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Abstract
This article is concerned with the approximation of unbounded convex sets by polyhe-
dra. While there is an abundance of literature investigating this task for compact sets,
results on the unbounded case are scarce. We first point out the connections between
existing results before introducing a new notion of polyhedral approximation called
(ε, δ)-approximation that integrates the unbounded case in a meaningful way. Some
basic results about (ε, δ)-approximations are proved for general convex sets. In the last
section, an algorithm for the computation of (ε, δ)-approximations of spectrahedra is
presented. Correctness and finiteness of the algorithm are proved.

Keywords Polyhedral approximation · Convex analysis · Unbounded sets ·
Algorithms · Spectrahedra

Mathematics Subject Classification 52A27 · 52B99 · 90C22 · 90C59

1 Introduction

The problem of approximating a convex set C by a polyhedron in the Hausdorff dis-
tance has been studied systematically for at least a century [26] and has a variety
of applications in mathematical programming. These include algorithms for convex
optimization problems that approximate the feasible region by a sequence of poly-
hedra [4, 19] or solution concepts for convex vector optimization problems [10, 23,
31]. Moreover, there are multiple algorithms for mixed-integer convex optimzation
problems that are based on polyhedral outer approximations, see [7, 21, 38]. Interest
in this problem is fueled by the fact that polyhedra have a simple structure in the sense
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that they can be described by finitely many points and directions. This finite structure
makes computationswith polyhedramore viable thanwith general convex sets. Hence,
it is desirable to work with polyhedra that approximate some complicated set well.
If the set C to be approximated is assumed to be compact, then numerous theoretical
results are available. This includes asymptotic [11, 32] and explicit [3] bounds on
the number of vertices that a polyhedron needs to have in order to approximate C to
within a prescribed accuracy. Moreover, iterative algorithms, so-called augmenting
and cutting schemes, for the polyhedral approximation of convex bodies are known,
see [16]. Some convergence properties are discussed in [17] and [18]. An overview
about combinatorial aspects of the approximation of convex bodies is collected in the
survey article by Bronshteı̆n [2].

If boundedness of the set C is not assumed, the amount of literature on the problem
is scarce, although there are various applications where unbounded convex sets arise
naturally. In convex vector optimization, for example, it is known that the so-called
extended feasible image or upper image contains the set of nondominated points on
its boundary, see, e.g., [10, 22]. Due to its geometric properties, it is advantageous
to work with this unbounded set instead of with the feasible image itself. Another
application is in large deviations theory, which, generally speaking, is the study of
the asymptotic behaviour of tails of sequences of probability distributions, see [36].
Under certain conditions, bounds for this behaviour can be obtained in terms of rate
functions of probability distributions. In [28], such bounds are obtained under the
condition that the level sets of a specific convex rate function can be approximated by
polyhedra. Moreover, the authors of [25] generalize the algorithm in [7] and consider
mixed-integer convex optimization problems, whose feasible region is not necessarily
bounded. The problems are solved by computing polyhedral outer approximations
of the feasible region in such a fashion that reaching a globally optimal solution is
guaranteed.

The most notable result about the polyhedral approximation of C is due to Ney and
Robinson [28] who give a characterization of the class of sets that can be approximated
arbitrarilywell by polyhedra in theHausdorff distance. However, this class is relatively
small as restrictive assumptions on the recession cone of C have to be made, such as
polyhedrality. The reason boils down to the fact that the Hausdorff distance is seldom
suitable to measure the similarity between unbounded sets. In fact, the Hausdorff
distance between closed and convex sets is finite only if the recession cones of the sets
are equal, seeProposition 3.2 inSection 3.Due to this difficulty, additional assumptions
about the structure of the problem have to be made in each of the aforementioned
applications. These include polyhedrality of the ordering cone or boundedness of
the problem in convex vector optimization, see, e.g., [8, 23], polyhedrality of a cone
generated by the rate function in large deviations theory, or strong dualitywhen dealing
with convex optimization problems. In 2018, Ulus [35] characterized the tractability
of convex vector optimization problems in terms of polyhedral approximations. One
important necessary condition is the so-called self-boundedness of the problem.

