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Abstract
This paper explores a new approach to reduce the maximum clique problem associ-
ated with permutation Hamming graphs to smaller clique problems. The vertices of
a permutation Hamming graph are permutations of n integers and the edges connect
pairs of vertices at a Hamming distance greater than or equal to a threshold d. The
maximum clique problem for permutation Hamming graphs is a challenging task due
to the size, density and regularity of the graphs. However, symmetry properties, which
are still partly unexplored, can help to reduce the problems’ size and hardness. A
property of edge transitivity with respect to automorphisms is proven and leads to a
classification for cycle-equivalent edges. This property enables to reduce the full-size
clique problem to a set of significantly smaller (and easier to solve) clique problems.
The number of reduced problems can be expressed by means of the partition function
of integer numbers. Computational experiments confirm that additional knowledge on
the automorphism group leads to a more targeted and efficient solving method for the
maximum clique problem associated with permutation Hamming graphs.
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1 Introduction

How many permutations of the n-tuple [0, 1, . . . , n − 1] can be chosen in such a way
that they are at least at a Hamming distance d from each other? This optimization
problem, usually referred to as the Maximum Permutation Code Problem (MPCP),
has been extensively studied with several approaches, such as mixed-integer linear
programming [6, 18], algebraic methods [5, 7, 9, 11], branch and bound algorithms
[4], heuristic algorithms [14, 16] and also with graph theoretical methods [2, 3, 10].
The MPCP is a well-known problem in coding theory with relevant applications in
engineering (see for instance [7, 8, 12, 15]). As detailed in Sect. 3, the MPCP can
always be reformulated in graph theoretical terms as a maximum clique problem on
a permutation Hamming graph (see also [2, 17]). We recall that the maximum clique
problem is the optimization problem of finding a largest complete subgraph, a so-
called maximum clique, in a given graph. The clique number ω(G) of a graph G is
the order of its maximum clique. Despite the high symmetry degree of permutation
Hamming graphs, no general formula for their clique number is known so far. On
the other hand, from a computational point of view symmetries represent a difficulty
for optimizations algorithms, because of the presence of a high number of equivalent
suboptimal solutions, which tend to hide the optimum. Therefore, in order to tackle the
maximum clique problem, it is crucial to gain more knowledge about the structure and
the symmetries of permutation Hamming graphs. In the papers Barta andMontemanni
[2, 3], several relevant properties of permutation Hamming graphs were investigated.
In Barta and Montemanni [2], exact formulae for the degree of the vertices and for
the number of edges were derived. Furthermore, vertex transitivity and r -partiteness
of permutation Hamming graphs were proven. In Barta and Montemanni [3], it was
shown that permutation Hamming graphs can be generated as the intersection of a set
of Turán graphs. This property led to a hitting set formulation of the maximum clique
problem.

In this paper, the focus is on automorphismgroups of permutationHamming graphs.
The article starts with a definition, in Sect. 2, of position and value permutations of
codewords. In Sects. 3 and 4, it is shown that position and value permutations are
automorphisms of permutation Hamming graphs. In Sect. 5, we prove that it is always
possible to define an automorphism which maps an edge of a permutation Hamming
graph into another edge with an equivalent cycle structure (see Theorem 5.1). This
theorem turns out to be useful, since it enables to reduce the size of themaximumclique
problem by fixing two vertices of the graph. More precisely, the full-size maximum
clique problem can be replaced by a set of smaller instances with a potential gain in
computational time (see Sect. 6). The computational tests reported in Sect. 7 confirm
that the reduction approach proposed can improve running times.

2 Position and Value Permutations

Let Ωn be the set of all permutations of the n-tuple x0 = [0, 1, . . . , n − 1]. Each
element x ∈ Ωn is a codeword and the Hamming distance dH (x, y) between two
codewords x and y is the number of differing components in x and y. Each codeword
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can be interpreted as an assignment between a set of positions P = {0, . . . , n−1} and
a set of values V = {0, . . . , n − 1}. The expression v = x(p) indicates that the value
at position p in the codeword x is v. On the other hand, we denote by p = xpos(v) the
position of the value v in the codeword x .

There are many possible ways to map a codeword into another. With the following
definitions, we focus on two types of permutations which will play an important role
in this work:

Definition 2.1 Let x ∈ Ωn and let π ∈ Sn be a permutation of the symmetric group
Sn . We refer to x ′ as the position permutation of x based on π , if x ′ is obtained by
permuting the positions of x according to π , that is, x ′(π(p)) = x(p),∀p ∈ P .

