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Abstract
The optimal dividends problem has remained an active research field for decades. For
an insurance company with reserve modelled by a spectrally negative Lévy process
having finite first-order moment, we study the optimal impulse dividend and capital
injection (IDCI) strategy for maximizing the expected accumulated discounted net
dividend payment subtracted by the accumulated discounted cost of injecting capital.
In this setting, the beneficiary of the dividends injects capital to ensure a non-negative
risk process so that the insurer never goes bankrupt. The optimal IDCI strategy together
with its value function is obtained. Besides, two numerical examples are provided to
illustrate the features of the optimal strategies. The impacts of model parameters are
also studied.

Keywords Spectrally negative Lévy process · De Finetti’s optimal dividend
problem · Stochastic control · Hamilton–Jacobi–Bellman inequality

Mathematics Subject Classification 49K45 · 49N25

Communicated by Dylan Possamaï.

B Xueyuan Wu
xueyuanw@unimelb.edu.au

Wenyuan Wang
wwywang@xmu.edu.cn

Yuebao Wang
ybwang@suda.edu.cn

Ping Chen
pche@unimelb.edu.au

1 School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

2 School of Mathematics, Soochow University, Suzhou 215006, China

3 Department of Economics, The University of Melbourne, Parkville VIC 3010, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02057-4&domain=pdf
http://orcid.org/0000-0002-2838-3379
http://orcid.org/0000-0003-3848-9078


Journal of Optimization Theory and Applications (2022) 194:924–965 925

1 Introduction

Dividends, knownas the distribution of corporate profits to shareholders, have attracted
broad arguments across the academic and nonacademic literature on corporate finan-
cial policies. From the shareholder’s point of view, dividends are a form of cash flow
to the investor, and hence they are an important reflection of a company’s value. Con-
sequently, the boards of the company declare dividends regularly and raise them from
time to time or face discontentment from investors. It is nearly universal policy of
paying substantial dividends to investors, in spite of its significant tax penalty com-
paring to the lower tax rate on capital gains, which is one of the primary puzzles in the
economics of corporate finance. [19] reviewed five kinds of explanations and provided
a market equilibrium model to explain why companies pay dividends.

As pointed out by [18], it is a common business to raise new capital at or around
the time companies pay dividends. One of the most common ways companies raise
capital is through issuing new debts, often in the form of bank loans. In the academic
literature, this procedure of raising new capital for the company is the so-called “capital
injection”. As a result of paying dividends, it seems attractive for investors looking
to generate income, which creates more demands for the company’s stock. However,
from the company manager’s point of view, neither paying dividend nor raising new
capital is free. In addition to the administrative costs of distributing dividends such as
the cost of paperwork and the utilization of the communication network, two sources of
agency cost on the part of managers who directly control the dividend strategy should
also be taken into consideration, see [18] for more details. In this paper we bundle all
these as transaction costs and model them as having a fixed size c per distribution of
dividends. On the other side, the cost of capital injections can be understood as the
cost of debts, the amount of which depends on the amount of new capital raised. This
paper uses φ to model the cost of per unit capital injected.

Based on these considerations, this paper aims to discuss the optimal impulse divi-
dend and capital injection (IDCI) strategy for an insurance company. The surplus level
is modelled by a spectrally negative Lévy (SNL) risk process, a widely used model
in the literature of actuarial studies. To imitate the real-world procedure of dividend
payments, we consider two real-life factors as mentioned above: the capital injections
and the transaction costs involved in the dividend distribution and capital injection.
Allowing capital injections can protect the insurance company against the bankruptcy,
thereby sustaining dividend payments in the long run. Transaction costs also play an
important role in the selection of dividend policy. Through maximizing the expected
accumulated discounted net dividend payments subtracted by the accumulated dis-
counted cost of injecting capital under the proposed surplus process, we obtain the
optimal IDCI strategy, which provides a useful reference for insurance companies
when designing their long-term profit-sharing strategies.

The optimal dividend payout strategies have remained an active research field in
the actuarial science literature for almost 60 years. Two survey papers, [1, 3], provide
thorough and insightful reviews on the classical contributions and recent progress
in the field. The earliest paper in the field, [17], proved that with the option to pay
out dividends from its surplus to the beneficiary until the discrete time of ruin, an
insurance company should adopt a barrier dividend strategy to maximize the expected
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total amount of discounted dividends until ruin. However, when dividends are imposed
with fixed transaction costs, recent research findings in the literature suggest that the
dividend optimization problem becomes an impulse (dividend) control problem and
the optimal dividend strategy is an optimal impulse dividend (OID) strategy.

Research on OID strategies has attracted much attention for a decade and has pro-
gressed well under various surplus processes. In the classical Cramér-Lundberg (CL)
risk model, [10] studied an OID problem with transaction cost and tax on dividends
as well as exponentially distributed claims. The obtained OID strategy reduces the
reserve to level u1 ∈ [0, u2) whenever it is above or equal to level u2, also called a
(u1, u2) strategy. In the dual classical CL risk model, [58] also considered an OID
problem with fixed/proportional transaction cost on dividends and derived the OID
strategy via a quasi-variational inequality argument. [11] studied the OID problem
with transaction costs on dividends for a class of general diffusion risk processes and
derived the (u1, u2)OID strategy. In the context of SNL risk process, [36] discussed an
OID problem with transaction cost and showed that a (u1, u2) strategy maximizes the
expected accumulated present value of the net dividends. For the spectrally positive
Lévy (SPL) risk process with fixed transaction costs on dividends, [13] proved that
a (u1, u2) strategy is again the OID strategy. For more results on impulse dividend
control problems, we refer readers to [4, 22, 23, 25, 41, 52, 57] and the references
therein.

In the literature, capital injection is another factor to consider when designing
dividend payout. Under risk models with dividends as well as fixed transaction costs
imposed on the capital injections, the corresponding optimization problem is also
an impulse (capital injection) control problem. In the setting of the dual classical
CL risk model, [52] found that the optimal dividend and capital injection (ODCI)
strategy,whichmaximizes the expectedpresent value of the dividends subtractedby the
discounted cost of capital injections, pays out dividends according to a barrier strategy
and injects capitals to bring the reserve up to a critical level whenever it falls below 0.
Under the drifted diffusion risk model, [41] investigated the optimal dividend problem
of an insurance company which controls risk exposure by reinsurance and by issuing
new equity to protect the insurance company from bankruptcy. The corresponding
ODCI strategy also pays dividends by a barrier strategy and injects capital to bring
reserve up to a critical level whenever it falls below 0. In the setting of SPL risk process
with the dividend rate restricted, [55, 57] considered an ODCI problem and found that
the optimal method of paying dividends is a threshold strategy. For more information
on dividend optimization in risk models with capital injection being imposed with
proportional or fixed transaction cost, we refer readers to [5, 6, 12, 25, 34, 54] and the
references therein.

Regarding SNL risk processes, the majority of dividend optimization problems are
formulated as non-impulse stochastic control problems. Using the expected present
value of dividends until ruin (the expected present value of the dividends subtracted
by the discounted costs of capital injections) as the value function, [6] identified the
condition under which the barrier strategy (respectively, the barrier dividend strategy
together with capital injection strategy that reflects the reserve process at 0) is optimal
among all admissible strategies. More results of non-impulse dividend optimization
under the SNL risk processes can be found in [7, 9, 15, 16, 20, 21, 28, 31, 32, 34, 37,
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38, 45–50, 53] and the references therein. The non-impulse dividends optimization
under the SPL risk processes can be found in [4, 5, 12, 13, 53, 55, 57] and others.

Motivated by [6, 36], this paper studies a general optimal IDCI problem through
maximizing the expected accumulated discounted net dividend payment subtracted by
the accumulated discounted cost of injecting capital in the setup of the SNL process
that is assumed to have finite first-order moment, an important restriction that appears
commonly in the literature on Lévy risk processes where capital injections are required
to keep the surplus process non-negative; see, for example, [6, 39, 40] where it is called
Assumption (M). The novelty in this paper lies as follows: (i) compared with the
existing OID results under diffusion or general Lévy setup, the present model brings
in the capital injection in an optimal way to reflect the corresponding risk process at
0; and (ii) compared with the existing OID results concerning capital injections, the
present model studies the Lévy setup, a more general driven process. In this paper,
the discussion follows the standard treatment of Hamilton–Jacobi–Bellman (HJB)
inequality in the control theory. We first find the optimal strategy among all (z1, z2)
IDCI strategies, and then we prove that it is optimal among all IDCI strategies via a
verification argument. To facilitate the standard HJB framework, we employ subtle
approaches within each step, for example, the novel technique to derive Proposition
3.3 and Lemma 4.6, and the mollifying argument to prove the modified verification
lemma (see, Lemma 4.3 and 4.4).

We acknowledge that there is a parallel paper in the literature, [28], which was also
finished independently around the same time. The first version of both papers were
available on internet in the middle of 2018. The authors of [28] considered the bail-out
optimal dividend problem under fixed transaction costs for a Lévy risk model with a
constraint on the expected net present value of injected capital. While the main results
in this paper and those in [28] appear to be very similar, the primary objectives of
these two papers are notably different as well as the methods adopted in the proof of
certain main results (for instance, the verification Lemma 4.3 and 4.4 in this paper vs
Theorem 4.10 in [28]). We believe both papers make interesting contributions to the
literature.

The remainder of this paper is organized as follows: Sect. 2 comprises preliminaries
concerning the SNL process and the mathematical setup of the dividend optimization
problem. In Sect. 3 we represent the value function of a (z1, z2) IDCI strategy using the
scale function associated with the SNL process. This facilitates the characterization of
the optimal strategy among all (z1, z2) IDCI strategies, which is further proved to be
optimal among all admissible IDCI strategies. In Sect. 4, we first prove that a solution
to the HJB inequalities coincides with the optimal value function via a verification
lemma.Next, the solution to theHJB inequality is constructed, and the optimal strategy
is found to be a (z1, z2) IDCI strategy under which the risk process is reflected at 0.
In Sect. 5, we illustrate the optimal IDCI strategy by using two numerical examples.
Section 6 concludes this paper.
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2 Formulation of the Dividend Optimization Problem

Let X = {X(t); t ≥ 0} with probability laws {Px ; x ∈ [0,∞)} and natural filtration
F = {Ft ; t ≥ 0} satisfying the usual condition be a spectrally negative Lévy (SNL)
process, i.e., a càdlàgF-adapted stochastic process that has stationary and independent
increments, and has no positive jumps. Under Px the SNL process X starts from x , i.e.,
X(0) = x almost surely. We exclude the trivial case of a pure increasing linear drift or
the negative of a subordinator. Denote the running supremum X(t) := sup{X(s); s ∈
[0, t]} for t ≥ 0. Assume that in the case of no control (dividend is not deducted and
capital is not injected), the risk process evolves as X(t) for t ≥ 0. An impulse dividend
strategy, denoted by D = {D(t); t ≥ 0}, is a one-dimensional, non-decreasing, left-
continuous, F-adapted, and pure jump process started at 0, i.e., D(0) = 0 and D(t)
defines the cumulative dividend that the company has paid out until time t ≥ 0. For the
insurance company not to go bankrupt, the beneficiary of the dividend is required to
inject capital into the insurance company to ensure that the risk process is non-negative.
A capital injection strategy, denoted by R = {R(t); t ≥ 0}, is a one-dimensional, non-
decreasing, càdlàg,F-adapted process started at 0, i.e., R(0) = 0 and R(t) defines the
cumulative capital that the beneficiary has injected until time t ≥ 0. The combined
pair (D, R) is called an IDCI strategy. More explicitly, an impulse dividend strategy
D is characterized by

(
τ D

n , ηD
n

)
, n = 1, 2, · · · ,

where (τ D
n )n≥1 and (ηD

n )n≥1 are the times and amounts of dividend lump sum pay-
ments, respectively. With dividends deducted according to D and capital injected
according to R, the controlled aggregate reserve process is then given by

U (t) = X(t) − D(t) + R(t), t ≥ 0.