Considering the facts mentioned, polyhedral approximation of unbounded convex
sets requires a notion that does not solely rely on the Hausdorff distance. To this end,
our main contribution is the introduction of the notion of (ε, δ)-approximation for
closed convex sets C that do not contain lines. One feature of (ε, δ)-approximations

123



Journal of Optimization Theory and Applications (2022) 194:265–287 267

is that the recession cones of the involved sets play an important role. We show that
(ε, δ)-approximations define a meaningful notion of polyhedral approximation in the
sense that a sequence of approximations converges to the setC as ε and δ diminish. This
convergence is achieved in the sense of Painlevé–Kuratowski, who define convergence
for sequences of sets, see [30]. Moreover, we present an algorithm for the computation
of (ε, δ)-approximations when the set C is a spectrahedron, i.e., defined by a linear
matrix inequality. We also prove correctness and finiteness of the algorithm. Its main
purpose, however, is to show that (ε, δ)-approximations can be constructed in finitely
many steps theoretically.

This article is organized as follows. In the next section, we introduce the necessary
notation and provide definitions. In Section 3, we compare the results by Ney and
Robinson [28] with the results by Ulus [35] and put them in relation. In particular, we
show that self-boundedness is a special case of the property that the excess of a set over
its own recession cone is finite. The concept of (ε, δ)-approximations is introduced
in Section 4. We prove a bound on the Hausdorff distance between truncations of an
(ε, δ)-approximation and truncations of C . The main result is Theorem 4.2. It states
that a sequence of (ε, δ)-approximations ofC converges toC in the sense of Painlevé–
Kuratowski as ε and δ tend to zero. In the last section, we present the aforementioned
algorithmandprove correctness andfiniteness aswell as illustrate itwith twoexamples.

2 Preliminaries

Throughout this article, we denote by clC , intC , 0+C , convC , and coneC the closure,
interior, recession cone, convex hull and conical hull of a setC , respectively.A compact
convex set with nonempty interior is called a convex body. The Euclidean ball with
radius r centred at a point c ∈ R

n is denoted by Br (c). A point c of a convex set C
is called an extreme point of C , if C \ {c} is convex. Extreme points are exactly the
points of C that cannot be written as a proper convex combination of elements of C
[29,p. 162]. For finite sets V , D ⊆ R

n , the set

P = conv V + cone D (1)

is called a polyhedron. The plus sign denotes Minkowski addition. The sets V , D
in (1) are called a V -representation of P as it is expressed in terms of its vertices
and directions. A polyhedron can equivalently be expressed as a finite intersection of
closed halfspaces [29,Theorem 19.1], i.e.,

P = {x ∈ R
n | Ax ≤ b} (2)

for a matrix A ∈ R
m×n and a vector b ∈ R

m . The data (A, b) are called a H -
representation of P . The extreme points of a polyhedron P are called vertices of P
and are denoted by vert P . For symmetric matrices A0, A1, . . . , An of arbitrary fixed
size, we define
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Ā(x) :=
n∑

i=1

xi Ai and A(x) := Ā(x) + A0, (3)

i.e., a linear combination of the Ai and a translation of Ā(x) by A0, respectively.
We denote by A � 0 (A � 0) positive (semi-)definiteness of the symmetric matrix
A. A set of the form {x ∈ R

n | A(x) � 0} is called a spectrahedron. Spectrahedra
are a generalization of polyhedra for which many geometric properties of polyhedra
generalize nicely, e.g., the recession cone of a spectrahedronC is obtained as {x ∈ R

n |
Ā(x) � 0}, see [12], whereas the recession cone of a polyhedron in H -representation
is {x ∈ R

n | Ax ≤ 0}. Given a cone K the set K ◦ = {y ∈ R
n | ∀x ∈ K : xTy ≤ 0} is

called the polar cone of K . The polar (0+C)
◦ of the recession cone of a spectrahedron

C is computed as

(0+C)
◦ = cl

{
(−A1 · X , . . . ,−An · X)T | X � 0

}
, (4)

where Ai ·X means the trace of thematrix product Ai X , see [12,Section 3]. A cone K is
called polyhedral if K = cone D for somefinite set D and pointed if K ∩ (−K ) = {0}.
A set whose recession cone is pointed is called line-free. It is well known that a closed
convex set contains an extreme point if and only if it is line-free, see [29,Corollary
18.5.3]. Given nonempty sets C1,C2 ⊆ R

n , the excess of C1 over C2, e[C1,C2], is
defined as

e[C1,C2] = sup
c1∈C1

inf
c2∈C2

‖c1 − c2‖ , (5)

where ‖·‖ denotes the Euclidean norm. The Hausdorff distance between C1 and C2,
dH (C1,C2), is then expressed as

dH (C1,C2) = max{e[C1,C2], e[C2,C1]}. (6)

It is well known that the Hausdorff distance defines a metric on the space of nonempty
compact subsets of R

n . Between unbounded sets the Hausdorff distance may be infi-
nite. A polyhedron P is called an ε-approximation of a convex setC if dH (P,C) ≤ ε.