As an example, let x = [2013] and π ∈ S4, such that π(0) = 2, π(1) = 1, π(2) =
3 and π(3) = 0. Then the position permutation of x induced by π is the codeword
x ′ = [3021].

Definition 2.2 Let x ∈ Ωn and π ∈ Sn . We refer to x ′ as the value permutation of
x based on π , if x ′ is obtained by permuting the values of x according to π , that is,
x ′
pos(π(v)) = xpos(v) , ∀v ∈ V .

Consider again the codeword x = [2013] and the permutation π defined above. The
value permutation of x induced by π is the codeword x ′′ = [3210]. Note that the same
permutation π generates two different images x ′ and x ′′. In the first case, π permutes
the positions of x , in the second case the values.

Now we can define position and value permutations as bijections from Ωn to itself.

Definition 2.3 Let π ∈ Sn . We call the map σπ : Ωn → Ωn a position permutation
based on π , if for any x ∈ Ωn and x ′ = σπ x holds x ′(π(p)) = x(p) , ∀p ∈ P .

Definition 2.4 Let π ∈ Sn . We call the map τπ : Ωn → Ωn a value permutation based
on π , if for any x ∈ Ωn and x ′ = τπ x holds x ′

pos(π(v)) = xpos(v) , ∀v ∈ V .

A permutation π ∈ Sn can be represented in different ways. For the purpose of
our work, the standard cycle notation turns out to be helpful. A permutation π ∈ Sn
contains a cycle (i1 i2 · · · ik) if π(i1) = i2, . . . , π(ik−1) = ik and π(ik) = i1, that is,
each value in the cycle is mapped into the next one. A permutation can be formed by
more than one cycle. In this case the cycles are listed by a non-decreasing cycle length.
The cycles of length 1 correspond to the fixpoints of the permutation, and they may
be omitted unless this leads to misunderstanding. As an example π = (02)(145) ∈ S6
is a compact way to write π(3) = 3, π(0) = 2, π(2) = 0, π(1) = 4, π(4) = 5 and
π(5) = 1.

Consider now the permutation π = (23) and the codewords x1 = [1032] and x2 =
[3012]. By applying the position permutation σπ , we obtain the images σπ x1 = [1023]
and σπ x2 = [3021]. On the other hand, the value permutation τπ yields τπ x1 = [1023]
and τπ x2 = [2013]. It can be noticed that σπ x2 �= τπ x2 although σπ x1 = τπ x1. Thus,
position and value permutations are distinct maps of Ωn onto itself.
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3 Permutation Hamming Graphs

Awell-known problem in coding theory is determining themaximum number of code-
words inΩn , such that the Hamming distance of each pair of codewords is greater than
or equal to a given threshold d. This problem is referred to as the Maximum Permu-
tation Code Problem (MPCP). The MPCP can be easily reformulated as a maximum
clique problem on a permutation Hamming graph.

Definition 3.1 The permutation Hamming graph H(n, d) is the weighted graph
defined on the vertex set VH = Ωn , in which a pair of nodes x, y ∈ VH is connected
by an edge, iff dH (x, y) ≥ d. The weight of the edge xy is w(x, y) = dH (x, y), and
the set of edges is denoted by EH .

Since a clique is a complete subgraph, a maximum clique of H(n, d) corresponds
to the largest permutation code C that satisfies the distance constraint dH (x, y) ≥
d,∀x, y ∈ C . As |VH | = n!, a direct calculation of the clique number ω(H(n, d))

becomes generally a hard task for n ≥ 7. However, peculiar regularity properties
of Hamming graphs investigated in Barta and Montemanni [2, 3] suggest that the
calculation of the clique numbermight be facilitated by an exploitation of the symmetry
properties of the graph. Basically, looking for symmetries in a graph means gaining
more insight into the structure of its automorphism group.

In Barta and Montemanni [2], it was shown that the vertex degree of permutation
Hamming graphs is constant, that is, H(n, d) is a regular graph.Moreover, in Barta and
Montemanni [2] it was also proved that H(n, d) is vertex transitive. Vertex transitivity
means that for any pair of vertices x, y ∈ VH there exists an automorphism which
maps x into y. We recall the definition of a graph automorphism:

Definition 3.2 An automorphism of a graphG(V , E) is a bijection ϕ : V → V , which
preserves the connectivity between nodes, i.e. for any pair of nodes x, y ∈ V it holds
x ∼ y ⇔ ϕ(x) ∼ ϕ(y). The set of all automorphisms of the graph G is a group
denoted by Aut(G). In the case of a weighted graph, an automorphism must be also
weight preserving, that is, w(ϕ(x), ϕ(y)) = w(x, y),∀x, y ∈ V .

