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Abstract
In this paper, we study the competition of healthcare institutions for medical supplies
in emergencies caused by natural disasters. In particular, we develop a two-stage pro-
curement planning model in a random environment. We consider a pre-event policy,
in which each healthcare institution seeks to minimize the purchasing cost of medical
items and the transportation time from the first stage, and a recourse decision process
to optimize the expected overall costs and the penalty for the prior plan, in response
to each disaster scenario. Thus, each institution deals with a two-stage stochastic pro-
gramming model that takes into account the unmet demand at the first stage, and the
consequent penalty. Then, the institutions simultaneously solve their own stochas-
tic optimization problems and reach a stable state governed by the stochastic Nash
equilibrium concept. Moreover, we formulate the problem as a variational inequality;
both the discrete and the general probability distribution cases are described. We also
present an alternative formulation using infinite-dimensional duality tools. Finally, we
discuss some numerical illustrations applying the progressive hedging algorithm.
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1 Introduction

Emergencies resulting from man-made or natural events strongly affect our social and
economic life. Depending on the type of emergency different hazards may occur in
the emergency locations. Thus, emergency management has raised increasing interest.
In particular, businesses require special measures to protect their activities from any
potential dangerous effect of an emergency. Therefore, it is important to establish
a plan before the occurrence of these events to be prepared in case an emergency
happens. A business continuity plan defines how a company will continue operating,
even in the case of a natural disaster, IT failure or a cyber attack. The end goal is to
preserve profitability and market position [12].

In this paper, we focus on a plan for the storage and distribution of medical supplies
among healthcare institutions in emergencies caused by natural disasters. In partic-
ular, we model the competition among hospitals as a Nash equilibrium problem and
introduce a stochastic programming model to design and evaluate the behavior of each
demand location. Inspired by [26, 35], we provide a two-stage stochastic programming
model based on disaster scenarios that introduces the unmet demand at the first stage
and the consequent penalty at the second stage, see also [13]. Thus, we consider a pre-
event policy, in which each healthcare institution minimize both the purchasing cost
of medical items and the transportation time from the first stage. Then, we present a
post-event policy through a recourse decision process to optimize the expected overall
costs, and the penalty for the preassigned plan, in response to each possible disaster
scenario of the second stage. Institutions simultaneously solve their own two-stage
stochastic optimization problems and reach a stable state governed by the stochastic
Nash equilibrium concept, that is formulated as a large-scale variational inequality. In
addition, in the case of a general probability distribution, we define the stochastic Nash
equilibrium as a random variational inequality in a Hilbert space setting. Then, we give
the first order optimality conditions for the second-stage problem in terms of Lagrange
multipliers, using a separation assumption, called Assumption S, as a constraint qual-
ification [4–6, 9]. This condition results to be a necessary and sufficient condition for
strong duality to hold. In infinite-dimensional spaces, the classical theorems, which
prove strong duality and existence of multipliers, require that the interior of the order-
ing cone be nonempty [21]. However, in most infinite-dimensional cases, where the
functional space is L2 or a Sobolev space, the ordering cone has the empty interior.
Therefore, we aim at proving that the second-stage problem verifies the Assumption
S. As a result, we ensure the existence of Lagrange multipliers and give an alterna-
tive formulation of the two-stage problem. Moreover, we show that the dual variables
regulate the medical item procurement. In fact, they represent the control variables on
the first-stage demand, on the second-stage demand, and on the unfulfilled demand.

The importance of an efficient approach to emergency management and medical
supply planning has been investigated in several papers. As an example, in [26], the
authors presented a stochastic programming model, in which they selected the storage
locations of medical supplies and use inventory levels for medical items. In the model,
they captured the information updating during disaster scenarios. In [28], Nagurney et
al. developed a stochastic generalized Nash equilibrium model consisting of multiple
purchase locations for the disaster relief items, multiple humanitarian organizations,
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multiple freight service provision options and multiple hubs for storage to multiple
points of demand. In [29], the authors presented a generalized Nash equilibriummodel
with stochastic demand to analyze competition among organizations at demand points
for medical supplies. In [30], Nagurney and Salarpour introduced a two-stage stochas-
tic game theorymodel in order to examine the behavior of national governments during
Covid-19 pandemic, and their competition for essential medical supplies in both the
preparation and response phases. All the problems presented in [28–30] were solved
as variational inequalities, using the concept of variational equilibrium. We remark
that our model differs from the treatment in [26] as we develop a variational inequality
approach. In addition, although the problems introduced in [28–30] have similarities,
they are all restricted to the case of discrete probability distribution, whereas ourmodel
is valid also for general probability distribution. This poses challenges for both theory
and computations.

Recently, two-stage stochastic variational inequalities have been introduced to
model cases where one looks for a decision vector before the real situation is known,
and a new one after the scenario has been realized. In [10], the authors formulated
the two-stage stochastic variational inequality as a two-stage stochastic programming
problem with recourse. In [23], Li and Zhang studied the transformation of a gen-
eral two-stage stochastic programming problem to a two-stage stochastic variational
inequality. In [14], the authors presented an evacuation model where a population had
to be evacuated from crisis areas to shelters, and, due to the uncertainty in the size of
the population to be evacuated, a two-stage stochastic variational inequalitymodel was
given. In [32], Rockafellar and Wets discussed the multistage stochastic variational
inequality. In [33], the authors developed progressive hedging methods for solving
multistage convex stochastic programming, see also [34].

In [16], Gwinner and Raciti studied the random variational inequality and general
random equilibrium problems. In particular, they worked on a class of linear random
variational inequalities on random sets, with results on measurability, existence and
uniqueness in aHilbert space. Furthermore, they provided an approximation procedure
in a special case. Then, in [17], the same authors carried out the theory of random vari-
ational inequalities to study a class of random equilibrium problems on networks in the
linear case, and in [18] they studied the application to nonlinear random traffic equi-
librium problem. A valuable additional contribution of the same authors is the book
in [19]. In [11], the authors formulated the multicriteria spatial price network equi-
librium problem as a random variational inequality, in which the consumers weight,
using random fluctuations, transportation cost and the transportation time associated
with the shipment of a given item. In [7, 8], the authors applied a general random
traffic equilibrium problem, featuring the random Wardrop equilibrium distribution
using random variational inequality. In [22], Jadamba and Raciti explored stochastic
Nash equilibrium problems using monotone variational inequalities in probabilistic
Lebesgue spaces. Their results are applied to a class of oligopolisticmarket equilibrium
problems.

Inspired by the above works, in this paper, we provide a variational inequality for-
mulation of the two-stage stochastic optimization problem describing the competition
of healthcare institutions in case an emergency happens. The main contributions of
our work are:
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Fig. 1 The Network representation

• Modeling a medical supply network that involves warehouses and hospitals with
multiple medical items and multiple transportation modes.

• Providing a two-stage stochastic programming model based on disaster scenarios
that considers the unmet demand at the first stage and the consequent penalty at
the second stage.

• Deriving a variational inequality formulation in both the discrete and general prob-
ability cases.

• Characterizing the second-stage equilibrium, in the case of general probability
distribution, by means of infinite-dimensional Lagrange duality.

• Testing the equilibrium model with numerical illustrations with realistic data.

An analysis of the Lagrange multipliers is also performed and, hence, this paper
adds to the literature on the study of marginal utilities in the more challenging setting
of stochastic programming problems.

This paper is organized as follows. In Sect. 2, we introduce the two-stage stochastic
model for the medical supply competition. In Sect. 3, we present the stochastic Nash
equilibrium concept underlying our model and the equivalent variational inequality
formulation. The cases of discrete and general probability distribution are discussed.
In Sect. 4, we recall some infinite-dimensional duality tools, and, in Sect. 5, we present
an alternative formulation of the second-stage problem. The progressive hedging algo-
rithm is then applied to some numerical examples in Sect. 6.We summarize our results
and draw our conclusions in Sect. 7.

