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Abstract
This paper is concerned with nonconvex nonsmooth uncertain multiobjective opti-
mization problems, in which the decision variable of both objective and constraint
functions is defined on Banach space while uncertain parameters are defined on
arbitrary nonempty (may not be compact) sets. We employ the Stone–C̆ech compact-
ification of uncertainty sets and the upper semicontinuous regularization of original
functions with respect to uncertain parameters, giving rise to unified robust necessary
optimality conditions for the local robust weakly efficient solution of the considered
problem. Moreover, we derive weak and strong KKT robust necessary conditions via
the constraint qualification and the regularity condition, respectively. Several examples
are provided to illustrate the validity of our results.
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1 Introduction

In the last decades, robust multiobjective optimization and its broad range of applica-
tions have been an active study area in mathematical programming. More and more
complex optimization problems are addressed in contemporary society. These prob-
lems are characterized bymultiple conflicting objectives and almost inevitably contain
the uncertainty because of measurement errors, imprecise data, future developments,
fluctuations, and disturbances (e.g., COVID-19). We apply a deterministic approach
to deal with the uncertainty that is integrated with the multiobjective optimization.
The deterministic approach is mainly based on robust optimization [1, 2] in this paper.
Establishing robust necessary optimality conditions for uncertain multiobjective opti-
mization problems has been an attractive issue recently [6–9, 15–17, 21, 31]. There
are three types of robust necessary optimality conditions for uncertain multiobjective
optimization problems. The first one is called Fritz John (FJ) robust necessary con-
ditions when not all Lagrange multipliers of objective and constraint functions are
zero. The second one is weak Karush–Kuhn–Tucker (WKKT) robust necessary con-
ditions when at least one of Lagrange multipliers corresponding to objective functions
is positive. The third one is strong Karush–Kuhn–Tucker (SKKT) robust necessary
conditions when all Lagrange multipliers of objective functions are positive.

Recent references [19, 23, 29] presented necessary and sufficient conditions
for robust solutions of uncertain optimization problems under the convex-concave
assumption by various methods. These lead to the corresponding question of how
to weaken the convex-concave assumption. Wei et al. [32] investigated the robust
necessary optimality for uncertain optimization problems without any convexity or
concavity assumptions but merely considered finite uncertainty sets. Meanwhile, the
problemmodels in [19, 23, 29, 32] were only scalar cases. Robust necessary optimality
conditions formulated by nondifferentiable and nonconvex functions were established
in [4, 6, 8, 15–17, 21, 22, 27, 31], while uncertainty sets were compact. Moreover,
Chuong [9] provided robust optimality conditions for nonconvex nonsmooth uncertain
multiobjective optimization problems with uncertain parameters ranging in compact
perturbed sets of active indices. A natural question arises: Is it possible to eliminate
those assumptions?Namely, whether or not we can obtain robust optimality conditions
for uncertain multiobjective optimization problems under nonconvex, nonsmooth and
noncompact assumptions.

It is worth mentioning that Correa et al. [12, 13] perfectly removed the compactness
of the index set and the continuity of the indicator parameter by using the compacti-
fication of the index set and an appropriate enlargement of the original family of data
functions, and proposed general formulas for the subdifferential of the supremum of
convex functions. Inspired by thework of [12, 13], amore precise question is: By virtue
of the compactification of uncertainty sets and the appropriate enlargement of origi-
nal functions, is there any chance for getting rid of the aforementioned assumptions
(convexity-concavity of functions, compactness and continuity of uncertain parame-
ters), but keeping alive the possibility of still applying robust optimality conditions
developed under them?

In this paper, we employ the Stone–C̆ech compactification approach [11, 26] to
drop out the standard assumption of the compactness of uncertainty sets. Moreover,
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we use the upper semicontinuous regularization to remove the continuity of uncertain
parameters. Then, we formulate new descriptions of robust optimality conditions of
uncertain multiobjective optimization problems for uniformly locally Lipschitz func-
tions defined on Banach spaces (see Sect. 2) taken over arbitrary nonempty uncertainty
sets. Compared with the ones developed in the previous literature [6, 8–10, 15, 16,
21, 22, 27, 31], we present weaker assumptions to obtain robust optimality condi-
tions. Additionally, taking into account the constraint qualification and the regularity
condition, we arrive at WKKT and SKKT robust necessary optimality conditions,
respectively. Our results are new and extend or cover several corresponding known
ones in the literature.

The rest of this paper is organized as follows. Section 2 provides some preliminary
materials from variational analysis and generalized differentiation widely applied in
formulations and proofs of the main results below. The major goal of Sect. 3 is to
constructively establish unified robust necessary optimality conditions for uncertain
multiobjective optimization problems by enlarged compactification sets and upper
semicontinuous regularized functions. Based on these crucial developments, we derive
some corollaries as some special cases of the main results. Section 4 continues the
study of WKKT and SKKT robust necessary optimality conditions for uncertain mul-
tiobjective optimization problems by means of the constraint qualification and the
regularity condition, respectively. Section 5 contains a brief summary of this paper.

2 Preliminaries

Our notation and terminology are basically standard and conventional in the area
of variational analysis and generalized differentiation [10, 24, 25]. Unless otherwise
stated in this paper,Rl signifies the l-dimensional Euclidean space andRl+ denotes the
nonnegative orthant inRl . Let X be a Banach space with the topological dual denoted
by X∗, which is endowed with the weak∗ topology. The canonical pairing between
X and X∗ is denoted by 〈·, ·〉. ‖ζ‖∗ denotes the norm in X∗ by ‖ζ‖∗ := sup{〈ζ, d〉 :
d ∈ X , ‖d‖ ≤ 1}. The symbol

w∗−→ denotes the convergence in the weak∗ topology of
X∗. Moreover, the notations intS, clS and coS denote the interior, the closure hull and
the convex hull of S ⊆ X , respectively, while cl∗A signifies the weak∗ topological
closure of A ⊆ X∗. The symbol B(x, r) denotes the open ball with center x ∈ X and
radius r > 0, and BX stands for the closed unit ball.

Let φ : X → R be a given function. The regular/Fréchet subdifferential of φ at
x̄ ∈ X is defined by

̂∂φ(x̄) :=
{

x∗ ∈ X∗ : lim inf
x→x̄

φ(x) − φ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}

.

Further, if the function φ is locally Lipschitz at x̄ ∈ X , then the generalized Clarke
directional derivative of φ at x̄ in the direction d ∈ X is defined by

123



Journal of Optimization Theory and Applications (2022) 195:226–248 229

φ◦(x̄; d) := lim sup
x→x̄
τ↓0

φ(x + τd) − φ(x)

τ
.

Then the Clarke subdifferential, or Clarke generalized gradient of φ at x̄ is defined as

∂φ(x̄) := {x∗ ∈ X∗ : 〈x∗, d〉 ≤ φ◦(x̄; d), ∀ d ∈ X}.

The relationship between above subdifferentials of φ at x̄ ∈ X iŝ∂φ(x̄) ⊆ ∂φ(x̄); see
[24]. If φ is convex, ∂φ(x̄) coincides with the subdifferential in the sense of convex
analysis, that is,

∂φ(x̄) = {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ φ(x) − φ(x̄), ∀ x ∈ X}.

The following summarizes some basic properties of the Clarke subdifferential; see
[10] for more details on those constructions.

Proposition 2.1 [10] Let φ be locally Lipschitz at x̄ ∈ X with rank L. Then

(a) ∂φ(x̄) is a nonempty, convex, weak∗-compact subset of X∗.
(b) ‖ζ‖∗ ≤ L for every ζ in ∂φ(x̄).
(c) For every d ∈ X, one has φ◦(x̄; d) = max{〈x∗, d〉 : x∗ ∈ ∂φ(x̄)}.
(d) Let x j and x∗

j be sequences in X and X∗ such that x∗
j ∈ ∂φ(x j ). Suppose that x j

converges to x̄ , and that x∗ is a cluster point of x∗
j in the weak∗ topology. Then

one has x∗ ∈ ∂φ(x̄). (That is, the multifunction ∂φ is weak∗ closed.)

