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Abstract
We consider a quadratic programming problemwith quadratic cone constraints and an
additional geometric constraint. Under suitable assumptions, we establish necessary
and sufficient conditions for optimality of a KKT point and, in particular, we char-
acterize optimality by using strong duality as a regularity condition. We consider in
details the case where the feasible set is defined by two quadratic equality constraints
and, finally, we analyse simultaneous diagonalizable quadratic problems, where the
Hessian matrices of the involved quadratic functions are all diagonalizable by means
of the same orthonormal matrix.
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1 Introduction

We analyse a quadratic programming problemwith general quadratic cone constraints
and an additional geometric constraint. This problem has received attention in the lit-
erature in the last decades (see, e.g. [5, 7, 18, 20]) since it contains as a particular case
several classic optimization problems as trust region problems, the standard quadratic
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problem and the max cut problem; moreover, it has many applications in robust opti-
mization under matrix norm data uncertainty and in the field of biology and economics
[12].
In this paper, we are interested in establishing necessary or sufficient global optimal-
ity conditions for a point that fulfils the Karush–Kuhn–Tucker (KKT) conditions or
under the assumption of strong duality on the given problem. The general formulation
of the considered quadratic programming problem allows us to treat simultaneously
quadratic problems with one or more quadratic equality or inequality constraints and
possibly additional constraints that can be included in the geometric one, which makes
the analysis of the given problem very general, particularly as regards the possibility of
providing equivalent formulations and associating a dual problem with the given one.
Our approach allows to recover or generalize several known results in the literature
[13, 14, 20].
The paper is organized as follows. In Sect. 2 we recall the main definitions and pre-
liminary results that will be used throughout the paper. In Sect. 3, we characterize
global optimality for a KKT point or in the presence of the property of strong duality
on the given problem and in Sect. 4, we consider in details the case where the feasible
set is defined by two quadratic equality constraints. In Sect. 5 we analyse a simulta-
neous diagonalizable quadratic problem (SDQP), where the Hessian matrices of the
involved quadratic functions are all diagonalizable by means of the same orthonormal
matrix S. The analysis previously developed allows us to provide suitable conditions
that guarantee the existence of a convex reformulation of SDQP improving some
results stated in [15] in the presence of two quadratic inequality constraints.

2 Preliminary Results

Let us recall the basic notations and preliminary results that will be used throughout the
paper. Given C ⊆ IRn , co C , int C , ri C , cl C , span C , denote the convex hull of C , the
topological interior of C , the relative interior, the closure of C and the smallest vector
linear subspace containing C , respectively. C is said to be a cone if tC ⊆ C , ∀ t ≥ 0.
A convex coneC is called pointed ifC∩(−C) = {0}. We define coneC := ⋃

t≥0 tC .
We set IRm+ := {x ∈ IRm : x ≥ 0}. If C is a convex set and x ∈ C , the normal cone to
C at x̄ ∈ C is defined by NC (x̄) := {ξ ∈ IRn : 〈ξ, x − x̄〉 ≤ 0, ∀ x ∈ C}.
The positive polar of a setC ⊆ IRn is defined byC∗ := {y∗ ∈ IRn : 〈y∗, x〉 ≥ 0, ∀x ∈
C}. It is well known that

C∗ = (cl C)∗ = (co C)∗ = (cone C)∗, cl co(cone C)

= cl cone(co C) = C∗∗ := (C∗)∗. (1)

C⊥ := {v ∈ IRn : v�x = 0, ∀ x ∈ C} is the orthogonal subspace to the set C .
The contingent cone T (C; x̄) of C at x̄ ∈ C is the set of all v ∈ IRn such that there
exist sequences (xk, tk) ∈ C × IR+ with xk → x̄ and tk(xk − x̄) → v.
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Let P ⊆ IRm be a convex cone and C ⊆ IRn a convex set. A function f : IRn → IRm

is said P-convex on C if for every x1, x2 ∈ C and for every λ ∈ [0, 1],

λ f (x1) + (1 − λ) f (x2) − f (λx1 + (1 − λ)x2) ∈ P.

For m = 1 and P = IR+, we recover the classic definition of a convex function. It is
known that if f is P-convex on C , then the set f (C) + P is convex.
In the paper we will use the following preliminary results.
Let C := {x ∈ IRn : g(x) = 0}, where g : IRn → IR. Then, we get [6]

T (C; x̄) = {v ∈ IRn : ∇g(x̄)�v = 0} = ∇g(x̄)⊥ if ∇g(x̄) �= 0, (2)

and so [T (C; x̄)]∗ = IR∇g(x̄); whereas if g(x)
.= 1

2
x�Bx + b�x + β is a quadratic

function, with B being a real symmetric matrix of order n, b ∈ IRn and β ∈ IR, then

T (C; x̄) = {v ∈ IRn : v�Bv = 0} if ∇g(x̄) = 0. (3)

A symmetric matrix B is positive semidefinite on C , if x�Bx ≥ 0, ∀ x ∈ C .

Lemma 2.1 ( [18,Lemma 3.10]) Assume that B is an indefinite real symmetric matrix
and set Z := {v ∈ IRn : v�Bv = 0}. Then

co Z = IRn = span Z .

3 The General Case with Cone Quadratic Constraints

Let us consider the problem

μ := inf{ f (x) : g(x) ∈ −P, x ∈ C}, (4)

where P is a convex cone in IRm , g(x) := (g1(x), . . . , gm(x)) and f , gi : IRn →
IR, i = 1, . . . ,m are quadratic functions, C ⊆ IRn ,

f (x) := 1

2
x�Ax + a�x + α, gi (x) := 1

2
x�Bi x + b�

i x + βi , i = 1, . . . ,m, (5)

with A, Bi being real symmetric matrices; a, bi being vectors in IRn and α, βi ∈ IR
for i = 1, . . . ,m. K := {x ∈ C : g(x) ∈ −P} is the feasible set of (4). We associate

with (4) the Lagrangian function L(λ, x)
.= f (x)+

m∑

i=1

λi gi (x) and its dual problem

ν := sup
λ∈P∗

inf
x∈C L(λ, x). (6)
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We say that strong duality holds for (4), if there exists λ∗ ∈ P∗ such that

inf
x∈K f (x) = inf

x∈C L(λ∗, x).