2 The Two-Stage Stochastic Model

In this section, we present our two-stage stochastic model for the medical supply
competition, see also [14]. Let W be the set of warehouses, with typical warehouse
denoted by w; let H be the set of hospitals, with typical hospital denoted by h; let
K be the set of medical supply type, with typical type denoted by k, and let M
be the set of transportation modes, with typical mode denoted by m. We consider a
network model as in Fig. 1. The links between the nodes of the network represent
all the possible connections between the warehouses and the hospitals. Multiple links
between eachwarehouse and each hospital describe the possibility of alternativemodes
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of transportation. We note that the suitable transportation mode is often connected to
the distance between supply and demand locations. Thus, for long distances airplanes
are preferred to transportation by truck or train. The choice of the transportation mode
may also depend on the type of medical item or on the severity of the emergency.

Let xkwh be the amount of medical item of type k from warehouse w to hospital h,
and let ρk

w be the unitary price of medical item k at warehouse w. Let xwh denote the
total amount delivered from warehouse w to hospital h, where

xwh =
∑

k∈K
xkwh .

We further group the xwh into the WH−dimensional column vector x .
Moreover, we introduce the transportation time tmwh from warehouse w to hospital

h with mode m and assume that it depends on the total amount x , namely, tmwh =
tmwh(x). We consider two stages, where one corresponds to the preparedness phase
and the other represents the response phase. In the first phase, each demand location,
namely the hospital, looks for minimizing the purchasing cost of medical items and
the transportation time from the first stage; in the second one, a recourse decision
process is developed to optimize the transportation costs from the second stage, in
response to each disaster scenario. Let (�,F , P) be a probability space, where the
random parameter ω ∈ � represents the typical disaster scenario. For each ω ∈ �,
we denote by ξ : � → R

WHK+HK a finite-dimensional random vector and by
Eξ the mathematical expectation with respect to ξ . In order to formulate the two-
stage stochastic model, we introduce two types of decision variables. The first-stage
decision variable xkwh is used to represent the quantity of medical supplies of type k
from warehouse w to hospital h in stage one. The second-stage decision variables are
ykwh(ω) and zkh(ω). The variable ykwh(ω) represents the quantity of medical supplies
of type k to be delivered from warehouse w to hospital h under scenario ω. The
variable zkh(ω) is the unfulfilled demand at hospital h of medical supply item k under
scenario ω. The amount of unfulfilled demand zkh(ω) is penalized by the penalty
function πk

h = πk
h (ω, zkh(ω)). We note that xkwh is chosen before a realization of ξ

is revealed and later ykwh(ω) and zkh(ω) are selected with known realization. We set
ywh(ω) = ∑

k∈K ykwh(ω). We further group the ywh(ω) into the WH−dimensional
column vector y(ω). Finally, we introduce the transportation cost cmwh fromwarehouse
w to hospital h with mode m and assume that it depends on the total amount y(ω),
namely, cmwh = cmwh(ω, y(ω)). Table 1 summarizes the relevant notations used in the
model formulation.

We aim at obtaining an efficient plan of medical item procurement of each demand
location in the first stage by the evaluation of adaptive plans in the second stage. Thus,
for each hospital, we minimize the purchasing cost and the transportation time of the
first stage with the expected overall costs and the penalty for the prior plan. For each
hospital, a two-stage procurement planning model in a random environment is formu-
lated. We first present the hospital’s problem as a two-stage stochastic programming
problem and then define the stochastic Nash equilibrium describing the competition
of all hospitals.
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For each hospital h, the first-stage problem is given by

min
∑

w∈W

( ∑

k∈K
ρk

wx
k
wh +

∑

m∈M
tmwh(x)

)
+ Eξ (�h(x, ξ(ω))) (1)

∑

w∈W
xkwh≥dkh , ∀k ∈ K, (2)

∑

w∈W
xkwh ≤ ek, ∀k ∈ K, (3)

xkwh ≥ 0, ∀w ∈ W, ∀k ∈ K. (4)

The objective function (1)minimizes the sumof the purchasing cost for early supply
plan, the transportation time, and the expected value of the second stage solution, with
respect to disaster scenario, �h(x, ξ(ω)). Constraint (2) states that hospital h receives
at least the needed amount of medical items; constraint (3) is the maximum avail-
ability constraint of each medical supply type k; constraint (4) is the non-negativity
requirement on variables. In order to ensure that the constraint set is nonempty, we
require that dkh ≤ ek,∀h, k.

For a given realization ω ∈ �, �h(x, ξ(ω)) is given by

�h(x, ξ(ω)) = min
∑

w∈W

∑

m∈M
cmwh(ω, y(ω)) +

∑

k∈K
πk
h (ω, zkh(ω)) (5)

subject to
∑

w∈W
ykwh(ω) + zkh(ω)≥dkh (ω), ∀k ∈ K,P-a.s., (6)

∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh ≤ ek(ω), ∀k ∈ K,P-a.s., (7)

ykwh(ω) ≥ 0, zkh(ω) ≥ 0, zkh(ω) ≤ α dkh ,∀w ∈ W, ∀k ∈ K,P-a.s. (8)

Thus,�h(x, ξ(ω)) is the optimal value of the second-stage problem (5)–(8) associ-
ated with hospital h, where the constraints hold almost surely (P-a.s.). We remark that
�h(x, ξ(ω)) depends on x via constraint (7). The objective function (5) minimizes the
total cost and the penalty for unmet demand at the second stage. Constraint (6) states
that the supply at the second stage plus the unmet demand should be at least as much
as the demand at the second stage. Constraint (7) is the maximum availability con-
straint of each medical supply of type k. We emphasize that the connection between
stage-wise decision variables x and y is captured by constraint (7). It is the linking
factor between the first and second stage and communicates the first-stage decisions
to the second one. Constraint (8) is the non-negativity requirement on variables. We
also assume that zkh(ω) ≤ α dkh , α ∈]0, 1], P-a.s., namely, the unmet demand cannot
exceed a fixed percentage of the first-stage demand.
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In order to ensure that the constraint set of the second stage is nonempty, it suffices
to require that

dkh (ω) ≤ min

{
ek(ω),

dkh
α

}
, ∀h, k,P-a.s.

We assume that:

a) tmwh(·) is continuously differentiable and convex for all w, h, k;
b) cmwh(ω, ·), πk

h (ω, ·), a.e. in �, are continuously differentiable and convex for all
w, h, k,m;

c) for each u ∈ R
WH , cmwh(·, u) is measurable with respect to the random parameter

in � for all w, h,m;
d) for each v ∈ R

HK , πk
h (·, v) is measurable with respect to the random parameter

in � for all h, k;

e)
∂cmwh(ω,y(ω))

∂ ykwh
,

∂πk
h (ω,zkh(ω))

∂zkh
are measurable in ω and continuous in y and z;

f) ykwh : � → R and zkh : � → R are measurable mappings for all w, h, k;
g) dkh : � → R is a measurable mapping for all h and all k.

The two-stage problemof hospital h can be also formulated as the unique large-scale
problem:

min
∑

w∈W

( ∑

k∈K
ρk

whx
k
wh +

∑

m∈M
tmwh(x)

)
+ Eξ (�h(x, ξ(ω))) (9)

subject to
∑

w∈W
xkwh≥dkh , ∀k ∈ K,P-a.s., (10)

∑

w∈W
xkwh ≤ ek, ∀k ∈ K,P-a.s., (11)

∑

w∈W
ykwh(ω) + zkh(ω)≥dkh (ω), ∀k ∈ K,P-a.s., (12)

∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh ≤ ek(ω), ∀k ∈ K,P-a.s., (13)

xkwh ≥ 0, ∀w ∈ W, ∀k ∈ K,P-a.s., (14)

ykwh(ω) ≥ 0, ∀w ∈ W, ∀k ∈ K,P-a.s., (15)

zkh(ω) ≥ 0, ∀k ∈ K,P-a.s., (16)

zkh(ω) ≤ α dkh , ∀k ∈ K,P-a.s. (17)
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3 Stochastic Nash Equilibrium Problem

In this section, we present the equilibrium concept underlying our model and the
equivalent variational inequality formulation. Both the cases of discrete and general
probability distribution are discussed.