An IDCI strategy (D, R) is defined to be admissible if U (t) ≥ 0 for all t ≥ 0 and∫∞
0 e−qtdR(t) < ∞ almost sure in the sense of Px , where q > 0 is a discount factor.
Let D be the set of all admissible dividend and capital injection strategies. For an

IDCI strategy (D, R) ∈ D, denote its value function as

V(D,R)(x) = Ex

( ∞∑
n=1

e−qτ D
n

(
ηD

n − c
)

−φ

∫ ∞

0
e−qtdR(t)

)
, x ∈ [0,∞),

where c > 0 is the transaction cost for each lump sum dividend payment and φ > 1 is
the cost per unit capital injected. The goal is to identify the optimal strategy (D∗, R∗)
and the corresponding optimal value function

V (x) = V(D∗,R∗)(x) = sup
(D,R)∈D

V(D,R)(x), x ∈ [0,∞).
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Intuitively speaking, because of φ > 0 and q > 0, it would be better if the capital
is injected as late as possible with no further capital injection being made rather than
just injecting enough amounts to keep the corresponding risk process non-negative.

The Laplace exponent of X is

ψ(θ) = ln E0

[
eθ X(1)

]

= γ θ + 1

2
σ 2θ2 −

∫

(0,∞)

(1 − e−θx − θx1(0,1)(x))υ(dx),

where υ is the Lévy measure with
∫
(0,∞)

(1 ∧ x2)υ(dx) < ∞. In this paper, we

need to further assume that υ has finite first-order moment, i.e.,
∫∞
1 yυ(dy) < ∞, in

which case the process X satisfies the Assumption (M) in [40]. Actually, we have the
following representation

X(t) = γ t + σ B(t) −
∫ t

0

∫

(0,1)
x N (ds, dx) −

∫ t

0

∫

[1,∞)

x N (ds, dx), t ≥ 0,

where B(t) is the standard Brownian motion, N (ds, dx) is an independent Poisson
randommeasure on [0,∞)×(0,∞)with intensitymeasure dsυ(dx), and N (ds, dx) =
N (ds, dx) − dsυ(dx) denotes the compensated random measure.

It is known that ψ(θ) < ∞ for θ ∈ [0,∞), in which case it is strictly convex
and infinitely differentiable. As in [14], the q-scale function of X , for each q ≥ 0,
W (q) : [0,∞) �→ [0,∞) is the unique strictly increasing and continuous function
with Laplace transform

∫ ∞

0
e−θx W (q)(x)dx = 1

ψ(θ) − q
, θ > 
q ,

where 
q is the largest solution of the equation ψ(θ) = q. Further, let W (q)(x) = 0
for x < 0 and write W for the 0-scale function W (0). By Lemma 1 in [42] we know
that the scale function W (q) is right and left differentiable over (0,∞). By W (q)′

± (x),
we will denote the right and left-derivative of W (q) in x , respectively. For any x ∈ R

and ϑ ≥ 0, there exists the well-known exponential change of measure for an SNL
process

Pϑ
x

Px

∣∣∣∣Ft

= eϑ(X(t)−x)−ψ(ϑ)t .

Under the probability measure Pϑ
x , X remains an SNL process with Laplace exponent

ψϑ and scale function W (q)
ϑ as follows: for ϑ ≥ 0 and q + ψ(ϑ) ≥ 0

ψϑ(θ) = ψ(ϑ + θ) − ψ(ϑ) and W (q)
ϑ (x) = e−ϑx W (q+ψ(ϑ))(x). (1)
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In addition, denote by Wϑ the 0-scale function for X under Pϑ
x . For more detailed

properties concerning the exponential change of measure, we are referred to Chapter
3 of [30].

Note that we do not impose the safety loading condition ψ ′(0+) ≥ 0. Instead,
ψ ′(0+) ∈ (−∞,∞) is assumed throughout the paper.

3 The (z1, z2) Type Dividend and Capital Injection Strategy

For the Lévy process X , denote the reflected process at infimum (or at 0)

Y (t) = X(t) − inf
0≤s≤t

(X(s) ∧ 0) , t ≥ 0.

Define T +
a = inf{t ≥ 0; Y (t) > a} and τ+

a = inf{t ≥ 0; U (t) > a}, respectively, to
be the up-crossing times of level a ≥ x of the processes Y and U , with the convention
inf ∅ = ∞. Define further

W
(q)

(x) =
∫ x

0
W (q)(z)dz, Z (q)(x)

= 1 + q W
(q)

(x), Z
(q)

(x) =
∫ x

0
Z (q)(z)dz.

Then, for x ∈ [0, b] and q ≥ 0, Proposition 2 of [42] gives that

Ex

(
e−qT +

b

)
= Z (q)(x)/Z (q)(b). (2)

For z1 < z2, let us consider an important type of IDCI strategy, that is the (z1, z2)
strategy {(Dz2

z1 (t), Rz2
z1 (t)); t ≥ 0}: a lump sum of dividend payment is made to bring

the reserve level down to the level z1 once the reserve hits or is above the level z2,
while no dividend payment is made whenever the reserve level is below z2. Capital
is injected in such a way that the reserve process is reflected at 0 , i.e., Rz2

z1 (t) =
− inf

0≤s≤t

(
X(s) − Dz2

z1 (s)
)∧0. To be precise,we define recursively T +

0 = 0, T +
1 = T +

z2

and

T +
n+1 = inf

{
t > T +

n ; X(t) − (x ∨ z2 − z1) − (n − 1)(z2 − z1)

− inf
s≤t

[
X(s) −

n−1∑
k=1

(x ∨ z2 − z1 + (k − 1)(z2 − z1)) 1(T +
k ,T +

k+1](s)

− (x ∨ z2 − z1 + (n − 1)(z2 − z1)) 1(T +
n ,∞)(s)

]
∧ 0 > z2

}
, n ≥ 1.

(3)
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Then, the (z1, z2) strategy can be re-expressed as

Dz2
z1 (t) =

∞∑
n=1

(x ∨ z2 − z1 + (n − 1)(z2 − z1)) 1(T +
n ,T +

n+1](t), t ≥ 0, (4)

and

Rz2
z1 (t) = − inf

s≤t

(
X(s) −

∞∑
n=1

(x ∨ z2 − z1 + (n − 1)(z2 − z1))

×1(T +
n ,T +

n+1](s)
)

∧ 0, t ≥ 0.

In the following result, the value function of a (z1, z2) strategy, denoted by V z2
z1 , is

expressed in terms of the scale functions.

Proposition 3.1 Given q > 0 and c > 0, we have

V z2
z1 (x) = Z (q)(x)

(
z2−z1−c

Z (q)(z2)−Z (q)(z1)
−φ

Z
(q)

(z2)−Z
(q)

(z1)

Z (q)(z2)−Z (q)(z1)

)

+φ

(
Z

(q)
(x) + ψ ′(0+)

q

)
, x ∈ [0, z2], z1 + c ≤ z2 < ∞, (5)

and

V z2
z1 (x) = x + Z (q)(z2) (z2 − z1 − c)

Z (q)(z2) − Z (q)(z1)
− φ

Z
(q)

(z2)Z (q)(z1) − Z
(q)

(z1)Z (q)(z2)

Z (q)(z2) − Z (q)(z1)

−z2 + φ
ψ ′(0+)

q

= x − z2 + V z2
z1 (z2), x ∈ (z2,∞), z1 + c ≤ z2 < ∞. (6)

Proof Denote by f (x) the expected discounted total lump sum dividend payments
minus the expected discounted total transaction costs for dividend payments, and we
have

f (x) = x − z1 − c + f (z1), x ∈ (z2,∞),

and

f (x) = Ex

(
e−qτ+

z2

)
f (z2) = Z (q)(x)

Z (q)(z2)
(z2 − z1 − c + f (z1)), x ∈ [0, z2],
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which yields f (z1) = Z (q)(z1)
Z (q)(z2)

(z2 − z1 − c + f (z1)), i.e.

f (z1) = Z (q)(z1) (z2 − z1 − c)

Z (q)(z2) − Z (q)(z1)
.

Hence

f (x) =
⎧
⎨
⎩

Z (q)(x)(z2−z1−c)
Z (q)(z2)−Z (q)(z1)

, x ∈ [0, z2],
x − z2 + Z (q)(z2)(z2−z1−c)

Z (q)(z2)−Z (q)(z1)
, x ∈ (z2,∞).

(7)

Denote by g(x) the expected discounted total capital injections. By a similar argu-
ment to the one that derives an expression for (4.8) in [6] or by Theorem 3.3 of [51],
one gets

Ex

(∫ τ+
z2

0
e−qtdRz2

z1 (t)

)

= −Z
(q)

(x) − ψ ′(0+)

q
+
(

Z
(q)

(z2) + ψ ′(0+)

q

)
Z (q)(x)

Z (q)(z2)
, x ∈ [0, z2]. (8)

Hence, by (8) one has for x ∈ [0, z2]

g(x) = Ex

(∫ τ+
z2

0
e−qtdRz2

z1 (t)

)
+ Ex

(
e−qτ+

z2

)
g(z1)

= −Z
(q)

(x) − ψ ′(0+)

q
+
(

Z
(q)

(z2) + ψ ′(0+)

q

)
Z (q)(x)

Z (q)(z2)
+ Z (q)(x)

Z (q)(z2)
g(z1),

which gives

g(z1) =
−
(

Z
(q)

(z1) + ψ ′(0+)
q

)
Z (q)(z2) +

(
Z

(q)
(z2) + ψ ′(0+)

q

)
Z (q)(z1)

Z (q)(z2) − Z (q)(z1)
,

and thus

g(x) = Z (q)(x)

Z (q)(z2)

(
Z

(q)
(z2)− Z

(q)
(z1)Z (q)(z2)−Z

(q)
(z2)Z (q)(z1)

Z (q)(z2)−Z (q)(z1)

)

−Z
(q)

(x)− ψ ′(0+)

q
, x ∈ [0, z2]. (9)

For x ∈ (z2,∞), by (9) we have

g(x) = g(z1) = −Z
(q)

(z1)Z (q)(z2) + Z
(q)

(z2)Z (q)(z1)

Z (q)(z2) − Z (q)(z1)
− ψ ′(0+)

q
. (10)
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Collecting V z2
z1 (x) = f (x) − φg(x), (7), (9) and (10) yields (5) and (6) immediately.

This completes the proof. 
�
Define, for 0 < c ≤ z1 + c < z2 < ∞,

ξ(z1, z2) = z2 − z1 − c

Z (q)(z2) − Z (q)(z1)
− φ

Z
(q)

(z2) − Z
(q)

(z1)

Z (q)(z2) − Z (q)(z1)
. (11)

Then, V z2
z1 (x) = Z (q)(x)ξ(z1, z2) + φ

(
Z

(q)
(x) + ψ ′(0+)

q

)
, x ∈ [0, z2]. The set of

maximizers of ξ(z1, z2) is written as

M := {(z1, z2); c ≤ z1 + c ≤ z2, inf
x≥0, x+c≤y

(ξ(z1, z2) − ξ(x, y)) ≥ 0
}
. (12)

Denote by

τ̂z2 = inf{t ≥ 0; sup
0≤s≤t

(X(s) ∨ 0) − X(t) > z2} (13)

the first passage time of the Lévy process reflected at its supremum. The following
result gives a useful link between the second partial derivative of ξ (in z2) and the
Laplace transform of τ̂z2 . Due to its log-concavity (see, Page 89 of [35]), the scale
function W (q) is known to be differentiable over (0,∞) except for countably many
points. In addition, W (q) has finite left- and right-derivatives at all x ∈ (0,∞) (see,
Lemma 1 of [42]). Thence, in the sequel, for x ∈ (0,∞) where W (q) is not differen-
tiable, W (q)′(x) shall be understood to be W (q)′

+ (x), i.e., the right-derivative of W (q)

at x .