The mean value theorem for the Clarke subdifferential of Lipschitz functions is
used later in the proof of the main results.

Lemma 2.1 [10] Let x and y be points in X, and suppose that φ is Lipschitz on an
open set containing the line segment [x, y]. Then there exist a point u ∈ (x, y) and
u∗ ∈ ∂φ(u) such that

φ(y) − φ(x) = 〈u∗, y − x〉,

where [x, y] := co{x, y}, and (x, y) := co{x, y}\{x, y}.
The nonsmooth version of Fermat’s rule in the sense of the Clarke subdifferential

is stated as follows.

Lemma 2.2 [10] If φ attains a local minimum or maximum at x̄ , then 0 ∈ ∂φ(x̄).

The following lemma is knownas theClarke subdifferential rule of thefinite indexed
family of functions.

Lemma 2.3 [10] Suppose that ψi is a finite collection of functions (i = 1, 2, . . . , l)
each of which is locally Lipschitz at x̄ . The functionΨ defined byΨ (x̄) = max{ψi (x̄) :
i = 1, 2, . . . , l}. Then, Ψ is locally Lipschitz at x̄ , and

∂Ψ (x̄) ⊆ co {∂ψi (x̄) : i ∈ I (x̄)} ,
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where I (x̄) = {i ∈ {1, 2, . . . , l} : ψi (x̄) = Ψ (x̄)}.
Recall that the function φ is upper semicontinuous (u.s.c) [24] at x̄ if

lim sup
x→x̄

φ(x) ≤ φ(x̄), or equivalently lim sup
x→x̄

φ(x) = φ(x̄),

and upper semicontinuous on X if this holds for every x̄ ∈ X . Moreover, the sequential
Painlevé-Kuratowski upper/outer limit [24] of F with respect to the norm topology of
X and the weak∗ topology of X∗ is defined as

Limsup
x→x̄

F(x) :=
{

x∗ ∈ X∗ : ∃ xn → x̄, ∃ x∗
n

w∗−→ x∗ with x∗
n ∈ F(xn), n ∈ N

}

,

where F : X ⇒ X∗ is a set-valued mapping (multifunction).
Let ϕ : X×Y → R be functions decided on X parametrized by y ∈ Y . Assume that

for some decision point x in X , ϕ(·, y) is locally Lipschitz at x . As usual, the symbol
∂1ϕ(·, ȳ) (resp.,̂∂1ϕ(·, ȳ)) signifies the Clarke (resp., Fréchet) subdifferential opera-
tion with respect to the first variable of the function ϕ at a given ȳ ∈ Y . Clarke [10]
introduced a new kind of the partial generalized gradient, which takes account of vari-
ations in parameters rather than just the decision one. The subdifferential construction
∂1ϕ(x̄, ȳ) ⊆ X∗ from [10] is defined by

∂1ϕ(x̄, ȳ) := cl∗co

⎡

⎢

⎣
Limsup
x→x̄

y→ȳ,y∈Y
∂1ϕ(x, y)

⎤

⎥

⎦
, (1)

where

Limsup
x→x̄

y→ȳ,y∈Y
∂1ϕ(x, y)

:=
{

x∗ ∈ X∗ : ∃ xn → x̄, yn ∈ Y , yn → ȳ, x∗
n

w∗−→ x∗ with x∗
n ∈ ∂1ϕ(xn, yn), n ∈ N

}

.

Let us now present the weak∗ closed concept for a multifunction by using the above
generalized subdifferential construction for the case of locallyLipschitz functions from
[10, Definition 2.8.1].

Definition 2.1 [10] The multifunction (x, y) ⇒ ∂1ϕ(x, y) ⊆ X∗ is said to be weak∗
closed at (x̄, ȳ) provided ∂1ϕ(x̄, ȳ) = ∂1ϕ(x̄, ȳ).

Note that this condition certainly holds if y is isolated in Y because of Proposition
2.1(d).

Throughout this paper, given aBanach space X , we consider the following uncertain
constrained multiobjective optimization problem:

(UMP) min
x∈X ( f1(x, u1), . . . , fl(x, ul))

s.t. gi (x, vi ) ≤ 0, i = 1, . . . ,m,
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where fk : X×Uk → R, k ∈ K := {1, . . . , l}, gi : X×Vi → R, i ∈ I := {1, . . . ,m},
andUk, k ∈ K , Vi , i ∈ I are nonempty uncertainty sets that are assumed to be arbitrary
(equipped with a completely regular topology). x ∈ X is called the decision variable
and uk ∈ Uk , k ∈ K , vi ∈ Vi , i ∈ I are called uncertain parameters. For any x ∈ X ,
k ∈ K and i ∈ I , we always assume that functions fk(·, uk), uk ∈ Uk , and gi (·, vi ),
vi ∈ Vi are uniformly locally Lipschitz at x with some given ranks Lk > 0 and Li > 0,
respectively. This means the existence of some positive numbers δk and ηi such that

| fk(x1, uk) − fk(x2, uk)| ≤ Lk‖x1 − x2‖, ∀ x1, x2 ∈ B(x, δk), ∀ uk ∈ Uk, (2)

|gi (x1, vi ) − gi (x2, vi )| ≤ Li‖x1 − x2‖, ∀ x1, x2 ∈ B(x, ηi ), ∀ vi ∈ Vi . (3)

To deal with the problem (UMP), the vast literature mainly considered the deter-
ministic robust counterpart to the problem (UMP) as usual, which is described as
follows:

(RMP) min
x∈X

(

sup
u1∈U1

f1(x, u1), . . . , sup
ul∈Ul

fl(x, ul)

)

s.t. gi (x, vi ) ≤ 0, ∀ vi ∈ Vi , i ∈ I .

We denote the feasible region of the problem (RMP) as follows:

C := {x ∈ X : gi (x, vi ) ≤ 0, ∀ vi ∈ Vi , i ∈ I }.
Many concepts of robustness deal with uncertain multiobjective optimization prob-

lems, for instance, minmax robustness, highly robustness, optimistic robustness, regret
robustness, adjustable robustness, and somenewconcepts for handling the uncertainty;
see [3, 14, 18, 20]. However, the most common one applied in robust multiobjective
optimization isminmax robustness; see [14].We address this papermainly to apply the
notion of the local robust weakly efficient solution in the sense of minmax robustness,
in which the optimization is conditioned on the worst-case realization of the uncer-
tainty. For x ∈ X ,wedefine and assume that Fk(x) := supuk∈Uk

fk(x, uk) ∈ R, k ∈ K ,
Gi (x) := supvi∈Vi gi (x, vi ) ∈ R, i ∈ I and denote F(x) := (F1(x), . . . , Fl(x)) ∈ R

l ,
G(x) := (G1(x), . . . ,Gm(x)) ∈ R

m unless otherwise stated.

Definition 2.2 A vector x̄ ∈ C is called a local robust weakly efficient solution of
the problem (UMP) and is denoted by x̄ ∈ locSw(RMP), if x̄ ∈ C is a local weakly
efficient solution of the problem (RMP), that is, there exists a neighborhood O of x̄
such that

F(x) − F(x̄) /∈ −intRl+, ∀ x ∈ C ∩ O.

When O = X , the definition is represented as the concept of the robustweakly efficient
solution for the problem (UMP).
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3 A Unified Study of Optimality Conditions

The main goal of this section is to establish new robust necessary optimality condi-
tions for the nonconvex and nonsmooth problem (UMP) without the compactness of
uncertainty sets and the continuity of uncertain parameters. Our approach is mainly
based on the compactification of the sets and the u.s.c regularization of the functions,
which have been proposed in [12, 13].