Each hospital minimizes the deterministic costs and the expected costs for all the
scenarios. Then, the hospitals simultaneously solve their own optimization problems
and reach a stable state governed by the Nash equilibrium concept.

We define the sets:

Sh =
{
xh = (xwh)w ∈ R

W : (10) − (11), (14) hold
}
,

Th =
{
(yh, zh) = (ywh(ω), zhk(ω))w,k ∈ R

W+K : (12) − (13), (15) − (17) hold, P-a.s.
}
,

S =
∏

h

Sh,

T =
∏

h

Th .

Wewill refer to the objective function (9) as the function Jh(ω, x, y(ω), z(ω)), namely

Jh(ω, x, y(ω), z(ω)) =
∑

w∈W

( ∑

k∈K
ρk

whx
k
wh +

∑

m∈M
tmwh(x)

)
+ Eξ (�h(x, ξ(ω))).

Definition 3.1 A vector of medical items (x∗, y∗, z∗) ∈ S × T is a stochastic Nash
equilibrium if for each h ∈ H

Jh(ω, x∗
h , y

∗
h (ω), z∗h(ω), x∗−h, y

∗−h(ω), z∗−h(ω))

≤ Jh(ω, xh, yh(ω), zh(ω), x∗−h, y
∗−h(ω), z∗−h(ω)),

∀(xh, yh(ω), zh(ω)) ∈ Sh × Th, P-a.s.,

where x−h, y−h(ω), z−h(ω) denotes the amount of medical items and the unmet
demands of all hospitals except for h.

According to the above definition, a Nash equilibrium is established if no hospital
can unilaterally improve upon his profit by choosing an alternative medical item flow
pattern, given other hospitals’ decision strategies.

3.1 Discrete Probability Distribution

If the random parameter ω ∈ � follows a discrete distribution with finite support
� = {ω1, . . . , ωr } and probabilities p(ωr ) associated with each realization ωr , r ∈
R = {1, . . . , R}, then the objective function (9) for h ∈ H becomes
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Jh(ω, x, y(ω), z(ω)) =
∑

w∈W

( ∑

k∈K
ρk

whx
k
wh +

∑

m∈M
tmwh(x)

)

+
∑

r∈R
p(ωr )

( ∑

w∈W

∑

m∈M
cmwh(ωr , y(ωr )) +

∑

k∈K
πk
h (ωr , z

k
h(ωr ))

)
, (18)

and the cost minimization problem for h ∈ H is given by

min Jh(ω, x, y(ω), z(ω)) (19)
∑

w∈W
xkwh≥dkh , ∀k ∈ K, (20)

∑

w∈W
xkwh ≤ ek, ∀k ∈ K, (21)

∑

w∈W
ykwh(ωr ) + zkh(ωr )≥dkh (ωr ), ∀k ∈ K,∀r ∈ R, (22)

∑

w∈W
ykwh(ωr ) +

∑

w∈W
xkwh ≤ ek(ωr ), ∀k ∈ K,∀r ∈ R, (23)

xkwh ≥ 0, ∀w ∈ W, ∀k ∈ K, (24)

ykwh(ωr ) ≥ 0, ∀w ∈ W, ∀k ∈ K,∀r ∈ R, (25)

zkh(ωr ) ≥ 0, ∀k ∈ K,∀r ∈ R, (26)

zkh(ωr ) ≤ α dkh , ∀k ∈ K,∀r ∈ R. (27)

It is well known that a Nash equilibrium can be characterized as a solution to
a variational inequality problem (see [20, 27] for theory and applications on varia-
tional inequalities). Thus, the competition among hospitals under the Nash criterion
is described by the following variational inequality:

∑

w∈W

∑

h∈H

∑

k∈K

(
ρk

wh +
∑

m∈M

∂tmwh(x
∗)

∂xkwh

)
× (xkwh − x∗k

wh)

+
∑

r∈R
p(ωr )

∑

w∈W

∑

h∈H

∑

k∈K

( ∑

m∈M

∂cmwh(ωr , y∗(ωr ))

∂ ykwh

)
× (ykwh(ωr ) − y∗k

wh(ωr ))

+
∑

r∈R
p(ωr )

∑

h∈H

∑

k∈K

∂πk
h (ωr , z∗kh (ωr ))

∂zkh
× (zkh(ωr ) − z∗kh (ωr )) ≥ 0,

∀(x, y(ωr ), z(ωr )) ∈ S × T ,∀r ∈ R. (28)

We note that the set S, and the set T , ∀r ∈ R, are nonempty, compact and convex,
and the operator entering (28) is continuous. Therefore, a solution to the above problem
exists from the standard theory of variational inequalities [20].
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3.2 General Probability Distribution

In the case of a general probability space (�,F , P), studying the optimality conditions
can be very hard, as one should state the order of the decision process explicitly.
For this reason, we choose as our functional setting a Hilbert space and assume that
y ∈ L2(�, P,RWH ), z ∈ L2(�, P,RHK ), d ∈ L2(�, P,RHK ). L2(�, P,RWH )

denotes the class of RWH -valued functions defined in �, that are square integrable
with respect to the probability measure P .

Analogous meaning has the space L2(�, P,RHK ).
Moreover, we require the following growth conditions, ∀m, w, h, k:

∣∣∣cmwh(ω, y)
∣∣∣ ≤ β1m

wh (ω)(1 + ‖y‖),∀y ∈ R
WH ,

∣∣∣πk
h (ω, z)

∣∣∣ ≤ β2k
h (ω)(1 + ‖z‖),∀z ∈ R

HK , P-a.s., (29)
∣∣∣∣
∂cmwh(ω, y)

∂ ykwh

∣∣∣∣ ≤ β3m
wh (ω)(1 + ‖y‖),∀y ∈ R

WH ,

∣∣∣∣
∂πk

h (ω, zh)

∂zkh

∣∣∣∣ ≤ β4k
h (ω)(1 + ‖z‖),∀z ∈ R

HK , P-a.s., (30)

where β1m
wh , β

2k
h , β3m

wh , β
4k
h are nonnegative functions of L∞(�).

Theorem 3.1 Underassumptions a)-g)andconditions (29)–(30), a vector (x∗, y∗, z∗) ∈
S×T is an optimal solution of the medical supply problem if and only if it is a solution
of the following variational inequality:

∑

w∈W

∑

h∈H

∑

k∈K

(
ρk

wh +
∑

m∈M

∂tmwh(x
∗)

∂xkwh

)
× (xkwh − x∗k

wh)

+
∑

h∈H

∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

+ ∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω)))

]
dP(ω) ≥ 0, ∀(x, y, z) ∈ S × T . (31)

Proof The proof procceds as in [3]. 
� 
�
To ensure the existence of solutions, wemay apply the results in [25].We first recall

some definitions.
Let E be a reflexive Banach space with dual space E∗ and K ⊂ E a closed convex

set.

Definition 3.2 A mapping A : K 
→ E∗ is called pseudomonotone in the sense of
Brezis if and only if

• for each sequenceun weakly converging tou in K and such that lim supn〈Aun, un−
u〉 ≤ 0 it results lim infn〈Aun, un − v ≥ 〈Au, u − v〉, ∀v ∈ K ;
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• for each v ∈ K the function u 
→ 〈Au, u − v〉 is lower bounded on the bounded
subsets of K .

Definition 3.3 A mapping A : K 
→ E∗ is hemicontinuous in the sense of Fan if and
only if for all v ∈ K the function u 
→ 〈Au, u − v〉 is weakly lower semicontinuous
on K .

Definition 3.4 The map A : K → E∗ is said to be lower hemicontinuous along line
segments, if and only if the function:

ξ 
→ 〈Aξ, u − v〉

is lower semicontinuous for all u, v ∈ K on the line segments [u, v].
Definition 3.5 The map A : K → E∗ is said to be pseudomonotone in the sense of
Karamardian if and only if for all u, v ∈ K

〈Av, u − v〉 ≥ 0 → 〈Au, u − v〉 ≥ 0.