In case (4) admits an optimal solution x̄ ∈ K , then the previous condition is equivalent
to

L(λ∗, x̄) ≤ L(λ∗, x), ∀x ∈ C, 〈λ∗, g(x̄)〉 = 0, g(x̄) ∈ −P, x̄ ∈ C . (7)

Under suitable assumptions on the cone T (C; x̄), we first establish three general
results: the first and the second consider the case where x̄ is a KKT point and provide
a sufficient optimality condition and a characterization of its optimality in the case
where P = {0}m , respectively, while the third one characterizes optimality under the
assumption of strong duality.

Proposition 3.1 Let f , g1, . . . , gm be quadratic functions as above. Assume that x̄ ∈
K is a KKT point for (4), i.e. there exists λ∗ ∈ P∗ such that

∇x L(λ∗, x̄) ∈ [T (C; x̄)]∗, 〈λ∗, g(x̄)〉 = 0, (8)

and, additionally, (K − x̄) ⊆ cl co T (C; x̄). Then the following assertion holds.
If ∇2

x L(λ∗, x̄) is positive semidefinite on K − x̄ , then x̄ is a (global) optimal solution
for problem (4).

Proof By (8), ∇x L(λ∗, x̄)�v ≥ 0, for every v ∈ T (C; x̄), and by (1) we obtain

∇x L(λ∗, x̄)�v ≥ 0,∀v ∈ cl co T (C; x̄).

The assumptions imply that

∇x L(λ∗, x̄)�v ≥ 0, ∀v ∈ (K − x̄). (9)

We note that, since the involved functions are quadratic, then, the following equality
holds:

L(λ∗, x) − L(λ∗, x̄) = ∇x L(λ∗, x̄)�(x − x̄) + 1

2
(x − x̄)�∇2

x L(λ∗, x̄)(x − x̄),

∀x ∈ R
n . (10)

Exploiting (10) and (9), for every x ∈ K , we get

f (x) − f (x̄) ≥ f (x) +
m∑

i=1

λ∗
i gi (x) − f (x̄) = L(λ∗, x) − L(λ∗, x̄)

≥ 1

2
(x − x̄)�∇2

x L(λ∗, x̄)(x − x̄).

By the previous inequalities, the assertion follows. ��
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Remark 3.2 Proposition 3.1 is related to Theorem2.1 in [4]when applied to a quadratic
problem. Indeed, Theorem 2.1 in [4] requires that K is a convex set and C := IRn ,
which guarantees that the condition (K − x̄) ⊆ cl co T (C; x̄) is fulfilled.
Proposition 3.3 Let f , g1, . . . , gm be quadratic functions as above, let P := {0}m
and x̄ ∈ K. Assume that

(K − x̄) ⊆ cl co T (C; x̄) ⊆ −cl co T (C; x̄), (11)

and that x̄ is a KKT point for (4), i.e. there exists λ∗ ∈ IRm such that

∇x L(λ∗, x̄) ∈ [T (C; x̄)]∗. (12)

Then the following conditions are equivalent:

(a) x̄ is an optimal solution for the problem (4);
(b) ∇2

x L(λ∗, x̄) is positive semidefinite on K − x̄ and so on cl cone(K − x̄).

Proof By (12), ∇x L(λ∗, x̄)�v ≥ 0, for every v ∈ T (C; x̄) and by (1) we get,

∇x L(λ∗, x̄)�v ≥ 0,∀v ∈ cl co T (C; x̄).

The second inclusion in (11) implies that

∇x L(λ∗, x̄)�v = 0, ∀v ∈ cl co T (C; x̄), (13)

and, by the first inclusion in (11), ∇x L(λ∗, x̄)�v = 0, for every v ∈ (K − x̄).
By (10) and (13), for every x ∈ K , we get

f (x) − f (x̄) = f (x) +
m∑

i=1

λ∗
i gi (x) − f (x̄) = L(λ∗, x) − L(λ∗, x̄)

= 1

2
(x − x̄)�∇2

x L(λ∗, x̄)(x − x̄). (14)

By the previous equalities, the equivalence between (a) and (b) follows. ��
Remark 3.4 Note that the second inclusion in assumption (11) is not needed for proving
that (b) implies (a), as shown by Proposition 3.1.

In the following proposition we characterize optimality under the strong duality prop-
erty that can be considered as a regularity condition in view of the fulfilment of the
KKT conditions.

Proposition 3.5 Let f , g1, . . . , gm be quadratic functions as above, let x̄ ∈ K, and
assume that

(C − x̄) ⊆ cl co T (C; x̄) ⊆ −cl co T (C; x̄). (15)

Then the following assertions are equivalent:
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(a) x̄ is an optimal solution for the problem (4) and strong duality holds;
(b) there existsλ∗ ∈ P∗ such that (8) is fulfilled and∇2

x L(λ∗, x̄) is positive semidefinite
on C − x̄ .

Proof Assume that (a) holds, or equivalently there exists λ∗ ∈ P∗ such that (7) is
fulfilled. Then,
L(λ∗, x̄) ≤ L(λ∗, x), for every x ∈ C , implies that ∇x L(λ∗, x̄)�v ≥ 0, for every
v ∈ T (C; x̄) and, consequently,

∇x L(λ∗, x̄)�v ≥ 0,∀v ∈ cl co T (C; x̄). (16)

The assumption (15) yields ∇x L(λ∗, x̄)�v = 0, for every v ∈ cl co T (C; x̄) and, in
turn,

∇x L(λ∗, x̄)�v = 0, ∀v ∈ (C − x̄). (17)

From (10) we have

0 ≤ L(λ∗, x) − L(λ∗, x̄) = 1

2
(x − x̄)�∇2

x L(λ∗, x̄)(x − x̄), ∀x ∈ C,

and (b) follows.
Conversely if (b) holds then (8) implies (16) and, consequently, (17).

From (10) we have

L(λ∗, x) − L(λ∗, x̄) = 1

2
(x − x̄)�∇2

x L(λ∗, x̄)(x − x̄) ≥ 0, ∀x ∈ C,

and, taking into account that 〈λ∗, g(x̄)〉 = 0, (a) follows. ��
Remark 3.6 We note that, for the implication (b) ⇒ (a) in Proposition 3.5, the second
inclusion in (15) is not needed: indeed, by (8) we have∇x L(λ∗, x̄)�(x− x̄) ≥ 0, ∀x ∈
C and 〈λ∗, g(x̄)〉 = 0, so that (10) allows us to prove (a).