4 The Automorphism Group

The following propositions establish a link between permutations and the automor-
phism group of H(n, d).

Proposition 4.1 Any position permutation σπ : Ωn → Ωn is an automorphism of the
Hamming graph H(n, d).

Proof Clearly, a position permutation on Ωn is a bijection. It remains to prove that σπ

is distance preserving. Let x, y be two codewords and let x ′ = σπ x , y′ = σπ y be their
images. Definition 2.3 implies that x(p) = y(p) ⇔ x ′(π(p)) = y′(π(p)), ∀p ∈ P .
In other terms, x and y share component p, if and only if x ′ and y′ share component
π(p). Since π is bijective, the number of differing components remains unchanged,
that is, dH (x, y) = dH (x ′, y′). 
�
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Proposition 4.2 Any value permutation τπ : Ωn → Ωn is an automorphism of the
Hamming graph H(n, d).

Proof Analogously to Proposition 4.1, value permutations are bijections and it holds
xpos(v) = ypos(v) ⇔ x ′

pos(π(v)) = y′
pos(π(v)). That is, the value v is at the same

position in x and y, if and only if π(v) is at the same position in x ′ and y′. It follows
that the number of shared components remains unchanged and therefore the mapping
τπ is distance preserving. 
�

SinceAut(H(n, d))has a group structure, the next proposition follows immediately.

Proposition 4.3 Any sequence of compositions of position permutations and value
permutations in Ωn is an automorphism of H(n, d).

It is important to remark that Aut(H(n, d)) is not a commutative group. In fact, for
π1, π2 ∈ Sn in general it holds π1π2 �= π2π1 and as a consequence σπ1σπ2 = σπ1π2 �=
σπ2σπ1 = σπ2π1 and respectively τπ1τπ2 = τπ1π2 �= τπ2τπ1 = τπ2π1 . However, there
is a relevant special case of commuting automorphisms in Aut(H(n, d)).

Proposition 4.4 Let π1, π2 ∈ Sn and let σπ1 be the position permutation based on π1
and τπ2 the value permutation based on π2. Then it holds σπ1τπ2 = τπ2σπ1 .

Proof Let x ∈ Ωn with x(i) = u. Furthermore let π1(i) = j and π2(u) = v. The
position permutationσπ1 moves the position i into j , whereas the value permutation τπ2

maps the value u into v. Let y = σπ1x . From the definition of position permutations,
it follows that y( j) = y(π1(i)) = x(i) = u. Now let y′ = τπ2 y. This implies that
y′
pos(v) = y′

pos(π2(u)) = ypos(u) = j , or equivalently y′( j) = (τπ2σπ1x)( j) = v.
On the other hand, let z = τπ2x . From the definition of value permutations, it

follows that zpos(v) = zpos(π2(u)) = xpos(u) = i , or equivalently z(i) = v. Finally,
let z′ = σπ1 z. This means that z′( j) = z′(π1(i)) = z(i) = (σπ1τπ2x)( j) = v.
Since this equivalence holds for any position i and any codeword x , it follows that
τπ2σπ1 = σπ1τπ2 . 
�

As an example, consider the permutations π1 = (0312), π2 = (13) ∈ S4 and the
codeword x = [1032]. It is not difficult to verify that σπ1x = [3201] and τπ2σπ1x =
[1203]. Applying the automorphisms in the opposite order yields τπ2x = [3012] and
σπ1τπ2x = [1203].

The commutationof position andvalue permutations has an interesting consequence
on the concatenation of position and value permutations.

Proposition 4.5 For any sequence of compositions of position and value permutations
ψ : Ωn → Ωn, there exist πa, πb ∈ Sn such that ψ = σπaτπb .

Proof Let ψ be an arbitrary concatenation of position and value permutations. By
combining the associativity property of automorphisms and the commutation property
stated in Proposition 4.4, permutations can be rearranged in such away that all position
permutations precede the value permutations. More formally, there exist πa, πb ∈ Sn
such that ψ = (σπ1 . . . σπr )(τπr+1 . . . τπs ) = σπaτπb . 
�
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Proposition 4.5 suggests that there exists a subgroup of Aut(H(n, d)) formed by
the compositions of position and value permutations. In fact, according to Proposition
4.5, the composition of two position-value permutations is again a position-value
permutation.