Theorem 3.2 Let us assume that the map A : K 
→ E∗ be B-pseudomonotone or
F-hemicontinuous and there exist u0 ∈ K and R > ‖u0‖ such that

〈Av, v − u0〉 ≥ 0, ∀v ∈ K ∩ {v ∈ E : ‖v‖ = R}. (32)

Then, the variational inequality 〈Au, v − u〉,∀v ∈ K admits solutions.

Theorem 3.3 Let A : K 
→ E∗ be a K-pseudomonotone map which is lower hemi-
continuous along line segments. Let us assume that condition (32) holds true. Then,
variational inequality 〈Au, v − u〉,∀v ∈ K admits solutions.

We recall that condition (32) is satisfied if the coercivity condition is verified:

lim‖u‖→∞
u∈K

〈Au, u − u0〉
‖u‖ = +∞. (33)

We can apply Theorem 3.2 and Theorem 3.3, assuming that the operator of the
variational inequality is B-pseudomonotone or F-hemicontinuous and (32) or (33)
holds true, or assuming that it is K-pseudomonotone, conditions (29)–(30) are verified,
and (32) or (33) holds true. We also recall that condition (30) is sufficient to guarantee
that the operator is lower hemicontinuous along line segments (see [15]).

4 Duality Theory

We now present some infinite-dimensional Lagrange duality results as in [4–6, 9]. For
reader’s convenience, we first recall some typical concepts in duality theory [21]. Let
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X denote a real normed space and X∗ the topological dual of all continuous linear
functionals on X . Given C , a nonempty subset of X , and an element x ∈ X , the set

TC (x) :=
{
h ∈ X : h = lim

n→∞ λn(xn − x), λn ∈ R, λn > 0 ∀n ∈ N,

xn ∈ C ∀n ∈ N, lim
n→∞ xn = x

}

is called the contingent cone to C at x . Of course, if TC (x) �= ∅, then x belongs to the
closure of C , denoted by cl C . If C is convex, then [21]

TC (x) = cl cone(C − {x}),where cone(C) : = {λx : x ∈ C, λ ∈ R, λ ≥ 0}.

We now present the statement of Theorem 3.2 in [24]. Let X be a real normed space
real and S be a nonempty subset of X ; let (Y , ‖ · ‖) be a real normed space, partially
ordered by a convex cone C . Let f : S → R and g : S → Y be two convex functions.
Let us consider the primal problem

min
x∈K f (x), K := {x ∈ S : g(x) ∈ −C}, (34)

and the dual problem

max
u∈C∗ infx∈S{ f (x) + 〈u, g(x)〉}, C∗ :=

{
u ∈ Y ∗ : 〈u, v〉 ≥ 0,∀v ∈ C

}
, (35)

where C∗ is the dual cone of C .
We say that Assumption S is fulfilled at a point x0 ∈ K if and only if it results:

TM̃ ( f (x0), 0Y )∩] − ∞, 0[×{0Y } = ∅,

where

M̃ :=
{
( f (x) − f (x0) + γ, g(x) + v) : x ∈ S \ K , α ≥ 0, v, y ∈ C

}
.

Then, in [24] the following theorem is proved.

Theorem 4.1 Under the above assumptions, if problem (34) is solvable and Assump-
tion S is fulfilled at the extremal solution x0 ∈ K, then also problem (35) is solvable,
the extreme values of both problems are equal and, denoted by u the optimal solution
of (35), it results that 〈u, g(x0)〉 = 0.

The following result entitles us to characterize a solution of problem (34) as a saddle
point of the Lagrange function [4].

Theorem 4.2 Let us assume that assumptions of Theorem 4.1 be satisfied. Then, x0 ∈
K is a minimal solution to problem (34) if and only if there exists u ∈ C∗ such that
(x0, u) is a saddle point of the Lagrange function, namely,

L(x0, u) ≤ L(x0, u) ≤ L(x, u),∀x ∈ S, u ∈ C∗, 〈u, g(x0)〉 = 0.
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We now apply the duality framework in [4–6] to the second-stage problem (5)–(8).
First, we note problem (5)–(8) is equivalent to a variational inequality, see [3].

Theorem 4.3 The vector (y∗
h , z

∗
h) ∈ Th, for all h ∈ H, is an optimal solution of

the second-stage problem (5)–(8) if and only if (y∗
h , z

∗
h) ∈ Th solves the variational

inequality

∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

+ ∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω)))

]
dP(ω) ≥ 0,∀(yh, zh)) ∈ Th .

(36)

Now, we give two preliminary results.

Lemma 4.1 Let (y∗
h , z

∗
h) ∈ Th be a solution to (36). Let us introduce, a.e. in �,

ν1h(ω) = min

{ ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

: w ∈ W, k ∈ K
}
,

ν2h(ω) = min

{
∂πk

h (ω, z∗kh (ω))

∂zkh
: k ∈ K

}

�1k
w =

{
ω ∈ � :

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

= ν1h(ω)

}
, w ∈ W, k ∈ K

�2k
w =

{
ω ∈ � :

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

> ν1h(ω)

}
, w ∈ W, k ∈ K

�3k =
{
ω ∈ � : ∂πk

h (ω, z∗kh (ω))

∂zkh
= ν2h(ω)

}
, k ∈ K,

�4k =
{
ω ∈ � : ∂πk

h (ω, z∗kh (ω))

∂zkh
> ν2h(ω)

}
, k ∈ K.

Then,

ω ∈ �1k
w ⇒ ykwh(ω) ≥ 0, ω ∈ �2k

w ⇒ ykwh(ω) = 0, (37)

ω ∈ �3k ⇒ zkh(ω) ≥ 0, ω ∈ �4k ⇒ zkh(ω) = 0. (38)

Vice versa, if there exist two functions ν1h , ν
2
h ∈ L2(�, P,R) such that (37)–(38) hold,

then (y∗
h , z

∗
h) ∈ Th solves (36).

Proof We assume that (y∗
h , z

∗
h) ∈ Th is a solution to (36). Following [3], we prove that

if there exist w1, k1, w2, k2 such that

∑

m∈M

∂cmw1h
(ω, y∗(ω))

∂ yk1w1h

<
∑

m∈M

∂cmw2h
(ω, y∗(ω))

∂ yk2w2h

, (39)
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then yk2w2h
= 0. By contradiction, suppose that there exists a set E ⊆ �, with positive

measure, such that yk2w2h
> 0, for all ω ∈ E and (39) holds. Let us set

ykwh =

⎧
⎪⎪⎨

⎪⎪⎩

y∗k
wh in � \ E,

y∗k
wh if w �= w1, w2, k �= k1, k2, in E,

y∗k1
w1h

+ y∗k2
w2h

if w = w1, k = k1, in E,

0 if w = w2, k = k2, in E,

with
∑

w∈W xkwh≥dkh ,
∑

w∈W xkwh ≤ ek , xkwh ≥ 0,∀w ∈ W, ∀k ∈ K and zkh(ω) =
z∗kh (ω), ∀k ∈ K. Variational inequality (36) becomes

∑

k∈K

∫

�\E

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

]
dP(ω)

+
∑

k∈K
k �=k1,k2

∫

E

[ ∑

w∈W
w �=w1,w2

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

]
dP(ω)

+
∫

E

( ∑

m∈M

∂cmw1h
(ω, y∗(ω))

∂ yk1w1h

)
× (yk1w1h

(ω) − y∗k1
w1h

(ω))dP(ω)

+
∫

E

( ∑

m∈M

∂cmw2h
(ω, y∗(ω))

∂ yk2w2h

)
× (yk2w2h

(ω) − y∗k2
w2h

(ω))dP(ω)

=
∫

E

( ∑

m∈M

∂cmw1h
(ω, y∗(ω))

∂ yk1w1h

−
∑

m∈M

∂cmw2h
(ω, y∗(ω))

∂ yk2w2h

)
yk2w2h

(ω)dP(ω) < 0.

This contradicts variational inequality (36). Thus, we have

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

= ν1h(ω) ⇒ y∗k
wh(ω) ≥ 0,

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

> ν1h(ω) ⇒ y∗k
wh(ω) = 0.