Remark 3.7 Condition (15) is fulfilled under the following circumstances:

(i) x̄ ∈ intC ;
(i i) C is defined by linear equalities, i.e. C := {x ∈ IRn : Hx = d}, H ∈ IRp×n ,

d ∈ IRp;
(i i i) C := {x ∈ IRn : h(x) = 0}, where h is a quadratic function with∇h(x̄) = 0 and

H := ∇2h(x̄) is indefinite. In this case T (C; x̄) = C− x̄ = {v ∈ IRn : v�Hv =
0}, this is a consequence of Lemma 3.1 proved in what follows. By Lemma 2.1,
cl co T (C; x̄) = IRn .

Lemma 3.1 Let gi be defined as in (5), for i = 1, . . . ,m. Assume that x̄ ∈ A := {x ∈
IRn : gi (x) = 0, i = 1, . . . ,m} and set Zi (x̄) := {v ∈ IRn : ∇gi (x̄)�v + 1

2
v�Biv =

0}, for i = 1, . . . ,m. Then,
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Z(x̄) :=
m⋂

i=1

Zi (x̄) = A − x̄ . (18)

Proof Let i ∈ [1, ..,m]. Let v ∈ Zi (x̄), then gi (v + x̄) = gi (x̄) + ∇gi (x̄)�v +
1

2
v�Biv = 0, proving that v + x̄ ∈ {x ∈ IRn : gi (x) = 0}. Therefore, ⋂m

i=1 Zi (x̄) ⊆
A − x̄ .
For the other inclusion, take any x ∈ A. Then

0 = gi (x) − gi (x̄) = ∇gi (x̄)
�(x − x̄) + 1

2
(x − x̄)�Bi (x − x̄), i = 1, . . . ,m,

(19)

which implies x − x̄ ∈ ⋂m
i=1 Zi (x̄) . ��

Remark 3.6 leads to the following result.

Corollary 3.8 Let f , g1, . . . , gm be quadratic functions as above, let x̄ ∈ K, and
assume that C := {x ∈ IRn : gi (x) ≤ 0, i = m + 1, . . . , p},where gi are convex
functions, for i = m + 1, . . . , p.
If there exists λ∗ ∈ P∗ such that (8) is fulfilled and∇2

x L(λ∗, x̄) is positive semidefinite
on C − x̄ , then x̄ is an optimal solution for the problem (4) and strong duality holds.

Proof By Proposition 3.5 and taking into account Remark 3.6, it is enough to prove
that (C − x̄) ⊆ cl co T (C; x̄). The convexity of the functions gi , i = m + 1, . . . , p,
yields that C is convex.
Since C is convex then T (C; x̄) = cl cone(C − x̄) which implies (C − x̄) ⊆
cl co T (C; x̄) (see, e.g. [2]). ��

All the results so far obtained generalize optimality conditions for classical
quadratic programming to a quadratic problem with cone constraints and a geometric
constraint set. We now present suitable particular cases where our results allow to
recover and generalize known optimality conditions.
We first consider the quadratic programming problem with bivalent constraints (QP1)
defined by

inf
x∈K f (x) := x�Ax + 2a�x + α,

where K := {x ∈ C : gi (x) := x�Bi x+2b�
i x+βi = 0, i = 1, . . . ,m, gm+ j (x) :=

x�Em+ j x − 1 = 0, j = 1, . . . , n}, Em+ j = diag(e j ) and e j is a vector in IRn whose
j th element is equal to 1 and all the other entries are equal to 0.
Let L(λ, γ, x) := f (x) + ∑m

i=1 λi gi (x) + ∑n
j=1 γ j gm+ j (x), be the Lagrangian

function associated with (QP1).

By Proposition 3.3 and Lemma 3.1 we recover Lemma 3.1 of [14] which can be stated
as follows.
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Proposition 3.9 Let C := IRn and x̄ ∈ K. Assume that there exist λ ∈ IRm and γ ∈ IRn

such that ∇x L(λ, γ, x̄) = 0 . Then x̄ is an optimal solution for (QP1) if and only if
∇2
x L(λ, γ, x̄) is positive semidefinite on Z(x̄) defined by (18).

Proof It is enough to notice that since C = IRn , then, by Lemma 3.1, Z(x̄) = K − x̄
and, moreover, (11) is fulfilled. Proposition 3.3 allows us to complete the proof. ��
By Proposition 3.5 we obtain the following result.

Next result is inspired by Theorem 3.1 of [14] and provides a characterization and
a sufficient condition for strong duality for (QP1).

Proposition 3.10 Let x̄ ∈ K with C := IRn. Consider the following assertions:

(a) x̄ is an optimal solution for (QP1) and strong duality holds;
(b) there exist λ ∈ IRm and γ ∈ IRn such that ∇x L(λ, γ, x̄) = 0 and ∇2

x L(λ, γ, x̄) is
positive semidefinite;

(c) A − diag(X̄ Ax̄ + X̄a) is positive semidefinite, where X̄ := diag(x̄1, . . . , x̄n).

Then (c) ⇒ (b) ⇔ (a).

Proof (b) ⇔ (a); it follows from Proposition 3.5 with C := IRn , K := {x ∈ IRn :
gi (x) = 0, i = 1, ..,m + n}, P := {0}m+n .
(c) ⇒ (b); in the proof of Theorem 3.1 of [14] it is shown that, for any feasible
point x̄ , the condition ∇x L(λ, γ, x̄) = 0 is fulfilled with λ := (0, . . . , 0)� and γ :=
(X̄ Ax̄+ X̄a) and, moreover, for such λ and γ ,∇2

x L(λ, γ, x̄) = A−diag(X̄ Ax̄+ X̄a).
Therefore, if (c) holds, then (b) is fulfilled and so is (a), by the previous part of the
proof. ��
Conditions (11) and (15) in general are not fulfilled for a problem with bivalent con-
straints.

Example 3.11 Let C := {x ∈ IR2 : x21 = 1}, K := {x ∈ IR2 : x21 = 1, x22 = 1},
x̄ = (1, 1) ∈ K . Then, T (C, x̄) = {x ∈ IR2 : x1 = 0} = cl co T (C; x̄),

K − x̄ = {(0, 0), (0,−2), (−2,−2), (0,−2)} � cl co T (C; x̄).

