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Abstract
We consider a bilevel continuous knapsack problem where the leader controls the
capacity of the knapsack, while the follower chooses a feasible packing maximizing
his own profit. The leader’s aim is to optimize a linear objective function in the capacity
and in the follower’s solution, but with respect to different item values. We address
a stochastic version of this problem where the follower’s profits are uncertain from
the leader’s perspective, and only a probability distribution is known. Assuming that
the leader aims at optimizing the expected value of her objective function, we first
observe that the stochastic problem is tractable as long as the possible scenarios are
given explicitly as part of the input, which also allows to deal with general distributions
using a sample average approximation. For the case of independently and uniformly
distributed item values, we show that the problem is #P-hard in general, and the same
is true even for evaluating the leader’s objective function. Nevertheless, we present
pseudo-polynomial time algorithms for this case, running in time linear in the total size
of the items. Based on this, we derive an additive approximation scheme for the general
case of independently distributed item values, which runs in pseudo-polynomial time.
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1 Introduction

In many real-world optimization problems, more than one decision-maker is involved.
Often, decisions are taken in a hierarchical order: the first actor takes a decision that
determines the feasible set and objective function of the second actor,whose decision in
turnmay influence the objective value of thefirst actor. Formally, suchproblemsmaybe
modeled asbilevel optimizationproblems,where the problemsolvedby thefirst actor is
called the upper level problem and the one of the second actor the lower level problem.
When such bilevel problems are considered from a game-theoretic perspective, the two
decision-makers are often called leader and follower, a terminologywe use throughout
this paper. Typical applications of bilevel optimization arise when the general rules of
a system (e.g., an energy market or a transport system) are determined by one actor
(e.g., some regulatory commission or some large logistics company), while the other
actors (e.g., energy producers or subcontractors) try to optimize their own objectives
within the rules of the system. For general introductions to bilevel optimization, we
refer to [5, 7, 8].

Bilevel optimization problems often turn out to be NP-hard. This is the case, in
general, even when all constraints and objective functions are linear [11]. A notable
exception is the bilevel continuous knapsack problem [8]: here, the leader controls the
capacity of the knapsack, while the follower chooses a feasible packing maximizing
his own profit. The leader’s aim is to optimize an objective function that is linear in the
chosen capacity and in the follower’s chosen solution. However, the leader’s item val-
ues may differ from the follower’s item values. This problem can be solved efficiently
by first sorting the items according to the follower’s profits and then enumerating the
capacities corresponding to the total size of each prefix in this ordering; see Sect. 2.1
for more details. Applications of the bilevel knapsack problem considered here arise
in, e.g., revenue management [1].

In practice, however, it is very likely that the leader does not know the follower’s
subproblem exactly. It is thus natural to combine bilevel optimization with optimiza-
tion under uncertainty. To the best of our knowledge, uncertain bilevel optimization
problemswerefirst considered in [15].Recently,Burtscheidt andClaus [4] investigated
stochastic bilevel linear optimization problems, dealing in particular with structural
properties of such problems. A thorough review of literature on stochastic bilevel
linear optimization can be found in [12].

Regarding the bilevel continuous knapsack problem under uncertainty, the robust
optimization approachhas been investigated in depth in [2]. It is assumed that the vector
of follower’s item values is unknown to the leader. This implies that the follower’s
order of preference for the items is now uncertain. However, according to the robust
optimization paradigm, the leader knows a so-called uncertainty set containing all
possible (or likely) realizations of this vector. The aim is to find a capacity leading
to an optimal worst-case objective value over all these realizations. Among other
things, it is shown that the resulting problem is still tractable under discrete or interval
uncertainty—the latter case being nontrivial here, while it turns out to be NP-hard
for budgeted uncertainty (which is sometimes called Gamma uncertainty) and for
ellipsoidal uncertainty, among others. Complexity questions for general robust bilevel
optimization problems have been settled in [3].
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In the following, we consider the stochastic bilevel continuous knapsack problem.
The follower’s item values are still unknown to the leader, but now given by probability
distributions. Instead of the worst case, we are interested in optimizing the expected
value. The problem can be written as:

max Ec
(
d�xc − δb

)

s.t. b ∈ [b−, b+]
xc ∈ argmax c�x

s.t. a�x ≤ b
x ∈ [0, 1]n,

(SP)

where b denotes the capacity determined by the leader and x ∈ [0, 1]n are the opti-
mization variables of the follower. As c is a random vector in the stochastic setting,
the same is true for the follower’s optimum solution xc and the leader’s objective
value d�xc − δb. In the latter, the vector d contains the leader’s item values and δ

denotes the cost for each unit of capacity provided by the leader. The leader’s aim is
now to optimize the expected objective value. For the sake of simplicity, we do not
distinguish between the optimistic and the pessimistic view (which are the two stan-
dard ways to handle ambiguous follower’s optimal solutions) in this formulation. In
Sect. 2.2, we argue why we may assume uniqueness of the follower’s optimal solution
almost surely in the stochastic setting. Therefore, the results presented in this paper
hold in both the optimistic and the pessimistic setting.

1.1 Outline and Overview of Results

After discussing the deterministic problem version and introducing notation and basic
results in Sect. 2, we start investigating the computational complexity of the stochas-
tic optimization problem (SP), which of course depends strongly on the underlying
probability distribution of c. Under the assumption that all possible realizations of the
follower’s objective vector are given explicitly as part of the input, together with their
probabilities, we observe that the stochastic problem can be solved efficiently; see
Sect. 3. Using standard methods, this result could be used to design a sample average
approximation scheme for arbitrary distributions.

Our main results apply to the case of independently distributed item values. In the
most basic setting, each item value is distributed uniformly on either a finite set or
an interval. In contrast to the setting of Sect. 3, in the discrete case, the input here
contains the finite sets for all items, but not each of the (exponentially many) possible
realizations explicitly. Even in this basic setting of independently and uniformly dis-
tributed item values, we show that the stochastic problem turns out to be #P-hard; see
Sect. 4.1. It is thus unlikely that an efficient algorithm exists for solving the problem
exactly. In fact, even the computation of the objective value resulting from a given
capacity choice is #P-hard in these cases, and the same is true for finding a multi-
plicative approximation for any desired factor. However, all results only show weak
#P-hardness. In fact, we also devise a pseudo-polynomial algorithm for the mentioned
cases in Sect. 4.2, running in time linear in the total size of all items.
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Finally, in Sect. 5, we consider general distributions with independent item val-
ues, given only by oracles for the cumulative distribution functions and the quantile
functions. Assuming that these oracles can be queried in constant time, we devise an
algorithm for solving (SP) with an arbitrarily small additive error ε > 0. The running
time of this algorithm is pseudo-polynomial in the problem data and linear in 1/ε. The
idea of this approach is to approximate the given distribution by a componentwise
discrete distribution and then to apply the main ideas used for the pseudo-polynomial
algorithm of Sect. 4.2.