3 Polyhedral Approximation in the Hausdorff Distance

Every convex body can be approximated arbitrarilywell by a polytope in theHausdorff
distance, see, e.g., [32].Moreover, algorithms for the computation of ε-approximations
exist for which the convergence rate is known [16]. For the approximation of
unbounded convex sets, only the following theorem is known,which provides a charac-
terization of the sets that can be approximated by polyhedra in the Hausdorff distance.

Theorem 3.1 (see [28,Theorem 2.1]) Let C ⊆ R
n be nonempty and closed. Then the

following are equivalent:
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(i) C is convex, 0+C is polyhedral, and e[C, 0+C] < +∞.
(ii) There exists a polyhedral cone K such that for every ε > 0 there exists a finite

set V ⊆ R
n such that dH (conv V + K ,C) ≤ ε.

Further, if (ii) holds then K = 0+C.

A related result is found in [35], where the approximate solvability of convex vector
optimization problems in terms of polyhedral approximations is investigated. In order
to state the result and establish the relationship to Theorem 3.1, we need the following
definition from [35].

Definition 3.1 A set C � R
n , with a nontrivial recession cone is called self-bounded,

if there exists y ∈ R
n such that {y} + 0+C ⊇ C .

Adjusted to our notation, the mentioned result can be stated as:

Proposition 3.1 (see [35,Proposition 3.7]) Let C ⊆ R
n be closed and convex. If C is

self-bounded, then there exists a finite set V ⊆ R
n such that dH

(
conv V + 0+C,C

) ≤ ε.

If 0+C is polyhedral, then, clearly, C can be approximated by a polyhedron. The
difference to Theorem 3.1 is the self-boundedness of C instead of the finiteness
of e[C, 0+C]. The following theorem points out the connection between these condi-
tions and shows that under an additional assumption, both coincide. The relationships
are illustrated in Fig. 1.

Theorem 3.2 Given a nonempty, closed and convex set C ⊆ R
n, consider the state-

ments

(i) e[C, 0+C] < +∞,
(ii) C is self-bounded,
(iii) There is a compact set K ⊆ R

n such that K + 0+C ⊇ C.

Then the following implications are true: (i) ⇔ (iii) and (ii) ⇒ (iii). If, additionally,
0+C is solid, then (i) – (iii) are equivalent.

Proof We start with the assertion (i) ⇒ (iii). Let M = e[C, 0+C], c ∈ C be arbi-
trary and rc ∈ 0+C such that ‖c − rc‖ = infr∈0+C ‖c − r‖. This infimum is uniquely
attained, because 0+C is closed and convex. Then ‖c − rc‖ ≤ M and we con-
clude c = (c − rc) + rc ∈ BM (0) + 0+C . Therefore, BM (0) + 0+C ⊇ C .

To show (iii) ⇒ (i), let K + 0+C ⊇ C for some compact set K . Then we have

e[C, 0+C] ≤ e[K + 0+C, 0+C]
= sup

k∈K
r∈0+C

inf
r̄∈0+C

‖(k + r) − r̄‖

≤ sup
k∈K

r∈0+C

‖(k + r) − r‖

= sup
k∈K

‖k‖ < +∞.
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Fig. 1 Illustration of Theorem 3.2. Left: The set C is contained in its own recession cone. Therefore, it is
self-bounded and e[C, 0+C] = 0. Centre: The excess of C over its recession cone is finite and attained in
any of the two vertices. However, C is not self-bounded, because it cannot be contained in a translation of
0+C . Right: A set that is neither self-bounded nor does it hold e[C, 0+C] < ∞. Traversing the parabolic
arc, the distance to 0+C grows without bound

The implication (ii) ⇒ (iii) is trivial with K = {y}. For the last part, we show
(iii) ⇒ (ii), assuming 0+C is solid. If e[C, 0+C] = 0, then C ⊆ 0+C and we can
set y = 0. Now, let e[C, 0+C] = M > 0 and fix c ∈ intC . Then there exists ε > 0
such that Bε(c) ⊆ 0+C . We have

BM

(
M

ε
c

)
= M

ε
Bε(c)

⊆ M

ε
0+C

= 0+C .