Lemma 3.2 Let ξ and τ̂z2 be defined respectively by (11) and (13). We have

∂

∂z2

(
[Z (q)(z2) − Z (q)(z1)]2

qW (q)(z2)

∂

∂z2
ξ(z1, z2)

)

=
(
Z (q)(z2) − Z (q)(z1)

)
W (q)′(z2)

[W (q)(z2)]2
(

− 1

q
+ φ

q
E0

(
e−q τ̂z2

))
. (14)

Proof It follows from Proposition 2 (ii) of [42] that

E0

(
e−q τ̂z2

)
= Z (q)(z2) − q[W (q)(z2)]2

W (q)′(z2)
. (15)

By algebraic manipulations one has

∂

∂z2

[
Z

(q)
(z2) − Z

(q)
(z1)

Z (q)(z2) − Z (q)(z1)

]
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=
Z (q)(z2)

qW (q)(z2)

[
Z (q)(z2) − Z (q)(z1)

]− Z
(q)

(z2) + Z
(q)

(z1)
[
Z (q)(z2) − Z (q)(z1)

]2 /
qW (q)(z2)

,

and
[

Z (q)(z2)

qW (q)(z2)

[
Z (q)(z2) − Z (q)(z1)

]
− Z

(q)
(z2) + Z

(q)
(z1)

]′

z2

= qW (q)(z2)
Z (q)(z2)

qW (q)(z2)
+ [Z (q)(z2) − Z (q)(z1)] ∂

∂z2

[
Z (q)(z2)

qW (q)(z2)

]
− Z (q)(z2)

=
(

Z (q)(z2) − Z (q)(z1)
)(

1 − Z (q)(z2)W (q)′(z2)
q[W (q)(z2)]2

)

=
(

Z (q)(z2) − Z (q)(z1)
) W (q)′(z2)

[W (q)(z2)]2
(

[W (q)(z2)]2
W (q)′(z2)

− Z (q)(z2)

q

)
.

One also has

∂

∂z2

[
z2 − z1 − c

Z (q)(z2) − Z (q)(z1)

]
=

Z (q)(z2)−Z (q)(z1)
qW (q)(z2)

− (z2 − z1 − c)
[
Z (q)(z2) − Z (q)(z1)

]2 /
qW (q)(z2)

,

and

∂

∂z2

[
Z (q)(z2) − Z (q)(z1)

qW (q)(z2)
− z2 + z1 + c

]

=
[
Z (q)(z2) − Z (q)(z1)

]
W (q)′(z2)

−q[W (q)(z2)]2 .

Combining the above facts, we obtain

∂

∂z2
ξ(z1, z2) = 1

Z (q)(z2) − Z (q)(z1)
− Z (q)′(z2)(z2 − z1 − c)

[Z (q)(z2) − Z (q)(z1)]2

−φ
Z (q)(z2)

Z (q)(z2) − Z (q)(z1)
+ φ

Z (q)′(z2)[Z
(q)

(z2) − Z
(q)

(z1)]
[Z (q)(z2) − Z (q)(z1)]2 , (16)

which together with (15) yields (14). 
�
The following result characterizes the optimal IDCI strategy among all (z1, z2)

strategies.

Proposition 3.3 The set M is nonempty, i.e. M �= ∅. For (z1, z2) ∈ M, we have

z2 − z1 − c

Z (q)(z2) − Z (q)(z1)
− φ

Z
(q)

(z2) − Z
(q)

(z1)

Z (q)(z2) − Z (q)(z1)
= 1 − φZ (q)(z2)

qW (q)(z2)
. (17)
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Proof By the definition of τ̂z2 one knows that it is increasing with respect to z2 and

lim
z2→∞ τ̂z2 = ∞, implying lim

z2→∞E0

(
e−q τ̂z2

)
= 0. Hence there exists z̄0 ∈ [0,∞)

such that

− 1

q
+ φ

q
E0

(
e−q τ̂z2

)
≤ − 1

2q
, z2 ∈ [z̄0,∞). (18)

On the other hand, by (1) one can verify that

W (q)(z)

W (q)′(z)
= e
q z W
q (z)

[e
q z W
q (z)]′
= 1


q + W ′

q

(z)

W
q (z)

−→ 1


q
,

where the fact that lim
z→∞

W ′

q

(z)

W
q (z) = 0 (see the last paragraph of the proof of Lemma 2

in [43]) is used. Hence, by the rule of L’Hôpital, we have

lim
z2→∞

[Z (q)(z2) − Z (q)(z1)]W (q)′(z2)
[W (q)(z2)]2

= lim
z2→∞

Z (q)(z2) − Z (q)(z1)

W (q)(z2)
lim

z2→∞
W (q)′(z2)
W (q)(z2)

= lim
z2→∞

qW (q)(z2)

W (q)′(z2)
lim

z2→∞
W (q)′(z2)
W (q)(z2)

= q.

So, there exists ¯̄z0 ∈ [0,∞) such that

[Z (q)(z2) − Z (q)(z1)]W (q)′(z2)
[W (q)(z2)]2 ≥ q

2
, z2 ∈ [¯̄z0,∞),

which combined with (14) and (18) yields

∂

∂z2

(
[Z (q)(z2) − Z (q)(z1)]2

qW (q)(z2)

∂

∂z2
ξ(z1, z2)

)
≤ −1

4
, z2 ∈ [z̄0 ∨ ¯̄z0,∞),

where ξ is defined in (11). Owing to (16), it holds that

[Z (q)(z̄0 ∨ ¯̄z0) − Z (q)(z1)]2
qW (q)(z̄0 ∨ ¯̄z0)

∂

∂z2
ξ(z1, z̄0 ∨ ¯̄z0) < ∞.

Thus, there exists z0 ∈ (z̄0 ∨ ¯̄z0,∞) such that

[Z (q)(z2) − Z (q)(z1)]2
qW (q)(z2)

∂

∂z2
ξ(z1, z2) < 0, z2 ∈ [z0,∞),
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which yields ∂
∂z2

ξ(z1, z2) < 0 for z2 ∈ [z0,∞). As a result,

sup
0≤z1,z2<∞,z1+c≤z2

ξ(z1, z2) = sup
0≤z1,z2≤z0,z1+c≤z2

ξ(z1, z2), (19)

which, plus the continuity of ξ over {(z1, z2); z1, z2 ∈ [0, z0], z1 + c ≤ z2}, yields

∅ �= M ⊆ {(z1, z2); z1, z2 ∈ [0, z0], z1 + c ≤ z2}.

For IDCI strategies (z1, z2) and (z′
1, z′

2) with z2 − z1 = z′
2 − z′

1 = c and z′
2 > z2,

let T +′
n be defined via (3) with zi replaced by z′

i (i=1,2). Then, by (3), (4) and the
technique of mathematical induction, we have, for x ∈ [0, z2],

T +′
n > T +

n , n ≥ 1,

and hence D
z′
2

z′
1
(t) ≤ Dz2

z1 (t) for t ≥ 0, which implies, for t ≥ 0,

R
z′
2

z′
1
(t) = − inf

0≤s≤t
[X(s) − D

z′
2

z′
1
(s)] ∧ 0 ≤ − inf

0≤s≤t
[X(s) − Dz2

z1 (s)] ∧ 0 = Rz2
z1 (t).

Therefore, we have

Ex

(∫ ∞

0
e−qsdRz2

z1 (s)

)
≥ Ex

(∫ ∞

0
e−qsdR

z′
2

z′
1
(s)

)
, x ∈ [0, z2] = [0, z2] ∩ [0, z′

2],

which, combined with (9) yields, for z2 − z1 = z′
2 − z′

1 = c, z′
2 > z2,

Z (q)(x)

Z (q)(z2)

[
Z

(q)
(z2) − Z

(q)
(z1)Z (q)(z2) − Z

(q)
(z2)Z (q)(z1)

Z (q)(z2) − Z (q)(z1)

]
− Z

(q)
(x) − ψ ′(0+)

q

≥ Z (q)(x)

Z (q)(z′
2)

[
Z

(q)
(z′

2) − Z
(q)

(z′
1)Z (q)(z′

2) − Z
(q)

(z′
2)Z (q)(z′

1)

Z (q)(z′
2) − Z (q)(z′

1)

]
− Z

(q)
(x)

−ψ ′(0+)

q
,

which boils down to

Z
(q)

(z2) − Z
(q)

(z1)

Z (q)(z2) − Z (q)(z1)
≥ Z

(q)
(z′

2) − Z
(q)

(z′
1)

Z (q)(z′
2) − Z (q)(z′

1)
. (20)

By (20) and the definition of ξ in (11), we may rule out the possibility that ξ attains
its maximum value in the line z2 = z1 + c. Indeed, if (z1, z2) is a maximum point of
ξ with z2 = z1 + c, then by (20) we should have z2 = z1 = ∞, contradicting (19).

Now, we have proved that ∅ �= M ⊆ {(z1, z2); z1, z2 ∈ [0, z0], z1 + c < z2}.
Thus, if (z1, z2) is a maximizer of ξ(z1, z2), then it holds that ∂

∂z2
ξ(z1, z2) = 0, i.e.,

(17) holds true. 
�
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For an IDCI strategy (z1, z2) ∈ M, the following result, an immediate consequence
of (5), (6), and (17), presents an alternative expression for the value function V z2

z1 . It
is interesting to see that this expression is independent of z1, which is not the case for
arbitrary IDCI strategy (z1, z2) (see (5) and (6)).

Proposition 3.4 For (z1, z2) ∈ M, the value function of the (z1, z2) IDCI strategy is

V z2
z1 (x) =

⎧⎨
⎩

φ
[

Z
(q)

(x) + ψ ′(0+)
q

]
+ Z (q)(x)

1−φZ (q)(z2)
qW (q)(z2)

, x ∈ [0, z2),

x − z2 + φ
[

Z
(q)

(z2) + ψ ′(0+)
q

]
+ Z (q)(z2)

1−φZ (q)(z2)
qW (q)(z2)

, x ∈ [z2,∞).

Remark 3.5 Given (z1, z2) ∈ M, one can verify that

[V z2
z1 (x)]′ =

{
φZ (q)(x) + W (q)(x)

1−φZ (q)(z2)
W (q)(z2)

, x ∈ [0, z2),

1, x ∈ (z2,∞),

is continuous over [0,∞). By (15) we see that

φZ (q)(x) + W (q)(x)
1 − φZ (q)(z2)

W (q)(z2)

= W (q)(x)

[
φZ (q)(x)

W (q)(x)
− φZ (q)(z2)

W (q)(z2)

]
+ W (q)(x)

W (q)(z2)

= φW (q)(x)

∫ x

z2

q
[
W (q)(w)

]2 − W (q)′(w)Z (q)(w)
[
W (q)(w)

]2 dw + W (q)(x)

W (q)(z2)

>
W (q)(x)

W (q)(z2)
, x ∈ [0, z2),

which together with the above expression for [V z2
z1 ]′ implies that the function V z2

z1
is strictly increasing over the non-negative real line. Furthermore, when the scale
function is differentiable, one can also verify that

[V z2
z1 (x)]′′ =

{
qφW (q)(x) + W (q)′(x)

1−φZ (q)(z2)
W (q)(z2)

, x ∈ [0, z2),

0, x ∈ (z2,∞),

is continuous on [0, z2) and (z2,∞). However, [V z2
z1 (x)]′′ is not evidently continuous

at z2. In fact, twice differentiability at z2 is not guaranteed even if continuous dif-
ferentiability is imposed on W (q). Furthermore, if the scale function is only assumed
to be piece-wise continuously differentiable over all compact subsets of [0,∞) (as
in Lemma 4.3, 4.4 and Theorem 4.8 ), then [V z2

z1 (x)]′′ is well-defined and continuous
over [0,∞) except for finitely many points of the compact set [0, z2]. 
�

The following result characterizes several desirable properties of V z2
z1 for (z1, z2) ∈

M.
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Proposition 3.6 Given (z1, z2) ∈ M, V z2
z1 is continuously differentiable and

[V z2
z1 ]′(x) ≤ φ over [0,∞), and

V z2
z1 (x) − V z2

z1 (y) ≥ x − y − c, 0 ≤ y < y + c ≤ x .

