
Journal of Optimization Theory and Applications (2022) 194:465–491
https://doi.org/10.1007/s10957-022-02034-x

Simulated Annealing for Convex Optimization: Rigorous
Complexity Analysis and Practical Perspectives

Riley Badenbroek1 · Etienne de Klerk2

Received: 5 August 2021 / Accepted: 4 April 2022 / Published online: 5 May 2022
© The Author(s) 2022

Abstract
We give a rigorous complexity analysis of the simulated annealing algorithm by Kalai
and Vempala (Math Oper Res 31(2):253–266, 2006) using the type of temperature
update suggested by Abernethy and Hazan (International Conference on Machine
Learning, 2016). The algorithm only assumes a membership oracle of the feasible
set, and we prove that it returns a solution in polynomial time which is near-optimal
with high probability. Moreover, we propose a number of modifications to improve
the practical performance of this method, and present some numerical results for test
problems from copositive programming.

Keywords Simulated annealing · Convex optimization · Hit-and-run sampling ·
Semidefinite and copositive programming

Mathematics Subject Classification 90C25 · 90C59

1 Introduction

Let K ⊆ R
n be a convex body, and suppose that only a membership oracle of K is

available. Let 〈·, ·〉 be an inner product on R
n , and fix a unit vector c ∈ R

n . We are
interested in the problem

Communicated by Luis F. Zuluaga.

B Etienne de Klerk
e.deklerk@uvt.nl

Riley Badenbroek
badenbroek@ese.eur.nl

1 Erasmus University Rotterdam, Rotterdam, The Netherlands

2 Tilburg University, Tilburg, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02034-x&domain=pdf
http://orcid.org/0000-0003-3377-0063

466 Journal of Optimization Theory and Applications (2022) 194:465–491

min
x∈K 〈c, x〉. (1)

One approach to solve problems of this type is using simulated annealing, a paradigm
of randomized algorithms for general optimization introduced by Kirkpatrick et al.
[14]. It features a so-called temperature parameter that decreases during the run of the
simulated annealing algorithm. At high temperatures, the method explores the feasible
set relatively freely, also moving to solutions that have worse objective values than the
current point. As the temperature decreases, so does the probability that a solutionwith
a worse objective value is accepted. Kalai and Vempala [12] showed that, for convex
optimization, a polynomial-time simulated annealing algorithm exists. Specifically,
their algorithm returns a feasible solution that is near-optimal with high probability in
polynomial time. (A recent algorithm by Lee et al. [15] has an asymptotically better
complexity.)

Abernethy and Hazan [1] recently clarified that Kalai and Vempala’s algorithm is
closely related to a specific interior point method. In general, interior point methods
for convex bodies require a so-called self-concordant barrier of the feasible set. It was
shown by Nesterov and Nemirovskii [23] that every open convex set that does not
contain an affine subspace is the domain of a self-concordant barrier, known as the
universal barrier. However, it is not known how to compute the gradients and Hessians
of this barrier in general.

The interior pointmethod towhichKalai andVempala’s algorithm corresponds uses
the so-called entropic barrier over K , to be defined later. This barrier was introduced
by Bubeck and Eldan [7], who also established the self-concordance of the barrier and
analyzed its complexity parameter ϑ .

Drawing on the connection to interior point methods, Abernethy andHazan [1] pro-
posed a new temperature schedule for Kalai and Vempala’s algorithm. This schedule
does not depend on the dimension n of the problem, but on the complexity parameter ϑ
of the entropic barrier. Our goal is to prove in detail that simulated annealing with this
new temperature schedule returns a solution in polynomial time which is near-optimal
with high probability. Moreover, we aim to investigate the practical applicability of
this method. Our experiments suggest that it is very difficult to implement a practical
simulated annealing algorithm for copositive programming using hit-and-run sam-
pling. Although these are negative results, we find it important to communicate them,
in order to stimulate research into algorithms for copositive programming that are not
sampling-based, e.g., cutting plane methods.

1.1 Algorithm Statement

Central to simulated annealing is a family of exponential-type probability distributions
known as Boltzmann distributions.

Definition 1.1 Let K ⊆ R
n be a convex body, and let θ ∈ R

n . Let 〈·, ·〉 be an inner
product. Then, theBoltzmann distribution with parameter θ is the probability distribu-
tion supported on K having density with respect to the Lebesguemeasure proportional
to x �→ e〈θ,x〉.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 467

Throughout this work, we will use Σ(θ) to refer to the covariance matrix of the
Boltzmanndistributionwith parameter θ ∈ R

n . If 〈·, ·〉 is some reference inner product,
then 〈x, y〉θ := 〈x,Σ(θ)y〉 for any θ ∈ R

n . Moreover, let ‖ · ‖θ denote the norm
induced by the inner product 〈·, ·〉θ .

The procedure Kalai and Vempala [12] use to generate samples on K is called hit-
and-run sampling. This Markov chain Monte Carlo method was introduced by Smith
[26] to sample from the uniform distribution over a bounded convex set. Later, it was
generalized to absolutely continuous distributions (see for example Bélisle et al. [4]).
The details of hit-and-run sampling are given in Algorithm 1.

Algorithm 1 The hit-and-run sampling procedure
Input: Membership oracle for a convex body K ⊆ R

n ; probability distribution μ to sample from (i.e., the
target distribution); covariance operator Σ : Rn → R

n ; starting point x ∈ K ; number of hit-and-run
steps � ∈ N.

1: X0 ← x

2: for i ∈ {1, ..., �} do
3: Sample direction Di from aN (0, Σ)-distribution

4: Sample Xi from the univariate distribution μ restricted to K ∩ {Xi−1 + t Di : t ∈ R}
5: end for

6: return X�

Note that if 〈·, ·〉 is the Euclidean inner product, the covariance operator Σ in
Algorithm 1 can be represented as a matrix in R

n×n .
In each iteration k of Kalai and Vempala’s algorithm [12], the temperature Tk is

lowered. Then, hit-and-run samples are generated whose target distribution is the
Boltzmann distribution with parameter θk = −c/Tk . These random walks use an
approximation ̂Σ(θk−1) of Σ(θk−1) to generate search directions. With these sam-
ples, an approximation ̂Σ(θk) of Σ(θk) is formed, which will then be used in the
next iteration. As k grows sufficiently large, so does the norm of θk . The Boltzmann
distributions with parameter θk will then concentrate more and more probability mass
close to the set of optimal solutions to (1). For sufficiently large k, any sample from
such a Boltzmann distribution is near-optimal with high probability.

One thing that needs further clarification is how to decrease the temperature in
each iteration. In their original paper, Kalai and Vempala [12] show that the algorithm
returns a near-optimal solution with high probability, for the temperature update (cf.
line 5 in Algorithm 2)

Tk =
(

1 − 1√
n

)

Tk−1, (2)

in m = O∗(
√
n) iterations, where O∗ suppresses polylogarithmic terms in the prob-

lem parameters. As mentioned above, Abernethy and Hazan’s alternative temperature
schedule depends on the complexity parameter of the entropic barrier. This function
is defined as follows.

123

468 Journal of Optimization Theory and Applications (2022) 194:465–491

Definition 1.2 Let K ⊆ R
n be a convex body. Define the function f : Rn → R as

f (θ) = ln
∫

K e〈θ,x〉 dx . Then, the convex conjugate f ∗ of f ,

f ∗(x) = sup
θ∈Rn

{〈θ, x〉 − f (θ)} ,

is called the entropic barrier for K .

