N, the problem Pθn

3 admits an optimal

solution, and for any sequence of optimal solutions (xn(·), yn(·), zn)(·)) of Pθn
3 , the

sequence (xn(·), yn(·)) converges, up to subsequence, uniformly to an optimal solu-
tion (x�(·), y�(·)) of Problem P , and its derivatives weakly to (ẋ�(·), ẏ�(·)) in L2.
Moreover, zn(T ) is an increasing sequence that converges to maxt∈[0,T ] y�(t).

Proof As in the proof of Proposition 4.1, we consider for any θ > 0 the convexified
dynamics

ẋ = f (x, y, u),

ẏ = g(x, y, u),

ż = h†θ (x, y, z, u, v, α) := (1 − α)hθ (x, y, z, u, v) + αmax
w∈U hθ (x, y, z, w, 0),

whereα ∈ [0, 1]. Then, there exists an absolutely continuous solution (x�
θ (·), y�

θ (·), z�θ (·))
and a measurable control (u�

θ (·), v�
θ (·), α�

θ (·)) that minimize z(T ). For the control
(u�

θ (·), v�
θ (·), 0), the solution is given by (x�

θ (·), y�
θ (·), z̃�θ (·)) where z̃�θ (·) is solution of

the Cauchy problem

ż = l̃θ (t, z) := h†θ (x
�
θ (t), y

�
θ (t), z; u�

θ (t), v
�
θ (t), 0), z(0) = y(0)

while z�θ (·) is solution of

ż = lθ (t, z) := h†θ (x
�
θ (t), y

�
θ (t), z, u

�
θ (t), v

�
θ (t), α

�
θ (t)), z(0) = y(0).

One can check that the inequality

l̃θ (t, z) ≤ lθ (t, z), t ∈ [0, T ], z ∈ R

is fulfilled, which gives by comparison of solutions of scalar ordinary differential
equations (see, for instance, [18]) the inequality

z̃�θ (t) ≤ z�θ (t), t ∈ [0, T ].

We deduce that (x�
θ (·), y�

θ (·), z�θ (·)) is necessarily a solution of (12).
Let

ȳ := inf
u∈U

{
max
t∈[0,T ] y(t); (x(·), y(·)) sol. of (1)

}
.
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By Proposition 4.1, we know that there exists an optimal solution (x(·), y(·), z(·)) of
problem P3 such that z(T ) = ȳ. Clearly, this solution belongs to Sθ for any θ , and we
thus get

z�θ (T ) ≤ ȳ. (13)

Let

Fθ (�) :=
⋃

(u,v)∈U×[0,1]

⎡
⎣

f (x, y, u)

g(x, y, u)

hθ (x, y, z, u, v)

⎤
⎦

and note that one has

lim
θ→+∞ d (Fθ (�), F(�)) = 0, � ∈ D × R. (14)

Consider an increasing sequence of numbers θn (n ∈ N), and denote �n(·) =
(xn(·), yn(·), zn(·)) an optimal solution of problem Pθn

3 . Note that one has

Sθn+1 ⊂ Sθn · · · ⊂ Sθ0 . (15)

Therefore, the sequence �̇n(·) is bounded, and �n(·) as well. As F is upper semi-
continuous, we obtain that �n(·) converges uniformly on [0, T ], up to a subsequence,
to a certain ��(·) = (x�(·), y�(·), z�(·)) which belongs to Sl (see, for instance, [7,
Th. 3.1.7]). From property(15), we obtain that zn(T ) is a non-decreasing sequence
that converges to z�(T ), and from (13), we get passing at the limit

z�(T ) ≤ ȳ.

On another hand, (x�(·), y�(·), z�(·)) belongs to Sl and we get from Proposition 4.1
the inequality

z�(T ) ≥ ȳ.

Therefore, one has z�(T ) = ȳ and (x�(·), y�(·), z�(·)) is then an optimal solution of
problem P3. From Proposition 4.1, we obtain that one has necessarily

z�(T ) = max
t∈[0,T ] y

�(t).