Proof By the expression of V z2
z1 given by Proposition 3.4, that V z2

z1 is continuously
differentiable over [0,∞) is trivial. A straightforward calculation shows that

φZ (q)(z2) + W (q)(z2)
1 − φZ (q)(z2)

W (q)(z2)
= 1 < φ.

By W (q)(0) ≥ 0, W (q)(z2) > 0, and 1 − φZ (q)(z2) < 0, one can verify

φZ (q)(0) + W (q)(0)
1 − φZ (q)(z2)

W (q)(z2)
= φ + W (q)(0)

1 − φZ (q)(z2)

W (q)(z2)
≤ φ.

By Lemma 1 of [6] one has W (q)(x)W
(q)

(z2) ≥ W (q)(z2)W
(q)

(x) for x ∈ [0, z2],
which, combined with φ > 1 and W (q)(x) > 0 for x ∈ (0, z2), yields

φ −
(

φZ (q)(x) + W (q)(x)
1 − φZ (q)(z2)

W (q)(z2)

)

= −qφW
(q)

(x) − W (q)(x)
1 − φ − qφW

(q)
(z2)

W (q)(z2)

= 1

W (q)(z2)

(
qφ
(

W (q)(x)W
(q)

(z2) − W (q)(z2)W
(q)

(x)
)

+ W (q)(x)(φ − 1)
)

> 0, x ∈ (0, z2).

In combination with these arguments, we reach [V z2
z1 ]′(x) ≤ φ for x ∈ [0, z2].

By (11), (z1, z2) ∈ M, (12), and (17), we have

x − y − c

Z (q)(x) − Z (q)(y)
− φ

Z
(q)

(x) − Z
(q)

(y)

Z (q)(x) − Z (q)(y)

≤ z2 − z1 − c

Z (q)(z2) − Z (q)(z1)
− φ

Z
(q)

(z2) − Z
(q)

(z1)

Z (q)(z2) − Z (q)(z1)

= 1 − φZ (q)(z2)

qW (q)(z2)
, 0 ≤ y, y + c ≤ x < ∞, (21)

from which one can get

V z2
z1 (x) − V z2

z1 (y)

= φ
(

Z
(q)

(x) − Z
(q)

(y)
)

+
(

Z (q)(x) − Z (q)(y)
) 1 − φZ (q)(z2)

qW (q)(z2)
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=
(

Z (q)(x) − Z (q)(y)
)( z2 − z1 − c

Z (q)(z2) − Z (q)(z1)
− φ

Z
(q)

(z2) − Z
(q)

(z1)

Z (q)(z2) − Z (q)(z1)

)

+φ
(

Z
(q)

(x) − Z
(q)

(y)
)

≥
(

Z (q)(x) − Z (q)(y)
)( x − y − c

Z (q)(x) − Z (q)(y)
− φ

Z
(q)

(x) − Z
(q)

(y)

Z (q)(x) − Z (q)(y)

)

+φ
(

Z
(q)

(x) − Z
(q)

(y)
)

= x − y − c, 0 ≤ y ≤ x ≤ z2, y + c ≤ x .

By Proposition 3.4, using (21) once again one can get

V z2
z1 (x) − V z2

z1 (y) = x − z2 + φ

(
Z

(q)
(z2) + ψ ′(0+)

q

)
+ Z (q)(z2)

1 − φZ (q)(z2)

qW (q)(z2)

−φ

(
Z

(q)
(y) + ψ ′(0+)

q

)
− Z (q)(y)

1 − φZ (q)(z2)

qW (q)(z2)
≥ x − z2 + z2 − y − c, x ≥ z2 ≥ y, y + c ≤ x .

For x ≥ y ≥ z2 with y + c ≤ x , by Proposition 3.4 one has V z2
z1 (x) − V z2

z1 (y) =
x − y > x − y − c. The proof is completed. 
�

4 Characterization of the Optimal IDCI Strategy

This section is devoted to verifying that an IDCI strategy (z1, z2) ∈ M serves as the
optimal IDCI strategy dominating all other admissible IDCI strategies.

In the following Proposition 4.1, we first present a result characterizing the optimal
value function V , which is helpful in motivating the HJB inequalities (i.e., (32)) in the
verification Lemma 4.3 and 4.4.

Proposition 4.1 The function V (x) is continuous over [0,∞), and V (y) − V (x) ≥
y−x −c for y ≥ x ≥ 0. In addition, if V is differentiable over [0,∞), then V ′(x) ≤ φ.

Proof By definition, any admissible IDCI strategy associated with the initial reserve
x ≥ 0 also serves as an admissible IDCI strategy associated with the initial reserve
y ≥ x . Then it follows that V is non-decreasing.

For any ε > 0 and y ≥ x ≥ 0, denote (Dε
x , Rε

x ) an admissible IDCI strategy
associated with the initial reserve x such that V(Dε

x ,Rε
x )(x) > V (x) − ε. Without loss

of generality, Dε
x is expressed as

(
τ

Dε
x

n , η
Dε

x
n

)
, n = 1, 2, · · · ,

where τ
Dε

x
n and η

Dε
x

n are respectively the time and amount of dividend payouts, and

τ
Dε

x
1 > 0 a.s.. Define a new admissible strategy (Dε

y, Rε
y) associated with the initial
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reserve y such that Rε
y = Rε

x and Dε
y are characterized as

(
0, τ

Dε
x

1 , τ
Dε

x
2 , · · · , τ

Dε
x

n , · · · ; y − x, η
Dε

x
1 , η

Dε
x

2 , · · · , η
Dε

x
n , · · ·

)
.

According to (Dε
y, Rε

y), we have

V (y) ≥ V(Dε
y ,Rε

y)
(y) = y − x − c + V(Dε

x ,Rε
x )(x) > y − x − c + V (x) − ε,

which yields V (y) − V (x) ≥ y − x − c after setting ε ↓ 0.
The inequality V ′(x) ≤ φ over [0,∞) can be proved if we have

V (x) − V (y) ≤ φ(x − y), 0 ≤ y ≤ x < ∞, (22)

which, can be accomplished by considering an IDCI strategy that injects a capital of
amount x − y at time 0 to the reserve process starting from y.

Additionally, the continuity of V follows from (22) and the non-decreasing property
of V . 
�

Put�D(t) = D(t+)−D(t),�X(t) = X(t)−X(t−), and�R(t) = R(t)−R(t−).
Define

D1 = {(D, R) ∈ D; �D(t) > 0 iff c < �D(t) ≤ U (t−) + �X(t),

and R(t) = − inf
0≤s≤t

(X(s) − D(s)) ∧ 0, t ≥ 0},

which is a proper subset of D. Intuitively, the condition

c < �D(t) ≤ U (t−) + �X(t),

requires that the lump sum dividend paid at time t is strictly greater than c and is no
more than the available reserve after covering the down-ward jump of X at time t , i.e.,
U (t−) + �X(t). For (D, R) ∈ D1, it is seen that �R(t) = 0 whenever �D(t) > 0.

The following result tells us thatwe can confine ourselveswithinD1 when searching
for the optimal IDCI strategy among D. This finding is used in the proof of the
verification Lemma 4.4.

Lemma 4.2 For any (D, R) ∈ D \ D1, there exists one IDCI strategy (D, R) ∈ D1
that dominates (D, R), i.e., V(D,R)(x) < V(D,R)(x) for all x ∈ [0,∞).

Proof Given an admissible IDCI strategy (D, R) ∈ D \ D1, denote by D(t) the pure
jump dividend process whose jumps coincide in time and amount with those of D(t)
with jump sizes strictly greater that c but less than the reserve available at the jump
times (a lump sum dividend doesn’t lead to a deficit), and denote by R(t) the minimum
non-decreasing capital injection process such that X(t) − D(t) + R(t) ≥ 0 for t ≥ 0,
i.e.

D(t) =
∑

s∈[0,t)
(�D(s) ∧ (U (s−) + �X(s)))1{�D(s)∧(U (s−)+�X(s))≥c},
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R(t) = − inf
0≤s≤t

(
X(s) − D(s)

) ∧ 0. (23)

By the definition of D1, one can claim that (D, R) ∈ D1 and

− inf
0≤s≤t

(X(s) − D(s)) ∧ 0 = R(t) + D(t+) − D(t+), t ≥ 0. (24)

Indeed, by the definition of R (i.e., X(t) − D(t) + R(t) ≥ 0 for all t ≥ 0), we have

(X(t) − D(t)) + (R(t) + D(t) − D(t)
) ≥ 0, t ≥ 0

which together with the fact that the non-decreasing capital injection process
− inf

0≤s≤t
(X(s) − D(s)) ∧ 0 is the minimum non-decreasing process such that

(X(t) − D(t)) +
(

− inf
0≤s≤t

(X(s) − D(s)) ∧ 0

)
≥ 0, t ≥ 0, (25)

yields that

R(t) + D(t) − D(t) ≥ − inf
0≤s≤t

(X(s) − D(s)) ∧ 0, t ≥ 0. (26)

At the same time, one may note that (25) is equivalent to

[X(t) − D(t)] + [R(t) − (R(t) + D(t) − D(t) + inf
s≤t

(
X(s) − D(s)

) ∧ 0
)] ≥ 0,

which together with the fact that the process R(t) is the minimum non-decreasing
process such that

[
X(t) − D(t)

]+ R(t) ≥ 0 for all t ≥ 0, implies that

R(t) −
(

R(t) + D(t) − D(t) + inf
0≤s≤t

(X(s) − D(s)) ∧ 0

)
≥ R(t), t ≥ 0,

which combined with (26) and a choice of càdlàg version gives (24). Keeping only
those lump sum dividends in D that satisfies�D(s) ≥ c, and then using the definition
of D in (23), one can deduce

D(t+) − D(t+)

≥
∑

s∈[0,t]
�D(s)

[
1{�D(s)∧(U (s−)+�X(s))≥c} + 1{�D(s)≥c≥U (s−)+�X(s)}

]

−
∑

s∈[0,t]
(�D(s) ∧ (U (s−) + �X(s)))1{�D(s)∧(U (s−)+�X(s))≥c}

≥
∑

s∈[0,t]
(�D(s) − (U (s−) + �X(s))) 1{�D(s)>U (s−)+�X(s)≥c}
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+
∑

s∈[0,t]
�D(s)1{�D(s)≥c≥U (s−)+�X(s)}

≥
∑

s∈[0,t]
(�D(s) − (U (s−) + �X(s))) 1{�D(s)>U (s−)+�X(s)≥c}

+
∑

s∈[0,t]
(�D(s) − (U (s−) + �X(s)) ∨ 0) 1{�D(s)≥c≥U (s−)+�X(s)}, (27)

which combined with (24) and the minimum property of the non-decreasing process
− inf

0≤s≤t
(X(s) − D(s)) ∧ 0 yields

R(t) +
∑

s∈[0,t]
(�D(s) − (U (s−) + �X(s))) 1{�D(s)>U (s−)+�X(s)≥c}

+
∑

s∈[0,t]
(�D(s) − (U (s−) + �X(s)) ∨ 0) 1{�D(s)≥c≥U (s−)+�X(s)}

≤ R(t) + D(t+) − D(t+) = − inf
0≤s≤t

(X(s) − D(s)) ∧ 0 ≤ R(t). (28)

By the definitions of V(D,R)(x) and V(D,R)(x), we get

V(D,R)(x) =
∑
t≥0

e−qt (�D(t) − c)
[
1{�D(t)∧(U (t−)+�X(t))≥c}

+1{�D(t)≥c≥U (t−)+�X(t)} + 1{�D(t)<c}
]

− φ

∫ ∞

0
e−qtdR(t),

and

V(D,R)(x) =
∑
t≥0

e−qt (�D(t) ∧ (U (t−) + �X(t)) − c)