Bubeck and Eldan [7] showed that f ∗ is a self-concordant barrier for K with com-
plexity parameter ϑ ≤ n + o(n). The complexity parameter of f ∗ is

ϑ := sup
x∈K

〈Df ∗(x), [D2 f ∗(x)]−1Df ∗(x)〉 = sup
θ∈Rn

〈θ,Σ(θ)θ〉 = sup
θ∈Rn

‖θ‖2θ , (3)

where we refer the reader to [3, 7] for more details.
Abernethy and Hazan [1] propose the temperature update

Tk =
(

1 − 1

4
√

ϑ

)

Tk−1, (4)

which will lead tom = O∗(
√

ϑ) iterations. As noted above, we have ϑ ≤ n+ o(n) in
general, but it is not currently known if ϑ < n for any convex bodies. In particular, the
temperature update (4) only improves on (2) if ϑ < n/16, which is not known to hold
for any convex body. We show in Appendix 1 to this paper that, for the Euclidean unit
ball in Rn , numerical evidence suggests that ϑ = (n + 1)/2. We therefore consider a
variation on the temperature schedule (4) suggested by Abernethy and Hazan, namely

Tk =
(

1 − 1

α
√

ϑ

)

Tk−1 for some α > 1 + 1/
√

ϑ, (5)

which corresponds to (4) when α = 4, but gives larger temperature reductions when
α < 4. We will refer to (5) as Abernethy–Hazan-type temperature updates. If ϑ < n,
this may result in a larger temperature decrease than the Kalai and Vempala scheme
(2), for a suitable choice of the parameter α.

The algorithm by Kalai and Vempala [12] that uses a temperature schedule of the
type introduced by Abernethy and Hazan [1] is now given in Algorithm 2.

1.2 Contributions and Outline of this Paper

Abernethy and Hazan [1] do not give a rigorous analysis of the temperature schedule
(4) in their paper, only a sketch of the proof. In this paper, we provide the full details
for the more general schedule (5). In doing so, we also provide some details that were
omitted in the original work by Kalai and Vempala [12], that concern the application
of a theorem by Rudelson [25]. Moreover, we discuss the perspectives for practical
computation with Algorithm 2. Finally, we propose some heuristic improvements to
Algorithm 2 to obtain speed-up. Many of these results also appear in the PhD thesis
[2] of the first author.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 469

Algorithm 2 Algorithm by Kalai and Vempala [12] using temperature schedule of type introduced by
Abernethy and Hazan [1]

Input: normalized (with respect to ‖ · ‖) vector c ∈ R
n ; membership oracle of a convex body K ⊆ R

n ;
radius R ≥ 1 of a ball containing K ; complexity parameter ϑ ≤ n + o(n) of the entropic barrier over
K ; x0 ∈ K drawn randomly from the uniform distribution over K ; update parameter α > 1 + 1/

√
ϑ ;

number of phases m ∈ N; number of hit-and-run steps � ∈ N; number of covariance update samples
N ∈ N; approximation ̂Σ(0) of Σ(0) satisfying 1

2
̂Σ(0) � Σ(0) � 2̂Σ(0).

Output: xm such that 〈c, xm 〉 − minx∈K 〈c, x〉 ≤ ε at terminal iteration m.

1: X0 ← x0
2: θ0 = 0

3: T0 ← 2αR

4: for k ∈ {1, ...,m} do
5: Tk ←

(

1 − 1
α
√

ϑ

)

Tk−1

6: θk ← −c/Tk
7: Generate Xk by applying hit-and-run sampling to the Boltzmann distribution with parameter θk ,

starting the walk from Xk−1, taking � steps, drawing directions from aN (0, ̂Σ(θk−1))-distribution

8: for j ∈ {1, ..., N } do
9: Generate Y jk by applying hit-and-run sampling to the Boltzmann distribution with parameter

θk , starting the walk from Xk−1, taking � steps, drawing directions from a N (0, ̂Σ(θk−1))-
distribution

10: end for

11: ̂Σ(θk)v ← 1
N
∑N

j=1〈Y jk , v〉Y jk − 1
N
∑N

j=1〈Y jk , v〉
(

1
N
∑N

l=1 Ylk
)

for all v ∈ R
n

12: end for

13: return Xm

We start with a review of useful facts on probability distributions in Sect. 2. Then,
Sect. 4 proves Algorithm 2 returns a solution that is near-optimal with high probability.
In Sect. 5, we discuss the complexity of Algorithm 2. In Sect. 6, we look at the behavior
of hit-and-run sampling for optimization over the doubly nonnegative cone and suggest
some heuristic improvements. We then evaluate the resulting algorithm on problems
from copositive programming (due to Berman et al. [5]) in Sect. 7.

2 Preliminaries

We will use the total variation distance to measure if the probability distribution of a
hit-and-run sample is close to the target distribution.

Definition 2.1 Let (K ,F) be a measurable space. For two probability distributions μ

and ϕ over this space, their total variation distance is

‖μ − ϕ‖TV := sup
A∈F

|μ(A) − ϕ(A)|.

A useful property of the total variation distance is that it allows coupling of random
variables, as the following lemma asserts.

123

470 Journal of Optimization Theory and Applications (2022) 194:465–491

Lemma 2.2 (e.g., [17, Proposition 4.7]) Let X be a random variable on K with dis-
tribution μ, and let ϕ be a different probability distribution on K . If ‖μ − ϕ‖TV = p,
we can construct another random variable Y on K distributed according to ϕ such
that P{X = Y } = 1 − p. Similarly, given two distributions μ and ϕ on K such that
‖μ − ϕ‖TV = p, there exists a joint distribution ν on K × K, with marginals μ and
ϕ, respectively, such that if (X ,Y) ∼ (K × K , ν), one has X ∼ (K , μ), Y ∼ (K , ϕ),
and Pν{X = Y } ≥ 1 − p.

We can now state the following mixing time result. It gives the number of hit-and-
run steps one has to take before the distribution of the hit-and-run sample is sufficiently
close to the target distribution. The result given here is a corollary of a result by Lovász
and Vempala [19, Theorem 1.1].

Theorem 2.3 Let K ⊂ R
n be a convex body. Suppose θ0, θ1 ∈ R

n satisfy Δθ :=
‖θ0 − θ1‖θ0 < 1. Pick p > 0, and suppose we have an invertible matrix ̂Σ(θ0) such
that

1

2
̂Σ(θ0)

−1 � Σ(θ0)
−1 � 2̂Σ(θ0)

−1. (6)

Consider a hit-and-run random walk as in Algorithm 1 applied to the Boltzmann dis-
tribution μ1 with parameter θ1 from a random starting point drawn from a Boltzmann
distribution μ0 with parameter θ0. Let μ� be the distribution of the hit-and-run point
after � steps of hit-and-run sampling applied to μ1, where the directions are drawn
from aN (0, ̂Σ(θ0))-distribution. Then, there exists an absolute constant C > 0, such
that, after

� = C
n3

(1 − Δθ)4
log5

(

n

p2(1 − Δθ)4

)

(7)

hit-and-run steps, we have ‖μ� − μ1‖TV ≤ p.

We omit the proof, since it is a straightforward consequence of Lovász and Vempala
[19, Theorem 1.1], applied to the Boltzmann distribution. The interested reader may
find a detailed proof in [2, Theorem 4.14].

Note that the theorem above requires an approximation of the covariance of a dis-
tribution that is in some sense ‘close’ to the target distribution. This is why Algorithm
2 approximates the covariance of every distribution that it encounters: This covariance
is then used in the next iteration to generate hit-and-run directions.

One may reformulate the Assumption (6) in the theorem by using the following
result from Horn and Johnson [11].

Lemma 2.4 ([11, Corollary 7.7.4(a)], see also [2, Lemma 2.4]) Let A, B be positive
definite, self-adjoint linear operators from R

n to R
n. Then, A � B if and only if

B−1 � A−1.

Consequently, we have, for k = 0, 1, . . .,

1

2
̂Σ(θk) � Σ(θk) � 2̂Σ(θk) ⇐⇒ 1

2
̂Σ(θk)

−1 � Σ(θk)
−1 � 2̂Σ(θk)

−1.

A key point of the analysis is to show that these conditions hold for each iteration k.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 471

3 Approximation of the CovarianceMatrix

To guarantee the required approximation of the covariance matrix, Kalai and Vempala
[12] use the following corollary to a theorem by Rudelson [25].