In Sect. 6, we summarize the main results and close the paper with a few remarks
and a discussion of related questions.

2 Preliminaries

Westartwith basic observations concerning the stochastic bilevel continuous knapsack
problem. We first have a closer look at the deterministic problem variant in Sect. 2.1.
Subsequently, in Sect. 2.2, we introduce notation and list some basic observations
concerning the stochastic problem (SP).

2.1 The Underlying Certain Problem

As mentioned in the introduction, the deterministic version of the bilevel continu-
ous knapsack problem can be solved efficiently. This is explained in [8], but for the
convenience of the reader and since our algorithms for the stochastic case build on
this, we now describe the solution approach in more detail. The deterministic bilevel
continuous knapsack problem can be formulated as follows, using the same notation
as in the stochastic problem (SP):

max d�x − δb
s.t. b ∈ [b−, b+]

x ∈ argmax c�x
s.t. a�x ≤ b

x ∈ [0, 1]n .

(P)

The leader’s only variable is b ∈ R, which can be considered the knapsack’s capacity.
The follower’s variables are x ∈ R

n , i.e., the follower fills the knapsack with a subset
of the objects, where also fractions are allowed. The item sizes a ∈ R

n≥0, the follower’s
item values c ∈ R

n , the capacity bounds b−, b+ ∈ R≥0 as well as the leader’s item
values d ∈ R

n and a scalar δ ≥ 0 are given. The latter can be thought of as a price the
leader has to pay for providing one unit of knapsack capacity. For the following, we
define A := ∑n

i=1 ai and assume that a > 0 and 0 ≤ b− ≤ b+ ≤ A. Moreover, since
we are mostly interested in complexity results, we assume throughout that a ∈ N

n

and d ∈ Z
n . Finally, we will use the notation [k] := {1, . . . , k} for k ∈ N and [0] := ∅.

As usual in bilevel optimization, we have to be careful in case the follower’s optimal
solution is not unique. In this case, the model (P) is not well defined. The standard
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approach is to distinguish between the optimistic setting, in which the follower always
chooses one of his optimal solutions that is best possible for the leader, and the pes-
simistic setting, where the follower chooses an optimal solution that is worst possible
for the leader. The former case is equivalent to considering the follower’s variables x
being under the leader’s control as well. However, regarding the results presented in
this paper, there are no relevant discrepancies between the two cases. For the sake of
simplicity and since we can also make this assumption almost surely in the stochastic
setting later on (see Sect. 2.2), we assume in this section that the follower’s profits ci

ai
,

i ∈ [n], are pairwise distinct and nonzero, so that his optimal solution is unique for
any capacity b.

Indeed, the follower in (P) solves a continuous knapsackproblemwithfixed capacity
b. This can be done, for example, using Dantzig’s algorithm [6]: by first sorting the
items, we may assume

c1
a1

> · · · >
cn′

an′
> 0 >

cn′+1

an′+1
> · · · >

cn
an

, (1)

for some n′ ∈ {0, . . . , n}. The idea is then to pack all items with positive profit into
the knapsack, in this order, until it is full. More formally, if A′ := ∑n′

i=1 ai ≤ b, all
items with positive profit can be taken, so an optimum solution is xi = 1 for i ∈ [n′]
and xi = 0 else. Otherwise, we consider the critical item

k := min
{
i ∈ [n′] : ∑i

j=1 a j > b
}

,

and an optimum solution is given by

xi :=

⎧
⎪⎪⎨

⎪⎪⎩

1 for i ∈ {1, . . . , k − 1}
1
ak

(
b − ∑k−1

j=1 a j

)
for i = k

0 for i ∈ {k + 1, . . . , n}.
(2)

We now turn to the leader’s perspective. As only the critical item k, but not the
ordering (1) depends on b, the leader can compute the described order of items once
and then consider the behavior of the follower’s optimum solution x when b changes.
Every xi in (2) is a continuous piecewise linear function in b, of the form:

xi (b) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 for b ∈ [
0,

∑i−1
j=1 a j

]

1
ai

(
b − ∑i−1

j=1 a j

)
for b ∈ [∑i−1

j=1 a j ,
∑i

j=1 a j
]

1 for b ∈ [∑i
j=1 a j , A

]
(3)

for b ∈ [0, A] and for i ∈ [n′], and constantly zero for i > n′. The leader’s objective
function f is given by the corresponding values d�x(b)− δb and thus corresponds to
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a weighted sum of the functions xi (b) for i ∈ [n′] and δb:

f (b) =

⎧
⎪⎪⎨

⎪⎪⎩

∑i−1
j=1 d j + di

ai

(
b − ∑i−1

j=1 a j

)
− δb for b ∈ [∑i−1

j=1 a j ,
∑i

j=1 a j ],
i ∈ [n′]

∑n′
j=1 d j − δb for b ∈ [A′, A].

(4)

Note that this piecewise linear function is well-defined and continuous with vertices
in the points b = ∑i

j=1 a j , i ∈ [n′], in which the critical item changes from i to i +1.
The leader has to maximize f over the range [b−, b+] ⊆ [0, A]. As f is piecewise
linear, it suffices to evaluate it at the boundary points b− and b+ and at all feasible
vertices, i.e., at all points b = ∑i

j=1 a j for i ∈ [n′] such that b ∈ [b−, b+]. By
computing f (b) incrementally, Problem (P) can be solved in O(n log n) time, which
is the time needed for sorting.

2.2 Basic Definitions and Observations

In the stochastic version of the problem, the vector c of follower’s item values is seen
as a random variable having a known distribution. The follower’s optimum solution
xc(b) and the leader’s objective value f c(b) = d�xc(b)−δb depend on the realization
of c and hence are also random variables. The leader optimizes the expected value
Ec( f c(b)).