Definition 4.1 Letπ1, π2 ∈ Sn .We refer to themapψ = σπ1τπ2 , as a coupled position-
value permutation. The subgroup of Aut(H(n, d)) formed by coupled position-value
permutations is denoted by PVn .

Summarizing, PVn is a well-defined subgroup of the automorphisms group
Aut(H(n, d)). But what is the order of Aut(H(n, d)) itself? This interesting ques-
tion is still an open issue. However, an upper bound can be provided by means of the
so-called Rencontres numbers.

Definition 4.2 The Rencontres number D(n, k) is the number of permutations of the
codeword [0, . . . , n − 1] with exactly k fixpoints, i.e. the number of codewords at
Hamming distance n − k from x .

Consider the case of the complete graph H(n, 2). A given vertex x has n! possible
imagesψ(x) under an automorphismψ . The vertex x has D(n, 0) neighbours without
fixpoints, which have to be mapped into the D(n, 0) neighbours without fixpoints of
the image vertex ψ(x). There are at most D(n, 0)! ways to do it. Similarly, there are
at most D(n, k)! ways to map the neighbours with k fixpoints in a distance-preserving
manner. Therefore the following formula provides an upper bound to the number of
automorphisms of H(n, 2):

UB(n, 2) = n!
n∏

k=0

D(n, k)! (1)

It is interesting to remark that in the simplest case n = 3 the upper boundUB(3, 2) =
3!(2! 3! 0! 1!) = 72 coincides with the exact number of automorphisms of H(3, 2). For
larger values of n, the upper bound grows rapidly and it is likely that it overestimates
the order of Aut(H(n, d)).

5 Automorphisms and Cycle-Equivalence of Edges

A crucial property of coupled position-value permutations ψ ∈ PVn appears when
focusing on the edges of the Hamming graph H(n, d), rather than on single vertices.
In fact, under a coupled position-value permutation the image of an edge is another
edge with the same cyclic structure.

Definition 5.1 We call the permutations π1, π2 ∈ Sn cycle-equivalent, if π1 and π2
have the same number of cycles and the same cycle lengths.

For example, π1 = (5)(14)(023) and π2 = (0)(24)(135) are cycle-equivalent. In
an analogous way, we can define cycle-equivalence also for the edges of the Hamming
graph H(n, d).
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Definition 5.2 Werefer to τπ1 as the value permutation of the edge e = xy, if τπ1x = y.
Similarly, σπ2 is the position permutation of the edge e, if σπ2x = y.

Definition 5.3 We call the edges e1 = xy and e2 = uv cycle-equivalent, if their value-
respectively position permutations are cycle-equivalent.

As an example, consider the edges e1 = xy with x = [1032], y = [1023] and
e2 = uv with u = [3012], v = [3210]. The value permutation of the edge e1 is
τπ1 = (0)(1)(23), whereas the value permutation of e2 is τπ2 = (1)(3)(02). Since the
cycle lengths coincide, the two edges e1 and e2 are cycle-equivalent.

Theorem 5.1 Let e1 and e2 be two cycle-equivalent edges of H(n, d). There exists an
automorphism ψ of H(n, d), which maps the endpoints of e1 into the endpoints of e2.

Proof Let e1 = xy, e2 = uv and let τπ1 , τπ2 be their value permutations, that is,
τπ1x = y and τπ2u = v. Because of the cycle-equivalence of e1 and e2, π1 and π2
have the same cycle structure. Let π1 = (a11 . . . a1l1)(a21 . . . a2l2) . . . (am1 . . . amlm )

and π2 = (b11 . . . b1l1)(b21 . . . b2l2) . . . (bm1 . . . bmlm ), where l1 ≤ l2 ≤ · · · ≤ lm are
the cycle lengths of the m cycles. The required automorphism ψ can be constructed
in two steps, as a composition of a value permutation τγ and a position permutation
σδ .

Step 1: let the permutation γ be defined as γ (a11) = b11,…,γ (amlm ) = bmlm . We
generate an intermediate edge e′ = x ′y′, such that x ′ = τγ x and y′ = τγ y. From
the definition of γ it follows immediately that the value permutation of the new edge
e′ = x ′y′ is τπ2 , because if the value ai j in x maps to ai, j+1 in y, then similarly the
value bi j in x ′ maps to bi, j+1 in y′.