Theorem 3.1 ([12, Theorem A.1]) Let ϕ be a log-concave probability distribution
over R

n with mean 0 and identity covariance (i.e., isotropic), and let ρ ∈ (0, 1).
Let X1, ..., XN be independent samples from ϕ. Then, there exist absolute constants
C1 > 0 and C2 > 0 such that, if

N ≥ C1n log
C2(n/ρ),

we have
∥

∥

∥

∥

∥

∥

1

N

N
∑

j=1

X j X
�
j − I

∥

∥

∥

∥

∥

∥

≤ 1

4
,

with probability 1 − ρ, where the norm is the spectral (operator) norm.

This theorem cannot be directly applied in the setting of Algorithm 2 for three
reasons: The hit-and-run samples do not follow the target distribution ϕ, the samples
are not independent, and ϕ does not have mean 0 and identity covariance, i.e., ϕ is not
isotropic.While Kalai and Vempala (correctly) state that Theorem 3.1 can be extended
to the hit-and-run setting without significantly changing the number of samples N , a
formal proof is not given, and we will provide the missing details in this section, since
this is not straightforward.

We first show how to extend Theorem 3.1 to the non-isotropic case. To this end,
we will need two results on log-concave random variables. The first is that the sum of
independent log-concave random variables is again log-concave.

Lemma 3.2 Let X ,Y be independent random variables inRn with log-concave density
functions f and g, respectively. Then, X + Y is a log-concave random variable.

Proof Theorem 7 in [24] shows that x �→ ∫

Rn f (x − y)g(y) dy is log-concave onRn .
This function is precisely the density function of X + Y . ��

The second result is a concentration result for log-concave distributions.

Lemma 3.3 (Lemma 3.3 from [18] (adapted from [20])) Let X be a random variable
with a log-concave distribution. Denote E(‖X −E(X)‖22) =: σ 2. Then, for all t > 1,

P{‖X − E(X)‖2 ≤ tσ } ≥ 1 − e1−t .

We now extend Theorem 3.1 to the non-isotropic case.

Corollary 3.4 Let ϕ be a log-concave probability distribution over Rn with mean μϕ

and covariance Σϕ , and let ρ ∈ (0, 1). Let X1, ..., XN be independent samples from
ϕ, where

123

472 Journal of Optimization Theory and Applications (2022) 194:465–491

N =
⌈

max

{

C1n log
C2(2n/ρ), 4n

(

1 + ln

(

2

ρ

))2
}⌉

, (8)

and C1 and C2 are the absolute constants from Theorem 3.1, and let

μ̂ = 1

N

N
∑

i=1

Xi , Σ̂ = 1

N

N
∑

i=1

(Xi − μ̂)(Xi − μ̂)�.

Then, we have

1

2
Σ̂ � Σϕ � 3

2
Σ̂, (9)

with probability 1 − ρ.

Proof One may assume w.l.o.g. that Σϕ = I , since the statement of the theorem
is invariant under invertible linear transformations. Indeed, if a random variable X
with distribution ϕ is replaced by AX for some linear transformation A, then the new
covariance matrix and its approximation satisfy

Σ(new)
ϕ = AΣϕ A

∗ and Σ̂(new) = AΣ̂ A∗.

By choosing A = Σ
−1/2
ϕ , we therefore get the identity covariance. Moreover,

1

2
Σ̂ � Σϕ � 3

2
Σ̂ ⇐⇒ 1

2
AΣ̂ A∗ � AΣϕ A

∗ � 3

2
AΣ̂ A∗.

Assuming therefore w.l.o.g. thatΣϕ = I , the random variable X−μϕ has an isotropic
log-concave distribution, and after setting

Σ ′ = 1

N

N
∑

i=1

(Xi − μϕ)(Xi − μϕ)�,

Theorem 3.1 yields
∥

∥Σ ′ − I
∥

∥ ≤ 1
4 , with probability 1 − ρ/2. It therefore suffices to

show that Σ ′ and Σ̂ are ‘sufficiently close.’ To this end, direct calculation yields

Σ̂ − Σ ′ = −(μϕ − μ̂)(μϕ − μ̂)�,

so that
∥

∥

∥Σ̂ − Σ ′
∥

∥

∥ = ‖μ̂ − μϕ‖22.

Note that μ̂ = 1
N

∑N
i=1 Xi is a log-concave random vector, by Lemma 3.2. We may

therefore bound right-hand side of the last equality via the concentration inequality of

123

Journal of Optimization Theory and Applications (2022) 194:465–491 473

Lemma 8 to obtain

P

{

‖μ̂ − μϕ‖22 ≤ n

N

(

1 + ln

(

2

ρ

))2
}

≥ 1 − ρ/2,

where we used that the variance of each component of Xi is 1 for all i . Thus, if

N ≥ 4n
(

1 + ln
(

2
ρ

))2
, one has

‖Σ̂ − I‖ ≤ ‖Σ ′ − I‖ +
∥

∥

∥Σ̂ − Σ ′
∥

∥

∥ ≤ 1

4
+ 1

4
= 1

2
,

with probability at least (1 − ρ/2)2 > 1 − ρ. This implies (9). ��

We proceed to show that we may replace independent sampling by hit-and-run
sampling in Corollary 3.4 in a well-defined sense. To this end, fix a starting vector X0
and a tolerance q > 0, and consider the following two sequences of random variables:

– I.i.d. Xi (i ∈ {1, . . . , N }) drawn independently from ϕ.
– Yi obtained via � steps of hit-and-run from starting point X0 with (i ∈ {1, . . . , N })
as in Step 9 of Algorithm 2. Here, we assume that the � steps are sufficient to
guarantee that the total variation distance between the distribution of Yi and ϕ is
at most a given p ∈ (0, 1) (with reference to Theorem 2.3).

A key observation is that we may assume, without loss of generality, that Xi = Yi
for all (i ∈ {1, . . . , N }) with high probability.

Proposition 3.1 Let Xi , Yi (i ∈ {1, . . . , N }) be as above. Without loss of generality,
one may assume that the joint distribution of Xi and Yi satisfies P{Xi = Yi } ≥ 1− p
for each i ∈ {1, . . . , N }.

Proof The Xi all have distribution ϕ on K and the Yi all have the same distribution,
say μ on K (that depends on X0).

Moreover, by assumption ‖μ − ϕ‖T V ≤ p. By the second part of Lemma 2.2,
there exists a joint distribution, say ν on K × K with marginals ϕ and μ, so that
(X ,Y) ∼ (ν, K × K) implies Pν{X = Y } ≥ 1 − p, as well as X ∼ (ϕ, K) and
Y ∼ (μ, K).

We now replace (i.e., couple) the random variables Yi with new random variables
Y ′
i so that (Xi ,Y ′

i) ∼ (ν, K × K) for each i ∈ {1, . . . , N }.
The important point is that we now have P[Xi = Y ′

i] ≥ 1 − p for each i ∈
{1, . . . , N }. Moreover, the random variables Y ′

i will be indistinguishable from the hit-
and-run random variables Yi , in the sense that both Yi ∼ (μ, K) and Y ′

i ∼ (μ, K) for
all i . ��

As a result, Corollary 3.4 still holds if we replace the Xi by the Yi for all i , but now
with probability (1 − ρ) − Np, by the union bound.

123

474 Journal of Optimization Theory and Applications (2022) 194:465–491

4 Proof of Convergence

Wecontinue byproving thatAlgorithm2converges to the optimum inpolynomial time.
The following result was established by Kalai and Vempala [12] for linear functions,
and extended from linear to convex functions h : Rn → R by De Klerk and Laurent
[10].

Lemma 4.1 ([10, Corollary 1]) Let K ⊆ R
n be a convex body. For any convex function

h : Rn → R and temperature T > 0, we have

∫

K h(x)e−h(x)/T dx
∫

K e−h(x)/T dx
≤ nT + min

x∈K h(x).

Themain step in the analysis of Algorithm 2 is thus to show that wemaintain a good
approximation ̂Σ(θk) of Σ(θk) for all k, to guarantee that the hit-and-run sampling
continues to work in all iterations, as discussed in the previous section.