If two different items have the same profit or an item has profit zero, the follower’s
optimal solutionmight be ambiguous. For simplicity, we assume throughout this paper
that the profits of two different items almost surely disagree and that the profit of each
item is almost surely nonzero, i.e.,

P(ci/ai = c j/a j ) = 0 and P(ci = 0) = 0 for i, j ∈ [n], i 	= j . (5)

If c follows a continuous distribution, i.e., its cumulative distribution function is con-
tinuous, this assumption is always satisfied. In case of a discrete distribution with finite
support, it can be obtained, if necessary, by a small perturbation of the entries in the
support of c. Using an appropriate perturbation, both the optimistic and the pessimistic
setting can be modeled. In particular, we do not need to distinguish between these two
settings in the following because underAssumption (5), the follower’s optimal solution
is almost surely unique.

For fixed c, we have seen in Sect. 2.1 that xci for i ∈ [n] and f c are piecewise linear
functions in b. These functions do not depend on c directly, but only on the implied
order of the items when the latter are sorted according to the values ci/ai . Hence, the
expected values

x̂i (b) := Ec(x
c
i (b)) for i ∈ [n] and (6)

f̂ (b) := Ec( f
c(b)) = d� x̂(b) − δb (7)
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can be seen as expected values with respect to a probability distribution on all permu-
tations of the items 1, . . . , n. As the number of permutations is finite, this implies that
the functions x̂i and f̂ are finite convex combinations of functions xci and f c, respec-
tively, for appropriate values of c. In particular, they are piecewise linear functions
again. Since we assume the item sizes a to be integral, the vertices of these functions
all lie on integer points b ∈ {0, . . . , A} because this holds for the functions defined
in (3) and (4).

This gives rise to a general algorithmic scheme for solving the stochastic prob-
lem (SP): enumerate all permutations π of [n] and compute the corresponding leader’s
objective functions f π as in (4), together with the probabilities pπ that the val-
ues ci/ai are sorted decreasingly when permuted according to π . Finally, sum all
piecewise linear functions pπ f π to determine the leader’s objective f̂ , and maxi-
mize f̂ over b ∈ [b−, b+].

We emphasize that, depending on the given probability distribution of c, it might be
nontrivial to compute the probabilities pπ in general. Moreover, due to the exponential
number of permutations, this approach does not yield a polynomial time algorithm in
general. In fact, we will show that such an efficient algorithm cannot exist for some
probability distributions unless P=NP. However, for distributions with finite support,
enumerating all values in the support yields an efficient algorithm, as we show in the
next section. Although the above algorithm is not efficient for other distributions, it
will be useful for our proofs to know the structure of the follower’s optimum solutions
and the leader’s objective function as described above.

Besides the piecewise linear functions defined in (6) and (7), we will also make use
of the values

�x̂i (b) := x̂i (b) − x̂i (b − 1) for i ∈ [n] and (8)

f̂ ′(b) := f̂ (b) − f̂ (b − 1) = d��x̂(b) − δ (9)

for b ∈ [A]. The values �x̂i (b) describe the expected amount of item i that will be
added when increasing the capacity from b − 1 to b. Together with δ and the leader’s
item values d, they yield the slope f̂ ′ of the leader’s objective function. Note that, by
integrality of a, the functions x̂i and f̂ are linear on [b−1, b]. Whenever we deal with
slopes of piecewise linear functions, in a point where the function is nondifferentiable,
this refers to the slope of the linear piece directly left of this point, i.e., we always
consider left derivatives.

For some probability distributions, it will turn out that not only the optimization
in (SP), but also the computation of the values x̂i (b) and �x̂i (b) is hard in general.
However, we will devise pseudo-polynomial time algorithms in these cases that com-
pute all values �x̂i (b), from which one can solve (SP) in pseudo-polynomial time as
well; see Sect. 4.2.
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3 Distributions with Finite Support

Assuming that c has a finite support U , i.e., that there exists a finite set U of possible
follower’s objectives c which occur with probabilities 0 < pc ≤ 1, respectively, the
leader’s objective is given as a finite sum of the piecewise linear functions pc f c,
where f c is defined as in (4). Note that the definition in (4) depends on the order of
the items given by the follower’s preferences, which in turn depends on c.

Similar to the algorithm described in Sect. 2.2, the following algorithm solves
Problem (SP) for distributions with finite support: for every c ∈ U , use the algorithm
described in Sect. 2.1 to compute the piecewise linear function f c inO(n log n) time,
andmultiply each function f c by the factor pc. Then, maximize the resulting weighted
sum, which is a piecewise linear function again. Note that the sum hasO(|U |n) linear
segments and that it can be computed by sorting the vertices of all functions and
traversing them from left to right while keeping track of the sum of the active linear
pieces. This is possible in a running time of O(|U |n log(|U |n)). Thus, we obtain

Theorem 1 Assume that c is distributed on a finite set U and that the input consists of
U together with the corresponding probabilities. Then, Problem (SP) can be solved
in O(|U |n log(|U |n)) time.

The result of Theorem 1 suggests to address the general problem (SP), with an
arbitrary underlying distribution of c, by means of sample average approximation:
for a given number N ∈ N, first compute N samples c(1), . . . , c(N ) of the random
variable c. Then, apply the algorithm of Theorem 1 to the uniform distribution over
the finite set {c(1), . . . , c(N )} and let ϑN be the resulting optimal value (which is a
random variable again). Using general results from [16], one can show that ϑN almost
surely converges to the optimal value of (SP) for N → ∞, and a similar statement
holds for the set of optimal solutions; see [17]. The only assumption needed here is
that sampling of c is possible.

4 Componentwise Uniform Distributions

In this section, we consider the version of (SP) where the distribution of c is uniform
on a product of either finite sets or continuous intervals. Equivalently, each component
of c is drawn independently and according to some (discrete or continuous) uniform
distribution. For both the discrete and the continuous case, we will show that (SP) can-
not be solved efficiently unless P=NP. However, we will devise pseudo-polynomial
time algorithms with a running time linear in the total item size A. The algorithm
for the discrete case solves the problem not only for uniform, but also for arbitrary
componentwise distributions with finite support.

Note that the results presented in Sect. 3 are not applicable to the discrete inde-
pendent case discussed here because the support U , which contains all possible
combinations of item values, is exponential in the number of items and hence in
the problem input.

123



Journal of Optimization Theory and Applications (2022) 194:521–542 529

4.1 Hardness Results

Our first aim is to show that (SP) is #P-hard in case of componentwise uniformdistribu-
tions. The class #P contains all counting problems associated with decision problems
belonging to NP, or, more formally, all problems that ask for computing the number of
accepting paths in a polynomial time nondeterministic Turing machine. Using a nat-
ural concept of efficient reduction for counting problems, one can define a counting
problem to be #P-hard if every problem in #P can be reduced to it. A polynomial time
algorithm for a #P-hard counting problem can only exist if P=NP. In the following
proofs, we will use the #P-hardness of the problem #Knapsack, which asks for the
number of feasible solutions of a given binary knapsack instance [9].