Analogously, we find

∂πk
h (ω, z∗kh (ω))

∂zkh
= ν2h(ω) ⇒ z∗kh (ω) ≥ 0,

∂πk
h (ω, z∗kh (ω))

∂zkh
> ν2h(ω) ⇒ z∗kh (ω) = 0.

Now, we suppose that there exist two functions ν1h , ν
2
h ∈ L2(�, P,R) such that (37)–

(38) hold. Variational inequality (36) becomes
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∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

+ ∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω)))

]
dP(ω)

=
∑

w∈W

∑

k∈K

∫

�1k
w

ν1h(ω)(ykwh(ω) − y∗k
wh(ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�2k
w

∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
(ykwh(ω) − y∗k

wh(ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�3k
ν2h(ω)(zkh(ω) − z∗kh (ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�4k

∑

w∈W

(
∂πk

h (ω, z∗kh (ω))

∂zkh

)
(zkh(ω) − z∗kh (ω))dP(ω)

≥
∑

w∈W

∑

k∈K

∫

�1k
w

ν1h(ω)(ykwh(ω) − y∗k
wh(ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�2k
w

ν1h(ω)(ykwh(ω) − y∗k
wh(ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�3k
ν2h(ω)(zkh(ω) − z∗kh (ω))dP(ω)

+
∑

w∈W

∑

k∈K

∫

�4k
ν2h(ω)(zkh(ω) − z∗kh (ω))dP(ω) = 0.

Therefore, variational inequality (36) is satisfied. 
�
Now, we prove that Assumption S is verified.

Theorem 4.4 Problem (36) verifies Assumption S at the optimal solution (y∗
h , z

∗
h) ∈

Th.

Proof We suppose that (y∗
h , z

∗
h) ∈ Th is a solution to (36) and prove that Assumption

S is verified at (y∗
h , z

∗
h) ∈ Th . We set Y = L2(�, P,RWK ), Z = L2(�, P,RK ) and

prove that if (l, θY , θY , θY , θZ , θZ ) is such that

l = lim
n

λn

{ ∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω)) (40)

+ ∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω))

]
dP(ω) + γn

}
, (41)

θY = lim
n

λn

(
dkh (ω) −

∑

w∈W
ykwh(ω) − zkh(ω) + u1n

)
,
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θY = lim
n

λn

( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω) + u2n

)
, (42)

θY = lim
n

λn

(
− ykwh(ω) + u3n

)
, θZ = lim

n
λn

(
− zkh(ω) + u4n

)
, (43)

θZ = lim
n

λn

(
zkh(ω) − αdkh + u5n

)
, (44)

with γn ≥ 0, λn > 0, uin ≥ 0, i = 1, . . . , 5, and

lim
n

{ ∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

+ ∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω))

]
dP(ω) + γn

}
= 0,

lim
n

(
dkh (ω) −

∑

w∈W
ykwh(ω) − zkh(ω) + u1n

)
= θY ,

lim
n

( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω) + u2n

)
= θY ,

lim
n

(
− ykwh(ω) + u3n

)
= θY , lim

n

(
− zkh(ω) + u4n

)
= θZ ,

lim
n

λn

(
zkh(ω) − αdkh + u5n

)
= θZ ,

then l must be nonnegative. We prove that every term in (40)–(41) tends to zero. We
first considers only the terms in y:

λn

{ ∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
×

(
ykwh(ω) − y∗k

wh(ω)
)}

= λn

{ ∑

w∈W

∑

k∈K

∫

�1k
w

ν1h(ω)
(
ykwh(ω) − y∗k

wh(ω)
)
dP(ω)

+
∑

k∈K

∫

�2k
w

∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
(ykwh(ω) − y∗k

wh(ω))dP(ω)

}

≥ λn

{ ∑

w∈W

∑

k∈K

∫

�1k
w

ν1h(ω)
(
ykwh(ω) − y∗k

wh(ω)
)
dP(ω)

+
∑

w∈W

∑

k∈K

∫

�2k
w

ν1h(ω)
(
ykwh(ω) − y∗k

wh(ω)
)
dP(ω)

}

= λn

{ ∑

w∈W

∑

k∈K

∫

�

ν1h(ω)
(
ykwh(ω) − y∗k

wh(ω)
)
dP(ω)

}

123



Journal of Optimization Theory and Applications (2022) 193:354–380 371

= λn

{ ∑

k∈K

∫

�

ν1h(ω)
( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω) + u2n

)
dP(ω)

+
∑

k∈K

∫

�

ν1h(ω)
(

−
∑

w∈W
xkwh + ek(ω) −

∑

w∈W
y∗k
wh(ω)

)
dP(ω)

}
.

Taking into account that
∑

w∈W y∗k
wh(ω) = −∑

w∈W xkwh + ek(ω), all the terms
tends to zero. Analogously, we can prove that the other terms tends to zero. 
�

5 Application of the Infinite-Dimensional Duality to the Second-Stage
Problem

In this section, we prove that variational inequality (36) can be expressed in terms of
Lagrange variables. As a consequence, the second-stage problem can be replaced by
optimality conditions and the large-scale problem (9)–(17) can be reformulated.

Theorem 5.1 (y∗
h , z

∗
h) ∈ Th is a solution to (36) if and only if there exist

λ1kh , λ2kh , μ1k
w ,μ2k

w ,μ3k
w ∈ L2(�, P,R+), such that

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

− λ∗1k
h (ω) + λ∗2k

h (ω) − μ∗1k(ω) = 0,P-a.s.

∂πk
h (ω, z∗kh (ω))

∂zkh
− μ∗2k(ω) + μ∗3k(ω) = 0,P-a.s.

λ1kh (ω)
(
dkh (ω) −

∑

w∈W
ykwh(ω) − zkh(ω)

)
= 0,P-a.s.

λ2kh (ω)
( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω)

)
= 0,P-a.s.

μ1k
w (ω)ykwh(ω) = 0, μ2k

w (ω)zkh(ω) = 0,P-a.s.

μ3k
w (ω)

(
zkh(ω) − αdkh

)
= 0,P-a.s.

Proof We assume that (y∗
h , z

∗
h) ∈ Th is a solution to (36). For h = 1, . . . , H and for

given x ∈ S, we set:

�h(x, y, z) =
∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

)
× (ykwh(ω) − y∗k

wh(ω))

+∂πk
h (ω, z∗kh (ω))

∂zkh
× (zkh(ω) − z∗kh (ω))

]
dP(ω) ≥ 0,∀(yh, zh) ∈ Th

and observe that variational inequality (36) is equivalent to the minimization problem

min
y,z∈T �h(x, y, z) = �h(x, y

∗, z∗) = 0. (45)
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For h = 1, . . . , H , we consider the Lagrange function associated with optimization
problem (45):

Lh(x, y, z, λ, μ) = �h(x, y, z)

+
∫ T

0

∑

k∈K
λ1kh (ω)

(
dkh (ω) −

∑

w∈W
ykwh(ω) − zkh(ω)

)
dP(ω)

+
∫ T

0

∑

k∈K
λ2kh (ω)

( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω)

)
dP(ω),

−
∫ T

0

∑

k∈K

∑

w∈W
μ1k

w (ω)ykwh(ω)dP(ω) −
∫ T

0

∑

k∈K
μ2k

w (ω)zkh(ω)dP(ω)

+
∫ T

0

∑

k∈K
μ3k

w (ω)
(
zkh(ω) − αdkh

)
dP(ω), (46)

∀y ∈ L2(�, P,RWH ), z ∈ L2(�, P,RHK ),λ1kh , λ2kh , μ1k
w ,μ2k

w ,μ3k
w ∈ L2(�, P,R+).

Then, applying results in [5, 6], since we proved Assumption S, there exist
λ∗1k
h (ω), λ∗2k

h (ω), μ∗1k
w (ω), μ∗2k

w (ω), μ∗3k
w (ω) ≥ 0, P .a.s. such that (yh, zh, λ∗1k

h ,

λ∗2k
h , μ∗1k

w ,μ∗2k
w ,μ∗3k

w ) is a saddle point of the Lagrange functional

Lh(x, y
∗, z∗, λ, μ) ≤ Lh(x, y

∗, z∗, λ∗, μ∗) ≤ Lh(x, y, z, λ
∗, μ∗)

∀(yh, zh) ∈ Th,∀λ1kh (ω), λ2kh (ω), μ1k
w (ω), μ2k

w (ω), μ3k
w (ω) ≥ 0, P.a.s.