This also implies that C − x̄ � cl co T (C; x̄) so that Propositions 3.3 and 3.5 in
general cannot be applied to problem (QP1).

Let usmake some further comparisonwith the literature; until the end of this sectionwe
assume that f , gi , i = 1, . . . ,m, are quadratic functions defined as in (5). According
to Remark 3.7, the following results are all particular cases of Proposition 3.5.

Corollary 3.12 ([13] Theorem 2.1, [20] Theorem 1) Consider the problem

μ := inf{ f (x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0, x ∈ C}, (20)

where C := {x ∈ IRn : Hx = d}, H is a (p × n) matrix , and let x̄ be feasible for
(20).

The following assertions are equivalent:
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(a) x̄ is an optimal solution and strong duality holds for (20);
(b) there exists λ∗ ∈ IRm+ such that ∇x L(x̄, λ∗) ∈ H�(IRp), λ∗

i gi (x̄) = 0, i =
1, . . . ,m, and ∇2

x L(x̄, λ∗) is positive semidefinite on Ker H.
Consequently, when C := IRn, then (b) reduces to the following:

(b′) there exists λ∗ ∈ IRm+ such that ∇x L(x̄, λ∗) = 0, λ∗
i gi (x̄) = 0, i = 1, . . . ,m

and ∇2
x L(x̄, λ∗) is positive semidefinite.

4 The Case with Two Quadratic Equality Constraints

In this section we analyse in details a quadratic problem with two quadratic equality
constraints defined by

μ := inf{ f (x) : g1(x) = 0, g2(x) = 0}, (21)

where f , gi , i = 1, 2 are quadratic functions defined as in (5).
Let K := {x ∈ R

n : g1(x) = 0, g2(x) = 0}.
The standard Lagrangian associated with (21) LS : IR2 × IRn �−→ R is given by

LS(λ1, λ2, x) := f (x) + λ1g1(x) + λ2g2(x).

The following result is a consequence of Proposition 3.3.

Proposition 4.1 Let f , g1, g2 be defined as above, let x̄ ∈ K be a KKT point for (21),
i.e. there exists λ1, λ2 ∈ IR such that ∇ f (x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.
Then the following conditions are equivalent:

(a) x̄ is an optimal solution for (21);
(b) A + λ1B1 + λ2B2 is positive semidefinite on K − x̄ .

If, additionally, ∇g2(x̄) = 0 then (b) is equivalent to:

(b1) A + λ1B1 is positive semidefinite on K − x̄ .

Proof The equivalence between (a) and (b) follows from Proposition 3.3 where we set
C := R

n . Assume now that ∇g2(x̄) = 0. The equality g2(x) − g2(x̄) = ∇g2(x̄)(x −
x̄) + 1

2
(x − x̄)�∇2g2(x̄)(x − x̄) yields (x − x̄)�B2(x − x̄) = 0, ∀x ∈ K . Therefore,

∇2
x LS(λ1, λ2, x̄) = A + λ1B1 + λ2B2 is positive semidefinite on K − x̄ if and only

if (b1) holds. ��
In the following we set C := {x ∈ IRn : g2(x) = 0}, so that K = {x ∈ C : g1(x) =
0}. The dual problem and the standard dual problem associated with (21) are, respec-
tively, defined by:

ν := sup
λ1∈IR

inf
x∈C{L(λ1, x)}; (22)

νS := sup
λ1,λ2∈IR

inf
x∈IRn

{LS(λ1, λ2, x)}. (23)
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We say that standard strong duality (SSD) holds for problem (21) if μ = νS and
problem (23) admits solution. It easy to check that νS ≤ ν ≤ μ.

Theorem 4.1 Let x̄ ∈ K be feasible for (21) and suppose that μ ∈ IR.

(a) Assume that ∇g2(x̄) �= 0. Then the following assertions are equivalent

(a1) x̄ is an optimal solution and strong duality holds for problem (21);
(a2) ∃ λ1, λ2 ∈ IR such that∇x LS(λ1, λ2, x̄) = 0 and A+λ1B1+λ2B2 is positive

semidefinite on C − x̄ (and so on cl cone(C − x̄)).

(b) Assume that ∇g2(x̄) = 0, and B2 positive (or negative) semidefinite. Then, (a1)
is equivalent to

(b1) ∃ λ1 ∈ IR and ∃y ∈ IRn s.t. ∇ f (x̄) + λ1∇g1(x̄) + B2y = 0 and A + λ1B1 is
positive semidefinite on ker B2.

(c) Assume that ∇g2(x̄) = 0, and B2 indefinite. Then, (a1) is equivalent to

(c1) ∃ λ1 ∈ IR s.t. ∇ f (x̄) + λ1∇g1(x̄) = 0 and A + λ1B1 is positive semidefinite
on C − x̄ (and so on cl cone(C − x̄)).

Proof (a): (a1) ⇒ (a2). By assumption there exists λ1 ∈ IR such that

f (x) + λ1g1(x) ≥ f (x̄) = f (x̄) + λ1g1(x̄), ∀ x ∈ C . (24)

Thus, ∇ f (x̄) + λ1∇g1(x̄) ∈ [T (C, x̄)]∗. Since ∇g2(x̄) �= 0, by (2) we get,
[T (C; x̄)]∗ = IR∇g2(x̄). Hence, there exists λ2 ∈ IR satisfying∇x LS(λ1, λ2, x̄) = 0.
Then, for every x ∈ C ,

0 ≤ f (x) + λ1g1(x) − f (x̄) = LS(λ1, λ2, x) − LS(λ1, λ2, x̄)

= ∇x LS(λ1, λ2, x̄)�(x − x̄) + 1

2
(x − x̄)�∇2

x LS(λ1, λ2, x̄)(x − x̄)

= 1

2
(x − x̄)�∇2

x LS(λ1, λ2, x̄)(x − x̄).

This proves our claim. The previous equalities also show (a2) ⇒ (a1).
(b): (a1) ⇒ (b1). By assumption there exists λ1 ∈ IR such that (24) holds. Thus,
∇ f (x̄) + λ1∇g1(x̄) ∈ [T (C, x̄)]∗. Since ∇g2(x̄) = 0, then (3) yields T (C; x̄) =
{v ∈ IRn : v�B2v = 0} and, since B2 is positive or negative semidefinite, then
T (C; x̄) = ker B2 = Z2(x̄) = C − x̄ , where the last equality is due to Lemma 3.1.
Thus we can choose y ∈ IRn such that

∇ f (x̄) + λ1∇g1(x̄) + B2y = 0.