In stochastic optimization with continuous distributions, problems often turn out
to be #P-hard, and this is often even true for the evaluation of objective functions
containing expected values. For an example, see [10], from where we also borrowed
some ideas for the following proofs.

Theorem 2 Problem (SP) with a discrete componentwise uniform distribution of c is
#P-hard.

Proof We show the result by a reduction from #Knapsack. More precisely, for some
given a∗ ∈ N

m and b∗ ∈ {0, 1, . . . ,∑m
i=1 a

∗
i }, we will prove that one can compute

#{x ∈ {0, 1}m : a∗�x ≤ b∗}

in polynomial time if the following instances of (SP) can be solved in polynomial time.
In case b∗ = ∑m

i=1 a
∗
i , this is clear, so from now on, we assume that b∗ <

∑m
i=1 a

∗
i .

We define a family of instances of (SP), parameterized by τ ∈ [−1, 1]: each of the
instances has n := m + 1 items, where

(a1, . . . , am, am+1) := (a∗
1 , . . . , a

∗
m,

∑m
i=1 a

∗
i ) and

(d1, . . . , dm, dm+1) := ((1 + τ) · a1, . . . , (1 + τ) · am, (−1 + τ) · am+1).

We set δ := 0, b− := 0 and b+ := am+1 = ∑m
i=1 ai , and assume

(c1, . . . , cm+1) ∼ U{ε, 1}m+1

with

ε := 1
2am+1

> 0.

The proof consists of two main steps. First, we investigate the structure of the leader’s
objective functions for the described instances and show that by determining the slope
of any of them at b = b∗, up to a certain precision, we can compute

#{x ∈ {0, 1}m : a∗�x ≤ b∗}.
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In the second step, we show how to determine this slope up to the required precision
by solving a polynomial number of these instances in a bisection algorithm.

As described in Sect. 2.2, the leader’s objective function can be thought of as a
weighted sumof piecewise linear functions corresponding to the permutations induced
by different choices of c, with weights being the probabilities of the permutations,
respectively. For fixed c, consider the set

Ic :=
{
i ∈ [m] | ci

ai
>

cm+1
am+1

}

of items the follower would choose before item m + 1. The corresponding piecewise
linear function f c first has slope 1 + τ and then slope −1 + τ , since di

ai
= 1 + τ for

all i ∈ [m], and dm+1
am+1

= −1 + τ . The order of the items in Ic does not matter to the
leader because they all result in the same slope in her objective. The slope changes
from 1 + τ to −1 + τ at b = ∑

i∈Ic ai . The slope would change back to 1 + τ at
b = ∑

i∈Ic ai + am+1 ≥ b+, but this is outside of the range of the leader’s objective.
The actual leader’s objective is now aweighted sumof such functions. For obtaining

the weights, we only need to know the probabilities for different sets Ic, because all
c resulting in the same Ic also result in the same piecewise linear function f c. The
probability distribution is chosen such that Ic = [m] occurs with probability 1

2 + 1
2m+1 ,

while each other set Ic ⊂ [m] has probability 1
2m+1 : first, if cm+1 = ε, we certainly

have Ic = [m] because ci
ai

≥ ε
ai

> ε
am+1

holds with probability 1, for all i ∈ [m]. On
the other hand, if cm+1 = 1, then each item i ∈ [m] is contained in Ic with probability
exactly 1

2 . Indeed, ci = 1 means ci
ai

= 1
ai

> 1
am+1

, hence i ∈ Ic, whereas ci = ε

means ci
ai

= ε
ai

≤ 1
2am+1

< 1
am+1

, hence i /∈ Ic. Thus, the leader’s objective function

f̂τ is given as:

f̂τ = 1

2
f[m],τ + 1

2m+1

∑

M⊆[m]
fM,τ ,

where fM,τ is the function that has slope 1+τ for b ∈ [0,∑i∈M ai ] and slope−1+τ

afterward. It follows that, for any b ∈ [b+],

f̂ ′
τ (b) = 1

2
(1 + τ) + 1

2m+1

(
(−1 + τ) · #

{
M ⊆ [m] :

∑

i∈M
ai < b

}

+ (1 + τ) · #
{
M ⊆ [m] :

∑

i∈M
ai ≥ b

})

= − 1

2m
#
{
M ⊆ [m] :

∑

i∈M
ai ≤ b − 1

}
+ 1 + τ

= − 1

2m
#
{
x ∈ {0, 1}m : a�x ≤ b − 1

}
+ 1 + τ. (10)
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This shows that by computing f̂ ′
τ (b

∗+1) for any fixed τ , we can determine the number

#{x ∈ {0, 1}m : a∗�x ≤ b∗} = 2m(1 + τ − f̂ ′
τ (b

∗ + 1)).

It is even enough to compute an interval of length less than 1
2m containing f̂ ′

τ (b
∗ + 1)

because the number of feasible knapsack solutions is an integer and this gives an
interval of length less than 1 in which it must lie. This concludes the first step of our
proof.

In the second step, we will describe a bisection algorithm to compute f̂ ′
0(b

∗ + 1)
up to the required precision. We know that f̂ ′

0(b
∗ + 1) ∈ [−1, 1] as it is a convex

combination of values −1 and 1. Starting with s−
0 := −1 and s+

0 := 1, we iteratively
halve the length of the interval [s−

k , s+
k ] by setting either s−

k+1 := s−
k and s+

k+1 :=
1
2 (s

−
k + s+

k ) or s−
k+1 := 1

2 (s
−
k + s+

k ) and s+
k+1 := s+

k . After m + 2 iterations, we

have an interval of length 1
2m+1 containing f̂ ′

0(b
∗ + 1), which allows to compute

#{x ∈ {0, 1}m : a∗�x ≤ b∗}.
It remains to show how to determine whether f̂ ′

0(b
∗ +1) ≤ 1

2 (s
−
k + s+

k ) or f̂ ′
0(b

∗ +
1) ≥ 1

2 (s
−
k +s+

k ), in order to choose the new interval. To this end, we first maximize fτ
for τ := − 1

2 (s
−
k + s+

k ) over [b−, b+]. This can be done by solving (SP) for the
corresponding instance, which by our assumption is possible in polynomial time.
Suppose the maximum is attained at bk+1. As a weighted sum of concave functions,
f̂τ is concave, and hence, we know that f̂ ′

τ (b) ≥ 0 for all b < bk+1, and f̂ ′
τ (b) ≤ 0 for

all b ≥ bk+1. From (10), one can conclude that f̂ ′
τ (b) = f̂ ′

0(b) + τ for all τ ∈ [−1, 1]
and all b ∈ [b+]. We derive that f̂ ′

0(b
∗ + 1) ≥ −τ = 1

2 (s
−
k + s+

k ) if b∗ + 1 < bk+1,

and f̂ ′
0(b

∗ + 1) ≤ −τ = 1
2 (s

−
k + s+

k ) otherwise. ��
Theorem 3 Problem (SP) with a continuous componentwise uniform distribution of c
is #P-hard.