×1{�D(t)∧(U (t−)+�X(t))≥c} − φ

∫ ∞

0
e−qtdR(t),

hence, by (28) we have

V(D,R)(x) − V(D,R)(x)

=
∑
t≥0

e−qt
[
�D(t) − �D(t) ∧ (U (t−) + �X(t))

]
1{�D(t)∧(U (t−)+�X(t))≥c}

+
∑
t≥0

e−qt (�D(t) − c) 1{�D(t)≥c≥U (t−)+�X(t)}

+
∑
t≥0

e−qt (�D(t) − c) 1{�D(t)<c} − φ

∫ ∞

0
e−qtd

(
R(t) − R(t)

)

≤
∑
t≥0

e−qt
[
�D(t) − (U (t−) + �X(t))

]
1{�D(t)>U (t−)+�X(t)≥c}
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+
∑
t≥0

e−qt (�D(t) − c) 1{�D(t)≥c≥U (t−)+�X(t)}

+
∑
t≥0

e−qt (�D(t) − c) 1{�D(t)<c}

−φ
∑
t≥0

e−qt (�D(t) − (U (t−) + �X(t))) 1{�D(t)>U (t−)+�X(t)≥c}

−φ
∑
t≥0

e−qt (�D(t) − c + c − (U (t−) + �X(t)) ∨ 0) 1{�D(t)≥c≥U (t−)+�X(t)}

=
∑
t≥0

e−qt (1 − φ)
[
�D(t) − (U (t−) + �X(t))

]
1{�D(t)>U (t−)+�X(t)≥c}

+
∑
t≥0

e−qt (1 − φ)
[
�D(t) − c

]
1{�D(t)≥c≥U (t−)+�X(t)}

+
∑
t≥0

e−qt
[
�D(t) − c

]
1{�D(t)<c}

−φ
∑
t≥0

e−qt
[
c − (U (t−) + �X(t)) ∨ 0

]
1{�D(t)≥c≥U (t−)+�X(t)}

≤ 0,

where one of the above two inequalities should be a strict inequality because there
must be some t0 ∈ (0,∞) such that D(t0) < D(t0) or at least one inequality in (28) is
a strict inequality at t = t0. Otherwise, D(t) = D(t) and the inequality (28) becomes
equality for all t ≥ 0, hence (D, R) = (D, R) ∈ D1, contradicting the fact that
(D, R) /∈ D1. This completes the proof. 
�

As pointed out in Remark 3.5, even if the continuous differentiability over [0,∞) is
assumed on W (q), the twice differentiability of V z2

z1 at z2 is still absent in general, as is
the continuity of [V z2

z1 ]′′ at z2. Furthermore, imposing on W (q) the assumption of con-
tinuous differentiability over [0,∞) will exclude important sub-classes of spectrally
negative Lévy processes. For example, for a spectrally negative compound Poisson
process which has jumps of exact sizeα ∈ (0,∞), the arrival rate λ > 0, and a positive
drift β > 0 such that β − λα > 0, the corresponding 0-scale function is identified by
[2, 24] as

W (x) = 1

β

[x/α]∑
n=1

e−λ(αn−x)/β 1

n! (λ/β)n(αn − x)n,

with [x/α] being the integer part of x/α. Note that the above example of scale func-
tion corresponds to a Lévy process that has sample paths of bounded variation and
whose Lévy measure has atoms; otherwise, the scale function should be continuously
differentiable over (0,∞).

In the sequel, it is assumed that W (q) is piece-wise continuously differentiable
over all compact subsets of [0,∞), i.e., for every x ∈ (0,∞), W (q) is continuously
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differentiable over [0, x] \ (di )i≤mx , where (di )i≤mx ⊆ [0, x] and the integer valued
mx ≥ 0 is non-decreasing in x . Recalling that the function V z2

z1 is linear over [z2,∞),
one knows that V z2

z1 is twice continuously differentiable over [0,∞) \ (di )i≤mz2
.

For any function f ∈ C2((−∞,∞) \ (di )i≤m) for some non-negative integer
m ≥ 0, define an operator A acting on f as

A f (x) = γ f ′(x)

+1

2
σ 2 f ′′(x) +

∫

(0,∞)

(
f (x − y) − f (x) + f ′(x)y1(0,1)(y)

)
υ(dy),

where x ∈ (−∞,∞) \ (di )i≤m . Also, define a sequence of mollified functions fn (of
f ) as

fn(x) =̂
∫ +∞

−∞
ρn(x − y) f (y)dy

=
∫ +∞

−∞
ρ(z) f (x − z

n )dz, x ∈ (−∞,∞), n ≥ 1, (29)

where ρn(x) = nρ(nx) and ρ(x) = c e
1

(x+1)2−1 1(−2,0)(x) with
∫ +∞
−∞ ρ(x)dx = 1.

In order to verify the optimality of a particular IDCI strategy (z1, z2) ∈ M produc-
ing the value function V z2

z1 , which lacks twice continuous differentiability at finitely
many points (di )i≤m ⊆ [0, z2] for some integer m ≥ 0, we need a modified version of
verification argument, i.e., Lemma 4.4. Before presenting this verification argument,
we show the following Lemma 4.3.

Lemma 4.3 Let f be a non-decreasing function such that

f ∈ C1(−∞,∞) ∩ C2((−∞,∞) \ (di )i≤m), (30)

and

max
i≤m

(
lim
x↑di

∣∣ f ′′(x)
∣∣ ∨ lim

x↓di

∣∣ f ′′(x)
∣∣
)

< ∞, (31)

with m being a non-negative integer and 0 ≤ d1 < · · · < dm < ∞. Suppose

f (x2) − f (x1) ≥ x2 − x1 − c, f ′(x) ≤ φ, x2 ≥ x1 + c, x1, x ≥ 0, (32)

and

A f (x) − q f (x) ≤ 0, x ∈ [0,∞) \ (di )i≤m, (33)

then ( fn)n≥1 are non-decreasing and twice differentiable over (−∞,∞), satisfy (32)
and

A fn(x) − q fn(x) ≤ 0, x ∈ [0,∞), (34)
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and

lim
n→∞ fn(x) = f (x), x ∈ (−∞,∞). (35)

Proof It is a direct result of differentiation under the integral sign. The proof is omitted.

�

Now we are ready to present the following verification argument. For this purpose,
let (D∗, R∗) be a candidate optimal admissible IDCI strategy with value function
V(D∗,R∗)(x), x ∈ [0,∞). We extend the domain of V(D∗,R∗) to the entire real line by
setting V(D∗,R∗)(x) = V(D∗,R∗)(0) + φx for x < 0. With a little abuse of notation, the
extended function is still denoted by V(D∗,R∗).

Lemma 4.4 (Verification) Suppose that
∫∞
1 yυ(dy) < ∞. If the function V(D∗,R∗)

defined over (−∞,∞) is non-decreasing and fulfills (30), (31), (32), and (33), then
(D∗, R∗) is the optimal strategy, and V(D∗,R∗)(x) ≥ V(D,R)(x) for all (D, R) ∈ D
and x ∈ [0,∞).

Proof By Lemma 4.2, we only need to prove that (D∗, R∗) dominates all strategies
among D1. For a given strategy (D, R) ∈ D1, recall that U (t) = X(t) − D(t) + R(t)
for t ≥ 0. In order to do rigorous stochastic calculus, we follow [35] to define D̃(t)
as the càdlàg version of D(t) and Ũ (t) := X(t) − D̃(t) + R(t); and follow Theorem
2.1 in [30] to denote X(t) as the sum of the independent processes γ t + σ B(t),∑

s≤t �X(s)1{�X(s)≤−1}, and X(t)−γ t −σ B(t)−∑s≤t �X(s)1{�X(s)≤−1}, with the
latter one being a square integrable martingale. It is seen that the four processes Ũ , X ,
D̃, and R are all càdlàg and adapted stochastic processes. Denote by {Ũc(t); t ≥ 0} and
{Rc(t); t ≥ 0} as the continuous part of {Ũ (t); t ≥ 0} and {R(t); t ≥ 0}, respectively.

Let ( fn)n≥1 be defined via (29) with f replaced by V(D∗,R∗). Hence, fn is twice
differentiable over [0,∞), and satisfies (32) and (34). ByTheorem4.57 (Itô’s formula)
in [27], we have, for x ∈ (0,∞) and n ≥ 1,

e−qt fn(Ũ (t)) = fn(x) −
∫ t

0−
qe−qs fn(Ũ (s−))ds +

∫ t

0−
e−qs f ′

n(Ũ (s−))dŨ (s)

+1

2

∫ t

0−
e−qs f ′′

n (Ũ (s−))d〈Ũc(·), Ũc(·)〉s

+
∑
s≤t

e−qs( fn(Ũ (s−) + �Ũ (s)) − fn(Ũ (s−)) − f ′
n(Ũ (s−))�Ũ (s)

)

= fn(x) −
∫ t

0−
qe−qs fn(Ũ (s−))ds +

∫ t

0−
e−qs f ′

n(Ũ (s−))d(γ s + σ B(s))

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(
X(s) − γ s − σ B(s)

−
∑
r≤s

�X(r)1{�X(r)≤−1}
)

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(
Rc(s) +

∑
r≤s

�R(r) −
∑
r≤s

�D̃(r)
)

123



946 Journal of Optimization Theory and Applications (2022) 194:924–965

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(∑

r≤s

�X(r)1{�X(r)≤−1}
)+ σ 2

2
∫ t

0−
e−qs f ′′

n (Ũ (s−))ds

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �X(s)) − fn(Ũ (s−)) − f ′
n(Ũ (s−))�X(s)

]

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �X(s) + �R(s))

− fn(Ũ (s−) + �X(s)) − f ′
n(Ũ (s−))�R(s)

]

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �Ũ (s)) − fn(Ũ (s−) + �X(s) + �R(s))

+ f ′
n(Ũ (s−))�D̃(s)

]

= fn(x) −
∫ t

0−
qe−qs fn(Ũ (s−))ds +

∫ t

0−
e−qs f ′

n(Ũ (s−))d(γ s + σ B(s))

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(
X(s) − γ s − σ B(s) −

∑
r≤s

�X(r)1{�X(r)≤−1}
)

+
∫ t

0−
e−qs f ′

n(Ũ (s−))dRc(s) + σ 2

2

∫ t

0−
e−qs f ′′

n (Ũ (s−))ds

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �X(s)) − fn(Ũ (s−))

− f ′
n(Ũ (s−))�X(s)1{−1<�X(s)<0}

]

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �X(s) + �R(s)) − fn(Ũ (s−) + �X(s))
]

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �Ũ (s)) − fn(Ũ (s−) + �X(s) + �R(s))
]
, (36)

where �D̃(s) = D̃(s)− D̃(s−), �X(s) = X(s)− X(s−), �R(s) = R(s)− R(s−),
and, �Ũ (s) = Ũ (s) − Ũ (s−) = �X(s) + �R(s) − �D̃(s). Due to the fact that
(D, R) ∈ D1, one knows that �R(s) > 0 implies a jump of N (·, ·) at time s (i.e.,
whenever there is a jump in R, there must be a jump in X ). By (32) and the fact that
�D̃(s) > c whenever �D̃(s) > 0, we have, for s ∈ [0, t),

fn(Ũ (s−) + �Ũ (s)) − fn(Ũ (s−) + �X(s) + �R(s)) + �D̃(s) − c ≤ 0,

(37)

fn(Ũ (s−) + �X(s) + �R(s)) − fn(Ũ (s−) + �X(s)) ≤ φ�R(s). (38)

Therefore, by (32), (34), (36), (37), and (38), we have
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e−qt fn(Ũ (t))

= fn(x) +
∫ t

0−
e−qs(A − q) fn(Ũ (s−))ds +

∫ t

0−
σe−qs f ′

n(Ũ (s−))dB(s)

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(
X(s) − γ s − σ B(s) −

∑
r≤s

�X(r)1{�X(r)≤−1}
)

+
∫ t

0−
e−qs f ′

n(Ũ (s−))dRc(s) +
∫ t

0−

∫ ∞

0
e−qs[ fn(Ũ (s−) − y) − fn(Ũ (s−))

+ f ′
n(Ũ (s−))y1(0,1)(y)

]
N (ds, dy)

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �X(s) + �R(s)) − fn(Ũ (s−) + �X(s))
]

+
∑
s≤t

e−qs[ fn(Ũ (s−) + �Ũ (s)) − fn(Ũ (s−) + �X(s) + �R(s))
]

≤ fn(x) + φ

∫ t

0−
e−qsdRc(s) + φ

∑
s≤t

e−qs�R(s) +
∫ t

0−
σe−qs f ′

n(Ũ (s−))dB(s)

+
∫ t

0−
e−qs f ′

n(Ũ (s−))d
(
X(s) − γ s − σ B(s) −

∑
r≤s

�X(r)1{�X(r)≤−1}
)

−
∑
s≤t

e−qs(�D̃(s) − c) +
∫ t

0−

∫ ∞

0
e−qs( fn(Ũ (s−) − y) − fn(Ũ (s−))

+ f ′
n(Ũ (s−))y1(0,1](y)

)
N (ds, dy), x ∈ (0,∞), n ≥ 1. (39)

Define a sequence of stopping times (Tm)m≥1 that

Tm := m ∧ inf{t ≥ 0; Ũ (t) ≥ m}, m ≥ 1.