λ∗1k
h (ω)

(
dkh (ω) −

∑

w∈W
y∗k
wh(ω) − z∗kh (ω)

)
= 0, P-a.s.

λ∗2k
h (ω)

( ∑

w∈W
y∗k
wh(ω) +

∑

w∈W
xkwh − ek(ω)

)
= 0, P-a.s.

μ∗1k
w (ω)y∗k

wh(ω) = 0, μ∗2k
w (ω)z∗kh (ω) = 0, P-a.s.

μ∗3k
w (ω)

(
z∗kh (ω) − αdkh

)
= 0, P-a.s.

Thus, we find

0 = Lh(x, y
∗, z∗, λ∗, μ∗) ≤ Lh(x, y, z, λ

∗, μ∗)

=
∑

k∈K

∫

�

[ ∑

w∈W

( ∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

− λ∗1k
h (ω) + λ∗2k

h (ω) − μ∗1k(ω)

)

× (ykwh(ω) − y∗k
wh(ω))

+
(

∂πk
h (ω, z∗kh (ω))

∂zkh
− μ∗2k(ω) + μ∗3k(ω)

)
× (zkh(ω) − z∗kh (ω))

]
dP(ω)
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Setting ykwh(ω) = y∗k
wh(ω) ± ε1(ω), and then zkh(ω) = z∗kh (ω) ± ε2(ω), we find that

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

− λ∗1k
h (ω) + λ∗2k

h (ω) − μ∗1k(ω) = 0, P-a.s.

∂πk
h (ω, z∗kh (ω))

∂zkh
− μ∗2k(ω) + μ∗3k(ω) = 0, P-a.s.

The converse is easily achieved. 
�

Therefore, the two-stage problem can be reformulated as follows:

min
∑

w∈W

( ∑

k∈K
ρk

wx
k
wh +

∑

m∈M
tmwh(x)

)
+

∫

�

�h(x, ξ(ω))dP(ω)

∑

w∈W
xkwh≥dkh , ∀k ∈ K,

∑

w∈W
xkwh ≤ ek, ∀k ∈ K,

xkwh ≥ 0, ∀w ∈ W, ∀k ∈ K,

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

− λ∗1k
h (ω) + λ∗2k

h (ω) ≥ 0, P − a.s.

∂πk
h (ω, z∗kh (ω))

∂zkh
+ μ∗3k(ω) ≥ 0, P − a.s.

λ1kh (ω)
(
dkh (ω) −

∑

w∈W
ykwh(ω) − zkh(ω)

)
= 0, P − a.s.

λ2kh (ω)
( ∑

w∈W
ykwh(ω) +

∑

w∈W
xkwh − ek(ω)

)
= 0, P − a.s.

μ3k
w (ω)

(
zkh(ω) − αdkh

)
= 0, P − a.s.

We now describe some relevant consequences that gives an insights into the market
behavior with respect to the product shipment. Dual variables λ1kh , λ2kh , μ1k

w , μ2k
w , μ3k

w

regulate the medical item procurement. In particular, λ1kh is a control variable on the
first-stage demand; λ2kh is a control variable on the item availability level; μ1k

w is a
control variable on the second-stage demand; μ2k

w and μ3k
w are control variables on

the unfulfilled demand. We discuss some cases, considering active and non-active
constraints. We have:

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

− λ∗1k
h (ω) + λ∗2k

h (ω) − μ∗1k(ω) = 0, P − a.s.
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If y∗k
wh(ω) > 0, then μ1k

w (ω) = 0, P-a.s., and

∑

m∈M

∂cmwh(ω, y∗(ω))

∂ ykwh

= λ∗1k
h (ω) − λ∗2k

h (ω), P-a.s.

namely, the marginal cost is equal to the difference of the control variables on
demand and market item availability. Moreover, if λ∗1k

h (ω) = 0, λ∗2k
h (ω) > 0,

P-a.s., we find
∑

m∈M
∂cmwh(ω,y∗(ω))

∂ ykwh
= −λ∗2k

h (ω), P − a.s., and the marginal cost

decreases. If λ∗2k
h (ω) = 0, λ∗1k

h (ω) > 0, P-a.s., we find thet
∑

m∈M
∂cmwh(ω,y∗(ω))

∂ ykwh
=

λ∗1k
h (ω),P-a.s., and the marginal cost increases.
From

∂πk
h (ω, z∗kh (ω))

∂zkh
= μ∗2k(ω) − μ∗3k(ω), P-a.s.,

we note that the marginal penalty is equal to the difference between the con-
trol variables on the unfulfilled demand. If 0 < z∗kh (ω) < αdkh , P − a.s., then

μ∗2k(ω) = μ∗3k(ω) = 0, and
∂πk

h (ω,z∗kh (ω))

∂zkh
= 0, P − a.s., namely, the marginal

penalty is equal to zero. Ifμ∗2k(ω) > 0, then z∗kh (ω) = 0, P − a.s. This is the case of
an effective emergency plan, in which hospital does not incur in any unmet demand. If

μ∗3k(ω) > 0, thenμ∗2k(ω) = 0, P − a.s., and
∂πk

h (ω,z∗kh (ω))

∂zkh
= −μ∗3k(ω), P − a.s.,

namely, the marginal penalty decreases.

6 Numerical Example

In this section, we present two small numerical examples for illustrative purposes. We
consider twowarehouses (w = 2), two hospitals (h = 2), three different items (k = 3),
one transportation mode (m = 1) and five scenarios. The economic data mainly
come from [1]. For the calculation of transportation costs, we apply the Product &
Distance-based calculation rule, which computes the transportation costs based on the
coefficients for transportation costs (that include all the different terms, e.g., fuel price,
tolls, etc.) for national shipments assumed to be 0.19e/km ∗ m3. For transportation
time from warehouses to hospitals, we consider hourly cost set, that includes the time
spending for the loading process, the route to go and the unloading process. Penalty
costs, concerning the unfulfilled demand, depends on the number of items that are not
delivered in one day.

The numerical simulations are solved applying the Progressive Hedging Method
(PHM) [31]. This is a well-known algorithm that has been recently extended to mul-
tistage SVI and multistage stochastic Lagrangian variational inequalities [33, 34]. In
[2], the authors presented a new framework that shows howPHMcan be utilized, while
guaranteeing convergence, to globally optimal solutions of mixed-integer stochastic
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convex programs. We now briefly present the Progressive Hedging Algorithm for a
two-stage stochastic optimization problem.

We consider the problem:

min
x∈X f (x) + Eξ (�h(x, ξ(ω))),

where

f (x) =
∑

w∈W

( ∑

k∈K
ρk

wx
k
wh +

∑

m∈M
tmwh(x)

)

is convex in x and �h(x, ξ(ω)) is the recourse function, defined as the second-stage
optimal value function

�h(x, ξ(ω)) = min
y(ξ)∈Y (x,ξ)

g(x, y(ξ), ξ(ω)),

where

g(x, y(ξ), ξ(ω)) =
∑

w∈W

∑

m∈M
cmwh(ω, y(ω)) +

∑

k∈K
πk
h (ω, zkh(ω)),

cmwh(ω, ·) and πk
h (ω, ·) are convex function for all w, h, k,m.

Algorithm 1 Pseudo-code of PHM for two-stage stochastic programming.

Initial. x0(ξ) = 0, y0(ξ) = 0 and w0(ξ) = 0 ∀ξ, r > 0, v = 1.
Step 1. For each ξ , obtain x̂v(ξ) and ŷv(ξ) by solving subproblem:
min f (x(ξ)) + g(x(ξ), y(ξ), ξ) + 〈x(ξ), wv(ξ)〉 + r

2 ||x(ξ) − xv(ξ)||2,
s.t. x(ξ) ∈ X , y(ξ) ∈ Y (x(ξ), ξ);
Step 2. Update xv+1 = Eξ [x̂v(ξ)], yv+1(ξ) = ŷv(ξ) ∀ξ,

wv+1(ξ) = wv(ξ) − r(x̂v(ξ) − xv+1(ξ)) ∀ξ ;
v := v + 1, repeat.