Proof The result can be shown by a similar proof to the one of Theorem 2: Instead of
the discrete distribution used before, the continuous distribution

(c1, . . . , cm) ∼ U
m∏

i=1

[
ai

2am+1
,

3ai
2am+1

]

is considered, while fixing cm+1 = 1. The sets Ic are defined as before, and it can be
shown that each set has probability 1

2m : if ci ∈ (
2ai

2am+1
,

3ai
2am+1

], we have that ci
ai

> 1
am+1

,

hence i ∈ Ic, while ci ∈ [ ai
2am+1

,
2ai

2am+1
) implies ci

ai
< 1

am+1
, so that i /∈ Ic. Both events

have probability 1/2. The rest of the proof is analogous, except for a small change in
the computation in (10) due to the slightly different probabilities. ��

Note that cm+1 is fixed in the proof of Theorem 3. In order to avoid this, one can
consider cm+1 ∼ U[1 − ε, 1 + ε] instead, for sufficiently small ε > 0.

Theorem 4 Evaluating the objective function of Problem (SP) with a discrete or con-
tinuous componentwise uniform distribution of c is #P-hard.
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Proof Using the same construction and notation as in the preceding proofs, we have
shown that computing f̂ ′

0(b
∗ + 1) = f̂0(b∗ + 1) − f̂0(b∗) is #P-hard. It follows that

also evaluating f̂0 is #P-hard. ��
Note that the proof of Theorem 4, together with (7) and (9), implies that already the

computation of the values x̂i (b) and�x̂i (b) for some given i ∈ [n] and b ∈ [A] can be
#P-hard. Moreover, the constructions in the proofs of Theorem 2 and 3 show that all
stated hardness results still hold when δ = 0. One can show that, since all follower’s
item values in these constructions are positive, the hardness result also holds when
assuming d ≥ 0 and δ > 0; see [2].

Considering these results, it is a natural question whether (SP) can at least be
approximated efficiently. Assuming b− = 0, this question is well defined, since all
optimal values are nonnegative then, due to f̂ (0) = 0. However, it is easy to derive
the following negative result, which excludes the existence of any polynomial time
(multiplicative) approximation algorithm, unless P=NP.

Theorem 5 For Problem (SP) with a discrete or continuous componentwise uniform
distribution of c and with b− = 0, it is #P-hard to decide whether the optimal value
is zero.

Proof For any given instance of (SP) and any K ∈ R≥0, we can efficiently construct
a new instance of (SP) by adding an item n + 1 with leader’s value dn+1 = −K + δ,
size an+1 = 1, and any distribution of cn+1 guaranteeing P(cn+1 > ci/ai ) = 1
for all i ∈ [n]. Let f̂ and f̂K denote the objective functions of the original and
the extended problem, respectively. By construction, the follower will always choose
item n + 1 first in the extended instance. Thus, f̂K (b) = −Kb ≤ 0 for b ∈ [0, 1]
and f̂K (b) = f̂ (b − 1) − K for b ∈ [1, b+ + 1]. In summary, we can polynomially
reduce the decision of

max
b∈[0,b+]

f̂ (b) ≤ K (11)

to the decision of

max
b∈[0,b++1]

f̂K (b) ≤ 0.

Since the computation of an optimal solution for the original instance of (SP) can
be polynomially reduced to problems of type (11), using a bisection algorithm, the
desired result now follows from Theorems 2 and 3. ��

4.2 Pseudo-Polynomial Time Algorithms

We now present pseudo-polynomial time algorithms for the stochastic bilevel contin-
uous knapsack problem in the #P-hard cases addressed in the previous section. These
algorithms are based on a dynamic programming approach. As discussed in Sect. 2.2,
the leader’s objective function is piecewise linear with vertices at integral positions
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b ∈ [A], since the item sizes a are assumed to be integral. Therefore, we could solve
the problem by evaluating f̂ (b) forO(A)many values of b, and A has polynomial size
in the numerical values of the sizes a. The quest for a pseudo-polynomial algorithm
thus reduces to the computation of f̂ (b) for given b ∈ [A]. However, we have seen in
the previous section that also the latter task is #P-hard in general.

Actually, as mentioned, even the computation of �x̂i (b) for given i ∈ [n] and b ∈
[A] can be #P-hard. In the following, we will present algorithms for computing �x̂
in pseudo-polynomial time for the distributions addressed above, i.e., for item values
that are componentwise uniformly distributed on a finite set or on a closed interval.
From�x̂ one can compute x̂ using formula (8) and with that evaluate f̂ for all integral
capacities using formula (7), which takes pseudo-polynomial time O(nA).

In order to compute �x̂ , we first define the auxiliary function

gi (b, I ) := P

⎛

⎝ci > 0 and
∑

j∈I , c j /a j>ci /ai

a j = b

⎞

⎠ ,

for i ∈ [n], I ⊆ [n]\{i}, and b ∈ Z, i.e., the probability that item i is profitable and
that the total size of all items in I that the follower prefers over item i is exactly b. We
then have

�x̂i (b) = 1

ai

ai∑

r=1

gi (b − r , [n]\{i}) (12)

for all i ∈ [n] and b ∈ [A]. Indeed, for r ∈ [ai ], the value gi (b− r , [n]\{i}) describes
the probability that a percentage of exactly r/ai of item i is packed when the capacity
is b, and hence (r − 1)/ai when the capacity is b − 1. The sum thus represents the
probability that the percentage of item i being packed is increased by 1/ai when
increasing the capacity from b−1 to b. Hence, the right hand side agrees with x̂i (b)−
x̂i (b − 1) = �x̂i (b).

Note that c j/a j > ci/ai and ci > 0 in the definition of gi (b, I ) could be replaced
equivalently by c j/a j ≥ ci/ai and ci ≥ 0 by Assumption (5), and the same is true in
the following whenever comparing profits of different items.