Step 2: since the intermediate edge e′ = x ′y′ has the same value permutation as the
target edge e2 = uv, it suffices to apply a suitable position permutation σδ in order to
rearrange the positions of x ′ and y′. Let σδ be the position permutation, which maps
x ′ into u, i.e. σδx ′ = u. It remains to show that σδ y′ = v. Let’s denote the inverse
of the value permutation τπ2 by τ−1

π2
. Relying on the commutation property 4.4, we

obtain σδ y′ = σδτπ2τ
−1
π2

y′ = σδτπ2x
′ = τπ2σδx ′ = τπ2u = v. 
�

As an example, consider the edges e1 = xy, e2 = uv defined by the vertices x =
[1032], y = [1023], u = [3012] and v = [3210]. The edges e1 and e2 are cycle-
equivalent, because their value permutations are respectively τπ1 = (0)(1)(23) and
τπ2 = (1)(3)(02). Following the proof of Theorem 5.1, define τγ = (0132). The
images of x and y are respectively x ′ = τγ x = [3120] and y′ = τγ y = [3102]. It is
easy to verify that the intermediate edge e′ = x ′y′ has the same value permutation as
the target edge e2. Therefore, it suffices to rearrange the positions of x ′ and y′ through
the position permutation σδ = (0)(123) in order to map x ′ in u and y′ in v.

6 Reduction of theMaximum Clique Problem

Themain hurdle in solving themaximum clique problem of the permutationHamming
graph H(n, d) is its order n! and its high degree of symmetry. A possible way to
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reduce the problem’s size is to look for the largest clique of H(n, d), which includes
a specific fixed clique. Let K0 be a k-clique of the graph H(n, d), that is, a clique of
order k ≤ ω(H(n, d)).

Definition 6.1 Let R(K0) be the induced subgraph of H(n, d) having the vertex set
VR = {x ∈ Ωn \ VK0 | x ∼ y, ∀y ∈ VK0}. We denote by R(K0), or shorter by R, the
residual graph of the clique K0.

Each vertex of the residual graph R(K0) is connected to all vertices of the clique
K0. Let KR be a maximum clique of the residual graph R, that is, ω(R(K0)) = |VKR |.
Proposition 6.1 Let K0 be a k-clique of H(n, d). The largest clique K of H(n, d)

which includes the fixed clique K0, has the order |VK | = k + ω(R(K0)).

Proof K contains all vertices of K0. Further vertices of K must be connected to each
vertex of K0; therefore, they belong to the residual graph R(K0). But since these
vertices chosen in the residual graph have to form a clique again, their maximum
number is equal to the clique number ω(R(K0)) of the residual graph . 
�

In other words, the largest clique K is constructed by taking the union of the fixed
clique K0 and the maximum clique KR of the residual graph. The advantage of this
approach lies in the reduction in size of the clique problem to be solved. In fact,
the vertex set |VR | might be significantly smaller than |VH |. However, an additional
constraint, forcing the k-clique K0 into the solution, has been added to the problem.
Therefore, in order solve the original maximum clique problem, all possible choices
of the k-clique K0 have to be considered.

Proposition 6.2 Let Ck be the set of all k-cliques in H(n, d), for a fixed k ≤
ω(H(n, d)). Then it holds

ω(H(n, d)) = max
K0∈Ck

ω(R(K0)) + k. (2)

Proof Let KH be a maximum clique of H(n, d). Since KH certainly contains a k-
clique K0 ∈ Ck , the order of KH can be calculated by maximizing ω(R(K0)) over the
set Ck and by adding k. 
�

Due to the large number of k-cliques, maximizing over the whole set Ck is impracti-
cal. However, because of the large automorphism group of H(n, d), it can be expected
that many k-cliques are mutually isomorphic. In the remainder, we denote the isomor-
phic graphs G1 and G2 by G1 
 G2.

Lemma 6.1 Letψ ∈ Aut(H(n, d)), K1 ∈ Ck and K2 = ψ(K1). Then it holds K2 
 K1
and R(K2) 
 R(K1).