We emphasize that the convergence of PHMto global optimal solution is ensured for
convex stochastic programs if the involved function in the corresponding variational
inequality is strongly monotone, [33, 34].

All the codes were written in MATLAB and run in MATLAB R2020a (derived
data supporting the findings of this study are available from the corresponding author
upon request.). Following a discrete approximation scheme as in [23], we choose
|R| = 5 realizations of random variable ξ with probability 1/R. We note that hospital
medical items are generally purchased as multiple packs into boxes. In our examples,
we consider two different cases. In the first example, we consider some indispensable
items; hence, we use a high penalty of unfulfilled demand, and we consider all cost
referred to a single pack. In the second example, we consider a box as a unit of
measurement, which contains thousand packs and a low penalty of unfulfilled demand.
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Numerical Example 1: In this numerical example, the items are collected in multiple
packages, and the coefficients of the cost functions are related to a single package.
We have considered high penalty functions, since not satisfying the demand for a
particular item would cause severe discomfort. It can be noted that, given the danger
of the penalty, at equilibrium we get zero penalties as it is likely that hospitals pay
more attention to some indispensable items. The matrix of the cost functions is given
by

⎛

⎝
2, 6 2, 9 3, 5 7, 2 0, 00019 0, 00029 0, 00038 0, 00023 1800 1600
2, 7 2, 5 1, 7 2, 2 0, 00025 0, 00031 0, 00024 0, 00018 1500 1400
1, 6 1, 9 1, 02 2, 03 0, 00021 0, 00036 0, 00032 0, 00028 1300 1500

⎞

⎠ .

(47)

First of all, we focus our attention on the flows xkwh of the first stage. We find

x111 = 3, 00; x112 = 3, 40; x121 = 0, 00; x122 = 0, 00;
x211 = 0, 00; x212 = 0, 00; x221 = 0, 00; x222 = 0, 00;
x311 = 0, 00; x312 = 1, 50; x321 = 1, 00; x322 = 0, 00. (48)

From the numerical result of the first example [see (48),Table 2], we notice that in a
condition without emergency, each hospital prefers to choose his trusted warehouse.
In particular,

• All hospitals decide to buy the medical item one (k = 1) from warehouse one
(w = 1);

• All hospitals decide not to buy the medical item two (k = 2) from warehouse one
(w = 1) or two (w = 2);

• For medical item three (k = 3), hospital two (h = 2) decides to rely on warehouse
one (w = 1) and hospital one (h = 1) on warehouse two (w = 2).

In the second stage, namely, in an emergency situation, the usual choice is no longer the
optimal one, but demand must always be satisfied by minimizing costs. Furthermore,
the penalties are fortunately null for each hospital and for each item. The results are
shown in Table 2.
Numerical Example 2: In this numerical example, the items are treated as boxes and
the coefficients of the cost functions are related to boxes which contain thousand
packages. We have considered low penalty functions, since not satisfying the demand
for a particular item would not cause severe discomfort. In this case, the amount of
unfulfilled demand at hospital h of medical supply item k under scenarioω, for all h, k
are not null. This is a consequence of the fact that for these items it is not necessary
to satisfy fully the daily demand. Another difference with the first numerical example
is that all hospitals use all warehouses, without choosing the trusted warehouses.

The coefficient matrix of the cost functions is represented by (49).

⎛

⎝
2, 41 2, 44 2, 47 2, 42 1, 90 2, 85 3, 80 2, 28 0, 05 0, 04
2, 81 2, 84 2, 87 2, 82 2, 54 3, 10 2, 42 1, 83 0, 07 0, 03
1, 76 1, 79 1, 82 1, 77 2, 10 3, 63 3, 21 2, 82 0, 02 0, 08

⎞

⎠ × 10−3. (49)
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Table 2 Numerical results solved by PHM about indispensable items

Items Flows Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

k = 1 y11(ω) 1,21 1,56 1,66 1,82 2,04

y12(ω) 1,12 1,12 1,31 1,41 1,57

y21(ω) 0,79 0,64 0,85 0,99 1,03

y22(ω) 1,29 1,49 1,58 1,68 1,91

k = 2 y11(ω) 0,51 0,62 0,77 0,91 1,01

y12(ω) 0,56 0,57 0,73 0,81 0,85

y21(ω) 0,51 0,65 0,81 0,94 1,06

y22(ω) 0,65 1,00 1,16 1,28 1,42

k = 3 y11(ω) 0,34 1,25 0,48 0,57 0,79

y12(ω) 0,44 0,46 0,54 0,58 0,64

y21(ω) 0,31 0,27 0,37 0,40 0,41

y22(ω) 0,48 0,55 0,66 0,72 0,87

k = 1 z1(ω) 0,00 0,00 0,00 0,00 0,00

z2(ω) 0,00 0,00 0,00 0,00 0,00

k = 2 z1(ω) 0,00 0,00 0,00 0,00 0,00

z2(ω) 0,00 0,00 0,00 0,00 0,00

k = 3 z1(ω) 0,00 0,00 0,00 0,00 0,00

z2(ω) 0,00 0,00 0,00 0,00 0,00

The flows xkwh of the first stage (50) are given by

x111 = 1, 65; x112 = 1, 71; x121 = 1, 44; x122 = 1, 78;
x211 = 1, 14; x212 = 1, 11; x221 = 0, 94; x222 = 1, 17;
x311 = 0, 64; x312 = 0, 79; x321 = 0, 52; x322 = 0, 85. (50)

In Table 3, we group all variables for the second stage, under scenario ω.

7 Conclusions

In this paper, we constructed a stochastic Nash equilibrium model for a medical sup-
ply network that consists of warehouses and hospitals with multiple medical items
and multiple transportation modes. Each hospital solves a two-stage stochastic opti-
mization problem, where, in the first stage, seeks to minimize the purchasing cost of
medical items and the transportation time. Then, we introduced a recourse decision
process to optimize the expected overall costs and the penalty for the prior plan, in
response to each possible disaster scenario of the second stage. The hospitals simulta-
neously solve their own stochastic optimization problems and reach a stable state given
by the stochastic Nash equilibrium concept. Specific features of the model include:
the uncertainty of the scenarios, the supply availability of medical items, the penalty
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Table 3 Numerical result solved by PHM with unfulfilled demand

Items Flows Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

k = 1 y11(ω) 1,25 1,47 1,77 2,07 2,22

y12(ω) 0,44 0,51 0,46 0,51 0,42

y21(ω) 0,21 0,15 0,15 0,15 0,21

y22(ω) 1,25 1,38 1,63 1,79 2,32

k = 2 y11(ω) 0,34 0,39 0,51 0,63 0,70

y12(ω) 0,10 0,20 0,21 0,21 0,24

y21(ω) 0,41 0,46 0,64 0,80 0,94

y22(ω) 0,75 0,94 1,22 1,41 1,57

k = 3 y11(ω) 0,37 0,44 0,52 0,62 0,72

y12(ω) 0,19 0,23 0,25 0,28 0,23

y21(ω) 0,14 0,17 0,19 0,19 0,22

y22(ω) 0,50 0,52 0,69 0,75 0,96

k = 1 z1(ω) 0,65 0,68 0,67 0,67 0,68

z2(ω) 0,79 0,78 0,79 0,78 0,77

k = 2 z1(ω) 0,40 0,44 0,44 0,44 0,44

z2(ω) 0,47 0,47 0,48 0,48 0,48

k = 3 z1(ω) 0,21 0,20 0,20 0,20 0,19

z2(ω) 0,32 0,32 0,33 0,33 0,34

for unmet demand and the fluctuating costs. The model is formulated as a variational
inequality. In the case of general probability distribution, we characterized the Nash
equilibrium of the problem as a solution to an infinite-dimensional variational inequal-
ity in the Hilbert space L2. The associated Lagrange function was studied, and a strong
duality result was provided. Finally, we presented some numerical illustrations solved
applying the progressive hedging algorithm.