Therefore,
{−M

ε
c
} + 0+C ⊇ BM (0) and, since 0+C is convex,

{−M
ε
c
} + 0+C ⊇

BM (0) + 0+C . From the first part of the proof, we know that BM (0) + 0+C ⊇ C ,
which completes the proof. ��

Example 3.1 To see that e[C, 0+C] < +∞ does not imply self-boundedness of C
unless 0+C is solid, consider the following counterexample. InR

2 letC = conv{±e1}
+cone{e2},where ei denotes the i th unit vector. Thenonehas the equality e[C, 0+C] =
1, but C is not self-bounded. The set is illustrated in the centre of Figure 1.

In view of the above result, we suggest calling a set self-bounded, if it satisfies
Property (iii). On the one hand, this extends the notion to sets whose recession cone is
not solid.Andon the other hand, thismakes every compact set self-bounded, rather than
just singletons. Since in [35] cones are assumed to be solid, Theorem 3.2 proves that a
convexvector optimization problem is tractable in terms of polyhedral approximations,
if and only if the upper image [35,Equation 6] of the problem satisfies (i) in Theorem
3.1.

The reason that many unbounded convex sets are beyond the scope of polyhedral
approximation in the Hausdorff distance is that it is by nature designed to behave
nicely only for compact sets. The following proposition specifies this.
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Proposition 3.2 For closed and convex sets C1,C2 ⊆ R
n, it is true that dH (C1,C2) <

+∞ only if 0+C1 = 0+C2.

Proof Assume 0+C1 �= 0+C2 and let w.l.o.g. r ∈ 0+C1 \ 0+C2. Consider the equiv-
alent definition of the Hausdorff distance:

dH (C1,C2) = inf {ε > 0 | C1 ⊆ C2 + Bε(0),C2 ⊆ C1 + Bε(0)} .

Let ε be large enough such that C1 ∩ (C2 + Bε(0)) �= ∅ and let z be an element
of this set. Then z + μr ∈ C1 for all μ ≥ 0. The recession cone of C2 + Be(0)
is 0+C2 according to [29,Proposition 9.1.2]. Therefore, there exists some με such
that z + μr /∈ C2 + Be(0) for all μ ≥ με. This yields dH (C1,C2) ≥ ε and the claim
follows with ε → ∞. ��

4 A Polyhedral Approximation Scheme for Closed Convex Line-Free
Sets

We have seen that, in order to approximate a setC by a polyhedron P in the Hausdorff
distance, their recession cones need to be identical. Theorems 3.1 and 3.2 tell us that
this is achievable only for specific sets C . To treat a larger class of sets, a concept
is needed that quantifies similarity between closed convex cones, similar to how the
Hausdorff distance quantifies similarity between compact sets.

Definition 4.1 Given nonempty closed convex cones K1, K2 ⊆ R
n , the truncated

Hausdorff distance between K1 and K2, d̄H(K1, K2), is defined as

d̄H(K1, K2) := dH (K1 ∩ B1(0), K2 ∩ B1(0)) . (7)

Since every cone contains the origin, it is immediate that d̄H(K1, K2) ≤ 1. The
truncated Hausdorff distance defines a metric on the set of closed convex cones in R

n ,
see [13]. However, it is only one way among many to measure the distance between
convex cones.We suggest the survey in [15] for amore thoroughdiscussionof the topic.
With the truncated Hausdorff distance, we define the following notion of polyhedral
approximation of convex sets that are not necessarily bounded.

Definition 4.2 Given a nonempty closed convex and line-free set C ⊆ R
n , a line-free

polyhedron P is called an (ε, δ)-approximation of C if

(i) e[vert P,C] ≤ ε,
(ii) d̄H(0+P, 0+C) ≤ δ,
(iii) P ⊇ C .