Proof As ψ is an adjacency and distance-preserving bijection, it maps any subgraph
of H(n, d) into an isomorphic subgraph and therefore K2 
 K1. It is to show that
ψ maps R(K1) into R(K2). First we prove the inclusion ψ(VR(K1)) ⊆ VR(K2). Let
u be a vertex of R(K1), i.e u /∈ VK1 , but it is connected to all vertices of K1. Since
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ψ ∈ Aut(H(n, d)) and ψ(K1) = K2, the vertex v = ψ(u) /∈ VK2 , but it is connected
to all vertices of K2, that is, ψ(u) ∈ VR(K2). The opposite inclusion can be proved
in an analogous way by means of the inverse automophism ψ−1. This implies that
ψ(VR(K1)) = VR(K2), i.e. the automorphism ψ maps the vertex set of R(K1) into the
vertex set of R(K2). Sinceψ is adjacency and distance-preserving, it can be concluded
that ψ(R(K1)) = R(K2).


�
An obvious implication of Lemma 6.1 is that also the clique number of the residual

graphs coincide, i.e. ω(R(K1)) = ω(R(K2)). Therefore, instead of maximizing over
all k-cliques, according to Eq. (2), it suffices to consider one representative of each
class of isomorphic k-cliques.

Definition 6.2 Let K ∈ Ck . We refer to OK = {K ′ ∈ Ck |K ′ = ψ(K ), ψ ∈ Aut(H)}
as the orbit of K generated by the automorphism group Aut(H).

According to Lemma 6.1, each orbit OK is a set of isomorphic k-cliques. The
collection of orbits partitions Ck in equivalence classes.

Definition 6.3 We denote by Qk the collection of orbits of k-cliques generated by
Aut(H). Furthermore, we denote by Tk a transversal of Qk , that is, a subset of k-
cliques, containing one representative for each orbit of Qk .

Equation (2) can now be reformulated by taking the maximum over the transversal
Tk , instead of considering all k-cliques:

ω(H(n, d)) = max
K0∈Tk

ω(R(K0)) + k. (3)

7 Computational Experiments

The aim of the computational experiments described in this section is to highlight the
advantage of handling a clique problem of the Hamming graph H(n, d) by solving
a set of reduced clique problems. In particular, in these preliminary tests we focus
on Hamming graphs H(n, d) with n = 6, 7 and we apply a reduction by means of
1-cliques, respectively 2-cliques. As a first step, the properties of the automorphism
group Aut(H) are used to construct a transversal Tk . Then, according to Eq. (3), the
clique number of the residual graph R(K0) is computed for each K0 ∈ Tk .

7.1 The 1-Clique Case

As shown in Barta andMontemanni [2], a basic property of the permutation Hamming
graph H(n, d) is vertex transitivity. We recall that a graphG(V , E) is vertex transitive
iff for any pair of nodes x, y ∈ V there exists an automorphism ψ ∈ Aut(G) such
that ψ(x) = y. The vertex transitivity of H(n, d) implies that all 1-cliques belong to
the same orbit of Aut(H(n, d)) and therefore the transversal T1 is formed by a single
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1-clique. In other terms, any vertex x ∈ Ωn can be chosen as the fixed clique K0 and
it suffices to calculate the clique number of the residual graph R(K0):

ω(H(n, d)) = ω(R(K0)) + 1. (4)

7.2 The 2-Clique Case

In the 2-clique case, the fixed clique K0 is formed by a pair of nodes x, y ∈ VH

connected by an edge e = xy. According to Theorem 5.1, any cycle-equivalent edge e′
can be mapped by an automorphism into the edge e. In other terms, 2-cliques formed
by cycle-equivalent edges belong to the same orbit of Aut(H(n, d)). Therefore, in
order to obtain the transversal T2, it suffices to generate the largest possible collection
of pairwise not cycle-equivalent edges of H(n, d). How many pairwise not cycle-
equivalent edges are there in H(n, d)?

In the answer to this question appears an interesting link between permutation
Hamming graphs and thewell-known partition function of integer numbers (for details
see [1]).

Definition 7.1 Let n be a positive integer. The sequence (a1, a2, . . . , at ) of non-
increasing positive integers is called a partition of n if

∑t
i=1 ai = n. The partition

function p(n) indicates the number of possible partitions of the integer n.

As an example p(4) = 5, because n = 4 has 5 partitions: (4), (3,1), (2,2), (2,1,1)
and (1,1,1,1). For n = 1, 2, . . . the first values of the partition function are 1, 2, 3, 5,
7, 11, 15, 22, 30, 42.