Finally, the sequence (ẋn(·), ẏn(·)) being bounded, it converges, up to a subsequence,
weakly to (ẋ�(·), ẏ�(·)) in L2 thanks to Alaoglu’s theorem. �

5 Numerical Illustrations

Our aim is to illustrate the different formulations on problems for which the optimal
solution is known.Wehave considered here only direct andHamilton–Jacobi–Bellman
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numerical methods, and not indirect methods. As underlined, for instance, in [6],
computational schemes based on the maximum principle of Pontryagin (such as the
shootingmethod), although usually quite accurate, require an a priori knowledge of the
structure of the solution as well as a good approximation of the adjoint state. Here, our
objective is to show that solving numerically problemswithmaximumcost considering
the equivalent formulations we propose can be done straightforwardly with existing
software based on direct or Hamilton–Jacobi–Bellman methods, without having to
provide the structure of the optimal solution.

5.1 A Particular Class of Dynamics

We consider dynamics of the form

() :
{
ẋ = f (x),
ẏ = g(x, u).

x ∈ R
n, u ∈ U ,

Proposition 5.1 A feedback control x �→ φ�(x) such that

g(x, φ�(x)) = min
u∈U g(x, u), x ∈ R

n

is optimal for problem P .

Proof For a given x0 in R
n , let x(·) be the solution of ẋ = f (x), x(0) = x0 inde-

pendently to the control u(·). For any control u(·), the corresponding solution y(·)
verifies

y(t) = y(0) +
∫ t

0
g(x(τ ), u(τ )) dτ

≥ y(0) +
∫ t

0
min
v∈U g(x(τ ), v) dτ, t ≥ 0. (16)

Consider the (measurable) map

ϑ(t, u) := g(x(t), u), (t, u) ∈ [0, T ] ×U .

From the existence of measurable selection of extrema of measurable maps (see, for
instance, Theorem 2 in [5]), there exists a measurable control u�(·) such that

ϑ(t, u�(t)) = min
v∈U ϑ(t, v), t ∈ [0, T ].

Let y�(·) be defined as

y�(t) := y(0) +
∫ t

0
g(x(τ ), u�(t)) dτ = y(0) +

∫ t

0
min
v∈U g(x(τ ), v) dτ, t ≥ 0.
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Clearly, y�(·) is solution of  for the control u�(·) and one gets from (16)

max
t

y(t) ≥ max
t

y�(t).

We conclude that y�(·) is an optimal trajectory of problemP for the control generated
by the feedback φ�. �

As a toy example, we have considered the system

{
ẋ = 1, x(0) = 0,
ẏ = (1 − x)(2 − x)(4 − x)(1 + u/2), y(0) = 0,

u ∈ [−1, 1]

for which

φ�(x) = − sign
(
(1 − x)(2 − x)(4 − x)

)

is an optimal control which minimizes maxt∈[0,T ] y(t). The optimal control is thus
pure bang–bang. Remark that this problem can be equivalently written with a scalar
non-autonomous dynamics

ẏ = (1 − t)(2 − t)(4 − t)(1 + u/2)

for which the open-loop control

u�(t) = − sign
(
(1 − t)(2 − t)(4 − t)

)

is optimal.
For T = 5, we have first computed the exact optimal solution of problem P with

the open-loop u�(·), by integrating the dynamics with Scipy in Python software (see
Fig. 2). Effects of perturbations on the switching times on the criterion are presented in
Table 1, which show a quite high sensitivity of the optimal control for this problem (as
it often the case for bang–bang controls). Then, we have solved numerically problems
P0 toP2 with a direct method (Bocop software using Gauss II integration scheme) for
500 time steps and an optimization relative tolerance equal to 10−10. For problem P3,
as the dynamics is not continuous, direct methods do not work well and we have used
instead a numerical scheme based on dynamic programming (BocopHJB software)
with 500 time steps and a discretization of 200 × 200 points of the state space. For
the additional control v, we have considered only two possible values 0 and 1 as we
know that the optimal solution is reached for v ∈ {0, 1} (see Proposition 3.1). The
numerical results and computation times are summarized in Table 2, while Figure 3
presents the corresponding trajectories.