The results reveal that hospitals are able to re-arrange timely their requests in order
to satisfy the need for medical items. In emergencies, uncertainty plays a fundamental
role in the success of disaster management; hence, health institutions must be ready to
adjust the request of medical items. Our contributions to the literature lie in advancing
the state-of-the-art of stochastic programming for disaster management as well as
applications of variational inequalities and strong duality. We also emphasize that to
date there has been limited work on stochastic programming problems under general
probability distribution.

Thismodel could be extended in future research. For example, we could incorporate
additional details to the model and solve examples using data from real situations. The
extension to a multi-stage problem where we consider different stages of information
is another future research opportunity.

Acknowledgements The research was partially supported by the research projects “Problemi di equilibrio:
metodi variazionali e teoria dei giochi” GNAMPA-INdAM and “Programma ricerca di ateneo UNICT
2020-22 linea 2-OMNIA” University of Catania. These support are gratefully acknowledged.

123



Journal of Optimization Theory and Applications (2022) 193:354–380 379

Funding Open access funding provided by Università degli Studi di Catania within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aldrighetti, R., Zennaro, I., Finco, S., Battini, D.: Healthcare supply chain simulation with disruption
considerations: a case study from Northern Italy. Global J. Flex. Syst. Manag. 20(1), 81–102 (2019)

2. Atakan, S., Sen, S.: A progressive Hedging based branch-and-bound algorithm for mixed-integer
stochastic programs. Comput. Manag. Sci. 15(3), 501–540 (2018)

3. Barbagallo, A., Daniele, P., Maugeri, A.: Variational formulation for a general dynamic financial
equilibrium problem: balance law and liability formula. Nonlinear Anal. 75, 1104–1123 (2012)

4. Daniele, P., Giuffrè, S.: General infinite dimensional duality and applications to evolutionary network
equilibrium problems. Optim. Lett. 1, 227–243 (2007)

5. Daniele, P., Giuffrè, S., Maugeri, A.: Remarks on general infinite dimensional duality with cone and
equality constraints. Commun. Appl. Anal. 13(4), 567–578 (2009)

6. Daniele, P., Giuffrè, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math.
Ann. 339, 221–239 (2007)

7. Daniele, P., Giuffrè, S., Maugeri, A.: General traffic equilibrium problem with uncertainty and random
variational inequalities. In: Rassias, T.M., et al. (eds.) Optimization in Science and Engineering. In
Honor of the 60th Birthday of Panos Pardalos, pp. 89–96. Springer, New York (2014)

8. Daniele, P., Giuffrè, S.: Random variational inequalities and the random traffic equilibrium problem.
J. Opt. Theory Appl. 167, 363–381 (2015)

9. Idone, G., Maugeri, A.: Generalized constraints qualification conditions and infinite dimensional dual-
ity. Taiwan. J. Math. 13, 1711–1722 (2009)

10. Chen, X., Pong, T.K., Wets, R.J.-B.: Two-stage stochastic variational inequalities: an ERM-solution
procedure. Math. Program. 165, 1–41 (2017)

11. Falsaperla, P., Raciti, F., Scrimali, L.: A variational inequality model of the spatial price network
problem with uncertain data. Optim. Eng. 13, 417–434 (2012)

12. Fani, S.V., Subriadi, A.P.: Business continuity plan: examining of multi-usable framework. Procedia
Comput. Sci. 161, 275–282 (2019)

13. Fargetta, G., Scrimali, L.: Optimal emergency evacuation with uncertainty. In: Parasidis IN, Providas
E., Rassias T.M. (eds.) Mathematical Analysis in Interdisciplinary Research, Springer Optimization
and Its Applications, vol. 179, pp. 261–279. Springer (2021)

14. Fargetta, G., Scrimali, L. A Two-Stage Variational inequality for medical supply in emergency man-
agement. In: Cerulli R., Dell’Amico M., Guerriero F., Pacciarelli D., Sforza A. (eds) Optimization and
Decision Science. AIRO Springer Series, vol 7. Springer, Cham, 91-102 (2021)

15. Fucik, S., Kufner, A.: Nonlinear Differential Equations. Elsevier Sci. Publ. Co., New York (1980)
16. Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer. Funct.

Anal. Optim. 27(5–6), 619–636 (2006)
17. Gwinner, J., Raciti, F.: Random equilibrium problems on networks. Math. Comput. Model. 43(7–8),

880–891 (2006)
18. Gwinner, J., Raciti, F.: Some equilibrium problems under uncertainty and random variational inequal-

ities. Ann. Oper. Res. 200(1), 299–319 (2012)
19. Gwinner, J., Jadamba, B., Khan, A.A., Raciti, F.: Uncertainty Quantification inVariational Inequalities:

Theory, Numerics, and Applications. Chapman and Hall/CRC Press, Boca Raton (2022)

123

http://creativecommons.org/licenses/by/4.0/


380 Journal of Optimization Theory and Applications (2022) 193:354–380

20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic Press, New York (1980)

21. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1996)
22. Jadamba, B., Raciti, F.: Variational inequality approach to stochastic nash equilibrium problems with

an application to Cournot oligopoly. J. Opt. Theory Appl. 165(3), 1050–1070 (2015)
23. Li, M., Zhang, C.: Two-stage stochastic variational inequality arising from stochastic programming.

J. Opt. Theory Appl. 186, 324–343 (2020)
24. Maugeri, A., Raciti, F.: Remarks on infinite dimensional duality. J. Global Optim. 46(4), 581–588

(2010)
25. Maugeri, A., Raciti, F.: On existence theorems formonotone and nonmonotone variational inequalities.

J. Convex Anal. 16(3–4), 899–911 (2009)
26. Mete, H.O., Zabinsky, Z.B.: Stochastic optimization of medical supply location and distribution in

disaster management. Int. J. Prod. Econ. 126(1), 76–84 (2010)
27. Nagurney, A.: Network Eonomics: A Variational Inequality Approach, 2nd edn. Kluwer Academic

Publishers, Massachusetts (1999)
28. Nagurney, A., Salarpour,M., Dong, J., Nagurney, L.S.: A stochastic disaster relief game theory network

model. SN Oper. Res. Forum 1(10), 1–33 (2020)
29. Nagurney, A., Salarpour, M., Dong, J., Dutta, P.: Competition for medical supplies under stochastic

demand in the Covid-19 pandemic: a generalized nash equilibrium framework. In: Rassias, T.M.,
Pardalos, P.M. (eds.) Nonlinear Analysis and Global Optimization, pp. 331–356. Springer, Cham
(2021)

30. Salarpour, M., Nagurney, A.: A multicountry, multicommodity stochastic game theory network model
of competition for medical supplies inspired by the Covid-19 pandemic. Int. J. Prod. Econ. 236, 108074
(2021)

31. Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty.
Math. Oper. Res. 16, 119147 (1991)

32. Rockafellar, R.T., Wets, R.J.-B.: Stochastic variational inequalities: single-stage to multistage. Math.
Program. 165, 1–30 (2016)

33. Rockafellar, R.T., Sun, J.: Solving monotone stochastic variational inequalities and complementarity
problems by progressive hedging. Math. Program. 174, 453–471 (2019)

34. Rockafellar, R.T., Sun, J.: Solving Lagrangian variational inequalities with applications to stochastic
programming. Math. Program. 181, 435–451 (2020)

35. Wang, L.: A two-stage stochastic programming framework for evacuation planning in disaster
responses. Comput. Ind. Eng. 145, 106458 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A Stochastic Nash Equilibrium Problem for Medical Supply Competition
	Abstract
	1 Introduction
	2 The Two-Stage Stochastic Model
	3 Stochastic Nash Equilibrium Problem
	3.1 Discrete Probability Distribution
	3.2 General Probability Distribution

	4 Duality Theory
	5 Application of the Infinite-Dimensional Duality to the Second-Stage Problem
	6 Numerical Example
	7 Conclusions
	Acknowledgements
	References