Then, from (24) and for all x ∈ C (which means g2(x) = 0), it follows that

0 ≤ L(λ1, x) − L(λ1, x̄)
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= ∇x L(λ1, x̄)
�(x − x̄) + 1

2
(x − x̄)�∇2

x L(λ1, x̄)(x − x̄)

= −(B2y)
�(x − x̄) + λ1(x − x̄)�A1(x − x̄)

= λ1(x − x̄)�A1(x − x̄). (25)

Notice that (B2y)�(x − x̄) = 0, since ker B2 = C − x̄ . These chains of equalities also
show that (b1) ⇒ (a1). (c): (a1) ⇒ (c1). By the above discussion, T (C; x̄) = Z2(x̄).
Lemma 2.1 yields [T (C; x̄)]∗ = (co Z2(x̄))∗ = {0}, which implies that ∇ f (x̄) +
λ1∇g1(x̄) = 0. By using the relation (25), one concludes that A + λ1B1 is positive
semidefinite on C − x̄ . The same relation allows us to prove that (c1) ⇒ (a1). ��
Necessary or sufficient optimality conditions for a quadratic problem with two
quadratic inequality constraints have been obtained in [1, 18]. To the best of our
knowledge, Theorem 4.1 is a new characterization of strong duality for a quadratic
problem with two quadratic equality constraints.

5 Simultaneously Diagonalizable Quadratic Problems

In this section we characterize strong duality for a simultaneously diagonalizable
quadratic problemwith quadratic cone constraints, providing conditions that guarantee
the existence of a convex reformulation. Our results generalize those obtained in [15]
where two quadratic inequality constraints are considered under the assumption that
the classic Slater condition is fulfilled.

Consider problem (4) and assume that the matrices A and Bi , i = 1, ..,m are
simultaneously diagonalizable, i.e. there exists an orthonormal matrix S order n, such
that S�AS = D0, S�Bi S = Di , S�S = I , where Di are diagonal; we set Di =
diag(γi ), γi := (γi1, . . . , γin)

�, i = 0, 1, . . . ,m.
We refer to [3] for an extensive description of the applications of this problem.
Setting y = S�x , then (4) can be written as follows:

τ := inf f̃ (y) s.t . y ∈ K := {y ∈ C : g̃(y) ∈ −P}, (26)

where P is a closed and convex cone in IRm , g̃(y) := (g̃1(y), . . . , g̃m(y)) and f̃ , g̃i :
IRn → IR, i = 1, . . . ,m are quadratic functions,

f̃ (y) := 1

2
y�D0y + a�Sy + α, g̃i (y) := 1

2
y�Di y + b�

i Sy + βi , i = 1, . . . ,m.

We assume that α = 0 and C = IRn . Now, set
1

2
y2i = zi , i = 1, . . . , n, then

1

2
y�Di y = γ �

i z and (26) can be rewritten as follows:

inf

{

γ �
0 z + a�Sy : ĝ(y, z) ∈ −P,

1

2
y2i = zi , i = 1, . . . , n,

}

(27)
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where ĝi (y, z) := γ �
i z + b�

i Sy + βi , i = 1, . . . ,m.

Replacing the last n equality constraints with the corresponding inequalities, we obtain
the following relaxation of (27) (and therefore of (26)):

τR := inf

{

γ �
0 z + a�Sy : ĝ(y, z) ∈ −P,

1

2
y2i ≤ zi , i = 1, . . . , n

}

. (28)

Let L : R
m × R

n → R be defined by L(λ, y) := 1

2
y�D0y + a�Sy + ∑m

i=1 λi g̃i (y)

as the Lagrangian function associated with (26) and let supλ∈P∗ inf y∈C L(λ, y) be the
related dual problem. Similarly, let LR : R

m × R
n × R

n × R
n → R be defined by

LR(λ, μ, y, z) := γ �
0 z + a�Sy +

m∑

i=1

λi ĝi (y, z) +
n∑

i=1

μi (
1

2
y2i − zi )

as the Lagrangian function associated with (28) and let

sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z),

be the corresponding dual problem.

Proposition 5.1 The dual problems associated with (26) and (28) are equivalent, i.e.

sup
λ∈P∗

inf
y∈IRn

L(λ, y) = sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z). (29)

Moreover, if the supremum in the right-hand side of (29) is attained at (λ∗, μ∗), then
the supremum in the left-hand side is attained at λ∗.

Proof Let us compute ψ(λ,μ) := inf
y∈IRn

z∈IRn

L R(λ, μ, y, z). Note that

LR(λ, μ, y, z) = γ �
0 z + a�Sy +

m∑

i=1

λi (γ
�
i z + b�

i Sy + βi ) +
n∑

j=1

μ j (
1

2
y2j − z j )

=
n∑

j=1

γ0 j z j + a�Sy +
m∑

i=1

λi (

n∑

j=1

γi j z j + b�
i Sy + βi ) +

n∑

j=1

μ j (
1

2
y2j − z j )

= a�Sy +
m∑

i=1

λi (b
�
i Sy + βi ) +

n∑

j=1

1

2
μ j y

2
j +

n∑

j=1

[
m∑

i=1

λiγi j + γ0 j − μ j ]z j .

Then, ψ(λ,μ) = inf y∈IRn [a�Sy + ∑m
i=1 λi (b�

i Sy + βi ) + ∑n
j=1

1
2μ j y2j ],

if
m∑

i=1

λiγi j + γ0 j − μ j = 0, j = 1, . . . , n, ψ(λ, μ) = −∞, otherwise.
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By eliminating the variables μ j , we obtain:

ψ(λ,μ) = inf
y∈IRn

[a�Sy +
m∑

i=1

λi (b
�
i Sy + βi ) +

n∑

j=1

1

2
(

m∑

i=1

λiγi j + γ0 j )y
2
j ],

if
m∑

i=1

λiγi j + γ0 j = μ j ≥ 0, j = 1, . . . , n, ψ(λ, μ) = −∞, otherwise.