We note that the direct method give very accurate results, and the computation time
for problemP0 is the lowest because it has only one control. The computation time for
problem P2 is slightly higher than for P1 because the mixed constraint Cm is heavier
to evaluate. The numerical method for problem P3 is of completely different nature
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Fig. 2 Optimal solution: y(·) on the left, u�(·) on the right

Table 1 Sensitivity to the
optimal switching

Disturbance max
t∈[0,T ] y(t) Error

0 2.24985 0

0.001% 2.24985 4.10−6%

0.01% 2.25010 0.01%

0.1% 2.69457 20%

Table 2 Comparison of the
numerical results

Problem max
t∈[0,T ] y(t) Error computation time

P 2.24705 0 –

P0 2.249888 0.126% 0.5 s

P1 2.24998 0.130% 1.8 s

P2 2.249941 0.129% 3.8 s

P3 2.26778 0.8% 248 s

as it computes the optimal solution for all the initial conditions on the grid, which
explains a much longer computation time. The accuracy of the results is also directly
related to the size of the discretization grid and can be improved by increasing this
size but at the price of a longer computation time.

It can be noticed in Fig. 3 some differences between the obtained trajectories. Let
us underline that after the peak of y(·), there is no longer uniqueness of the optimal
control (indeed any value of the control does not modify the value of the peak).
Hence, we may think about considering an additional cost after the peak to avoid this
multiplicity. However, since neither the value of the peak, nor the time when it is
reached, are known, this does not seem easy to implement.

5.2 Application to an Epidemiological Model

The SIR model is one of the most basic transmission models in epidemiology for a
directly transmitted infectious disease (see [19] for a complete introduction) and it
retakes great importance nowadays due to Covid-19 epidemic.
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Fig. 3 Comparisons of the three methods on y(·), u(·), z(·) and v(·)

Consider on a time horizon [0, T ] variables S(t), I (t) and R(t) representing the
fraction of susceptible, infected and recovery individuals at time t ∈ [0, T ], so that
one has S(t) + I (t) + R(t) = 1 with S(t), I (t), R(t) ≥ 0. Let β > 0 be the rate of
transmission and γ > 0 the recovery rate. Interventions as lockdowns and curfew are
modeled as a factor in rate transmission that we denote u and which represents our
control variable taking values in [0, umax] with umax ∈ (0, 1), where u = 0 means no
intervention and u = umax the most restrictive one which reduces as much as possible
contacts among population. The SIR dynamics including the control is then given by
the following equations:

Ṡ = −(1 − u)βSI , (17)

İ = (1 − u)βSI − γ I , (18)

Ṙ = γ I . (19)

When the reproduction number R0 = β/γ is above one and the initial proportion of
susceptible is above the herd immunity threshold Sh = R−1

0 , it is well known that there
is an epidemic outbreak. Then, the objective is to minimize the peak of the prevalence

max
t∈[0,T ] I (t)
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with respect to control u(·) subject to a L1 budget

∫ T

0
u(t) ≤ Q (20)

on a given time interval [0, T ] where T is in chosen large enough to ensure the herd
immunity of the population is reached at date T . Note that one can drop the R dynamics
to study this problem. If the constraint (20)were not imposed, then the optimal solution
would be the trivial control u(t) = umax, t ∈ [0, T ], which is in general unrealistic
from an operational point of view. A similar problem has been considered in [16] but
under the constraint that intervention occurs only once on a time interval of given
length that we relax here. Note that the constraint (20) can be reformulated as a target
condition, considering the augmented dynamics

Ṡ = −(1 − u)βSI , (21)

İ = (1 − u)βSI − γ I , (22)

Ċ = −u(t), (23)

with initial condition C(0) = Q and target {C ≥ 0}. Extension of the results of
Sections 3 and 4 to problems with target does not present any particular difficulty and
is left to the reader.