For any given setUk , which is equipped with a completely regular topology, we first
consider the Stone–C̆ech compactification [11, 26] ofUk . We denote by C(Uk, [0, 1])
the set of continuous functions from Uk to [0, 1] and consider the product space
[0, 1]C(Uk ,[0,1]), which is compact for the product topology (by Tychonoff theorem).
By this we assume without loss of generality thatUk ⊆ [0, 1]C(Uk ,[0,1]). If u ∈ Uk , let
μu : C(Uk, [0, 1]) → [0, 1] be defined byμu(ϕ) := ϕ(u) for everyϕ ∈ C(Uk, [0, 1]).
It is easy to see thatμu ∈ [0, 1]C(Uk ,[0,1]) and‖μu‖ = 1.LetΔ : Uk → [0, 1]C(Uk ,[0,1])
be defined byΔ(u) := μu . If (uγ )γ is a net inUk and uγ → u, then ϕ(uγ ) → ϕ(u) for
every ϕ ∈ C(Uk, [0, 1]). This says that μuγ → μu in [0, 1]C(Uk ,[0,1]). According to
the compactification process, the closure of Δ(Uk) in [0, 1]C(Uk ,[0,1]) for the product
topology is the compact set

Uk := cl(Δ(Uk)).

The convergence in Uk is the pointwise convergence, that is, for μ ∈ Uk and a net
(μγ )γ ⊆ Uk we haveμγ → μ if and only ifμγ (ϕ) → μ(ϕ) for all ϕ ∈ C(Uk, [0, 1]).
Proposition 3.1 [11] The map Δ : Uk → (Δ(Uk), weak∗) is a homeomorphism if
and only if Uk is completely regular.

If Uk has a compactification Uk , then Uk must be completely regular, being a
subspace of the completely regular space Uk . Conversely, if Uk is completely regular,
then Uk has a compactification; see [26] for more discussions. We proceed similarly
to the above compactification process for the sets Vi ⊆ [0, 1]C(Vi ,[0,1]), i ∈ I . The
closure of Δ(Vi ) for the product topology is the compact set Vi := cl(Δ(Vi )).

Next, we introduce new appropriate functions f̂k : X × Uk → R, k ∈ K , defined
by

f̂k(x, μ) := lim sup
μu→μ,u∈Uk

fk(x, u), (4)

in other words,

f̂k(x, μ) = sup

{

lim sup
γ

fk(x, uγ ) : (uγ )γ ⊆ Uk , ϕ(uγ ) → μ(ϕ), ∀ ϕ ∈ C(Uk , [0, 1])
}

.

Moreover, the function (4) involves the following form:

f̂k(x, μu) = lim sup
μs→μu ,s∈Uk

fk(x, s).
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Thus, for any u ∈ Uk and x ∈ X , we obtain

f̂k(x, μu) = sup

{

lim sup
γ

fk(x, uγ ) : μuγ → μu

}

≥ sup

{

lim sup
γ

fk(x, uγ ) : uγ → u

}

≥ fk(x, u).

(5)

Similarly, we also introduce functions ĝi : X × Vi → R, i ∈ I , defined by

ĝi (x, ν) := lim sup
νv→ν,v∈Vi

gi (x, v). (6)

For any k ∈ K and i ∈ I , one can see that new functions f̂k(x, μ) and ĝi (x, ν)

are the u.s.c regularization of the original ones fk(x, u) and gi (x, v) with respect to
uncertain parameters, respectively. The function f̂k(x, μ) provides the same supre-
mum Fk(x) as the original fk(x, u) with respect to uncertain parameters, as well as
characterizations for the function ĝi (x, ν).

Lemma 3.1 For any x ∈ X, k ∈ K and i ∈ I , we have

sup
μ∈Uk

f̂k(x, μ) = Fk(x) = sup
u∈Uk

fk(x, u); (7)

sup
ν∈Vi

ĝi (x, ν) = Gi (x) = sup
v∈Vi

gi (x, v). (8)

Proof For each μ ∈ Uk and x ∈ X , we yield

f̂k(x, μ) = lim sup
μu→μ,u∈Uk

fk(x, u) ≤ Fk(x),

which means that supμ∈Uk
f̂k(x, μ) ≤ Fk(x). Moreover, since Fk(x) = supu∈Uk

fk(x, u) ∈ R, then there exists a net (un)n ⊆ Uk such that Fk(x) = limn fk(x, un) for
x ∈ X . Further, there exists a subnet (uγ )γ of (un)n and μ ∈ Uk such that μuγ → μ,
and thus

f̂k(x, μ) ≥ lim sup
γ

fk(x, uγ ) = lim
γ

fk(x, uγ ) = lim
n

fk(x, un) = Fk(x),

which implies that supμ∈Uk
f̂k(x, μ) ≥ Fk(x). Therefore, the equality (7) holds. One

has analogs of (8) from the proof of (7). The proof is complete. ��
For given x ∈ X , k ∈ K and i ∈ I . We provide the perturbed sets of active indices

in Uk, Vi ,Uk , and Vi , respectively.

U εk
k (x) := {u ∈ Uk : fk(x, u) ≥ Fk(x) − εk}, εk ≥ 0,

U
εk
k (x) := {μ ∈ Uk : f̂k(x, μ) ≥ Fk(x) − εk}, εk ≥ 0,
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V εi
i (x) := {v ∈ Vi : gi (x, v) ≥ Gi (x) − εi }, εi ≥ 0,

V
εi
i (x) := {ν ∈ Vi : ĝi (x, ν) ≥ Gi (x) − εi }, εi ≥ 0.

Especially, Uk(x) := U 0
k (x) = {u ∈ Uk : fk(x, u) = Fk(x)}. One has analogs of the

sets Uk(x), Vi (x) andVi (x), which are exactly sets of active indices in Uk , Vi andVi

at x , respectively.

Remark 3.1

(i) For any εk > 0 and εi > 0, the sets U εk
k (x), Uεk

k (x), V εi
i (x) and V

εi
i (x) are

always nonempty, and Uk(x) ⊆ U εk
k (x), Uk(x) ⊆ U

εk
k (x), Vi (x) ⊆ V εi

i (x) and
Vi (x) ⊆ V

εi
i (x) by the definitions.

(ii) If u ∈ U εk
k (x) for εk ≥ 0, then μu ∈ U

εk
k (x). In fact, for every u ∈ U εk

k (x) we

obtain that f̂k(x, μu) ≥ fk(x, u) ≥ Fk(x)−εk for εk ≥ 0 by (5), whichmeans that
μu ∈ U

εk
k (x). In other words, Δ(U εk

k (x)) ⊆ U
εk
k (x) for εk ≥ 0 when U εk

k (x) �= ∅.
(iii) The sets Uk(x), k ∈ K are always nonempty, whereas Uk(x), k ∈ K might be

empty sets.

The following lemma shows that the compactness of the sets Uεk
k (x) and V

εi
i (x)

as well as the u.s.c property of functions f̂k(x, ·) and ĝi (x, ·) are preserved under the
above consideration.

Lemma 3.2 For any x ∈ X, k ∈ K and i ∈ I , one has the following assertions:

(i) The sets Uεk
k (x), εk ≥ 0, and V

εi
i (x), εi ≥ 0 are nonempty and compact.

(ii) For every net (μγ )γ ⊆ Uk converging to μ ∈ Uk , one has

lim sup
γ

f̂k(x, μγ ) ≤ f̂k(x, μ).

(iii) For every net (νγ )γ ⊆ Vi converging to ν ∈ Vi , one has

lim sup
γ

ĝi (x, νγ ) ≤ ĝi (x, ν).