The link between permutations and partitions is given by the fact that the cycle
lengths of a permutation of n elements form a partition of the integer n. As an example,
the cycle lengths of the permutation of 6 elementsπ = (051)(24)(3) form the partition
(3,2,1) of n = 6. Therefore, the number of not cycle-equivalent permutations of n
elements corresponds to the value of the partition function p(n). This value takes into
account all possible Hamming distances from 0 (n fixpoints) to n (no fixpoints). Now it
is not difficult to deduce a formula for the total number of pairwise not cycle-equivalent
edges of H(n, d).

Proposition 7.1 Let c(n, d) be the total number of pairwise not cycle-equivalent edges
of H(n, d). It holds c(n, d) = p(n) − p(d − 1).

Proof In the Hamming graph H(n, d) there are only Hamming distances between the
values d and n. In other terms all permutations with more than n− d fixpoints have to
be discarded. Since the cycle lengths of permutations with at least n − d + 1 fixpoints
depend only on the remaining d − 1 free components, the number of possible not
cycle-equivalent permutations with at least n − d + 1 fixpoints is equal to p(d − 1).
It follows that the number of pairwise not cycle-equivalent edges of H(n, d) is equal
to the difference p(n) − p(d − 1). 
�

In the case of H(6, 5), for instance, the number of pairwise not cycle-equivalent
edges is c(6, 5) = p(6) − p(4) = 11 − 5 = 6. The 6 possible partitions are (6),
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Table 1 Non-equivalent
derangements and cycle lengths
for n ≤ 7

n c(n, n) Cycle lengths Permutation

2 1 (2) (01)

3 1 (3) (012)

4 2 (4) (0123)

(2,2) (01)(23)

5 2 (5) (01234)

(3,2) (012)(34)

6 4 (6) (012345)

(4,2) (0123)(45)

(3,3) (012)(345)

(2,2,2) (01)(23)(45)

7 4 (7) (0123456)

(5,2) (01234)(56)

(4,3) (0123)(456)

(3,2,2) (012)(34)(56)

(4,2), (3,3), (2,2,2), (5,1) and (3,2,1). Note that the last two partitions contain a cycle
length 1, which corresponds to a fixpoint, that is, to edges with Hamming length 5. It is
clear that by removing the cycle length 1, we obtain the partitions (5) and (3,2), which
correspond to the two possible types of derangements, i.e. fixpoint-free permutations,
with 5 elements.

Table 1 shows all possible derangements of n elements, which are mutually not
cycle-equivalent for n = 1, . . . , 7. According to Proposition 7.1, their number is equal
to c(n, n) = p(n) − p(n − 1), i.e. the difference between two consecutive terms of
the partition function p(n). The third column of Table 1 reports the possible partitions
of n without 1-cycles and the last column shows a representative of the corresponding
class of derangements.

The result that H(6, 5) has 6 classes of not cycle-equivalent edges can be easily
derived also from Table 1, as there are 4 classes of derangements with n = 6 and 2
classes with n = 5. Even in the case of larger graphs like H(7, 4) and H(7, 5) the
number of edge classes remains low: c(7, 4) = p(7) − p(3) = 12 and c(7, 5) =
p(7) − p(4) = 10.

FromTheorem5.1 andLemma6.1,we know that cycle-equivalent edges of H(n, d)

generate isomorphic residual graphs. However, this property can not be generalized
to pairs of not cycle-equivalent edges, even if they have the same Hamming length.
Table 2 shows a list of counterexamples for n = 4, 5 and 6, which could be extended
also to larger values of n. For each Hamming graph H(n, d) a representative of each
equivalence class of edges has been fixed and the corresponding residual graph R has
been computed. The columns of Table 2 report the graph H(n, d), the cycle lengths
of the fixed edge and the order |VR |, the number of edges |ER | and the clique number
ω(R) of the residual graph R.

The smallest counterexample can be found in H(4, 4). This graph with 24 vertices
has only 2 classes of cycle-equivalent edges: the edges with the cycle lengths (4)
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Table 2 Residual graphs of
H(n, d) for different fixed
2-cliques (n ≤ 6)

Graph Fixed 2-clique |VR | |ER | ω(R)