Theorem 4.2 Consider the setting of Algorithm 2. Let α > 1 be such that Δθ =√
ϑ/(α

√
ϑ − 1) < 1, let q ∈ (0, 1],

m =
⎡

⎢

⎢

⎢

log (qε/(4αnR))

log
(

1 − 1/(α
√

ϑ)
)

⎤

⎥

⎥

⎥

, (10)

ρ = q

2m
, (11)

N as in (8), (12)

p = q

2Nm
, (13)

and let � be as in (7). (Note that � depends on n, p, and Δθ .) With these inputs,
Algorithm 2 that returns a solution Xm with

P

{

〈c, Xm〉 − min
x∈K 〈c, x〉 ≤ ε

}

≥ 1 − q.

Proof First, let us show that the conditions of Theorem 2.3 are satisfied. Note that

‖c‖20 = 〈c,Σ(0)c〉 =
∫

K 〈c, x − μθ,K 〉2 dx
∫

K dx
,

because Σ(0) is the covariance matrix of the uniform distribution. Since ‖c‖ = 1 and
K is contained in a ball with radius R,

‖c‖20 ≤
∫

K ‖c‖2‖x − μθ,K ‖2 dx
∫

K dx
≤

∫

K 12(2R)2 dx
∫

K dx
= (2R)2.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 475

Hence, for k = 1,

‖θ1 − θ0‖θ0 = ‖c‖0
T1

≤ 2R

T1
= 2R

2αR
(

1 − 1/(α
√

ϑ)
) = Δθ.

For all k > 1, our choice of θk and (3) yield

‖θk − θk−1‖θk−1 =
(

Tk−1

Tk
− 1

)

‖θk−1‖θk−1 ≤
(

1

1 − 1/(α
√

ϑ)
− 1

)√
ϑ = Δθ.

Throughout all iterations k ≤ m of Algorithm 2, we maintain

1
2
̂Σ(θk)

−1 � Σ(θk)
−1 � 2̂Σ(θk)

−1, (14)

with probability 1 − m(ρ + Np) = 1 − q, by the analysis in the previous section.
Thus, the conditions of Theorem 2.3 are satisfied with high probability.

By the first part of Lemma 2.2, Xm is equal to a random variable drawn from
a Boltzmann distribution with parameter θm with probability at least 1 − p. Thus,
Markov’s inequality and Lemma 4.1 show that

P

{

〈c, Xm〉 − min
x∈K 〈c, x〉 > ε

}

≤ E [〈c, Xm〉 − minx∈K 〈c, x〉]
ε

≤ nTm
ε

≤ 1
2q,

(15)

where the final inequality uses the chosen value of m as follows:

Tm = 2αR

(

1 − 1

α
√

ϑ

)m

≤ 2αR
qε

4αnR
= qε

2n
.

��

5 Complexity Analysis and Discussion

We saw that for some combination of inputs, Algorithm 2 returns a solution which is
near-optimal with high probability. Let us now consider the number of membership
oracle calls required for this configuration. It was noted in, for example, [2, Section 4.1]
that the number of oracle calls for one hit-and-run walk is O∗(�). Hence, Algorithm
2 uses O∗(mN�) oracle calls.

First, let us look at the number of iterations from (10). Since

−1

log
(

1 − 1/(α
√

ϑ)
) = O(α

√
ϑ),

123

476 Journal of Optimization Theory and Applications (2022) 194:465–491

we have m = O(
√

ϑ) for fixed α. Next, the number of samples from (8) satisfies

N = O(n ln(mn/q)) = O(n ln(
√

ϑn/q)) = O∗(n).

Next, we bound the number of hit-and-run steps. Recall (7) shows that

� = O

(

n3

(1 − Δθ)4
log5

(

n

p2(1 − Δθ)4

))

. (16)

For the Δθ from Theorem 4.2 and the value of p from (13), (16) shows

� = O

(

n3 log5
(

nϑ

q2

))

= O∗ (n3
)

.

Summarizing, the total number of oracle calls by Algorithm 2 is

O∗(mN�) = O∗ (n4.5
)

,

where we used Bubeck and Eldan’s result [7] that ϑ ≤ n + o(n).
Thus, we have given a rigorous complexity analysis of the algorithm by Kalai and

Vampala [12] using the temperature update of Abernethy and Hazan [1]. Our final
bound for the number of oracle calls coincides with the O∗(n4.5) bound claimed in
[12].

Initialization

Onemight stillwonder how togenerate a good estimate ̂Σ(0)of the uniformcovariance
matrixΣ(0) to start Algorithm 2. The ‘rounding the body’ procedure from Lovász and
Vempala [18] is suitable for this purpose. This procedure returns a ̂Σ(0) for which

P
{ 1
2
̂Σ(0) � Σ(0) � 2̂Σ(0)

} ≥ 1 − 1

n
.

By Lemma 2.4, 1
2
̂Σ(0) � Σ(0) � 2̂Σ(0) if and only if 1

2
̂Σ(0)−1 � Σ(0)−1 �

2̂Σ(0)−1, so the starting condition for Algorithm 2 can be satisfied by the ‘rounding
the body’ procedure. The number of calls to the membership oracle for this procedure
is O∗(n4), which is overshadowed by the complexity of Algorithm 2 itself.

6 Numerical Examples on the Doubly Nonnegative Cone

Having established the theoretical complexity of Algorithm 2, we now move to the
second goal of this work: investigating the practical perspectives of this method. We
will test Algorithm 2 on the problem of determining if a matrix is copositive, which
is known to be a co-NP-complete problem [22].

123

Journal of Optimization Theory and Applications (2022) 194:465–491 477

To define this problem, letSm×m denote the space of real symmetricm×mmatrices.
A matrix C ∈ S

m×m is called copositive if x�Cx ≥ 0 for all x ∈ R
m+ (see Bomze [6]

for a survey on copositive programming and its applications).
The standard SDP relaxation of the problem of checking for copositivity of C is

the following:

inf

⎧

⎨

⎩

〈C, X〉 :
m
∑

i=1

m
∑

j=1

Xi j ≤ 1, X ≥ 0, X � 0

⎫

⎬

⎭

, (17)

where 〈·, ·〉 is the trace inner product. If the value of (17) is nonnegative, the matrix C
is copositive. However, since we place a nonnegativity constraint on every element of
thematrix X , theNewton system in every interior point iteration is of size O(m2×m2),
which quickly leads to impractical computation times (see, e.g., Burer [8]).

Before we can apply Algorithm 2, we need to translate (17) to a problem over
R
m(m+1)/2. The approach is standard: for any A = [Ai j]i j ∈ S

m×m , define

svec(A) := (A11,
√
2A12, ...,

√
2A1m, A22,

√
2A23, ...,

√
2A2m, ..., Amm)�,

such that svec(A) ∈ R
m(m+1)/2. If Rm(m+1)/2 is endowed with the Euclidean inner

product, the adjoint of svec is defined for every a ∈ R
m(m+1)/2 as

smat(a) =

⎡

⎢

⎢

⎢

⎣

a1 a2/
√
2 . . . am/

√
2

a2/
√
2 am+1 . . . a2m−1/

√
2

...
...

. . .
...

am/
√
2 a2m−1/

√
2 . . . am(m+1)/2

⎤

⎥

⎥

⎥

⎦

,

such that smat(a) ∈ S
m×m . Moreover, smat(svec(A)) = A and svec(smat(a)) = a

for all A and a. Now let c = svec(C). Problem (17) is equivalent to the following
problem over Rm(m+1)/2:

inf

⎧

⎨

⎩

〈c, x〉 :
m
∑

i=1

m
∑

j=1

(smat(x))i j ≤ 1, x ≥ 0, smat(x) � 0

⎫

⎬

⎭

. (18)

Note that membership of the feasible set of (18) can be determined in O(m3) opera-
tions. Let n = 1

2m(m + 1) be the number of variables in problem (18).