For initial conditions I0 = I (0) > 0 and S0 = S(0) > Sh , the optimal solution has
been determined in [13] as the feedback control

ψ(I , S) :=
{
1 − Sh

S if I = Ī and S > Sh,

0 otherwise,

where

Ī :=
I0 + S0 − Sh − Sh log

(
S0
Sh

)

QβSh + 1

is the optimal value of the peak. The proof of the optimality of this feedback is out of
the scope of the present paper and can be found in [13]. This control strategy consists
in three phases:

1. no intervention until the prevalence I reaches Ī (null control),
2. maintain the prevalence I equal to Ī until S reaches Sh (singular control),
3. no longer intervention when S > Sh (null control),

as illustrated in Fig. 4 for the parameters given in Table 3. Note that differently to
the previous example, this control strategy is intrinsically robust with respect to a bad
choice of Ī : the maximum value of I is always guaranteed to be equal to Ī . However,
a mischoice of Ī has an impact on the budget (see [13] for more details).

Adding the z-variable, we end up with a dynamics in dimension four, which is
numerically heavier than for the previous example. In particular, methods based on
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Fig. 4 The optimal solution for the SIR problem

Table 3 Parameters used in
numerical computations and
optimal value of the peak

β γ T Q S(0) I (0) Ī

0.21 0.07 300 28 1 − 10−6 10−6 0.105

the value function are too time consuming to obtain accurate results for refined grids
in a reasonable computation time. So we have considered direct methods only. We do
not consider here problem P3, but instead its regular approximations Pθ

3 suitable to
direct methods. For direct methods that use algebraic differentiation of the dynamics,
convergence and accuracy are much better if one provides differentiable dynamics.
This is why we have approximated the max(·, 0) operator for problems P1 and P2 by
the Laplace formula

log
(
eλξ + 1

)

λ
−→

λ→+∞ max(ξ, 0), ξ ∈ R

with λ = 100 for the numerical experiments. For problem Pθ
3 , one has to be careful

about the interplay between the approximations of max(·, 0) and the sequence θn →
+∞, to provide approximations from below of the optimal value. The function hθ is
thus approximated by the expression

hθ (x, y, z, u, v) � log
(
eλ1g(x,y,u) + 1

)

λ1

(
1 − ve

θ
λ2

log
(
eλ2(y−z)+1

))

which depends on three parameters λ1, λ2 and θ . Posit for convenience

α := θ

λ2

and consider the function

ωα,λ2(ξ) := e−α log
(
e−λ2ξ +1

)
, ξ ∈ R

which approximates the indicator function �R+ .

Lemma 5.1 One has the following properties.
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1. For any positive numbers α, λ2, the function ωα,λ2 is increasing with

lim
ξ→−∞ ωα,λ2(ξ) = 0, lim

ξ→+∞ ωα,λ2(ξ) = 1.

2. For any ε ∈ (0, 1), one has ωα,λ2

(−ε2
) = ε and ωα,λ2(0) = 1 − ε exactly for

α = − log(1 − ε)

log(2)
, λ2 = log(ε− 1

α − 1)

ε2
. (24)

Proof One has first

ω′
α,λ2

(ξ) = λ2α
e−λ2x

e−λ2ξ + 1
ωα,λ2(ξ) > 0

and the function ωα,λ2(·) is thus increasing. From

lim
ξ→−∞ −α log(e−λ2ξ + 1) = −∞

one get

lim
ξ→−∞ ωα,λ2(ξ) = 0

and similarly

lim
ξ→+∞ −α log(e−λ2ξ + 1) = 0

implies

lim
ξ→+∞ ωα,λ2(ξ) = 1.

Finally, with simple algebraic manipulation of the conditions ωα,λ2

(−ε2
) = ε and

ωα,λ2(0) = 1 − ε, one obtains straightforwardly the expressions (24). �
We have taken λ1 = 5000 and considered a sequence of approximations of the indi-
cator function for the values given in Table 4 according to expressions (24) of Lemma
5.1 (see Fig. 5).