It follows that Tm → ∞ almost surely as m → ∞. In addition, Ũ (t−) is confined
in the compact set [0, m] for t ≤ Tm . By the Lévy-Itô decomposition theorem (see,
Theorem 2.1 in [30]) or Appendix A in [35], the stochastic integral

∫ t∧Tm

0−
e−qs f ′

n(Ũ (s−))d
[
X(s) − γ s − σ B(s) −

∑
r≤s

�X(r)1{�X(r)≤−1}
]
, t ≥ 0,

is a martingale starting from zero. By Corollary 4.6 in [30] and the facts that∫ 1
0 y2υ(dy) < ∞ (because υ is a Lévy measure) and

∫∞
1 yυ(dy) < ∞ (by assump-

tion), the following stochastic integralwith respect to the compensatedPoisson random
measure

∫ t∧Tm

0−

∫ ∞

0
e−qs
[

fn(Ũ (s−) − y) − fn(Ũ (s−))

+ f ′
n(Ũ (s−))y1(0,1](y)

]
N (ds, dy), t ≥ 0,
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is a martingale starting from zero. Similarly, the following integration with respect to
the Brownian motion (see, Page 146 in [29])

∫ t∧Tm

0−
σe−qs f ′

n(Ũ (s−))dB(s), t ≥ 0,

is a martingale starting from zero.
Taking expectations on both sides of (39) after localization by Tm , we have

fn(x) ≥ Ex

(
e−q(t∧Tm ) fn(Ũ (t ∧ Tm))

)
− φEx

( ∫ t∧Tm

0−
e−qsdR(s)

)

+Ex

( ∑
s≤t∧Tm

e−qs(�D̃(s) − c)
)

≥ Ex

(
e−q(t∧Tm ) f (0)

)
− φEx

( ∫ t∧Tm

0−
e−qsdR(s)

)

+Ex

( ∑
s≤t∧Tm

e−qs(�D̃(s) − c)
)
, x ∈ (0,∞), (40)

where we have used the fact that, by (29) as well as the non-decreasing property of f
and fn

fn(Ũ (t ∧ Tm)) ≥ fn(0) ≥ f (0), n ≥ 1.

By setting n, t, m → ∞ in (40), and then taking use of the bounded convergence
theorem (note that f (0) is bounded), we get

f (x) ≥ −φEx

( ∫ ∞

0−
e−qsdR(s)

)
+ Ex

(∑
s

e−qs(�D̃(s) − c)
)

= −φEx

( ∫ ∞

0−
e−qsdR(s)

)
+ Ex

(∑
s

e−qs(�D(s) − c)
)

= V(D,R)(x), x ∈ (0,∞).

The arbitrariness of (D, R) and the continuity of f = V(D∗,R∗) give rise to
V(D∗,R∗)(x) ≥ sup

(D,R)∈D
V(D,R)(x) for all x ∈ [0,∞), the reverse inequality of which

is trivial. The proof is completed. 
�
Remark 4.5 Because V(D∗,R∗) lacks twice differentiability at (di )i≤m , an appropriate
generalized version of the Itô’s lemma such as the Itô-Tanaka-Meyer formula (see
[44] ) should be applied to prove the verification argument. In our case, we employed
an alternative mollifying technique (see Lemma 4.3 and 4.4 ) to deal with the difficulty
of lack of sufficient differentiability.

The mollifying arguments given in Lemma 4.3 and 4.4 are rigorous and differ from
the approach adopted in [28] when proving their verification theorem. 
�
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The following Lemma 4.6 and 4.7 are useful for characterizing the optimal IDCI
strategy and the associated optimal value function in Theorem 4.8. Recall that, for
x ∈ (0,∞) where W (q) is not differentiable, W (q)′(x) shall be understood to be
W (q)′

+ (x), i.e., the right-derivative of W (q) at x .

Lemma 4.6 Given (z1, z2) ∈ M, we have

φ + (1 − φZ (q)(x))W (q)′(x)

q[W (q)(x)]2 ≥ 0, x ∈ [z2,∞). (41)

Proof It is seen that

φ + (1 − φZ (q)(x))W (q)′(x)

q[W (q)(x)]2 =
[
−1 − φZ (q)(x)

qW (q)(x)

]′

= − (φH(x) − 1)W (q)′(x)

q(W (q)(x))2
, x ∈ [z2,∞), (42)

where H(x) = Z (q)(x) − q(W (q)(x))2/W (q)′(x). By (15) and lim
z2→∞ τ̂z2 = ∞ we

know that H(x) decreases in x with limx→∞ H(x) = 0. Let a0 > 0 be the unique
zero of the function φH(x)−1whenφH(0) > 1, then the inequality (41) is equivalent
to

z2 ≥ inf{x > 0; (φH(x) − 1)W (q)′(x)

q(W (q)(x))2
≤ 0} =

{
a0, when φH(0) > 1,

0, otherwise.

Since z2 ≥ 0 holds trivially, we only need to show that z2 ≥ a0 holds when φH(0) >

1. Given φH(0) > 1, by (42) and the decreasing property of H(x), the function
1−φZ (q)(x)

qW (q)(x)
is increasing (decreasing) over [0, a0) ((a0,∞)), and attains its maximum

at a0. So, when
1−φZ (q)(z2)

qW (q)(z2)
= 1−φZ (q)(a0)

qW (q)(a0)
we must have z2 = a0. Further, when

1−φZ (q)(z2)
qW (q)(z2)

<
1−φZ (q)(a0)

qW (q)(a0)
we should have z2 > a0. Otherwise, z2 will be in the range

(z1, a0), which leads to

∂

∂z1
ξ(z1, z2) = qW (q)(z1)

Z (q)(z2) − Z (q)(z1)

(
ξ(z1, z2) − 1 − φZ (q)(z1)

qW (q)(z1)

)

= qW (q)(z1)

Z (q)(z2) − Z (q)(z1)

(
1 − φZ (q)(z2)

qW (q)(z2)
− 1 − φZ (q)(z1)

qW (q)(z1)

)

> 0.

This result contradicts the fact that ξ attains its maximum at (z1, z2), so z2 /∈ (z1, a0).
The proof is completed. 
�
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In the sequel, we extend the function V z2
z1 to the entire real axis by setting V z2

z1 (x) =
V z2

z1 (0)+φx for x < 0. We denote by Vx (y) the value function of the barrier dividend
and capital injection strategy with barrier level x and initial reserve y (cf., Equation
(5.4) in [6]), i.e.,

Vx (y) =

⎧⎪⎪⎨
⎪⎪⎩

Vx (0) + φy, y < 0,

φ(Z
(q)

(y) + ψ ′(0+)
q ) + Z (q)(y)

1−φZ (q)(x)

qW (q)(x)
, y ∈ [0, x),

y − x + φ(Z
(q)

(x) + ψ ′(0+)
q ) + Z (q)(x)

1−φZ (q)(x)

qW (q)(x)
, y ≥ x .

(43)

Lemma 4.7 Given (z1, z2) ∈ M and x ∈ (z2,∞), define

h(z) := V z2
z1 (z) − Vx (z), z ∈ (−∞, x].

Then, h(z) is non-decreasing with respect to z and h(x) ≥ 0.

Proof Recall that it has been assumed that, for every x ∈ (0,∞), W (q) is continuously
differentiable over [0, x] \ (di )i≤mx with (di )i≤mx ⊆ [0, x] and mx ≥ 0 being integer
valued and non-decreasing in x . For x ∈ (z2,∞), denote w0 := z2, wi := z2 ∨ di for
i ∈ {1, · · · , mx }, and wmx +1 := x . By the Mean Value Theorem, we have

h(x) = V z2
z1 (x) − Vx (x)

=
mx∑
i=0

(
−y + φZ

(q)
(y) + Z (q)(y)

1 − φZ (q)(y)

qW (q)(y)

) ∣∣∣∣
wi

wi+1

=
mx∑
i=0

Z (q)(θi )

[
φ + [1 − φZ (q)(θi )][W (q)(θi )]′

q[W (q)(θi )]2
]
(wi+1 − wi ) ≥ 0,

where, θi ∈ (wi , wi+1) and (41) holds true for θi ∈ (wi , wi+1) ⊆ (z2, x) as long as
wi < wi+1.

By (41) and the Mean Value Theorem, we also have

h′(z) = qW (q)(z)

(
1 − φZ (q)(z2)

qW (q)(z2)
− 1 − φZ (q)(x)

qW (q)(x)

)

= qW (q)(z)
mx∑
i=0

(
1 − φZ (q)(wi )

qW (q)(wi )
− 1 − φZ (q)(wi+1)

qW (q)(wi+1)

)

= qW (q)(z)
mx∑
i=0

(
−φ − (1 − φZ (q)(θi ))[W (q)(θi )]′

q[W (q)(θi )]2
)

(wi − wi+1) ≥ 0,

for z ∈ [0, z2);

h′(z) = 1 − φZ (q)(z) − W (q)(z)
1 − φZ (q)(x)

W (q)(x)
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= qW (q)(z)

(
1 − φZ (q)(z)

qW (q)(z)
− 1 − φZ (q)(x)

qW (q)(x)

)

= qW (q)(z)
mx∑
i=0

(
1 − φZ (q)(yi )

qW (q)(yi )
− 1 − φZ (q)(yi+1)

qW (q)(yi+1)

)

= qW (q)(z)
mx∑
i=0

(
−φ − (1 − φZ (q)(ηi ))[W (q)(ηi )]′

q[W (q)(ηi )]2
)

(yi − yi+1) ≥ 0,

for z ∈ [z2, x), y0 := z, ymx +1 := x , yi := z ∨ di for i ∈ {1, · · · , mx }, and
ηi ∈ (yi , yi+1) ⊆ (z, x) whenever yi < yi+1; and

h′(z) = φ − φ = 0, for z ∈ (−∞, 0).

The proof is completed. 
�
The following theorem characterizes the optimal IDCI strategy among all admis-

sible IDCI strategies. The ideas in the proof are partly obtained from [6, 34]. This
theorem shows that any IDCI strategy (z1, z2) ∈ M is optimal and dominates all
admissible IDCI strategies.

Theorem 4.8 Suppose that
∫∞
1 yυ(dy) < ∞, and that W (q) is piece-wise continu-

ously differentiable over all compact subsets of [0,∞). Let (z1, z2) ∈ M. Then the
(z1, z2) strategy is optimal among all admissible IDCI strategies.