6.1 Covariance Approximation

First, we investigate how the quality of the covariance approximation depends on the
walk length for problem (18). We take 20,000 hit-and-run samples from the uniform
distribution over the feasible set of (18) with walk length 50,000 (directions are drawn
from N (0, I) and the starting point is svec(mI + J)/(2e� svec(mI + J)), where J

123

478 Journal of Optimization Theory and Applications (2022) 194:465–491

102 103 104

10−1

100

Sample size N

ρ
(Σ

−
1

Σ
0
−

I
)

m = 5

102 103 104
10−1

100

101

102

Sample size N

ρ
(Σ

−
1

Σ
0
−

I
)

m = 10

= 100
= 200
= 500
= 1000
= 2000
= 5000
= 10,000
= 20,000
= 50,000

103 104

100

101

102

Sample size N

ρ
(Σ

−
1

Σ
0
−

I
)

m = 15

103 104

100

101

102

Sample size N

ρ
(Σ

−
1

Σ
0
−

I
)

m = 20

= 100
= 200
= 500
= 1000
= 2000
= 5000
= 10,000
= 20,000
= 50,000

Fig. 1 Effect of sample size N and walk length � on quality of uniform covariance approximation

is the all-ones matrix). These samples are used to create the estimate ̂Σ0. Then, the
experiment is repeated for walk lengths � ≤ 50,000 and sample sizes N ≤ 20,000.
We refer to these new estimates as ̂Σ�,N . We would like

−εy�
̂Σ�,N y ≤ y�(̂Σ0 − ̂Σ�,N)y ≤ εy�

̂Σ�,N y ∀y ∈ R
n,

for some small ε > 0. This is equivalent to

−εx�x ≤ x�(̂Σ
−1/2
�,N

̂Σ0̂Σ
−1/2
�,N − I)x ≤ εx�x ∀x ∈ R

n,

i.e., we would like the spectral radius of ̂Σ−1/2
�,N

̂Σ0̂Σ
−1/2
�,N − I to be at most ε. Because

the spectra of ̂Σ
−1/2
�,N

̂Σ0̂Σ
−1/2
�,N − I and ̂Σ−1

�,N
̂Σ0 − I are the same, we focus on the

spectral radius ρ(̂Σ−1
�,N

̂Σ0 − I).
The result is shown in Fig. 1, where m refers to the size of the matrices in (17).

Hence, the covariance matrices in question are of size 1
2m(m + 1) × 1

2m(m + 1).
Onemajor conclusion fromFig. 1 is that the trajectory toward zero is relatively slow.

To show that simply adding more samples with higher walk lengths will in practice
not be feasible, we present the running times required to estimate a covariance matrix
at the desired accuracy in Fig. 2. Specifically, this figure shows the running times of
the ‘efficient’ combinations of N and �: these are the combinations of N and � plotted
in Fig. 1 for which there are no N ′ and �′ such that N ′�′ ≤ N� and ρ(̂Σ−1

�′,N ′ ̂Σ0− I) <

123

Journal of Optimization Theory and Applications (2022) 194:465–491 479

10−1 100 101 102
10−1

100

101

102

103

104

ρ(Σ−1 Σ0 − I)

R
un

ni
ng

ti
m
e
(s
)

m = 5
m = 10
m = 15
m = 20

Fig. 2 Running times required to find an approximation ̂Σ�,N of the desired quality

ρ(̂Σ−1
�,N

̂Σ0− I). (The computer used has an Intel i7-6700 CPUwith 16 GB RAM, and
the code used six threads.) Figure 2 shows that, even at low dimensions, approximating
the covariance matrix to high accuracy will take an unpractical amount of time, which
approximately shows the time required to approximate the covariance matrix up to
desired accuracy.

To show that the slow trajectory toward zero in Fig. 1 is a result of covariance estima-
tion’s fundamental difficulty, we consider a simpler problem.We want to approximate
the covariance matrix of the uniform distribution over the hypercube [0, 1]n in R

n .
Note that the true covariance matrix of this distribution is known to be Σ := 1

12 I .
Again, we will use hit-and-run with varying walk lengths and sample sizes to

generate samples from the uniform distribution over [0, 1]n , and compare the resulting
covariance matrices ̂Σ�,N with Σ = 1

12 I . (Comparing against a covariance estimate
based on hit-and-run samples as in Fig. 1 yields roughly the same image.) The result
is shown in Fig. 3.

Figure 3 shows a pattern similar to that of Fig. 1: As the problem size increases, the
walk length should increase with the sample size to ensure the estimate is as good as
the sample size can guarantee.While this progression toward zero may appear as slow,
we do not have to know every eigenvalue and eigenvector of the covariance to high
accuracy. Recall that we only use this covariance estimate in Algorithm 2 to generate
hit-and-run directions. As such, it may suffice to have an estimate that roughly shows
which directions are ‘long,’ and which ones are ‘short.’

6.2 Mean Approximation

Next, we consider the problem of approximating the mean. Although it is not required
for Algorithm 2 to approximate the mean of a Boltzmann distribution, such a mean
does lie on the central path of the interior point method proposed by Abernethy and
Hazan [1, Appendix D].

123

480 Journal of Optimization Theory and Applications (2022) 194:465–491

102 103 104

10−1

100

Sample size N

ρ
(Σ

−
1

Σ
−

I
)

n = 15

102 103 104
10−1

100

101

Sample size N

ρ
(Σ

−
1

Σ
−

I
)

n = 55

Truly uniform
= 100
= 200
= 500
= 1000

103 104

100

101

Sample size N

ρ
(Σ

−
1

Σ
−

I
)

n = 120

103 104

100

101

Sample size N

ρ
(Σ

−
1

Σ
−

I
)

n = 210

Truly uniform
= 100
= 200
= 500
= 1000

Fig. 3 Effect of sample size N and walk length � on quality of uniform covariance matrix approximation
over the hypercube in R

n

We again take 20,000 hit-and-run samples from the uniform distribution over the
feasible set of (18) with walk length 50,000. (Directions are drawn from N (0, I)
and the starting point is svec(mI + J)/(2e� svec(mI + J)), where J is the all-ones
matrix.) These samples are used to create the mean estimate x̂0. Then, the experiment
is repeated for walk lengths � ≤ 50,000 and sample sizes N ≤ 20,000. We refer to
these new estimates as x̂�,N . Using the approximation ̂Σ0 of the uniform covariance
matrix from the previous section, we compute ‖x̂0 − x̂�,N‖

̂Σ−1
0

and plot the results in
Fig. 4.

The results are comparable to those in Figs. 1 and 2. It will take an impractical
amount of time before the mean estimate approximates the true mean well enough for
practical purposes.

6.3 Kalai–Vempala Algorithm

The results from the previous two sections show that we should not hope to approxi-
mate the covariance matrix and sample mean with high accuracy in high dimensions.
However, it is still insightful to verify if this is really required for Algorithm 2 to work
in practice.

We therefore generated a random vector c ∈ R
m(m+1)/2 as follows: If C ∈ R

m×m

is a matrix with all elements belonging to a standard normal distribution, then C +
C� + (

√
2 − 2)Diag(C) is a symmetric matrix whose elements all have variance 2.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 481

102 103 104

10−1

100

Sample size N

x
0
−

x
Σ

−
1

0
m = 5

102 103 104

10−1

100

101

Sample size N

x
0
−

x
Σ

−
1

0

m = 10

= 100
= 200
= 500
= 1000
= 2000
= 5000
= 10,000
= 20,000
= 50,000

102 103 104
10−1

100

101

Sample size N

x
0
−

x
Σ

−
1

0

m = 15

102 103 104
10−1

100

101

102

Sample size N

x
0
−

x
Σ

−
1

0

m = 20

= 100
= 200
= 500
= 1000
= 2000
= 5000
= 10,000
= 20,000
= 50,000

Fig. 4 Effect of sample size N and walk length � on quality of uniform mean approximation

We then let

c = svec(C + C� + (
√
2 − 2)Diag(C))

‖ svec(C + C� + (
√
2 − 2)Diag(C))‖ ,

serve as the objective of our optimization problem (18). We can find the optimal
solution x∗ with MOSEK 8.0 [21] and then run Algorithm 2 with ε = 10−3 and
p = 10−1. The final gap 〈c, xfinal − x∗〉 is shown in Fig. 5. One can see that for
practical sample sizes and walk lengths, the method does not converge to the optimal
solution.