Computations have been performed with Bocop software on a standard laptop
computer (with a Gauss II integration scheme, 600 time steps and relative tolerance
10−10). As one can see in Fig. 6 and Table 5 problemsP0,P1,P2 give the peak values
with a very good accuracy and present similar performances in terms of computation
time. In Fig. 7 and Table 6, the numerical solutions of Pθ

3 are illustrated for the values
of α and λ2 given in Table 4. As expected, the numerical computation of the family
of problems Pθ

3 provides an increasing sequence of approximation from below of the
optimal value and thus complements the computation of problemsP0,P1 orP2. From
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Table 4 Values of parameters α,
λ2 for different values of ε

ε α λ2

0.2 0.32 124

0.15 0.234 360

0.1 0.152 1514

0.075 0.112 4094

0.05 0.074 16193

Fig. 5 Approximation of the indicator function with different values of ε (zoom on the abscissa axis on the
right)

figures of Tables 5 and 6, one can safely guarantee that the optimal value belongs to the
interval [0.1010, 0.1015]. However, the trajectories found for Pθ

3 are not as closed as
the ones of problemsP0,P1 orP2. This can be explained by the fact that problemsPθ

3
are not subject to the constraint z(t) ≥ y(t) and thus provides trajectories for which
z(T ) is indeed below maxt y(t).

Finally, we have compared our approximation technique with the classical approx-
imation of the L∞ criterion by L p norms

PL p : inf
u(·)∈U

||y(t)||p

with the same direct method. To speed up the convergence, we have used the Bocop
facility which allows a batch mode which consists in initializing the search from a
solution found for a former value of p that have been taken p ∈ {2, 5, 10, 15} (see
Fig. 8). Besides, to ensure convergence it was necessary take 1200 time step instead
of 600 as in previous simulations. The total time of the process is 78 s after summing
computation times given in Table 7. However, one can see that the trajectory found
for p = 15 is quite far to give a peak value close from the other methods. Moreover,
the same method for p = 15 but initialized from the solution found for p = 2 gives
poor results for a computation time of 50 s (see Fig. 9). We conclude that the L p

approximation is not practically reliable for this kind of problems.
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Fig. 6 Comparisons of numerical results for the methods P0, P1, P2

Table 5 Comparison of
performances for problems P0,
P1, P2

Problem max
t∈[0,T ] y(t) Computation time (s)

P0 0.1015 10

P1 0.1015 12

P2 0.1015 13

Fig. 7 Comparison of the numerical results for problem Pθ
3

6 Discussion and Conclusions

In this work, we have presented different reformulations of optimal control problems
withmaximum cost in terms of extendedMayer problems and tested them numerically
on two examples whose optimal solution has bang–bang controls and singular arcs.
We have proposed two kinds of formulations: one with state or mixed constraints
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Table 6 Comparison of
performances for problem Pθ

3
ε z(T ) max

t∈[0,T ] y(t) Computation time (s)

0.2 0.0684 0.1038 80

0.15 0.0823 0.1038 65

0.1 0.0954 0.1037 51

0.075 0.0993 0.1050 83

0.05 0.1010 0.1036 97

Fig. 8 Numerical solutions for problems PL p

Table 7 Comparison of the
numerical results with the L p

approximation

p max
t∈[0,T ] y(t) ||y(t)||p Computation time (s)

2 0.119653 1.0222 34

5 0.105244 0.2474 14

10 0.105375 0.15678 13

15 0.105170 0.13549 17

Fig. 9 Numerical solution for PL15 without batch iteration (computation time: 50 s)
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Table 8 Comparison of the different formulations

Formulation P0 P1 or P2 P3 Pθ
3

Suitable to direct methods Yes Yes No Yes

Suitable to Hamilton–Jacobi–Bellman methods No Yes Yes Yes

Suitable to shooting methods without constraint No No No Yes

Provides approximations from below No No No Yes

suitable to direct methods, and another one without any constraint but less regular and
suitable to dynamical programming type methods. Moreover, for the latter one, we
have proposed an approximation scheme generated by a sequence of regular Mayer
unconstrained problems, which performs better than approximations based on L p

norms. However, although this second approach requires larger computation time, it
complements the first one providing approximations of the optimal value from above.

This first work puts in perspective the study of necessary optimality conditions for
the maximum cost problems with the help of these formulations, which will be the
matter of a future work.

Finally, we summarize advantages and drawbacks of the different formulations for
numerical computations in Table 8 that could help practitioners in the choice of the
method.
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