Now, observe that L(λ, y) = 1

2
y�D0y + a�Sy + ∑m

i=1 λi [ 12 y�Di y + b�
i Sy + βi ]

= 1

2

n∑

j=1

γ0 j y
2
j + a�Sy +

m∑

i=1

λi [1
2

n∑

j=1

γi j y
2
j + b�

i Sy + βi ]

= a�Sy +
m∑

i=1

λi [b�
i Sy + βi ] +

n∑

j=1

1

2
(

m∑

i=1

λiγi j + γ0 j )y
2
j .

Therefore,

ψ(λ,μ) =
{
inf y∈IRn L(λ, y), if

∑m
i=1 λiγi j + γ0 j ≥ 0, j = 1, . . . , n,

−∞, otherwise
(30)

and

sup
λ∈P∗

inf
y∈IRn

L(λ, y) = sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(y, z, λ, μ)

provided that

m∑

i=1

λiγi j + γ0 j ≥ 0, j = 1, . . . , n, for some λ ∈ P∗. (31)

Notice that, if (31) does not hold, then supλ∈P∗ inf y∈IRn L(λ, y) = −∞, which yields
(29).
The final assertion follows from (30). ��

Consider problem (28) and let

f̂ (y, z) := γ �
0 z + a�Sy, ĥ(y, z) := (

1

2
y21 − z1, ...,

1

2
y2n − zn),

G := (ĝ, ĥ), F := ( f̂ , ĝ, ĥ).
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Assuming that τR ∈ IR, following the image space approach introduced by Giannessi
[10, 11], we define the extended image associated with (28) by:

E := F(IRn × IRn) − τR(1, 0, 0) + (IR+ ×P × IRn+).

It is possible to show that since f̂ and ĝ are linear and ĥ is convex, then E is a convex
set, in fact F turns out to be a (IR+ ×P × IRn+)-convex function. Many remarkable
properties of a constrained extremum problem can be characterized (see [11]) by
means of the set E , as in the next result.
Proposition 5.2 Assume that τR ∈ IR and

cl(E) ∩ −(IR + × {0} × {0}) = ∅. (32)

Then, τ = τR if and only if τ = supλ∈P∗ inf y∈IRn L(λ, y), i.e. the duality gap is zero
for (26).

Proof It is known that condition (32) is equivalent to the fact that the duality gap is
zero for (28) (see [17] Theorem 4.2, for a proof where it is assumed that the infimum
τR of (28) is attained, we notice that it is still valid if merely τR ∈ IR). Then, by
Proposition 5.1, the following relations hold:

τ ≥ sup
λ∈P∗

inf
y∈IRn

L(λ, y) = sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z) = τR . (33)

The proof is now straightforward. ��
Condition (32) is not easy to check: next result, based on a well-known constraints

qualification, provides the connections with strong duality for (26).

Proposition 5.3 Assume that τR ∈ IR and that the following condition holds for (28):

0 ∈ ri(G(IRn × IRn) + (P × IRn+)). (34)

Then, τ = τR if and only if strong duality holds for (26).

Proof We first prove that (34) implies that strong duality holds for (28): to this aim
we will apply Theorem 3.6 of [8] where (34) is requested as one of the assumptions.
The other one is given by the following condition:

0 /∈ ri [co(E ∪ {0})], (35)

where E is the extended image associatedwith (28).We now prove that (35) is fulfilled.
We have already observed that E is a convex set; we claim that

ri E = ri [co(E ∪ {0})].
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Let us prove our claim. Notice that, since F is a continuous function then 0 ∈ cl E
and since E is convex so is cl E , so that

cl co(E ∪ {0}) ⊆ cl E .

The reverse inclusion is obvious, so that cl co(E ∪ {0}) = cl E; by Theorem 6.3 of
[19] we prove our claim. Now, since τR ∈ IR, by Proposition 3.1 of [8] we have

E ∩ −(IR+ ×P × IRn+) = ∅,

which implies

ri E ∩ − ri (IR+ ×P × IRn+) = ∅,

or, equivalently,

0 /∈ ri [E + (IR+ ×P × IRn+)] = ri E .

This proves that (35) is fulfilled and that strong duality holds for (28).
Finally, Proposition 5.1 leads to the following relations:

τ ≥ sup
λ∈P∗

inf
y∈IRn

L(λ, y) = max
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z) = τR . (36)

Assume that τ = τR ; then the first inequality in (36) is fulfilled as equality and
because of the second equality, the supremum is attained (see Proposition 5.1), i.e.
strong duality holds for (26).
Conversely, if strong duality holds for (26), then τ = maxλ∈P∗ inf y∈IRn L(λ, y) and
(36) yields τ = τR . ��

We note that, when int P �= ∅ the (34) collapses to the classic Slater condition.

Corollary 5.4 Assume that τR ∈ IR, (34) holds and ȳ is an optimal solution of (26).
Then τ = τR if and only if there exist λ∗

i ∈ IR+, i = 1, ..,m, such that:

(i) D0 ȳ + Sa +
m∑

i=1

λ∗
i (Sbi + Di ȳ) = 0;

(ii) D0 +
m∑

i=1

λ∗
i Di is positive semidefinite.

Proof It is a direct consequence of Proposition 5.3 and Proposition 3.5. ��
Proposition 5.5 Assume that (ȳ, z̄) is a KKT point for (28) with (λ̄, μ̄) the associated
multipliers. If μ̄ > 0, then ȳ is an optimal solution and strong duality holds for (26).
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Proof We first note that, since (28) is a convex problem, then the KKT conditions
guarantee the optimality of (ȳ, z̄) and (λ̄, μ̄, ȳ, z̄) is a saddle point of the Lagrangian
function LR . Moreover, if μ̄ > 0, then the constraints 1

2 y
2
j − z j ≤ 0 are active for

j = 1, .., n, which yields that ȳ is feasible for (27) and therefore for (26), which
proves that τ = τR and ȳ is a global optimal solution for (26).
By Proposition 5.1 the following relations hold:

τ ≥ sup
λ∈P∗

inf
y∈IRn

L(λ, y) = sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z) = LR(λ̄, μ̄, ȳ, z̄) = τR, (37)

where the last two equalities follow from the fact that (λ̄, μ̄, ȳ, z̄) is a saddle point of
LR . Since τ = τR then

τ = sup
λ∈P∗

inf
y∈IRn

L(λ, y) = inf
y∈IRn

L(λ̄, y),

where the last equality is due to Proposition 5.1, which proves that strong duality holds
for (26). ��
We provide a sufficient condition for (34) to be fulfilled.