Proof By the fact that the scale function W (q)(x) is left and right differentiable over
(0,∞) (see for example, Lemma 1 in [42]), Remark 3.5, and the extended definition
V z2

z1 (x) = V z2
z1 (0) + φx for x < 0, one can verify that V z2

z1 is non-decreasing and
satisfies (31). Therefore, with the help of Proposition 3.6 and Lemma 4.4, we need
only to prove AV z2

z1 (x) − qV z2
z1 (x) ≤ 0 for x ∈ [0,∞) \ (di )i≤mz2

.
Let σ+

w (σ−
w ) be the first up-crossing (down-crossing) time of the level w by the

process X

σ+
w := inf{t > 0; X(t) > w}, σ−

w := inf{t > 0; X(t) ≤ w}. (44)

Put w0 := 0, wi := di for i ∈ {1, · · · , mz2}, and, wmz2+1 := z2. For any x ∈
(0, z2) \ (di )i≤mz2

, we may assume without loss of generality that x ∈ (wi , wi+1) for
some 0 ≤ i ≤ mz2 . Let σ := σ−

wi
∧ σ+

wi+1
with σ−

wi
and σ+

wi+1
defined via (44). By the

strong Markov property of the process X , we have

Ex

(∫ ∞

0−
e−qtd(Dz2

z1 (t) − φRz2
z1 (t))

∣∣∣∣Fr∧σ

)

= Ex

(∫ ∞

0−
e−q(s+r∧σ)d(Dz2

z1 (s + r ∧ σ) − φRz2
z1 (s + r ∧ σ))

∣∣∣∣Fr∧σ

)
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= e−q(r∧σ)EX(r∧σ)

(∫ ∞

0−
e−qsd(Dz2

z1 (s) − φRz2
z1 (s))

)

= e−q(r∧σ)V z2
z1 (X(r ∧ σ)), r ≥ 0,

which implies that the right-hand side of the above equation is a martingale.
The martingale property of the process

(
e−q(r∧σ)V z2

z1 (X (r ∧ σ))
)

r≥0 implies that

AV z2
z1 (x) − qV z2

z1 (x) = 0, x ∈ (0, z2) \ (di )i≤mz2
. (45)

Indeed, for x ∈ (wi , wi+1) and σ := σ−
wi

∧ σ+
wi+1

, Itô’s formula gives

e−q(r∧σ)V z2
z1 (X(r ∧ σ)) − V z2

z1 (x)

=
∫ r∧σ

0−
e−qs(A − q)V z2

z1 (X(s−))ds +
∫ r∧σ

0−
σe−qs[V z2

z1 ]′(X(s−))dB(s)

+
∫ t∧σ

0−
e−qs[V z2

z1 ]′(X(s−))d
(
X(s) − γ s − σ B(s) −

∑
r≤s

�X(r)1{�X(r)≤−1}
)

+
∫ r∧σ

0−

∫ ∞

0
e−qs[V z2

z1 (X(s−) − y) − V z2
z1 (X(s−))

+[V z2
z1 ]′(X(s−))y1(0,1](y)

]
N (ds, dy), r ≥ 0.

Using the same arguments as the proof of Lemma 4.4, one knows that all the terms
(except for the first one) on the right-hand side of the above display are martingales
starting from 0. Hence, taking expectations on both sides of the above display yields

0 = Ex

(∫ r∧σ

0−
e−qs(A − q)V z2

z1 (X(s))ds

)
, r ≥ 0.

Dividing by r the both sides and then setting r ↓ 0 in the above equation, we get (45)
for x ∈ (0, z2) \ (di )i≤mz2

by the Mean Value Theorem together with the Dominated
Convergence Theorem. For a more detailed proof of (45), we can also turn to Lemma
4.2 of [33]. Thus, it suffices to further prove

AV z2
z1 (x) − qV z2

z1 (x) ≤ 0, x ∈ (z2,∞). (46)

By using similar arguments as those used in proving (45) we can get

AVx (y) − qVx (y) = 0, y ∈ (0, x) \ (di )i≤mx , x ∈ (0,∞),

which implies

lim
y↑x

(AVx (y) − qVx (y)) = 0, x ∈ (z2,∞), (47)
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where lim
y↑x

AVx (y) is well-defined due to (43), the piece-wise continuous differ-

entiability of W (q) over the compact set [0, x], ∫ 10 z2υ(dz) < ∞, as well as∫∞
1 zυ(dz) < ∞. Meanwhile, because the function AV z2

z1 − qV z2
z1 is continuous over

(z2,∞) (Actually, we have [V z2
z1 ]′′(x) = 0 for x ∈ (z2,∞) by Proposition 3.4, and∫∞

0 (z2 ∧ z)υ(dz) < ∞.), we have

lim
y↑x

(AV z2
z1 (y) − qV z2

z1 (y)
) = AV z2

z1 (x) − qV z2
z1 (x), x ∈ (z2,∞). (48)

Combining (47) and (48), to prove (46) it suffices to show

lim
y↑x

(A[V z2
z1 (y) − Vx (y)] − q[V z2

z1 (y) − Vx (y)]) ≤ 0, x ∈ (z2,∞).

For x ∈ (z2,∞), we can use the dominated convergence theorem to deduce

lim
y↑x

(A[V z2
z1 (y) − Vx (y)] − q[V z2

z1 (y) − Vx (y)])

= γ
([[V z2

z1 ]′(x) − V ′
x (x)])+ σ 2

2
[[V z2

z1 ]′′(x) − lim
y↑x

V ′′
x (y)] − q[V z2

z1 (x) − Vx (x)]

+
∫

(0,∞)

([V z2
z1 (x−y)−Vx (x−y)]−[V z2

z1 (x)−Vx (x)]
+[[V z2

z1 ]′(x)−V ′
x (x)]y1(0,1)(y)

)
υ(dy)

= −σ 2

2
lim
y↑x

V ′′
x (y) − q[V z2

z1 (x) − Vx (x)]

+
∫

(0,∞)

([V z2
z1 (x − y) − Vx (x − y)] − [V z2

z1 (x) − Vx (x)]) υ(dy), (49)

where the last equality stems from [V z2
z1 ]′(x) = V ′

x (x) = 1 and [V z2
z1 ]′′(x) = 0 for

x ∈ (z2,∞).
Similarly, by (41), (43), and the piece-wise continuous differentiability of W (q)

over the compact set [0, x], we have

lim
y↑x

V ′′
x (y) ≥ 0, x ∈ (z2,∞).

By Lemma 4.7, it holds that V z2
z1 (x) − Vx (x) ≥ 0 and

[
V z2

z1z(x − y) − Vx (x − y)
] − [V z2

z1 (x) − Vx (x)
]

= h(x − y) − h(x) ≤ 0, y ∈ [0,∞).

Therefore, the right-hand side of (49) is non-positive, and this proves (46).
Now, as per Lemma 4.4, the (z1, z2) strategy is optimal among all admissible IDCI

strategies. The proof is completed. 
�
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5 Numerical Examples

This section aims to illustrate the results derived in the previous sections. We are
interested in the value of ξ(z1, z2) in (11), which determines the optimal (z1, z2)
strategy for the problem. The values of the optimal z1, z2, z2−z1 and z2−z1−c are also
quantities of interest in the understanding of the optimal lump sum dividend amount.
We study two examples: Brownian motion with drift and Jump diffusion process, to
study the impacts of the transaction cost parameters and other model parameters on
the optimal dividend and capital injection strategies.

5.1 BrownianMotion with Drift

Brownian motion (with or without drift) is the only continuous Lévy process. When
X is reduced to a Brownian motion with drift

X(t) = μt + σ B(t), t ≥ 0,

where μ ∈ R, σ > 0, and {B(t)} is the standard Brownian motion. As per [31], the
q-scale function for the above Brownian motion is

W (q)(x) =
exp
{−μ+

√
μ2+2qσ 2

σ 2 x
}

− exp
{−μ−

√
μ2+2qσ 2

σ 2 x
}

√
μ2 + 2qσ 2

:= 1

σ 2δ

(
e(−w+δ)x − e−(w+δ)x

)
, x ≥ 0,

where δ =
√

μ2+2qσ 2

σ 2 and w = μ

σ 2 . Let α = w + δ and β = w − δ. By definition we
have

Z (q)(x) = 1 + q
∫ x

0
W (q)(z)dz = 1

2δ

(
αe−βx − βe−αx) , x ≥ 0,

Z
(q)

(x) =
∫ x

0
Z (q)(z)dz = −μ

q
+ σ 2

4qδ

(
α2e−βx − β2e−αx

)
, x ≥ 0.

Hence, for 0 < c ≤ z1 + c < z2 < ∞, it holds that

ξ(z1, z2) = 2δ(z2 − z1 − c)

ζ(z1, z2)
− φμ

q
− φ(e−βz2 − e−βz1 − e−αz2 + e−αz1)

ζ(z1, z2)
,

(50)

where ζ(z1, z2) = α(e−βz2 − e−βz1) − β(e−αz2 − e−αz1). Differentiating both sides
of (50) with respect to z1 we get

∂

∂z1
ξ(z1, z2) = −2δ + φ(βe−βz1 − αe−αz1)

ζ(z1, z2)
− ξ(z1, z2) + φμ

q

ζ(z1, z2)

∂

∂z1
ζ(z1, z2).

(51)
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By solving ∂
∂z1

ξ(z1, z2) = 0 we get

ξ(z1, z2) = −2δ + φ(βe−βz1 − αe−αz1)

αβ(e−βz1 − e−αz1)
− φμ

q
. (52)

Differentiating both sides of (50) with respect to z2 we get

∂

∂z2
ξ(z1, z2) = 2δ + φ(βe−βz2 − αe−αz2)

ζ(z1, z2)
− ξ(z1, z2) + φμ

q

ζ(z1, z2)

∂

∂z2
ζ(z1, z2). (53)

Setting ∂
∂z2

ξ(z1, z2) = 0 in (53) we solve

ξ(z1, z2) = 2δ + φ(βe−βz2 − αe−αz2)

αβ(e−αz2 − e−βz2)
− φμ

q
. (54)

By (51) one can verify that ∂
∂z1

ξ(0, z2) = 2δ(φ−1)
α(e−βz2−1)−β(e−αz2−1)

> 0, excluding the
possibility for the maximizer of ξ to lie on the line z1 = 0. Since it is proved (cf.,
Proposition 3.3) that the maximizer of ξ cannot be attained on the line z2 = z1 + c,
we claim that the ξ is maximized at an interior point of the set {(z1, z2); z1, z2 ∈
[0, z0], z1 + c ≤ z2} for some bounded z0 > 0 (see the arguments immediately
following (12)). Thus, if (z1, z2) is the maximizer of ξ , then (50), (52) and (54) should
hold simultaneously. Combining (52) and (54) yields

e−αz2 − e−αz1 − e−βz2 + e−βz1 + φ(e−βz2−αz1 − e−αz2−βz1) = 0. (55)

Similarly, combining (50) and (52) yields

αβ(z2 − z1 − c)(e−βz1 − e−αz1) + ζ(z1, z2) + 2δφe− 2μ
σ2

z1

−αφe−αz1−βz2 + βφe−αz2−βz1 = 0. (56)

Now, we are ready to present the numerical results. First, we set μ = 1, σ =
0.36, q = 0.05, c = 0.1 and φ = 1.05. Numerically, (55) and (56) are uniquely
solved by (z1, z2) = (0.02682, 2.12950), a maximizer of ξ . According to the previous
argument, it must be the maximizer of ξ . In fact, by routine calculus we can verify
that, at (z1, z2) = (0.02682, 2.12950),

∂2ξ(z1, z2)

∂z21
=

φ(β2e−βz1 − α2e−αz1 ) + 2δ+φ(βe−βz1−αe−αz1 )

e−βz1−e−αz1
(αe−αz1 − βe−βz1)

ζ(z1, z2)
< 0,

∂2ξ(z1, z2)