6.4 Kalai–Vempala Algorithmwith Acceleration Heuristic

Keeping our findings above in mind, we propose the heuristic adaption of Algorithm
2 presented in Algorithm 3. The main modifications we suggest to make to Algorithm
2 are:

1. Use the (centered) samples generated in the previous iteration as directions for
hit-and-run in the current iteration. This would eliminate the need to estimate
the covariance matrix of a distribution, only to then draw samples from that same
distribution. Instead,we can also drawdirections directly from the centered samples
(cf. line 10 in Algorithm 3). Thus, each sample is used to generate a hit-and-run
direction with uniform probability.

123

482 Journal of Optimization Theory and Applications (2022) 194:465–491

102 103

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗
n = 5

102 103

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗

n = 10

= 5
= 10
= 20
= 40
= 80
= 160
= 320
= 640
= 1280

102.5 103 103.5
10−1.3

10−1.2

10−1.1

10−1

10−0.9

Sample size N

c,
x
fi
n
al

−
x

∗

n = 15

102.6 102.8 103 103.2 103.4

10−1.3

10−1.2

10−1.1

Sample size N

c,
x
fi
n
al

−
x

∗

n = 20

= 5
= 10
= 20
= 40
= 80
= 160
= 320
= 640
= 1280

Fig. 5 Effect of sample size N and walk length � on the final gap of Algorithm 2

2. As a starting point for the first random walk in some iteration k, use the sample
mean from iteration k − 1. While this does significantly change the distribution
of the starting point, it concentrates more probability mass around the mean of
the Boltzmann distribution with parameter θk−1, such that the starting point of the
random walk is likely already close to the mean of the Boltzmann distribution with
parameter θk . In a similar vein, we return the mean of the samples in the final
iteration, not just one sample. This will not change the expected objective value of
the final result, and will therefore also not affect the probabilistic guarantee that
we derived in (15) by Markov’s inequality. However, using the mean does reduce
the variance in the final solution.

3. Start all except the first random walk in some iteration k from the end point of
the previous random walk, rather than from a common starting point. The idea
here is that the random samples as a whole will then exhibit less dependence, thus
improving the approximation quality of the empirical distribution.

With these modifications implemented, we can no longer study the quality of the
covariance matrix. Therefore, we will simply consider if the resulting optimization
algorithm leads to a small error in the objective value. We solve the problem from
Sect. 6.3 with Algorithm 3. The results are shown in Fig. 6.

For low dimensions in particular, the proposed changes seem to have a positive
effect.

It can be seen from Fig. 6 that—roughly speaking—the final gap 〈c, xfinal − x∗〉
takes values between two extremes. At one end, the method does not converge and

123

Journal of Optimization Theory and Applications (2022) 194:465–491 483

Algorithm 3 Heuristic adaptation of Algorithm 2
Input: unit vector c ∈ R

n ; membership oracle of a convex body K ⊆ R
n ; radius R of Euclidean ball

containing K ; complexity parameter ϑ ≤ n + o(n) of the entropic barrier over K ; update parameter
α > 1+1/

√
ϑ ; error tolerance ε > 0; failure probability p ∈ (0, 1); number of hit-and-run steps � ∈ N;

number of samples N ∈ N; y1, ..., yN ∈ K drawn randomly from the uniform distribution over K .

1: Y j0 ← y j for all j ∈ {1, ..., N }
2: X0 ← 1

N
∑N

j=1 Y j0

3: θ0 ← 0

4: T0 ← ∞, T1 ← R

5: k ← 1

6: while nTk−1 > εp do

7: θk ← −c/Tk
8: Y0k ← Xk−1

9: for j ∈ {1, ..., N } do
10: Generate Y jk by applying hit-and-run sampling to the Boltzmann distribution with parameter

θk , starting the walk from Y j−1,k , taking � steps, drawing directions uniformly from {Y1,k−1 −
Xk−1, ..., YN ,k−1 − Xk−1}

11: end for

12: Xk ← 1
N
∑N

j=1 Y jk

13: Tk+1 ← min{R(1 − 1
α
√

ϑ
)k , R(1 − 1√

n
)k }

14: k ← k + 1

15: end while

16: return Xk−1

the final gap is still of the order 10−1. At the other end, the method does converge to
the optimum, such that the gap is of the order 10−4 = εp. Note that εp is exactly the
size we would like the expected gap to have to guarantee that the gap is smaller than ε

with probability 1− p by Markov’s inequality. Whether we are at one end or the other
depends on N and � being large enough compared to m. As a heuristic, we propose
that

N = ⌈

n
√
n
⌉

, � = ⌈

n
√
n
⌉

, (19)

where n = m(m + 1)/2 is the number of variables, are generally sufficient to ensure
that the final gap is of the order εp.

7 Numerical Examples on the Copositive Cone

We now turn our attention away from the doubly nonnegative cone, and toward the
copositive cone. Although—as mentioned earlier—deciding if a matrix is copositive
is a co-NP-complete problem [22], there are a number of procedures to test for copos-

123

484 Journal of Optimization Theory and Applications (2022) 194:465–491

101 102 103

10−4

10−3

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗
m = 5

101 102 103

10−4

10−3

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗

m = 10

= 5
= 10
= 20
= 40
= 80
= 160
= 320
= 640
= 1280

101 102 103

10−4

10−3

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗

m = 15

101 102 103

10−4

10−3

10−2

10−1

Sample size N

c,
x
fi
n
al

−
x

∗

m = 20

= 5
= 10
= 20
= 40
= 80
= 160
= 320
= 640
= 1280

Fig. 6 Effect of sample size N and walk length � on the final gap of Algorithm 3

itivity. Clearly, A = [Ai j]i j ∈ S
m×m is copositive if and only if

min
{

a�Aa : e�a = 1, a ≥ 0
}

, (20)

is nonnegative, where e is the all-ones vector. Xia et al. [28] show that solving (20) is
equivalent to solving

min − ν

s.t. Aa + νe − η = 0

e�a = 1

0 ≤ a ≤ b

0 ≤ η ≤ M(e − b)

b ∈ {0, 1}n,

(21)

where M = 2mmaxi, j∈{1,...,m} |Ai j |. (To be precise, every optimal solution (a, ν, η)

to (21) gives an optimal solution a to (20), and these two problems have the same
optimal values.) Note that we are generally not interested in solving (21) to optimality:
it suffices to find a feasible solution of (21) with a negative objective value, or confirm
that no such solution exists. For themajority of thematrices encountered byAlgorithm
3 applied to our test sets described below, this could be checked quickly.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 485

7.1 Separating from the Completely Positive Cone

Recall that a matrix A ∈ S
m×m is completely positive if A = BB� for some B ≥ 0.

It is easily seen that optimization problems over the completely positive cone can be
relaxed as optimization problems over the doubly nonnegative cone. To strengthen
this relaxation, one could add a cutting plane separating the optimal solution Y of
the doubly nonnegative relaxation from the completely positive cone. This is listed as
an open (computational) problem by Berman et al. [5, Section 5], who note that the
problem of generating such a cut has only been answered for specific structures of Y ,
including 5 × 5 matrices [9]. In general, such a cut could be generated for a doubly
nonnegative matrix Y by the copositive program

inf {〈Y , X〉 : 〈X , X〉 ≤ 1, X copositive} . (22)

Below, we solve this problem for 6 × 6 matrices, by way of example.
To generate test instances, we are interested in matrices on the boundary of the

6 × 6 doubly nonnegative cone. The extreme rays of this cone are described by
Ycart [29, Proposition 6.1]. We generate random instances from the class of matrices
described under case 3, graph 4 in Proposition 6.1 in [29]. These matrices are (up
to permutation of the indices) doubly nonnegative matrices Y = [Yi j]i j with rank 3
satisfying Yi,i+1 = 0 for i = 1, ..., 5. To generate such a matrix, we draw the elements
of two vectors v1, v2 ∈ R

6 and the first element (v3)1 ∈ R of a vector v3 ∈ R
6 from

a Poisson distribution with rate 1, and multiply each of these elements with −1 with
probability 1

2 .