Proof (i) We verify that the sets Uk(x) and Vi (x) are nonempty and compact, and
the cases of εk > 0 and εi > 0 are trivial. In fact, fix k ∈ K and x ∈ X . Since
Fk(x) = supu∈Uk

fk(x, u) ∈ R, then there exists a net (un)n ⊆ Uk such that Fk(x) =
limn fk(x, un). According to the compactness of Uk , there exists a subnet (uγ )γ of
(un)n such that μuγ → μ ∈ Uk . Together with (5), we have

Fk(x) = lim
n

fk(x, un) = lim
γ

fk(x, uγ ) ≤ lim
γ

f̂k(x, μuγ )

≤ lim sup
μu→μ,u∈Uk

fk(x, u) = f̂k(x, μ) ≤ Fk(x),

which implies μ ∈ Uk(x). Thus, Uk(x) is nonempty.
Furthermore, we just prove that Uk(x) is a closed subset of Uk , which is compact

Hausdorff. Take an arbitrary net (μγ )γ ⊆ Uk(x) that converges to μ (∈ Uk). Thus, for
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each γ , by the definition of the function f̂ , we can find a net (uγ j ) j ⊆ Uk such that
μuγ j → j μγ and

Fk(x) = f̂k(x, μγ ) = lim
j

fk(x, uγ j ).

Thus, there exists a diagonal net
(

uγ jγ , fk(x, uγ jγ )
)

γ
⊆ Uk ×R such that uγ jγ →γ μ

and fk(x, uγ jγ ) →γ Fk(x), in other words, f̂k(x, μ) ≥ lim supγ fk(x, uγ jγ ) =
limγ fk(x, uγ jγ ) = Fk(x). Hence, μ ∈ Uk(x). Similarly, we can justify thatVi (x) is
nonempty and compact.

(ii) SinceUk is completely regular, thenUk is compactHausdorff. Let a net (μγ )γ ⊆
Uk such that μγ → μ ∈ Uk , where μ is the unique convergent point. Due to Fk(x) ∈
R, we assume without loss of generality that μγ → μ and lim supγ f̂k(x, μγ ) =
limγ f̂k(x, μγ ) = a ∈ R. Further, for each γ there exists a net (uγ j ) j ⊆ Uk such that
μuγ j → j μγ and f̂k(x, μγ ) = lim j fk(x, uγ j ), that is,

(μuγ j , fk(x, uγ j )) → j (μγ , f̂k(x, μγ )) and (μγ , f̂k(x, μγ )) →γ (μ, a).

Thus, we can find a diagonal net (uγ jγ )γ such that (μuγ jγ
, fk(x, uγ jγ )) →γ (μ, a).

Then we have

f̂k(x, μ) ≥ lim sup
γ

f̂k(x, uγ jγ ) = a = lim sup
γ

f̂k(x, μγ ).

(iii) It is similar to the proof of (ii). The proof is complete. ��
Note that the proof of Lemmas 3.1 and 3.2 is similarly based on those in [12, 13].

Moreover, the Lipschitz property of the functions f̂k(·, μ) and Fk given in Proposition
3.2 plays a crucial role in establishing the main results. One has similar results for the
Lipschitz property of ĝi (·, ν) due to a similar construction (6).

Proposition 3.2 Let x ∈ X and k ∈ K. If fk(·, uk), uk ∈ Uk is uniformly locally
Lipschitz at x with some given rank Lk > 0, then

|Fk(x1) − Fk(x2)| ≤ Lk‖x1 − x2‖, ∀ x1, x2 ∈ B(x, δk). (9)

| f̂k(x1, μ) − f̂k(x2, μ)| ≤ Lk‖x1 − x2‖, ∀ x1, x2 ∈ B(x, δk), ∀μ ∈ Uk . (10)

Proof It follows from (2) that (9) holds as shown in [10]. Next let us derive (10).

∣

∣

∣ f̂k(x1, μ) − f̂k(x2, μ)

∣

∣

∣

=
∣

∣

∣

∣

∣

lim sup
μu→μ,u∈Uk

fk(x1, u) − lim sup
μu→μ,u∈Uk

fk(x2, u)

∣

∣

∣

∣

∣

=
∣

∣

∣ sup
{

lim sup
γ

fk(x1, uγ ) : (uγ )γ ⊆ Uk, μuγ → μ
}
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− sup
{

lim sup
γ

fk(x2, uγ ) : (uγ )γ ⊆ Uk, μuγ → μ
}∣

∣

∣

≤ sup lim sup
γ

|{ fk(x1, uγ ) − fk(x2, uγ ) : (uγ )γ ⊆ Uk, μuγ → μ}|

≤ Lk‖x1 − x2‖, ∀ x1, x2 ∈ B(x, δk), ∀μ ∈ Uk .

The last inequality assertion follows from (2) and the compactification process of the
set Uk . The proof is complete. ��

Let us now present robust necessary conditions for the local robust weakly efficient
solution of the problem (UMP), which is the main result of this paper.

Theorem 3.1 Let x̄ ∈ locSw(RMP). Then there exist θk ≥ 0, k ∈ K and λi ≥ 0, i ∈ I ,
with

∑

k∈K θk + ∑

i∈I λi = 1, such that

0 ∈
∑

k∈K
θk cl

∗co
{

∂1 f̂k(x̄, μ
k) : μk ∈ Uk(x̄)

}

+
∑

i∈I
λi cl

∗co
{

∂1 ĝi (x̄, ν
i ) : νi ∈ Vi (x̄)

}

,

(11)
λi sup

νi∈Vi

ĝi (x̄, ν
i ) = 0, i ∈ I . (12)

Proof Given arbitrary k ∈ K , we first prove the inclusion

∂Fk(x̄) ⊆ cl∗co
{

∂1 f̂k(x̄, μ) : μ ∈ Uk(x̄)
}

. (13)

Assume by contradiction that there exists

x∗
0 ∈ ∂Fk(x̄) \ cl∗co

{

∂1 f̂k(x̄, μ) : μ ∈ Uk(x̄)
}

.

We deduce from Lemma 3.2 and Proposition 3.2 that Uk(x) is nonempty compact
and f̂k(·, μ) is uniformly locally Lipschitz for x ∈ X . Thus ∂1 f̂k(x, μ) �= ∅ for
μ ∈ Uk(x) and x ∈ X . So that cl∗co{∂1 f̂k(x̄, μ) : μ ∈ Uk(x̄)} �= ∅ by the definition
of ∂1 f̂k(x̄, μ). According to the strong separation theorem, there exists y ∈ X \ {0}
such that

〈x∗
0 , y〉 > sup

⎧

⎨

⎩

〈x∗, y〉 : x∗ ∈
⋃

μ∈Uk (x̄)

∂1 f̂k(x̄, μ)

⎫

⎬

⎭

. (14)

Taking into account that Fk is locally Lipschitz at x̄ due to Proposition 3.2, there are
sequences (xn, τn)n ⊆ X × (0,+∞) such that xn → x̄ , τn → 0 and

F◦
k (x̄, y) = lim

n

Fk(xn + τn y) − Fk(xn)

τn
.
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It follows from x∗
0 ∈ ∂Fk(x̄) that 〈x∗

0 , y〉 ≤ F◦
k (x̄, y), and then

〈x∗
0 , y〉 ≤ lim

n

Fk(xn + τn y) − Fk(xn)

τn
. (15)

Since xn → x̄ , τn ↓ 0 as n → ∞, we assume without loss of generality that xn, xn +
τn y ∈ B(x̄, δk). For each n ∈ N, take a net (μnγ )γ ⊆ Uk(xn + τn y). By the nonempty
and compact property of the set Uk(xn + τn y), we deduce μnγ →γ μn and μn ∈
Uk(xn + τn y), entailing that f̂k(xn + τn y, μn) = Fk(xn + τn y). Together with Lemma
3.1, we have

f̂k(xn + τn y, μn) − f̂k(xn, μn) ≥ Fk(xn + τn y) − Fk(xn). (16)

Invoking the mean value inequality for the function f̂k(·, μn) by Proposition 3.2 and
Lemma 2.1, there exist θn ∈ (0, 1) and x∗

n ∈ ∂1 f̂k(xn + θnτn y, μn) such that

f̂k(xn + τn y, μn) − f̂k(xn, μn) = 〈x∗
n , τn y〉,

and ‖x∗
n‖∗ ≤ Lk . Since BX∗ is compactwith respect to theweak∗ topology,we suppose

that x∗
n

w∗−→ z∗ ∈ X∗ (passing to a generalized subsequence if necessary). Therefore,

lim sup
n

f̂k(xn + τn y, μn) − f̂k(xn, μn)

τn
= 〈z∗, y〉.