∂z22
=

φ(α2e−αz2 − β2e−βz2 ) − 2δ+φ(βe−βz2−αe−αz2 )

e−αz2−e−βz2
(βe−βz2 − αe−αz2 )

ζ(z1, z2)
< 0,

∂2ξ(z1, z2)

∂z1∂z2
= ∂2ξ(z1, z2)

∂z2∂z1
= 0,
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Fig. 1 The surface of ξ(z1, z2) and its global maximizer

Fig. 2 The illustration of G(x) and the value function V
z2
z1 (x)

and hence ∂2ξ(z1,z2)
∂z21

∂2ξ(z1,z2)
∂z22

− ∂2ξ(z1,z2)
∂z1∂z2

∂2ξ(z1,z2)
∂z2∂z1

> 0, verifying that (z1, z2) =
(0.02682, 2.12950) is the maximizer of ξ . This is also confirmed in Fig. 1. Also,
as seen in Fig. 2a,

G(x) := φq[W (q)(x)]2 + [1 − φZ (q)(x)]W (q)′(x) ≥ 0, x ≥ z2 = 2.12950. (57)

This verifies (41).
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Table 1 Maximizer of ξ with
respect to c when φ = 1.05

c z1 z2 c z1 z2

0.01 0.06002 0.76463 0.11 0.02583 2.22967

0.02 0.04818 1.01761 0.12 0.02496 2.32560

0.03 0.04195 1.21568 0.13 0.02418 2.41782

0.04 0.03787 1.38447 0.14 0.02348 2.50673

0.05 0.03491 1.53426 0.15 0.02284 2.59269

0.06 0.03262 1.67044 0.16 0.02226 2.67598

0.07 0.03077 1.79622 0.17 0.02172 2.75685

0.08 0.02924 1.91373 0.18 0.02123 2.83550

0.09 0.02794 2.02447 0.19 0.02077 2.91212

0.10 0.02682 2.12950 0.20 0.02034 2.98686

With the optimal (z1, z2) = (0.02682, 2.12950) strategy, we can plot its associated
value function V z2

z1 (x). According to Proposition 3.1, we have

V z2
z1 (x) =

{
2δ(αe−βx −βe−αx )
ξ(0.02682,2.1295) + φσ 2

4qδ
(α2e−βx − β2e−αx ), 0 ≤ x ≤ 2.1295,

x − 2.1295 + V z2
z1 (2.1295), x > 2.1295.

It is observed in Fig. 2b that the segment in blue (i.e. x ≤ 2.1295) is shaped similar
to a straight line, even though its underlying function is actually a combination of
exponential functions.

Next, let us examine the parameter sensitivity concerned with c and φ, both playing
a critical role in our model. To avoid repetitiveness, we omit the checking arguments
of the maximizers of ξ . Also, for ease of comparison, we set μ = 1, σ = 0.36,
and q = 0.05 thereafter. For φ = 1.05, in Table 1 of the maximizer of ξ for c =
0.01, 0.02, . . . , 0.20, z1 is seen to have a slow but steady downward trend when c
increases while z2 has a solid upward trend. Further, in Fig. 3, the individual dividend
amount z2− z1 and the net individual dividend amount z2− z1−c both display a solid
increasing trend when the transaction cost c increases. This is reasonable because the
better way of paying dividends is to pay out more each time with a higher dividend
threshold when transaction cost increases.

For c = 0.1, Table 2 lists the maximizer ξ for φ = 1.01, 1.02, . . . , 1.20. Both z1
and z2 are seen to have steady upward trends when φ increases. However, z2 − z1 and
z2 − z1 − c in this case almost keep constant no matter how φ changes. As seen in
Fig. 3, when the cost of capital injection goes up, it is more beneficial to have a higher
dividend threshold, which partially reduces the chance of needing capital injection.
Also, the increasing trend of z1 upon φ lowers the negative impact of dividends on
the solvency of the insurer, while at the same time helping the company to reduce the
need of additional capital. On the other hand, the amount of money paid out in each
dividend does not depend on φ, but on the value of c which has been observed in the
previous case.
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Fig. 3 Optimal lump sum dividend amount w.r.t. the transaction parameters c and φ

Table 2 Maximizer of ξ with
respect to φ when c = 0.1

φ z1 z2 φ z1 z2

1.01 0.00635 2.10904 1.11 0.04877 2.15145

1.02 0.01212 2.11481 1.12 0.05179 2.15447

1.03 0.01741 2.12010 1.13 0.05467 2.15736

1.04 0.02229 2.12497 1.14 0.05743 2.16011

1.05 0.02682 2.12950 1.15 0.06008 2.16276

1.06 0.03104 2.13373 1.16 0.06262 2.16530

1.07 0.03501 2.13769 1.17 0.06506 2.16774

1.08 0.03873 2.14142 1.18 0.06741 2.17010

1.09 0.04226 2.14494 1.19 0.06968 2.17236

1.10 0.04559 2.14828 1.20 0.07187 2.17456

5.2 Jump Diffusion Process

The previous example considers a continuous Lévy process. In this subsection, we
proceed with the case of jump diffusion process. When X is reduced to a jump-
diffusion process,

Xt = x + pt + σ1Bt −
N1(t)∑
i=1

Yi , t ≥ 0,

where Bt is a Brownian motion, p, σ1 > 0, {N1(t); t ≥ 0} is a Poisson processes with
arrival rate λ1, {Yi ; i ≥ 1} is a sequence of i.i.d. random variables with Erlang(2, β)
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distribution law F(dx) = β2xe−βxdx for x > 0 and β > 0. The Lévy measures for
X is given by υ(dz) = λ1F(dz). The scale functions associated with X are derived as

Wq(x) =
4∑

j=1

C j (q)eθ j (q)x , Zq(x) = 1 + q
4∑

j=1

C j (q)

θ j (q)
(eθ j (q)x − 1), x ≥ 0, (58)

where

C j (q) =
(
β + θ j (q)

)2
σ 2
1
2

4∏
i=1,i �= j

(
θ j (q) − θi (q)

) ,

and θ j (q) for j ≤ 4 are the (distinct) zeros of the polynomials

(ψ(θ) − q)(β + θ)2 =
(1
2
σ 2
1 θ2 + pθ − λ1 + λ1β

2

(β + θ)2
− q
)
(β + θ)2,

By definition we have

Z
(q)

(x) =
∫ x

0
Z (q)(z)dz = x

⎛
⎝1 − q

4∑
j=1

C j (q)

θ j (q)

⎞
⎠+ q

4∑
j=1

C j (q)

θ j (q)2

(
eθ j (q)x − 1

)

Hence, for 0 < c ≤ z1 + c < z2 < ∞, it holds that

ξ(z1, z2) =
z2 − z1 − c − φ(z2 − z1)

(
1 − q

∑4
j=1

C j (q)

θ j (q)

)

ζ(z1, z2)

−φq

∑4
j=1

C j (q)

θ j (q)2

(
eθ j (q)z2 − eθ j (q)z1

)

ζ(z1, z2)
, (59)

where ζ(z1, z2) = q
∑4

j=1
C j (q)

θ j (q)
(eθ j (q)z2 −eθ j (q)z1). Differentiating both sides of (59)

with respect to z1 we get

∂

∂z1
ξ(z1, z2) =

−1 + φ
(
1 − q

∑4
j=1

C j (q)

θ j (q)

)
+ φq

∑4
j=1

C j (q)

θ j (q)
eθ j (q)z1

ζ(z1, z2)

+q
ξ(z1, z2)

ζ(z1, z2)

4∑
j=1

C j (q)eθ j (q)z1 .
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Fig. 4 The surface of ξ(z1, z2) and its global maximizer

Let ∂
∂z1

ξ(z1, z2) = 0 we have

ξ(z1, z2) =
1 − φ

(
1 − q

∑4
j=1

C j (q)

θ j (q)

)

q
∑4

j=1 C j (q)eθ j (q)z1
− φ

∑4
j=1

C j (q)

θ j (q)
eθ j (q)z1

∑4
j=1 C j (q)eθ j (q)z1

. (60)

Similarly, we first differentiate both sides of (59) with respect to z2 and then let
∂

∂z2
ξ(z1, z2) = 0 to obtain

ξ(z1, z2) =
1 − φ

(
1 − q

∑4
j=1

C j (q)

θ j (q)

)

q
∑4

j=1 C j (q)eθ j (q)z2
− φ

∑4
j=1

C j (q)

θ j (q)
eθ j (q)z2

∑4
j=1 C j (q)eθ j (q)z2

. (61)

Numerically, we equate (59), (60) and (61) to obtain the maximizer of ξ(z1, z2).
Let p = 8, σ1 = 1.5, λ1 = 3, β = 2, c = 0.2, φ = 1.05 and q = 0.1. Then

the maximizer of ξ(z1, z2) is (z1, z2) = (0.1122, 5.6223), and the corresponding

second-order derivatives are ∂2ξ(z1,z2)
∂z21

= −2.8388 < 0, ∂2ξ(z1,z2)
∂z22

= −0.1859 < 0

and ∂2ξ(z1,z2)
∂z1z2

= 0, which verifies the optimality of (0.1122,5.6223). The surface of
ξ(z1, z2) is plotted in Fig. 4.

For the jump diffusion process, let the function G(x) be defined in the samemanner
as (57), where W (q)(x) and Z (q)(x) are given in (58), φ = 1.05, q = 0.1, and
x ≥ z2 = 5.6223. Similar to the case of Brownian motion with drift, we can also
plot the curves of G(x) and V z2

z1 (x), see Fig. 5a and b. Due to the presence of positive
Gaussian coefficient σ in the surplus process X(t), the resulting G(x) and the value
function are both smooth. The trends of z1, z2, z2 − z1 and z2 − z1 − c along with the
transaction cost parameters c and φ are also similar to the Brownian motion case as
shown in Fig. 5a and b.
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Fig. 5 The illustration of G(x) and the value function V
z2
z1 (x)

Fig. 6 Optimal lump sum dividend amount w.r.t. the transaction parameters c and φ

In addition to the impacts of c and φ, the impacts of other model parameters also
deserve to be investigated. To start with, the parameter p stands for the premium rate
charged by the insurance company. The higher value of p, the corresponding surplus
is more likely to achieve a higher level, which pushes the dividend paying threshold
z2 higher. Since in this case the company is more confident of its financial situation,
more dividends are supposed to be paid out to the investors, which brings down the
lower barrier z1. As shown in Fig. 7, we observe a slightly decreasing value of z1
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Fig. 7 Optimal lump sum dividend amount w.r.t. the process parameters p, σ , λ1 and β

and an increasing z2 along with p. The lump sum dividend payments z2 − z1 is also
increasing.

We proceed with the volatility parameter σ1. Higher σ1 brings more uncertainty to
the company’s financial situation, it would be wiser for the company to set up a higher
dividend paying threshold z2, and a higher lower barrier z2 to reserve more capital
in the account, which builds up more safety for the company. As for the arrival rate
parameter λ1, more frequent arrivals of claims results in a lower surplus level, then
the overall dividend paying threshold z2 should be lower. The reserve level z1 after
the payments of dividends is expected to be higher to secure the company’s financial
situation. Lastly, the parameter β describes the severity of each claim. The larger of
β, the average amount of claims is smaller, which is a relief to the company’s surplus
process, then the company is more likely to pay out dividends at a lower threshold
z2. The reserve barrier z1 is also relaxed to a lower level indicating the company’s
confidence of its financial situation.

6 Conclusions

This paper studies an optimal impulse dividend and capital injection problem. To imi-
tate the real-world procedure of dividend payments, we also include the consideration
of transaction costs. To describe the underlying surplus process, we use spectrally neg-
ative Lévy processes, which have been taken as good candidates to model insurance
risks. Through maximizing the expected accumulated discounted net dividend pay-
ments subtracted by the accumulated discounted cost of injecting capital, we obtain
the optimal IDCI strategy, which provides a useful reference for insurance companies
when designing their long-term profit-sharing strategies.
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