The remaining elements of v3 are then chosen such that Y = ∑3
k=1 vkv

�
k satisfies

Yi,i+1 = 0 for i = 1, ..., 5. This procedure is repeated if the matrix Y is not doubly
nonnegative, or if BARON 15 [27] could find a nonnegative matrix B ∈ R

6×9 such
that Y = BB� in less than 30 s. (For the cases where such a decomposition could
be found, BARON terminated in less than a second.) Thus, we are left with doubly
nonnegative matrices for which it cannot quickly be shown that they are completely
positive.

For ten of such randomly generated matrices (see Appendix 1), the optimal value
of Algorithm 3 applied to (22) is given in Table 1. This table shows the normalized
objective value 〈Y/‖Y‖, X∗〉, where Y is a doubly nonnegative matrix as described
above, and X∗ is the final solution returned by Algorithm 3.

Note that in all cases, Algorithm 3 succeeds in finding a copositive matrix X∗
such that 〈Y , X∗〉 < 0, which means a cut separating Y from the completely positive
matrices was found.

Note that solving the MILP (21) for a matrix A that is not copositive yields a
hyperplane separating A from the copositive cone. Thus, we can also solve problem
(22) with the Ellipsoid method of Yudin and Nemirovski [30], for example. For the
sake of comparison, the results of the Ellipsoid method are also included in Table
1. Note, in particular, that the number of oracle calls in Table 1 is several orders of
magnitude smaller for the Ellipsoid method.

123

486 Journal of Optimization Theory and Applications (2022) 194:465–491

Ta
bl
e
1

O
bj
ec
tiv

e
va
lu
es

re
tu
rn
ed

by
A
lg
or
ith

m
3
an
d
by

th
e
E
lli
ps
oi
d
m
et
ho

d,
ap
pl
ie
d
to

(2
2)

Fi
na
lo

bj
ec
tiv

e
va
lu
e
(n
or
m
al
iz
ed
)

O
ra
cl
e
ca
lls

N
am

e
A
lg
or
ith

m
3

E
lli
ps
oi
d
m
et
ho
d

A
lg
or
ith

m
3

E
lli
ps
oi
d
m
et
ho
d

e
x
t
r
e
m
a
l
_
r
a
n
d
_
1

−
7.
62

68
93

e−
03

−
7.
66

76
45

e−
03

8.
76

64
73

e+
06

3.
15

20
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
2

−
1.
98

36
30

e−
02

−
1.
98

76
34

e−
02

9.
07

33
17

e+
06

3.
41

20
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
3

−
3.
59

18
75

e−
02

−
3.
59

63
45

e−
02

9.
33

42
64

e+
06

3.
83

50
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
4

−
9.
93

74
02

e−
03

−
9.
98

00
87

e−
03

8.
83

02
09

e+
06

3.
14

70
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
5

−
5.
89

72
73

e−
03

−
5.
94

00
56

e−
03

8.
62

82
87

e+
06

2.
95

70
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
6

−
4.
30

39
56

e−
02

−
4.
30

77
61

e−
02

9.
43

85
18

e+
06

4.
02

40
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
7

−
2.
41

10
10

e−
02

−
2.
41

56
51

e−
02

9.
17

97
67

e+
06

3.
70

80
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
8

−
6.
82

25
93

e−
02

−
6.
82

65
58

e−
02

9.
64

12
88

e+
06

4.
27

70
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
9

−
4.
23

22
29

e−
02

−
4.
23

68
29

e−
02

9.
41

69
09

e+
06

3.
98

10
00

e+
03

e
x
t
r
e
m
a
l
_
r
a
n
d
_
1
0

−
2.
96

29
93

e−
02

−
2.
96

73
33

e−
02

9.
23

65
07

e+
06

3.
74

30
00

e+
03

A
lg
or
ith

m
3
w
as

ru
n
w
ith

ε
=

10
−3

an
d
p

=
0.
1,
an
d
N

an
d

�
as

in
(1
9)
.T

he
E
lli
ps
oi
d
m
et
ho

d
w
as

ru
n
w
ith

er
ro
r
to
le
ra
nc
e
10

−4

123

Journal of Optimization Theory and Applications (2022) 194:465–491 487

8 Conclusion

We have shown that Kalai and Vempala’s algorithm [12] returns a solution which is
near-optimal for (1) with high probability in polynomial time, when the temperature
update (5) is used. The main drawback in using the algorithm in practice is that a
large number of samples (i.e., membership oracle calls) are required. As a result, in
our tests the Ellipsoid method outperformed Algorithm 3 by a large margin. Thus,
based on our experiments, one would favor polynomial-time cutting plane methods
like the Ellipsoidmethod, ormore sophisticated alternatives as described, for example,
in [16]. In order to obtain a practically viable variant of the Kalai–Vempala algorithm,
one would have to improve the sampling process greatly, or utilize massive parallelism
to speed up the hit-and-run sampling.

Acknowledgements The authors would like to thank Sébastien Bubeck, Osman Güler, and Levent Tunçel
for valuable discussions about the complexity parameter of the entropic barrier. Also, the authors are deeply
indebted to an anonymous referee, who generously suggested the outline of the analysis in Sect. 3, which
improved the complexity analysis in an earlier version of this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: The Complexity Parameter of the Entropic Barrier for the
Euclidean Ball

Let Bn := {x ∈ R
n : ‖x‖2 ≤ 1} be the unit ball in R

n with respect to the Euclidean
inner product 〈·, ·〉. Let Xθ be a random variable following a Boltzmann distribution
over Bn with parameter θ ∈ R

n , and denote the expectation operator by E. We are
interested in the complexity parameter ϑ of the entropic barrier on Bn .

Recall from (3) that

ϑ = sup
θ∈Rn

〈θ,Σ(θ)θ〉 = sup
θ∈Rn

E[〈Xθ − E[Xθ], θ〉2]

= sup
θ∈Rn

{

E[〈θ, Xθ 〉2] − 〈θ,E[Xθ]〉2
}

.

For every θ ∈ R
n , there exists a rotation matrix Q with | det Q| = 1 such that

〈θ, Qy〉 = ‖θ‖y1 for all y ∈ R
n . Using the fact that the volume of an (n − 1)-

dimensional ball with radius r is rn−1 times some factor depending only on n, we see
that

〈θ,E[Xθ]〉 =
∫

Bn
〈θ, x〉e〈θ,x〉 dx
∫

Bn
e〈θ,x〉 dx

=
∫

Bn
‖θ‖y1e‖θ‖y1 dy
∫

Bn
e‖θ‖y1 dy

123

http://creativecommons.org/licenses/by/4.0/

488 Journal of Optimization Theory and Applications (2022) 194:465–491

0 200 400 600

0

1

2

3

4

5

6

θ

A
pp

ro
xi
m
at
io
n

θ
,Σ

(θ
)θ

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Fig. 7 Numerical approximation of 〈θ,Σ(θ)θ〉

=
∫ 1
−1 ‖θ‖y1(

√

1 − y21)
n−1e‖θ‖y1 dy1

∫ 1
−1(

√

1 − y21)
n−1e‖θ‖y1 dy1

.

The final expression cannot be computed in closed form, but it can be approximated
numerically for fixed ‖θ‖. Similarly,

E[〈θ, Xθ 〉2] =
∫

Bn
〈θ, x〉2e〈θ,x〉 dx
∫

Bn
e〈θ,x〉 dx

=
∫

Bn
‖θ‖2y21e‖θ‖y1 dy
∫

Bn
e‖θ‖y1 dy

=
∫ 1
−1 ‖θ‖2y21 (

√

1 − y21)
n−1e‖θ‖y1 dy1

∫ 1
−1(

√

1 − y21)
n−1e‖θ‖y1 dy1

.