Determining all probabilities gi (b, [n]\{i}) would thus allow us to compute �x̂
and hence to solve Problem (SP) in pseudo-polynomial time. To this end, for i ∈ [n],
I ⊆ [n]\{i}, b ∈ Z, and γ ∈ R, we next define

hi (b, I , γ ) := P

⎛

⎝
∑

j∈I , c j /a j>γ/ai

a j = b

⎞

⎠ , (13)

i.e., the probability that the total size of all items in I with profit larger than γ
ai

is
exactly b. For the following, let supp+(ci ) := supp(ci ) ∩ R>0.
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From now on we assume componentwise independent item values. Under this
assumption, for item values with finite support, we then have

gi (b, I ) =
∑

γ∈supp+(ci )

P(ci = γ ) · hi (b, I , γ ), (14)

while for absolutely continuously distributed item values, we have

gi (b, I ) =
∫

supp+(ci )
pi (γ ) · hi (b, I , γ ) dγ, (15)

where pi (γ ) denotes the probability density function of the random variable ci . For
all i ∈ [n] and γ ∈ R, it is easy to verify that

hi (b,∅, γ ) =
{
1 for b = 0

0 for b 	= 0

and, if j ∈ I and i /∈ I ,

hi (b, I , γ ) = P(c j/a j > γ/ai ) · hi (b − a j , I\{ j}, γ )

+ (1 − P(c j/a j > γ/ai )) · hi (b, I\{ j}, γ ). (16)

This recursive formula enables an incremental computation of hi (b, [n]\{i}, γ ) for
given i ∈ [n], γ ∈ R, and b ∈ {0, . . . , A}. We emphasize that only O(n) many
subsets I of [n] need to be considered for this, as, for the recursion (16), it suffices to
choose one element j to be removed from I . Using this, we can now develop pseudo-
polynomial time algorithms for computing�x̂ in case of independently and uniformly
distributed item values, with supports being either finite sets or continuous intervals.

4.2.1 Componentwise Uniform Distributions with Finite Support

In this section, we assume that all item values are independently and discretely dis-
tributed with finite support. More specifically, for i ∈ [n], the value of item i has
mi ∈ N different realizations c1i , . . . , c

mi
i with probabilities p1i , . . . , p

mi
i , respec-

tively. Let m := max{m1, . . . ,mn} denote the maximum number of different values
any item can take.

Lemma 1 All probabilities P(c j/a j > cki /ai ) for i, j ∈ [n], i 	= j , and k ∈ [mi ] can
be computed in time O(m2n2).

Proof Each such probability can be computed in time O(m) as:

P(c j/a j > cki /ai ) =
∑

	∈[m j ], c	
j /a j>cki /ai

p	
j ,

and the claim follows. ��
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Lemma 2 Let i ∈ [n] and γ ∈ R. Given the probabilities P(c j/a j > γ/ai ) for
all j ∈ [n]\{i}, the probabilities hi (b, [n]\{i}, γ ) for all b ∈ {0, . . . , A − ai } can be
computed in time O(nA).

Proof We apply the recursive formula (16) in order to compute the desired probabili-
ties hi (b, [n]\{i}, γ ).More specifically, setting I := ∅ and bmax := 0 at the beginning,
we iterate over all j ∈ [n]\{i} in an arbitrary order. For each such j , we first compute

hi (b, I ∪ { j}, γ ) = P(c j/a j > γ/ai ) · hi (b − a j , I , γ )

+ (1 − P(c j/a j > γ/ai )) · hi (b, I , γ )

for all b ∈ {0, . . . , bmax + a j }, with hi (b, I , γ ) = 0 for b /∈ {0, . . . , bmax }, and
then set I := I ∪ { j} and bmax := bmax + a j . After the last iteration, we then have
computed hi (b, [n]\{i}, γ ) for all b ∈ {0, . . . , A− ai }. There areO(n) iterations and
each iteration can be executed in time O(A). ��

Theorem 6 For item values that are independently distributed on finite sets, Prob-
lem (SP) can be solved in time O(m2n2 + mn2A).

Proof By Lemmas 1 and 2, all values hi (b, [n]\{i}, cki ) for i ∈ [n], k ∈ [mi ], and
b ∈ {0, . . . , A} can be computed in time O(m2n2 + mn2A). Next, all probabil-
ities gi (b, [n]\{i}) can be computed in time O(mnA) according to (14). Finally,
all values �x̂i (b) for i ∈ [n] and b ∈ [A] can be computed in time O(nA) using
�x̂i (1) = 1

ai
gi (0, [n]\{i}) and

�x̂i (b) = �x̂i (b − 1) + 1
ai

(gi (b, [n]\{i}) − gi (b − ai , [n]\{i}))

for b ∈ {2, . . . , A}, which follows from (12). From �x̂ one can compute x̂ in
time O(nA) using (8) and with that evaluate f̂ (b) for all b ∈ [A] in time O(nA)

using (7). ��

In case the number of possible realizations for each component of c is bounded by
a constant, e.g., when we have m = 2 as in the proof of Theorem 2, the running time
stated in Theorem 6 simplifies to O(n2A).

4.2.2 Componentwise Continuous Uniform Distributions

In this section, we assume that the value ci of item i ∈ [n] is distributed uniformly
on the continuous interval [c−

i , c+
i ] with c−

i < c+
i . The key difference to the discrete

case discussed in the previous section is that we compute the probabilities hi (b, I , γ )

not for fixed γ , but as functions in γ . The involved probabilities P(c j/a j > γ/ai ) are
piecewise linear in γ . As a result, hi (b, I , γ ) is a piecewise polynomial function in γ

and the expected values �x̂ can be computed as integrals over piecewise polynomial
functions.
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Consider V := {max{0, c−
i
ai

},max{0, c+
i
ai

} | i ∈ [n]} and set r := |V |.
Let v1, . . . , vr ∈ V with v1 < · · · < vr be the ascending enumeration of all ele-
ments in V . For i, j ∈ [n], i 	= j , and γ ∈ R, we have

P(c j/a j > γ/ai ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for γ ≤ ai
a j
c−
j

c+
j − a j

ai
γ

c+
j −c−

j
for ai

a j
c−
j ≤ γ ≤ ai

a j
c+
j

0 for γ ≥ ai
a j
c+
j .

In particular, P(c j/a j > γ/ai ), as a function in γ , is linear on each inter-
val [aivk, aivk+1].
Lemma 3 Let i ∈ [n] and k ∈ [r − 1] be given. Then, the coefficients of the poly-
nomials hi (b, [n]\{i}, γ ) on the interval (aivk, aivk+1] ⊆ supp+(ci ), for all b ∈
{0, . . . , A − ai }, can be computed in time O(n2A).