Combining (15) and (16), we have

〈x∗
0 , y〉 ≤ 〈z∗, y〉. (17)

Moreover, due to μn ∈ Uk(xn + τn y) and the compactness of Uk , without loss of
generality we suppose that μn → μ̄ ∈ Uk . It follows from Proposition 3.2 that

f̂k(xn + τn y, μn) ≤ f̂k(x̄, μn) + Lk‖xn + τn y − x̄‖. (18)

On the other hand, based on deriving in Lemma 3.1 we have

f̂k(xn + τn y, μ) ≤ Fk(xn + τn y), ∀μ ∈ Uk . (19)

Therefore, the following statement is derived from the combination of (18), (19) and
f̂k(xn + τn y, μn) = Fk(xn + τn y).

f̂k(xn + τn y, μ) ≤ f̂k(x̄, μn) + Lk‖xn + τn y − x̄‖, ∀μ ∈ Uk . (20)

We conclude from assertion (ii) of Lemma 3.2 that f̂k is u.s.c for uncertain parameters.
Passing (20) to the superior limit as n → ∞, we deduce that f̂k(x̄, μ) ≤ f̂k(x̄, μ̄)

for all μ ∈ Uk . Further, one can easily obtain that Fk(x̄) ≤ f̂k(x̄, μ̄), showing that
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μ̄ ∈ Uk(x̄). Thus the above process provides that xn +θnτn y → x̄ ,μn ∈ Uk(xn +τn y)

with μn → μ̄ ∈ Uk(x̄), and x∗
n ∈ ∂1 f̂k(xn + θnτn y, μn) with x∗

n
w∗−→ z∗. This implies

z∗ ∈ ∂1 f̂k(x̄, μ̄)with μ̄ ∈ Uk(x̄), contradicting (14) and (17). Therefore, we complete
the proof of the inclusion (13). Given arbitrary i ∈ I , we proceed similarly to the proof
of the following inclusion

∂Gi (x̄) ⊆ cl∗co
{

∂1ĝi (x̄, ν) : ν ∈ Vi (x̄)
}

. (21)

Furthermore, according to x̄ ∈ locSw(RMP), it follows that there exists a neigh-
borhood O of x̄ such that

F(x) − F(x̄) /∈ −intRl+, ∀ x ∈ C ∩ O. (22)

We define ψ(x) := max
k∈K ,i∈I{Fk(x) − Fk(x̄),Gi (x)}. Since x̄ ∈ locSw(RMP), then it

is a local minimizer of the unconstrained problem

minψ(x) s.t. x ∈ X . (23)

In fact, let us proveψ(x) ≥ ψ(x̄) = 0 for all x ∈ O arguing by contradiction. Assume
that there is a point x̂ ∈ O such that ψ(x̂) < 0. If x̂ ∈ C ∩ O such that ψ(x̂) < 0,
then Fk(x̂) < Fk(x̄) for all k ∈ K , which contradicts (22). If x̂ ∈ O\C , then there is
i0 ∈ I such that Gi0(x̂) > 0, which contradicts the initial assumption that ψ(x̂) < 0.
Invoking the generalized Fermat’s rule (Lemma 2.2) to the problem (23), one has
0 ∈ ∂ψ(x̄). Applying Lemma 2.3 to the function ψ , we have

∂ψ(x̄) ⊆ co {∂Fk(x̄), ∂Gi (x̄) : k ∈ K , Gi (x̄) = 0, i ∈ I } .

Therefore, we obtain

0 ∈
{

∑

k∈K
θk∂Fk(x̄) +

∑

i∈I
λi∂Gi (x̄) : θk ≥ 0, k ∈ K , λi ≥ 0, λi Gi (x̄) = 0, i ∈ I ,

∑

k∈K
θk +

∑

i∈I
λi = 1

}

.

Combining this with (13) and (21), we conclude that (11) and (12) hold. The proof is
complete. ��

Compared with the existing results in [6, 8–10, 15, 16, 21, 22, 27, 31], the
assumptions of Theorem 3.1 are weaker. In addition, Theorem 3.1 provides a unified
framework of robust necessary optimality conditions for the problem (UMP). Now
we present some corollaries of Theorem 3.1, which can be unified and generalized by
using Theorem 3.1.

Corollary 3.1 Let x̄ ∈ locSw(RMP). Suppose that the following assumptions hold for
any k ∈ K and i ∈ I .
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(i) Uk and Vi are compact Hausdorff;
(ii) uk ∈ Uk �→ fk(x, uk) and vi ∈ Vi �→ gi (x, vi ) are u.s.c for each x ∈ B(x̄, δk)

and x ∈ B(x̄, ηi ), respectively;
(iii) (x, uk) ∈ B(x̄, δk) × Uk ⇒ ∂1 fk(x, uk) is weak∗ closed at (x̄, ūk) for each

ūk ∈ Uk(x̄), and (x, vi ) ∈ B(x̄, ηi ) × Vi ⇒ ∂1gi (x, vi ) is weak∗ closed at (x̄, v̄i )
for each v̄i ∈ Vi (x̄).

Then there exist θk ≥ 0, k ∈ K and λi ≥ 0, i ∈ I , with
∑

k∈K θk +∑

i∈I λi = 1, such
that

0 ∈
∑

k∈K
θk cl

∗co
{

∂1 fk(x̄, uk) : uk ∈ Uk(x̄)
}

+
∑

i∈I
λi cl

∗co
{

∂1gi (x̄, vi ) : vi ∈ Vi (x̄)
}

,

(24)
λi sup

vi∈Vi
gi (x̄, vi ) = 0, i ∈ I . (25)

Proof SinceUk , k ∈ K , and Vi , i ∈ I are compact Hausdorff; thus, completely regular,
we obtain thatUk ≡ Uk , k ∈ K , and Vi ≡ Vi , i ∈ I . On the one hand, for any x ∈ X ,
k ∈ K and u ∈ Uk ,

f̂k(x, μu) = lim sup
μs→μu ,s∈Uk

fk(x, s) = lim sup
s→u,s∈Uk

fk(x, s) ≤ fk(x, u),

where the validity of the last inequality from assertion (ii). On the other hand,
f̂k(x, μu) ≥ fk(x, u) by (5). Thus the functions f̂k and fk coincide, and a similar
result of ĝi and gi follows. Consequently, it follows from Theorem 3.1, Definition 2.1
and assertion (iii) that (24) and (25) hold. The proof is complete. ��

ZhengandNg [33] derived that the closedness of thepartial subdifferential operation
is valid for subsmooth functions. Therefore, we further get the following corollary.

Corollary 3.2 Let x̄ ∈ locSw(RMP). Suppose that the following assumptions hold for
any k ∈ K and i ∈ I .