Numerical approximation of E[〈θ, Xθ 〉2] − 〈θ,E[Xθ]〉2 for different values of n
and ‖θ‖ yields Fig. 7. This figure suggests that ϑ = 1

2 (n + 1).

Appendix B: Extremal Doubly Nonnegative Matrix Examples

Below are the ten randomly generated extreme points of the 6×6 doubly nonnegative
cone that are used in Sect. 7.1. These matrices can be strictly separated from the
completely positive cone.

123

Journal of Optimization Theory and Applications (2022) 194:465–491 489

extremal_rand_1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 6 0 1 2
0 6 0 8 1 2
6 0 18 0 3 6
0 8 0 11 0 3
1 1 3 0 6 0
2 2 6 3 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 2 3 1 3
0 2 0 3 1 1
2 0 3 0 2 1
3 3 0 18 0 12
1 1 2 0 2 0
3 1 1 12 0 9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

12 0 4 2 0 2
0 2 0 2 1 2
4 0 2 0 1 0
2 2 0 3 0 3
0 1 1 0 2 0
2 2 0 3 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 2 2 2 4
0 8 0 4 4 8
2 0 3 0 4 0
2 4 0 8 0 16
2 4 4 0 8 0
4 8 0 16 0 32

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

5 0 5 0 5 3
0 6 0 10 1 18
5 0 5 0 5 3
0 10 0 20 0 42
5 1 5 0 6 0
3 18 3 42 0 99

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 0 3 4 0 4
0 6 0 2 6 2
3 0 11 0 4 0
4 2 0 8 0 8
0 6 4 0 8 0
4 2 0 8 0 8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_7 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

14 0 4 8 2 16
0 6 0 4 2 8
4 0 8 0 8 0
8 4 0 8 0 16
2 2 8 0 9 0
16 8 0 16 0 32

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

123

490 Journal of Optimization Theory and Applications (2022) 194:465–491

extremal_rand_8 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6 0 4 2 0 2
0 5 0 2 2 2
4 0 6 0 2 0
2 2 0 2 0 2
0 2 2 0 2 0
2 2 0 2 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_9 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 2 0 4 2
0 2 0 2 2 0
2 0 2 0 4 2
0 2 0 3 0 2
4 2 4 0 14 0
2 0 2 2 0 6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extremal_rand_10 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 2 2 0 2
0 2 0 2 2 2
2 0 3 0 1 0
2 2 0 8 0 8
0 2 1 0 3 0
2 2 0 8 0 8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

References

1. Abernethy, J., Hazan, E.: Faster convex optimization: simulated annealing with an efficient universal
barrier. In: Proceedings of the 33rd International Conference on Machine Learning

2. Badenbroek, R.: Interior point methods and simulated annealing for nonsymmetric conic optimization.
PhD thesis, CentER, Center for Economic Research, Tilburg University (2021). https://pure.uvt.nl/ws/
portalfiles/portal/48162364/200375_PhD_Riley_Badenbroek_digitaal.pdf

3. Badenbroek, R., de Klerk, E.: Complexity analysis of a sampling-based interior point method for
convex optimization. Math. Oper. Res. 47(1), 779–811 (2022)

4. Bélisle, C.J., Romeijn, H.E., Smith, R.L.: Hit-and-run algorithms for generating multivariate distribu-
tions. Math. Oper. Res. 18(2), 255–266 (1993)

5. Berman, A., Dur, M., Shaked-Monderer, N.: Open problems in the theory of completely positive and
copositive matrices. Electron. J. Linear Algebra 29(1), 46–58 (2015)

6. Bomze, I.M.: Copositive optimization–recent developments and applications. Eur. J. Oper. Res. 216(3),
509–520 (2012)

7. Bubeck, S., Eldan, R.: The entropic barrier: exponential families, log-concave geometry, and self-
concordance. Math. Oper. Res. 44(1), 264–276 (2018)

8. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math.
Program. Comput. 2(1), 1–19 (2010)

9. Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Math. Program. 137(1–2),
343–370 (2013)

10. deKlerk, E., Laurent,M.: Comparison of Laserre’smeasure-based bounds for polynomial optimization
to the bounds obtained by simulated annealing. Math. Oper. Res. 43, 1317–1325 (2018)

11. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
12. Kalai, A.T., Vempala, S.: Simulated annealing for convex optimization. Math. Oper. Res. 31(2), 253–

266 (2006)
13. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an O∗(n5) volume algorithm for convex

bodies. Random Struct. Algorithms 11(1), 1–50 (1997)
14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)

123

https://pure.uvt.nl/ws/portalfiles/portal/48162364/200375_PhD_Riley_Badenbroek_digitaal.pdf
https://pure.uvt.nl/ws/portalfiles/portal/48162364/200375_PhD_Riley_Badenbroek_digitaal.pdf

Journal of Optimization Theory and Applications (2022) 194:465–491 491

15. Lee,Y.T., Sidford,A.,Vempala, S.S.: Efficient convex optimizationwithOracles. In: Bárány, I., Katona,
G., Sali, A. (eds.) Building Bridges II. Bolyai Society Mathematical Studies, vol. 28. Springer, Berlin,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-59204-5_10

16. Lee, Y.T., Sidford, A., Wong, S.C.-W.: A faster cutting plane method and its implications for combina-
torial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 1049–1065. IEEE (2015)

17. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times, vol. 107. American Mathe-
matical Society, Providence (2017)

18. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O∗(n4) volume algorithm. J.
Comput. Syst. Sci. 72(2), 392–417 (2006)

19. Lovász, L., Vempala, S.: Fast algorithms for logconcave functions: Sampling, rounding, integration
and optimization. In: 47th Annual IEEE Symposium on Foundations of Computer Science, 2006.
FOCS’06, pp. 57–68. IEEE (2006)

20. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random
Struct. Algorithms 30(3), 307–358 (2007)

21. MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 8.1. (2017)
22. Murty, K.G., Kabadi, S.N.: Some np-complete problems in quadratic and nonlinear programming.

Math. Program. 39(2), 117–129 (1987)
23. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia (1994)
24. Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. 34(1), 334–343 (1973)
25. Rudelson, M.: Random vectors in the isotropic position. J. Funct. Anal. 164(1), 60–72 (1999)
26. Smith,R.L.: EfficientMonteCarlo procedures for generating points uniformly distributed over bounded

regions. Oper. Res. 32(6), 1296–1308 (1984)
27. Tawarmalani,M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization.Math.

Program. 103(2), 225–249 (2005)
28. Xia, W., Vera, J., Zuluaga, L.F.: Globally solving non-convex quadratic programs via linear integer

programming techniques. INFORMS J. Comput. 32(1), 40–56 (2020)
29. Ycart, B.: Extrémales du cône des matrices de type non négatif, à coefficients positifs ou nuls. Linear

Algebra Appl. 48, 317–330 (1982)
30. Yudin, D.B., Nemirovski, A.S.: Informational complexity and efficient methods for solving complex

extremal problems. Matekon 13(25–45), 6 (1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-662-59204-5_10

	Simulated Annealing for Convex Optimization: Rigorous Complexity Analysis and Practical Perspectives
	Abstract
	1 Introduction
	1.1 Algorithm Statement
	1.2 Contributions and Outline of this Paper

	2 Preliminaries
	3 Approximation of the Covariance Matrix
	4 Proof of Convergence
	5 Complexity Analysis and Discussion
	Initialization

	6 Numerical Examples on the Doubly Nonnegative Cone
	6.1 Covariance Approximation
	6.2 Mean Approximation
	6.3 Kalai–Vempala Algorithm
	6.4 Kalai–Vempala Algorithm with Acceleration Heuristic

	7 Numerical Examples on the Copositive Cone
	7.1 Separating from the Completely Positive Cone

	8 Conclusion
	Acknowledgements
	Appendix A: The Complexity Parameter of the Entropic Barrier for the Euclidean Ball
	Appendix B: Extremal Doubly Nonnegative Matrix Examples
	References