Proof Similarly to the proof of Lemma 2, we can compute hi (b, [n]\{i}, γ ) by itera-
tively applying the recursive formula (16). The only difference is that each application
of the recursive formula involves two multiplications of a polynomial hi (b, I , γ ) of
degree O(n) with a linear function and the summation of the resulting polynomials.
This can be done in time O(n) and the claim follows. ��
Theorem 7 For item values that are independently and uniformly distributed on con-
tinuous intervals, Problem (SP) can be solved in time O(n4A).

Proof By Lemma 3, the piecewise polynomial functions hi (b, [n]\{i}, γ ) can be
computed for all i ∈ [n], all b ∈ {0, . . . , A − ai }, and all of the at most 2n
intervals (aivk, aivk+1] ⊆ supp+(ci ) in time O(n4A). Using (15), all probabili-
ties gi (b, [n]\{i}) can be obtained in time O(n3A) by computing O(n) integrals over
polynomials of degreeO(n) for each i ∈ [n] and b ∈ [A]. As in Theorem 6, the claim
follows. ��

From the proofs of Lemma 3 and Theorem 7, it follows easily that a pseudo-
polynomial algorithm exists for each class of continuous distributions such that the
entries ci are independently distributed and such that each ci has a piecewise polyno-
mial density function, assuming that the latter is given explicitly as part of the input.
In particular, each entry ci may have a support consisting of a finite union of bounded
closed intervals such that ci induces a uniform distribution on each of these intervals.

Moreover, the approach can deal with item values ci that are given asweighted sums
of independently and uniformly distributed random variables on continuous intervals,
as long as the number of summands is fixed. Indeed, if some given distributions
have piecewise polynomial density functions, then the density function of their sum
(assuming independence) is again piecewise polynomial, and the number of polyno-
mial pieces is bounded by the product of the numbers of pieces of the original density
functions. In particular, this applies to the case where each component independently
follows an Irwin–Hall distribution.
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4.3 Correlated Distributions

The fact that (SP) can be solved in pseudo-polynomial time for uniform independently
distributed item values raises the question of how much the complexity increases
when considering correlated item values. This question is only well defined when we
restrict ourselves to specific classes of distributions and when we specify how exactly
the input is given. As an example, one may consider uniform distributions on general
polytopes, instead of boxes as in Theorems 3 and 7. For this case, one can show that
no pseudo-polynomial algorithm in the total item size A can exist unless P = NP,
since the problem is already hard for unit sizes. However, the hardness derives from
the complexity that can be modeled into the polytope, rather than from the stochastic
optimization task itself, and the problem may turn tractable again if the numbers
appearing in the description of the polytope are polynomially bounded; see [14] for
details.

5 Additive Approximation Scheme for Componentwise Distributions

Building on the results of the previous section, we next devise a fully pseudo-
polynomial time additive approximation scheme for Problem (SP) for arbitrary
absolutely continuous distributions with independent components ci . This approach
can be easily adapted to deal with discrete distributions (with finite or infinite support)
as well. Recall that the case of finite support was settled by Theorem 6, but the running
time of the corresponding algorithm depends on the size of the supports. It may thus be
desirable to approximate a discrete distribution by another discrete distribution with
a smaller support in order to obtain a faster running time, even if this comes with a
small error.

For each i ∈ [n], we assume that the distribution of ci is given by an oracle for its
cumulative distribution function, defined as:

Fci (γ ) := P(ci ≤ γ ),

as well as an oracle for its quantile function

Qci (p) := inf {γ ∈ R | p ≤ Fci (γ )}.

For convenience, we set Fci (∞) = 1. If Fci is invertible, we have Qci = F−1
ci .

Starting with some desired additive accuracy ε > 0, we set

m := ⌈ 1
ε
(n − 1)AD

⌉ + 1

with D := ∑n
j=1 |d j |. The idea is to approximate each ci by a new random variable c̃i

having a uniform distribution on the finite set {c̃1i , . . . , c̃mi }, where

c̃ki := Qci

(
k−1/2
m

)
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Fig. 1 Approximation
of ci ∼ Exp(1) by c̃i , for m = 5

0 1 2 3 4

1
Fci

Fc̃i

for k ∈ [m]; see Fig. 1 for an illustration.
Let h̃i (b, I , γ ) be defined as in (13), but for c̃i instead of ci . Then, for each i ∈ [n]

and b ∈ {0, . . . , A − ai }, the probabilities h̃i (b, I , γ ) form a piecewise constant
function in γ with all discontinuities belonging to the set

Ji :=
{
ai
a j
c̃kj | j ∈ [n]\{i}, k ∈ [m]

}
.

By Lemma 2, for each fixed i ∈ [n] and γ ∈ R, the values h̃i (b, [n]\{i}, γ ) for all
b ∈ {0, . . . , A−ai } can be computed in timeO(nA), given the probabilitiesP(c̃ j/a j >

γ/ai ) for all j ∈ [n]\{i}. Hence, the computation for all points γ ∈ Ji can be done
in time O(mn2A). Each of the probabilities P(c̃ j/a j > γ/ai ) can be computed in
constant time using the oracle for Fc j , since Fc̃ j (γ

a j
ai

) = 1 − P(c̃ j/a j > γ/ai ) can

be obtained from Fc j (γ
a j
ai

) by rounding it to the closest multiple of 1/m, rounding up

in case of a tie; compare Lemma 4. In summary, the computation of h̃i (b, [n]\{i}, γ )

for all i ∈ [n], all b ∈ {0, . . . , A}, and all γ ∈ Ji takes time O(mn3A).
Now let j1, . . . , jr be the elements of Ji ∩ R>0 in ascending order, and set j0 = 0

and jr+1 = ∞. Denoting the probability density function of ci by pi again, we set

g̃i (b, I ) :=
∫ ∞

0
pi (γ ) · h̃i (b, I , γ ) dγ =

r∑

k=0

∫ jk+1

jk
pi (γ ) · h̃i (b, I , jk) dγ

=
r∑

k=0

h̃i (b, I , jk)(Fci ( jk+1) − Fci ( jk)).