(i) Uk and Vi are compact Hausdorff;
(ii) uk ∈ Uk �→ fk(x, uk) and vi ∈ Vi �→ gi (x, vi ) are u.s.c for each x ∈ B(x̄, δk)

and x ∈ B(x̄, ηi ), respectively;
(iii) fk(x, uk), uk ∈ Uk and gi (x, vi ), vi ∈ Vi are uniformly subsmooth at x̄ , that is,

for any αk > 0 and βi > 0 there are δk > 0 and ηi > 0 such that

fk(y, uk) − fk(x, uk) ≥ 〈x∗, y − x〉 − αk‖y − x‖, ∀y, x ∈ B(x̄, δk), x∗ ∈ ∂1 fk(x, uk);

gi (y, vi ) − gi (x, vi ) ≥ 〈x∗, y − x〉 − βi‖y − x‖, ∀y, x ∈ B(x̄, ηi ), x∗ ∈ ∂1gi (x, vi ).

Then there exist θk ≥ 0, k ∈ K and λi ≥ 0, i ∈ I , with
∑

k∈K θk +∑

i∈I λi = 1, such
that (24) and (25) hold.
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Proof According to Theorem 3.1 and Corollary 3.1, it remains to prove that (x, uk) ∈
B(x̄, δk) × Uk ⇒ ∂1 fk(x, uk) is weak∗ closed at (x̄, ūk) for each ūk ∈ Uk(x̄), and
(x, vi ) ∈ B(x̄, ηi ) × Vi ⇒ ∂1gi (x, vi ) is weak∗ closed at (x̄, v̄i ) for each v̄i ∈ Vi (x̄).
Invoking Definition 2.1, we need claim that x∗

n ∈ ∂1 fk(xn, un) with xn → x̄ , un ∈
Uk(xn), un → ū, x∗

n
w∗−→ x∗, implies that x∗ ∈ ∂1 fk(x̄, ū) with ū ∈ Uk(x̄). Assume

without loss of generality that fk(x̄, un) → fk(x̄, ū) due to assertion (ii). In fact,
by the uniformly locally Lipschitz property of fk at x̄ ∈ X , we get fk(xn, un) ≤
fk(x̄, un) + Lk‖xn − x̄‖. On the other hand, we have fk(xn, u) ≤ Fk(xn), for all
u ∈ Uk . Together with un ∈ Uk(xn), one has

fk(xn, u) ≤ fk(x̄, un) + Lk‖xn − x̄‖, ∀u ∈ Uk . (26)

Therefore, fk(x̄, u) ≤ fk(x̄, ū) for all u ∈ Uk follows from (26) due to assertion (ii)
and the uniformly locally Lipschitz property of fk by passing to the superior limit
as n → ∞. Further, one can obtain that Fk(x̄) ≤ fk(x̄, ū), which gives ū ∈ Uk(x̄).
Moreover, we derive from assertions (ii) and (iii) that

fk(x, ū) − fk(x̄, ū)

≥ lim sup
n

( fk(x, un) − fk(x̄, un) + Lk‖xn − x̄‖)
≥ lim sup

n
( fk(x, un) − fk(xn, un))

≥ lim sup
n

(〈x∗
n , x − xn〉 − αk‖x − xn‖)

≥ 〈x∗, x − x̄〉 − αk‖x − x̄‖

whenever x ∈ B(x̄, δk). Since the number αk > 0 was chosen arbitrarily, then we
have x∗ ∈ ̂∂1 fk(x̄, ū) ⊆ ∂1 fk(x̄, ū). Therefore, we obtain ∂1 fk(x̄, ū) = ∂1 fk(x̄, ū)

with ū ∈ Uk(x̄). The case of the weak∗ closed property for ∂1gi (x, vi ) can be proved
similarly. The proof is complete. ��
Remark 3.2 Compared with the previous literature, one has some notes as follows:

(i) Theorem 3.1 provides robust necessary optimality conditions of the problem
(UMP) not only in the nonconvex and nonsmooth setting but also in noncompact
frameworks, dropping out the standard assumptions of the compactness of uncer-
tainty sets and the continuity of the functions with respect to uncertain parameters.
Obviously hypotheses required in Theorem 3.1 are weaker than those in Corollar-
ies 3.1 and 3.2, and [6, 8–10, 15, 16, 21, 22, 27, 31]. In other words, Theorem 3.1
can be applied to a wide range of the problem (UMP).

(ii) It is worth mentioning that Chuong [9] did not directly add the compactness
requirement to Uk and Vi and imposed the compactness assumptions on U εk

k (x̄)
and V εi

i (x̄). No matter what the case, the assumptions imposed in Corollaries 3.1
and 3.2, and [6, 8–10, 15, 16, 21, 22, 27, 31] ensure that Uk(x) and Vi (x) are
nonempty for x ∈ B(x̄, δk). In contrast to this, Uk(x) and Vi (x) may be empty
sets in situations of Theorem 3.1.
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(iii) Corollary 3.1 is a generalization of [8], in which objective functions do not contain
uncertain parameters, and all of the sets were considered in finite-dimensional
spaces. Corollaries 3.1 and 3.2 suitably extend the results of [6, 15, 21, 22] both
for the hypotheses and the space of the sets as well.

(iv) Corollaries 3.1 and 3.2 can be viewed as appropriate extensions of Theorem 3.1.
As shown in [9], robust necessary optimality conditions were formulated when
Uk and Vi were replaced all by U εk

k (x̄) and V εi
i (x̄) in Corollary 3.1. This clearly

implies that the results still hold when we replace all Uk and Vi with U
εk
k (x̄) and

V εi
i (x̄) in Corollary 3.2.

The following simple example illustrates the application of Theorem 3.1 for the
problem (UMP), to which Corollaries 3.1 and 3.2, and [6, 8–10, 15, 16, 21, 22, 27,
31] do not apply.

Example 3.1 Consider the problem (UMP).Take f1(x, n) = max
{

nx
n+1 , 0

}

, f2(x, n) =
max

{

− nx
n+1 , 0

}

, and g(x, n) = x − 1
n+1 , where X = R, U1 = U2 = V = N. For the

illustration let us consider a point x̄ = 0.
It is easy to verify that f1(·, n), f2(·, n), and g(·, n), n ∈ N satisfy uniformly locally
Lipschitzian for all x ∈ X . One can check directly from the definitions that F1(x) =
max{x, 0}, F2(x) = max{−x, 0}, and G(x) = x , and so that x̄ = 0 ∈ locSw(RMP).
Step 1: We calculate that U1 = U ε1

1 (0) = U1(0) = N, U2 = U ε2
2 (0) = U2(0) = N,

and V ε(0) =
{

n ∈ N : 1
n+1 ≤ ε

}

, V (0) = ∅. Observe that the results fromCorollaries

3.1 and 3.2, [9, Theorem 3.10], and [6, 8, 10, 15, 16, 21, 22, 27, 31] are not applicable
in this setting, because N is not compact and V (0) = ∅.
Step 2: Since N is closed set, then for any nets (nγ )γ ⊆ N, nγ → n ∈ N. Thus
ϕ(nγ ) → ϕ(n) for everyϕ ∈ C(N, [0, 1]). This says thatμnγ → μn in [0, 1]C(N,[0,1]).
Thus, N ⊆ U1 = U2 = V. The Stone–C̆ech compactification of N can be formulated
as follows.

U1 = U2 = N ∪
{

lim
γ

μnγ : (nγ )γ ⊆ N, nγ → +∞
}

= N ∪
{

lim
γ

νnγ : (nγ )γ ⊆ N, nγ → +∞
}

= V.

For simplicity, we denote

S :=
{

lim
γ

μnγ : (nγ )γ ⊆ N, nγ → +∞
}

=
{

lim
γ

νnγ : (nγ )γ ⊆ N, nγ → +∞
}

.

Next, we present the u.s.c regularized functions by (4). One has f̂1(x, μ) = f1(x, n)

when μ ≡ n ∈ N, and f̂1(x, μ) = lim sup
μn→μ

f1(x, n) = max{x, 0} when μ ∈ S.