Proposition 5.6 Assume that

(i) cl cone(ĝ(IRn × IRn) + P) = IRm;

(ii) There exists (ŷ, ẑ) such that ĝ(ŷ, ẑ) ∈ −P and
1

2
ŷ2j − ẑ j < 0, j = 1, .., n.

Then (34) is fulfilled.

Proof Assume that (34) does not hold, i.e. 0 /∈ ri(G(IRn × IRn) + (P × IRn+)).

Since G(IRn × IRn)+ (P × IRn+) is a convex set, by the separation theorem for convex
sets (see, e.g. [19]), there exists (λ∗, μ∗) ∈ (IRm × IRn) \ {(0, 0)} such that

〈λ∗, ĝ(y, z) + v〉 +
n∑

j=1

μ∗
j (
1

2
y2j − z j + w j ) ≤ 0,

∀(y, z) ∈ IRn × IRn,∀v ∈ P,∀w ≥ 0, (38)

where w := (w1, .., wn).
Note that, since (38) must be fulfilled for every v ∈ P and w ≥ 0, it follows that
λ∗ ∈ −P∗ and μ∗ ≤ 0. Moreover, by condition (i), we can easily prove that μ∗ �= 0.
Indeed, if μ∗ = 0, then λ∗ �= 0 and (38) becomes

〈λ∗, ĝ(y, z) + v〉 ≤ 0, ∀(y, z) ∈ IRn × IRn,∀v ∈ P,

which implies

〈λ∗, t(ĝ(y, z) + v)〉 ≤ 0, ∀t ≥ 0, ∀(y, z) ∈ IRn × IRn,∀v ∈ P,
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i.e.

〈λ∗, v〉 ≤ 0, ∀t ≥ 0, ∀v ∈ cl cone(ĝ(IRn × IRn) + P),

but the previous inequality cannot hold, since cl cone(ĝ(IRn × IRn) + P) = IRm .
Finally, because of condition (ii), setting y := ŷ, z := ẑ, v := 0, w := 0 in (38),
yields

0 < 〈λ∗, ĝ(ŷ, ẑ)〉 +
n∑

j=1

μ∗
j (
1

2
ŷ2j − ẑ j ) ≤ 0,

a contradiction, which completes the proof. ��
In the particular case where the feasible set of (28) is defined by explicit equality and
inequality constraints, i.e. P := {0}s × IRm−s+ , for 0 ≤ s ≤ m, we obtain a refinement
of Proposition 5.3.

Proposition 5.7 Let P := {0}s × IRm−s+ , let (ȳ, z̄) be an optimal solution of (28),

I (ȳ, z̄) := {i ∈ [s + 1, ..,m] : ĝi (ȳ, z̄) = 0}, J (ȳ, z̄)
.= {i ∈ [1, .., n] : ĥi (ȳ, z̄) = 0}.

Assume that there exists d ∈ IRn × IRn such that

(i) ∇ ĝi (ȳ, z̄)�d = 0, i = 1, .., s, ∇ ĝi (ȳ, z̄)�d ≤ 0, i ∈ I (ȳ, z̄) ;
(ii) ∇ĥi (ȳ, z̄)�d < 0, i ∈ J (ȳ, z̄).

Then, τ = τR if and only if strong duality holds for (26).

Proof We first prove that there exist (λ∗, μ∗) ∈ P∗ × IRn+ such that

LR(λ∗, μ∗, y, z) ≥ LR(λ∗, μ∗, ȳ, z̄), ∀(y, z) ∈ IRn × IRn . (39)

Denote by Q the feasible set of (28) and set w := (y, z). Since w̄ = (ȳ, z̄) is an
optimal solution of (28), then 〈c, d〉 ≥ 0, ∀d ∈ T (Q; w̄), where c� := ∇ f̂ (ȳ, z̄) =
(a�S, γ �

0 ). Consider the set

Γ := {d ∈ IRn × IRn : ∇ ĝi (w̄)�d = 0, i = 1, . . . , s,∇ ĝi (w̄)�d ≤ 0, i ∈ I (w̄),

∇ĥi (w̄)�d < 0, i ∈ J (w̄)}.

Note that, since Γ �= ∅, then

cl Γ = {d ∈ IRn × IRn : ∇ ĝi (w̄)�d = 0, i = 1, . . . , s,∇ ĝi (w̄)�d ≤ 0, i ∈ I (w̄),

∇ĥi (w̄)�d ≤ 0, i ∈ J (w̄)}.

We show that cl Γ = T (Q; w̄). We first prove that Γ ⊆ T (Q; w̄). Let d ∈ Γ ,
{αk} > 0, αk ↓ 0, then

ĝi (w̄ + αkd) = ĝi (w̄) + αk∇ ĝi (w̄)�d = 0, i = 1, . . . , s

ĝi (w̄ + αkd) = ĝi (w̄) + αk∇ ĝi (w̄)�d ≤ 0, i ∈ I (w̄),
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ĥi (w̄ + αkd) = ĥi (w̄) + αk∇ ĥi (w̄)�d + o(αkd), i ∈ J (w̄).

The third relation may be written as

1

αk
[ĥi (w̄ + αkd)] = ∇ĥi (w̄)�d + o(αkd)

αk
, i ∈ J (w̄).

Since ∇ĥi (w̄)�d < 0, i ∈ J (w̄), then ĥi (w̄ + αkd) < 0, for k sufficiently large.
Therefore, wk := w̄ + αkd ∈ Q, for k sufficiently large, wk → w̄ and 1

αk
[wk − w̄] =

d,∀k, which implies that d ∈ T (Q; w̄). Since T (Q; w̄) is closed, then cl Γ ⊆
T (Q; w̄). We now prove that T (Q; w̄) ⊆ cl Γ . Let d ∈ T (Q; w̄), then ∃αk > 0,
∃wk ∈ Q, wk → w̄, αk(wk − w̄) → d. Then, recalling that ĝ is linear, we have

0 = ĝi (wk) = ∇ ĝi (w̄)�[wk − w̄], i = 1, . . . , s

0 ≥ ĝi (wk) = ∇ ĝi (w̄)�[wk − w̄], i ∈ I (w̄),

0 ≥ ĥi (wk) ≥ ∇ ĥi (w̄)�[wk − w̄] i ∈ J (w̄),

where the last inequality is due to the convexity of ĥ.Multiplying the previous relations
by αk and taking the limit for k → ∞ yields d ∈ cl Γ , which proves that T (Q; w̄) ⊆
cl Γ . Since T (Q; w̄) = cl Γ and w̄ is an optimal solution of (28), then the following
system is impossible:

〈c, d〉 < 0

∇ ĝi (w̄)�d = 0, i = 1, . . . , s,

∇ ĝi (w̄)�d ≤ 0, i ∈ I (w̄),

∇ ĥi (w̄)�d ≤ 0, i ∈ J (w̄). (40)

Applying theMotzkin’s alternative theorem (see, e.g. [16]), we obtain that there exists
a solution (λ∗, μ∗) ∈ P∗ × IRn+ of the following system:

c +
m∑

i=1

λ∗
i ∇ ĝi (w̄) +

n∑

i=1

μ∗∇h̃i (w̄) = 0

〈λ∗, ĝ(w̄)〉 = 0, 〈μ∗, ĥ(w̄)〉 = 0. (41)

Finally, note that LR(λ∗, μ∗, y, z) is a convex function such that∇LR(λ∗, μ∗, ȳ, z̄) =
0, because of (41), where, we recall w̄ = (ȳ, z̄). This implies that (ȳ, z̄) is a global
minimum point of LR(λ∗, μ∗, y, z) on IRn × IRn , which proves (39).
Since (39) and the complementarity conditions in (41) are fulfilled, then strong dual-
ity holds for (28). With the same arguments used in Proposition 5.5, we have that
Proposition 5.1 leads to the relations:

τ ≥ sup
λ∈P∗

inf
y∈IRn

L(λ, y) = sup
λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z) = inf
y∈IRn

z∈IRn

L R(λ∗, μ∗, y, z) = τR .

(42)
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Assume that τ = τR ; then, the first inequality in (42) is fulfilled as equality and
because of the second equality, the supremum is attained at λ∗ (see Proposition 5.1),
i.e. strong duality holds for (26).
Conversely, if strong duality holds for (26), then

τ = max
λ∈P∗ inf

y∈IRn
L(λ, y) = sup

λ∈P∗
μ∈IRn+

inf
y∈IRn

z∈IRn

L R(λ, μ, y, z) = τR .

��
The proof is complete.

Remark 5.8 Computing explicitly the gradients of ĝ and ĥ, then (i) and (ii) of Propo-
sition 5.7 can be written as

(i’) (b�
i S, γ �

i )d = 0, i = 1, . . . , s, (b�
i S, γ �

i )d ≤ 0, i ∈ I (ȳ, z̄) ;
(ii’) (ȳi e�

i ,−e�
i )d < 0, i ∈ J (ȳ, z̄), where ei denotes the i-th unit vector in IRn .

Next result relates condition (ii) of Proposition 5.6with the assumptions of the previous
proposition.

Proposition 5.9 Let P := {0}s × R
m−s+ . If there exists (ŷ, ẑ) ∈ IRn × IRn such that

ĝ(ŷ, ẑ) ∈ −P and ĥ(ŷ, ẑ) < 0, then the assumptions (i) and (ii) of Proposition 5.7
are fulfilled.

Proof Set d
.= (ŷ, ẑ) − (ȳ, z̄). Since ĝ is an affine function then

∇ ĝi (ȳ, z̄)
�d = ĝi (ŷ, ẑ) − ĝi (ȳ, z̄), i = 1, . . . ,m,

which yields (i), because ĝ(ŷ, ẑ) ∈ −P . Moreover, since ĥi is convex, then

0 > ĥi (ŷ, ẑ) − ĥi (ȳ, z̄) ≥ ∇ĥi (ȳ, z̄)
�d, ∀i ∈ J (ȳ, z̄),

and (ii) follows. ��
Next example shows that the conditions of the previous proposition are weaker than
(34).

Example 5.10 Set n := 1, P := IR2+, ĝ1(y, z) := −y−z, ĝ2(y, z) := y+z, ĥ(y, z) :=
1
2 y

2 − z. Then,
G(IR× IR)+IR3+ = {(u, v, w) ∈ IR3 : u ≥ −y−z, v ≥ y+z, w ≥ 1

2 y
2−z, (y, z) ∈

IR2}

⊆ {(u, v, w) ∈ IR3 : u + v ≥ 0}.

This implies that (0, 0, 0) /∈ int[G(IR× IR) + IR3+], i.e. (34) is not fulfilled.
Nevertheless, the assumptions of Proposition 5.9 are fulfilled. Indeed, (y∗, z∗) :=

(−1, 1) fulfils the inequalities:

ĝi (−1, 1) ≤ 0, i = 1, 2, ĥ(−1, 1) < 0.
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We note that in [15] the Slater-type condition (34) has been considered as a blanket
assumption. Finally, we provide a refinement of Corollary 5.4.

Corollary 5.11 Let P := {0}s × IRm−s+ , let ȳ be an optimal solution of (26), z̄ :=
( 12 ȳ

2
1 , . . . ,

1
2 ȳ

2
n ) and assume that the assumptions (i) and (ii) of Proposition 5.7 hold.

Then τ = τR if and only if there exist λ∗
i ∈ IR+, i = 1, . . . ,m, such that:

(i) D0 ȳ + Sa +
m∑

i=1

λ∗
i (Sbi + Di ȳ) = 0;

(ii) D0 +
m∑

i=1

λ∗
i Di is positive semidefinite.

Proof Assume that τ = τR . Let us prove that (ȳ, z̄) is an optimal solution of (28).
Indeed, f̃ (ȳ) = τ = τR and (ȳ, z̄) is an optimal solution of (27). Since (ȳ, z̄) is
feasible for (28) and γ �

0 z̄ + a�S ȳ = τ = τR , then (ȳ, z̄) is an optimal solution of
(28). By Proposition 5.7, strong duality holds for (26). Conversely, if strong duality
holds for (26), then τ = τR , as proved in Proposition 5.3. Recalling that here C = R

n ,
applying Proposition 3.5 we complete the proof. ��

6 Conclusions

We have considered a quadratic programming problem with general quadratic cone
constraints and an additional geometric constraint. We have established necessary
and sufficient conditions for global optimality for a KKT point or in the presence of
the property of strong duality, considering in details the case where the feasible set
is defined by two quadratic equality constraints. As a further application, we have
obtained conditions that guarantee the existence of a convex reformulation of a simul-
taneous diagonalizable quadratic problem.
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