Using the oracle for evaluating Fci , we can thus compute g̃i (b, [n]\{i}) for all i ∈ [n]
and all b ∈ {0, . . . , A} from the relevant values of h̃i in time O(mn2A). The total
time needed to compute the required values g̃i (b, [n]\{i}) is thus given as O(mn3A).
Proceeding exactly as in the proof of Theorem 6, based on the values g̃i (b, [n]\{i})
instead of gi (b, [n]\{i}), we can finally compute some b̃ ∈ [b−, b+]which maximizes
the resulting objective function. The entire algorithm runs in pseudo-polynomial time

O(mn3A) = O( 1
ε
n4A2D).

We claim that the computed solution is actually an ε-approximate solution for the orig-
inal problem, in the additive sense. To show this, we first observe that the cumulative
distribution functions of ci and c̃i have a pointwise difference of at most 1

2m .
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Lemma 4 Let i ∈ [n]. Then, ||Fci − Fc̃i ||∞ ≤ 1
2m .

Proof Let k ∈ [m]. For any β ≥ c̃ki , we derive from the definition of Qci that there

exists γ ≤ β such that k−1/2
m ≤ Fci (γ ), and hence k−1/2

m ≤ Fci (β) by monotonicity

of Fci . For any β < c̃ki , the definition of Qci directly implies that k−1/2
m > Fci (β). In

particular, for k ∈ [m − 1] and β ∈ [c̃ki , c̃k+1
i ), we obtain Fc̃i (β) = k

m and Fci (β) ∈
[ k−1/2

m ,
k+1/2
m ), and hence |Fci (β)−Fc̃i (β)| ≤ 1

2m . For β ∈ [0, c̃1i ), we have Fc̃i (β) = 0

and Fci (β) ≤ 1
2m , while β ∈ [c̃mi ,∞) implies Fc̃i (β) = 1 and Fci (β) ≥ m−1/2

m =
1 − 1

2m . ��
Lemma 5 Let b∗ be an optimizer of (SP) for the original distribution of c and let b̃ be
computed as described above. Then, | f̂ (b̃) − f̂ (b∗)| ≤ ε.

Proof For i ∈ [n], I ⊆ [n]\{i}, and γ ∈ R, define

δi (I , γ ) := max
b

|hi (b, I , γ ) − h̃i (b, I , γ )|.

Then, using (16) for any j ∈ I , we obtain

δi (I , γ ) = max
b

|(1 − Fc j (γ
a j
ai

))hi (b − a j , I\{ j}, γ ) + Fc j (γ
a j
ai

)hi (b, I\{ j}, γ )

− (1 − Fc̃ j (γ
a j
ai

))h̃i (b − a j , I\{ j}, γ ) − Fc̃ j (γ
a j
ai

)h̃i (b, I\{ j}, γ )|
= max

b
|(1 − Fc̃ j (γ

a j
ai

))(hi (b − a j , I\{ j}, γ ) − h̃i (b − a j , I\{ j}, γ ))

+ Fc̃ j (γ
a j
ai

)(hi (b, I\{ j}, γ ) − h̃i (b, I\{ j}, γ ))

+ (Fc̃ j (γ
a j
ai

) − Fc j (γ
a j
ai

))(hi (b − a j , I\{ j}, γ ) − hi (b, I\{ j}, γ ))|
≤ max

b
(1 − Fc̃ j (γ

a j
ai

)) · |hi (b − a j , I\{ j}, γ ) − h̃i (b − a j , I\{ j}, γ )|
+ Fc̃ j (γ

a j
ai

) · |hi (b, I\{ j}, γ ) − h̃i (b, I\{ j}, γ )|
+ |Fc̃ j (γ a j

ai
) − Fc j (γ

a j
ai

)|
︸ ︷︷ ︸

≤ 1
2m (Lemma 4)

· |hi (b − a j , I\{ j}, γ ) − hi (b, I\{ j}, γ )|
︸ ︷︷ ︸

≤1

≤ max
b

(1 − Fc̃ j (γ
a j
ai

)) · δi (I\{ j}, γ ) + Fc̃ j (γ
a j
ai

) · δi (I\{ j}, γ ) + 1
2m

= δi (I\{ j}, γ ) + 1
2m ,

which by induction implies δi (I , γ ) ≤ n−1
2m for all I ⊆ [n]\{i} and all γ ∈ R. We thus

obtain

|gi (b, I ) − g̃i (b, I )| ≤
∫ ∞

0
pi (γ )|hi (b, I , γ ) − h̃i (b, I , γ )| dγ

≤ n−1
2m

∫ ∞

0
pi (γ ) dγ = n−1

2m
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for all i ∈ [n], I ⊆ [n]\{i}, and b ∈ {0, . . . , A}. It follows from (12) that the resulting
additive error in �x̂i (b) is at most n−1

2m and thus the additive error in x̂i (b) is at

most b n−1
2m for all i ∈ [n] using (8). Finally, the additive error in f̂ (b), for any b, is

bounded by

n∑

i=1

|di |b n−1
2m ≤ (n−1)AD

2m ≤ 1
2ε,

which implies the desired result. ��
It is easy to see that the proof of Lemma 5 also works when all or some components

of c follow a discrete distribution. For this, it suffices to adapt the definition of g̃i and
the estimation of its error. Altogether, we thus obtain

Theorem 8 Assume that the components of c are independently distributed and that
the distribution of each component ci is given by oracles for its cumulative distribution
function and its quantile function. Then, there exists a fully pseudo-polynomial time
additive approximation scheme for (SP).

6 Conclusion

We have settled the complexity status of the stochastic bilevel continuous knapsack
problem with uncertain follower’s item values for different types of distributions. In
case of a distribution with finite and explicitly given support, the problem is tractable.
If the item values are independently and uniformly distributed, the problem is #P-
hard in general, both for continuous and discrete distributions, but we devise pseudo-
polynomial algorithms for both cases. Finally, we present a fully pseudo-polynomial
additive approximation scheme for the case of arbitrary distributions with independent
item values.

For the (single-level) binary knapsack problem, it is a classical result that the
well-known pseudo-polynomial algorithm can be turned into an FPTAS by a natural
rounding approach [13]. Unfortunately, such an approach fails for the pseudo-
polynomial algorithm presented in Sect. 4.2. In fact, by Theorem 5, an FPTAS for
the stochastic bilevel continuous knapsack problem under the distributions considered
in Sect. 4 cannot exist, at least not in the multiplicative sense.

Finally, several interesting variants of the stochastic bilevel continuous knapsack
problem arise when replacing the expected value in (SP) by some other risk measure,
e.g., by a higher moment or a combination of different moments. This would allow
to take also the variance into account, as is common in mean-risk optimization. Also
other risk measures such as the conditional value at risk may be considered. For a
collection of related results along the lines of Sects. 3 and 4.1, see [17].
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