Similarly, we obtain that f̂2(x, μ) = f2(x, n) when μ ≡ n ∈ N, and f̂2(x, μ) =
lim sup
μn→μ

f2(x, n) = max{−x, 0} when μ ∈ S, as well as, ĝ(x, ν) = g(x, n) when

ν ≡ n ∈ N, and ĝ(x, ν) = lim sup
νn→ν

g(x, n) = x when ν ∈ S. Moreover, we deduce
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U1(0) = U1, U2(0) = U2, and V(0) = S.
Step 3: We compute the corresponding Clarke subdifferential of the above functions.

∂1 f1(x, n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{

n

n + 1

}

x > 0;
[

0,
n

n + 1

]

x = 0;
{0} x < 0.

∂ (max{x, 0}) =

⎧

⎪

⎨

⎪

⎩

{1} x > 0;
[0, 1] x = 0;
{0} x < 0.

Therefore, we obtain
{

∂1 f̂1(0, μ) : μ ∈ U1(0)
}

= [0, 1] by (1). Similarly, we have

{

∂1 f̂2(0, μ) : μ ∈ U2(0)
}

= [−1, 0] and
{

∂1ĝ(0, ν) : ν ∈ V(0)
} = {1}.

Thus there exist θ1 = 1
4 , θ2 = 1

2 and λ = 1
4 such that Theorem 3.1 holds.

As shown by Clarke [10], ifUk is compact Hausdorff and the function fk is convex
with respect to the decision variable x and continuous with respect to the uncertain
parameter u, then (x, u) ∈ B(x̄, δ) × Uk ⇒ ∂1 fk(x, u) is weak∗ closed at (x̄, ū)

for any given k ∈ K . Moreover, the subdifferential ∂1 fk(x, u) coincides with the
subdifferential in the sense of convex analysis. Now we remove the compactness of
uncertainty sets and the continuity of uncertain parameters for the convex functions,
which are able to achieve more general results.

Corollary 3.3 Let x̄ ∈ locSw(RMP). If fk(·, uk), gi (·, vi ) are convex on X for each
uk ∈ Uk, k ∈ K and vi ∈ Vi , i ∈ I respectively, then there exist θk ≥ 0, k ∈ K and
λi ≥ 0, i ∈ I , with

∑

k∈K θk + ∑

i∈I λi = 1, such that

0 ∈
∑

k∈K
θk cl

∗co
{

∂1 f̂k(x̄, μ
k) : μk ∈ Uk(x̄)

}

+
∑

i∈I
λi cl

∗co
{

∂1 ĝi (x̄, ν
i ) : νi ∈ Vi (x̄)

}

,

λi sup
νi∈Vi

ĝi (x̄, ν
i ) = 0, i ∈ I .

Proof Since fk(·, uk), gi (·, vi ) are convex on X for each uk ∈ Uk , k ∈ K and vi ∈ Vi ,
i ∈ I , then f̂k(·, μ), ĝi (·, ν) are convex on X for each μ ∈ Uk , k ∈ K and ν ∈ Vi ,
i ∈ I . This corollary follows immediately from Theorem 3.1 once one establishes that
the multifunction (x, μ) ∈ B(x̄, δk) × Uk ⇒ ∂1 f̂k(x, μ) is weak∗ closed at (x̄, μ̄)

for each μ̄ ∈ Uk(x̄), and (x, ν) ∈ B(x̄, ηi ) × Vi ⇒ ∂1ĝi (x, ν) is weak∗ closed at
(x̄, ν̄) for each ν̄ ∈ Vi (x̄). To see this, let x∗

n ∈ ∂1 f̂k(xn, μn), where xn → x̄, μn ∈
Uk(xn), μn → μ̄, and x∗

n
w∗−→ x∗. It remains to prove that x∗ ∈ ∂1 f̂k(x̄, μ̄) with
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μ̄ ∈ Uk(x̄). Assume without loss of generality that f̂k(x̄, μn) → f̂k(x̄, μ̄) by Lemma
3.2. As follows from the proof of Theorem 3.1, one has μ̄ ∈ Uk(x̄) by μn ∈ Uk(xn),
xn → x̄ and μn → μ̄. Now for any d sufficiently small,

f̂k(xn + d, μn) − f̂k(xn, μn) ≥ 〈x∗
n , d〉,

because f̂k(·, μn) is convex on X . Together with (10), one has

f̂k(x̄ + d, μn) − f̂k(x̄, μn) ≥ 〈x∗
n , d〉 − 2Lk‖xn − x̄‖.

By Lemma 3.2, taking the superior limit as n → ∞ yields

f̂k(x̄ + d, μ̄) − f̂k(x̄, μ̄) ≥ 〈x∗, d〉.

This implies x∗ ∈ ∂1 f̂k(x̄, μ̄). The proof is complete. ��
As mentioned in [8], the hypothesis associated with the closeness of the partial

subdifferential operation with respect to the first variable x is a relaxed property of the
subdifferential of the convex functions. This property holds for a more general class
of subsmooth functions under assertions (i) and (ii) of Corollary 3.2 as well.

4 Constraint Qualification and Regularity Condition

The results of Sect. 3 merely arrive at FJ type robust necessary optimality conditions
for the problem (UMP). Note that the multipliers rule of the FJ type implies that the
multipliers θk , k ∈ K corresponding to objective functions may be all zero. Obviously,
if θk are all zero for k ∈ K , then objective functions no longer work in optimality
conditions. To overcome the drawback, some hypotheses need to be imposed, which
ensure the multipliers of objective functions not all zero. To proceed, we add the
constraint qualification (resp. regularity condition) to obtain theWKKT (resp. SKKT)
robust necessary optimality results.

The following constraint qualification is a very general assumption for the study of
the problem (UMP).

Definition 4.1 The robust Mangasarian-Fromovitz constraint qualification (RMFCQ)
holds at x̄ ∈ C if

0 /∈ cl∗co
{

∂1 ĝi (x̄, ν
i ) : νi ∈ Vi (x̄), i ∈ I

}

. (27)

Based on the obtained result in Theorem 3.1 together with the new concept of the
RMFCQ, we establish WKKT robust necessary optimality conditions of the problem
(UMP) for the local robust weakly efficient solution as follows.

Theorem 4.1 Let x̄ ∈ locSw(RMP) and theRMFCQ hold at x̄ . Then there exist θk ≥ 0,
k ∈ K not all zero and λi ≥ 0, i ∈ I , with

∑

k∈K θk + ∑

i∈I λi = 1, such that (11)
and (12) hold.
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Proof Based on Theorem 3.1, we continue to show that the multipliers of objective
functions are not all zero. Assume by contradiction that θk = 0, for all k ∈ K and
λi ≥ 0, i ∈ I with

∑

i∈I λi = 1. Thus, we derive from (11) and (12) that

0 ∈
∑

i∈I
λi cl

∗co
{

∂1ĝi (x̄, ν
i ) : νi ∈ Vi (x̄)

}

.

Therefore, 0 ∈ cl∗co
{

∂1ĝi (x̄, νi ) : νi ∈ Vi (x̄), i ∈ I
}

, which contradicts (27). The
proof is complete. ��

Remark 4.1 Employing Example 3.1 again, the RMFCQ holds at x̄ = 0. Thus,
Example 3.1 also illustrates the validity of WKKT robust necessary conditions
in Theorem 4.1. Moreover, the formula (27) in Definition 4.1 reduces to 0 /∈
cl∗co {∂1gi (x̄, vi ) : vi ∈ Vi (x̄), i ∈ I } under the assumptions made in Corollaries 3.1
and 3.2, which coincides with that in [8, 9]. We also obtain the multipliers of objective
functions not all zero when we add the RMFCQ to Corollaries 3.1, 3.2 and 3.3.