H(4, 4) (4) 2 1 2

(2,2) 4 2 2

H(5, 5) (5) 13 18 3

(3,2) 12 12 3

H(6, 4) (6) 608 169910 118

(5,1) 613 172, 668 118

(4,2) 608 169, 866 108

(4,1,1) 616 174, 382 118

(3,3) 610 171, 045 118

(3,2,1) 610 170, 970 108

(2,2,2) 608 169, 940 118

(2,2,1,1) 618 175, 497 118

H(6, 5) (6) 368 46, 781 16

(4,2) 388 52, 338 16

(3,3) 368 46, 816 16

(2,2,2) 376 49, 149 16

(5,1) 388 52, 392 16

(3,2,1) 368 46, 760 16

H(6, 6) (6) 80 731 4

(4,2) 80 736 4

(3,3) 82 774 4

(2,2,2) 80 776 4

generate a residual graph with 2 vertices and a single edge, whereas the edges with
the cycle lengths (2,2) produce a residual graph with 4 vertices and 2 edges. For all
graphs reported in Table 2, the representatives of the edge classes generate residual
graphs with not coinciding numbers of vertices and edges. This fact confirms that the
residual graphs of not cycle-equivalent edges are in general not isomorphic. In the last
column, the maximum value of the clique number ω(R) is ω(H(n, d)) − 2, because
the number of fixed vertices is k = 2. In most cases, the maximum value is reached;
however, it is worth to notice that H(6, 4) has 2 classes of edges with a suboptimal
ω(R) value, which implies that a maximum clique of H(6, 4) can not include any of
the edges of these 2 classes. Such additional constraints may reduce significantly the
complexity of the clique problem.

7.3 Computational Tests

The reduction approach described in Sect. 6 can now be applied to the cases k = 1 and
k = 2 analysed in Sects. 7.1 and 7.2. The objective is to compare the running times
of the original problem with the sum of the running times of the reduced instances.
The algorithm for the generation of the reduced instances has been encoded in ANSI
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C and the maximum clique problems have been solved by means of the clique solver
MoMC (Mixed ordering MaxClique Solver) (see [13] for details). All tests reported
in this section have been obtained on a computer equipped with an Intel Core i5 1.6
GHz processor and 8 GB of memory. Detailed results of the computational tests are
available from the corresponding author upon request.

Table 3 shows the results of the computational experiments performed on 5 Ham-
ming graphs H(n, d) with n = 6, 7. The clique number of each graph is reported in
square brackets under the name of the graph. The number of fixed vertices k assumes
the values 0, 1 or 2. The case k = 0 corresponds to the full-size problem. For k = 0, 1
there is a unique clique problem to be solved, while for k = 2 the number of reduced
problems is given by the value c(n, d), according to Proposition 7.1. The following
columns of the table report the minimum, respectively maximum order of the residual
graphs R(K0), the minimum, respectively maximum CPU time (in sec) for the solu-
tion of a single reduced clique problem and the cumulative time for the solution of the
entire set of reduced instances. The entry tmax indicates that the maximum allowed
CPU time tmax = 10800 sec has been reached before closing the instance.

The collected data provide useful information about the reduction approach. First
of all, the order of the residual graph shows that the reduction is more effective when
the difference between n and d is small. For instance, 2 fixed nodes in H(7, 7) lead to
a 89% reduction of order, whereas in H(6, 4) the gain is only 15%. The reason for this
difference is the lower density of graphs, which allow only few Hamming distances.
Usually, the graphs with the best reduction rates show also the best improvements in
terms of CPU time. It is the case of H(6, 5), which can not be solved within tmax
as a full-sized problem, but with 1 fixed node it becomes solvable in 479.26 sec and
with 2 fixed nodes in only 48.71 sec. Similarly, H(7, 7) requires 2 h 36 min as a full
problem, but only 9.98 sec with k = 1 and 0.20 sec with k = 2.

On the other hand, in the case of H(6, 4) it turns out that fixing one vertex is more
effective than fixing two. However, both options provide a drastic save in CPU time.
In the 2-clique case it is interesting to remark that the 2 instances with suboptimal
clique numbers were considerably more time consuming than the others. For H(7, 6)
the best option is k = 1 solved in 310.68 sec. The tmax entry for k = 2 is due to 4
instances, which could not be solved within the allowed time. The solutions of these
instances are likely to be suboptimal because the lower bounds obtained are far from
the optimum.

8 Conclusions

This paper proposes an approach to reduce the complexity of maximum clique prob-
lems associated with permutation Hamming graphs. The main contributions of the
article are a classification of the edges based on their cycle representation and a better
understanding of the automorphism group of permutation Hamming graphs. These
results enable to infer the solution of the maximum clique problem associated with a
permutation Hamming graph by solving a set of maximum clique problems smaller
than the original one. Computational tests confirm that in most cases a speed up is
obtained by applying the reduction approach.
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