Many papers [6–9, 15, 16, 21] obtained WKKT robust necessary optimality con-
ditions for the problem (UMP). However, to the best knowledge of us, few papers
address SKKT robust necessary optimality conditions for the problem (UMP). Every
Lagrange multiplier associated with the objectives is active in SKKT robust necessary
optimality conditions. It is therefore significant to develop SKKT conditions for the
problem (UMP). Thus, we introduce a regularity condition and study SKKT robust
necessary optimality conditions of the problem (UMP) for the local robust weakly
efficient solution.

Definition 4.2 The robust Mangasarian-Fromovitz regularity condition (RMFRC)
holds at x̄ ∈ C if for each j ∈ K ,

0 /∈ cl∗co
{

∂1 f̂k(x̄, μ
k)

⋃

∂1 ĝi (x̄, ν
i ) : μk ∈ Uk(x̄), k ∈ K \ { j}, νi ∈ Vi (x̄), i ∈ I

}

. (28)

Theorem 4.2 Let x̄ ∈ locSw(RMP) and theRMFRC hold at x̄ . Then there exist θk > 0,
for all k ∈ K and λi ≥ 0, i ∈ I such that (11) and (12) hold.

Proof Based on Theorem 3.1, we fix an arbitrary j ∈ K and first prove that
θ j > 0, θk ≥ 0, k ∈ K \ { j} and λi ≥ 0, i ∈ I , with

∑

k∈K θk + ∑

i∈I λi =
1, such that (11) and (12) hold. Otherwise, one has θ j = 0, θk ≥ 0, k ∈
K \ { j}, λi ≥ 0, i ∈ I and

∑

k∈K\{ j} θk + ∑

i∈I λi = 1 such that 0 ∈
∑

k∈K\{ j} θk cl∗co
{

∂1 f̂k(x̄, μk) : μk ∈ Uk(x̄)
}

+ ∑

i∈I λi cl∗co
{

∂1ĝi (x̄, νi ) : νi ∈
Vi (x̄)

}

by Theorem 3.1. Therefore, one has

0 ∈ cl∗co
{

∂1 f̂k(x̄, μ
k)

⋃

∂1 ĝi (x̄, ν
i ) : μk ∈ Uk(x̄), k ∈ K \ { j}, νi ∈ Vi (x̄), i ∈ I

}

,
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which contradicts (28). Thus, for each j ∈ K , we have θ
( j)
j > 0, θ( j)

k ≥ 0, k ∈ K \{ j}
and λ

( j)
i ≥ 0, i ∈ I , such that

0 ∈ θ
( j)
j cl∗co

{

∂1 f̂ j (x̄, μ
j ) : μ j ∈ U j (x̄)

}

+
∑

k∈K\{ j}
θ

( j)
k cl∗co

{

∂1 f̂k(x̄, μ
k) : μk ∈ Uk(x̄)

}

+
∑

i∈I
λ

( j)
i cl∗co

{

∂1ĝi (x̄, ν
i ) : νi ∈ Vi (x̄)

}

.

(29)

Summing (29) over all j and rearranging conveniently the coefficients, we get

0 ∈
∑

k∈K
θ̂k cl

∗co
{

∂1 f̂k(x̄, μ
k) : μk ∈ Uk(x̄)

}

+
∑

i∈I
λ̂i cl

∗co
{

∂1 ĝi (x̄, ν
i ) : νi ∈ Vi (x̄)

}

,

in which θ̂k = θ
(k)
k + ∑l

j=1, j �=k θ
( j)
k > 0, for all k ∈ K and λ̂i = ∑l

j=1 λ
( j)
i ≥ 0,

i ∈ I . The proof is complete. ��

Remark 4.2 The formula (28) in Definition 4.2 reduces to

0 /∈ cl∗co{∂1 fk(x̄, uk)
⋃

∂1gi (x̄, vi ) : uk ∈ Uk(x̄), k ∈ K \ { j}, vi ∈ Vi (x̄), i ∈ I }

under assumptions made in Corollaries 3.1 and 3.2. Adding the RMFRC to Corollaries
3.1, 3.2 and 3.3, we arrive at θk > 0 for all k ∈ K .

The following example illustrates SKKT robust necessary conditions in Theorem
4.2.

Example 4.1 Consider the problem (UMP). Take f1(x, n) = max
{

− nx1
n+1 , 0

}

+ x2,

f2(x, u2) = x1+|x2|−u2, and g(x, v) = x1− 1
v
, where X = R

2,U1 = N,U2 = (0, 1)
and V = Z+. For the illustration let us consider a point x̄ = (0, 0)T .
It is easy to verify that f1(·, n), n ∈ N, f2(·, u2), u2 ∈ (0, 1) and g(·, v), v ∈ Z+
satisfy uniformly locally Lipschitzian for all x ∈ X . One can derive directly from
the definitions that F1(x) = max{−x1, 0} + x2, F2(x) = x1 + |x2|, G(x) = x1, and
x̄ = (0, 0)T ∈ locSw(RMP). Now we deduce the Stone–C̆ech compactification of
uncertainty sets.

U1 = N ∪
{

lim
γ

μnγ : (nγ )γ ⊆ N, nγ → +∞
}

,

U2 = [0, 1],
V = Z+ ∪

{

lim
γ

νvγ : (vγ )γ ⊆ Z+, vγ → +∞
}

.
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For simplicity, we denote

A :=
{

lim
γ

μnγ : (nγ )γ ⊆ N, nγ → +∞
}

and

B :=
{

lim
γ

νvγ : (vγ )γ ⊆ Z+, vγ → +∞
}

.

Next, we derive u.s.c regularized functions by (4). One has f̂1(x, μ1) = f1(x, n)

when μ1 ≡ n ∈ N, and f̂1(x, μ1) = lim sup
μn→μ1

f1(x, n) = max{−x1, 0} + x2 when

μ1 ∈ A. f̂2(x, μ2) = x1 + |x2| − μ2, μ2 ∈ [0, 1]. ĝ(x, ν) = g(x, v) when
ν ∈ Z+, and ĝ(x, ν) = lim sup

νv→ν
g(x, v) = x1 when ν ∈ B. Moreover, we have

U1(x̄) = U1, U2(x̄) = {0}, and V(x̄) = B. Further, we compute the corresponding

subdifferential (1) for the above functions.
{

∂1 f̂1(x̄, μ1) : μ1 ∈ U1(x̄)
}

= [−1, 0] ×
{1},

{

∂1 f̂2(x̄, μ2) : μ2 ∈ U2(x̄)
}

= {1} × [−1, 1], and {

∂1ĝ(x̄, ν) : ν ∈ V(x̄)
} =

{(1, 0)T }. Then we verify that the RMFRC holds at x̄ . Thus, there exist θ1 = 1
2 ,

θ2 = 1
2 and λ = 0 such that Theorem 4.2 holds.

5 Conclusions

The compactification of uncertainty sets and u.s.c regularized functions allow us to
remove the compact and continuous setting. This paper focuses on developing a uni-
fied theory of robust necessary optimality conditions for the problem (UMP), free
of assumptions on uncertainty sets and uncertain parameters of original functions.
Compared with the existing ones [6–10, 15, 16, 21, 22, 27, 31], Theorem 3.1 imposes
weaker assumptions and has a wider range of applications, especially for the noncon-
vex, nonsmooth and noncompact robust multiobjective optimization. Simultaneously,
the RMFCQ and the RMFRC are proposed to ensure WKKT and SKKT robust nec-
essary optimality conditions for the problem (UMP), respectively. In future research,
it is interesting to study the robust sufficient optimality conditions, duality, algorithm,
radius and others for the problem (UMP) via robust necessary optimality conditions
provided in this paper, similar to [5, 9, 28, 30].
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