Remark 4.1 The assumption that P is line-free is equivalent to vert P �= ∅ and hence
required for condition (i) in the definition. Condition (iii) means that P is an outer
approximation of C . This is required, because otherwise the roles of P and C would
have to be interchanged in (i). However, it is not clear how to proceed with this in a
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Fig. 2 Left: Polyhedron P is an (ε, δ)-approximation of the grey set C . Right: Recession cones of the sets
on the left. The truncated Hausdorff distance between them is at most δ

meaningful fashion. The analogue of considering vertices of P would be to consider
extreme points of C instead. The set of extreme points of C may be unbounded and it
is in general not possible to enforce the upper bound of ε. Lastly, we decided to make
a distinction between ε and δ, because scales of these error measures may be very
different depending on the sets, i.e., δ is always bounded from above by 1, but for ε it
may be useful to allow values larger than 1.

Figure 2 illustrates the definition. We will show that an (ε, δ)-approximation of a
set C approximates C in a meaningful way. To this end, we consider the Painlevé–
Kuratowski convergence, a notion of set convergence that is suitable for a broader
class of sets than convergence with respect to the Hausdorff distance.

Definition 4.3 A sequence {Cν}ν∈N of subsets of R
n is said to converge to C ⊆ R

n

in the sense of Painlevé–Kuratowski, denoted by Cν → C , if the following equalities
hold:

C =
{
x ∈ R

n
∣∣∣ for all open neighbourhoods U of x,
U ∩ Cν �= ∅ for large enough ν

}

=
{
x ∈ R

n
∣∣∣ for all open neighbourhoods U of x,
U ∩ Cν �= ∅ for infinitely many ν

}
.

To conserve space and enhance readability, we will denote by Cν the sequence
{Cν}ν∈N as well as the specific element Cν of this sequence whenever there is no
ambiguity. The two sets in the definition are called the inner and outer limit of Cν ,
respectively. Convergence in the sense of Painlevé–Kuratowski is weaker than con-
vergence in the Hausdorff distance, but both concepts coincide when restricted to
compact subsets, see Example 4.1 and [30,pp. 131–138]. However, for convex sets
Painlevé–Kuratowski convergence can be characterized using the Hausdorff distance.

Example 4.1 (see [30,p. 118])Consider the sequence of sets forwhichCν = {x, yν} for
x, yν ∈ R

n and ‖yν‖ → ∞. Then Cν converges in the sense of Painlevé–Kuratowski
to the singleton C = {x}, but does not converge in the Hausdorff distance, because
dH (Cν,C) = ‖x − yν‖ → ∞.
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Theorem 4.1 (see [30,p. 120]) A sequence Cν of nonempty closed and convex sets
converges to C in the sense of Painlevé–Kuratowski if and only if there exist x ∈ R

n

and r0 ∈ R, such that for all r ≥ r0 it holds that

dH
(
Cν ∩ Br (x),C ∩ Br (x)

) → 0. (8)

In geometric terms, this means that a sequence of nonempty closed and convex
sets converges in the sense of Painlevé–Kuratowski if and only if it converges in
the Hausdorff distance on every nonempty compact subset. In the remainder of this
section we show that (ε, δ)-approximations provide a meaningful notion of polyhedral
approximation for unbounded sets in the sense that a sequence of approximations
converges as defined in Definition 4.2 if ε and δ tend to zero. To this end, we need
some preparatory results. The first one yields a bound on the Hausdorff distance
between truncations of a set and truncations of an (ε, δ)-approximation.

Proposition 4.1 Let C ⊆ R
n be nonempty closed convex and line-free and let P be

an (ε, δ)-approximation of C. Then for every x ∈ conv vert P and r ≥ ε it holds true
that

dH (P ∩ Br (x),C ∩ Br (x)) ≤ 2 (ε + δ (r + ‖x − v‖)) (9)

for some v ∈ conv vert P. In particular, if dH (P ∩ Br (x),C ∩ Br (x)) is attained
as ‖p − c‖ with p ∈ P, then p = v + td for some d ∈ 0+P and t ≥ 0.

Proof Denote by P̄ , C̄ , and V , P ∩ Br (x), C ∩ Br (x), and conv vert P , respectively.
Since P̄, C̄ are nonempty convex and compact, dH

(
P̄, C̄

) = ‖p∗ − c∗‖ for some p∗ ∈
P̄ and c∗ ∈ C̄ . For λ ∈ [0, 1] let z(λ) = λp∗ + (1 − λ)x . We distinguish two cases.
First, assume p∗ ∈ V . Then z(λ) ∈ V for every λ ∈ [0, 1], and due to (i) in Definition
4.2, there is cλ ∈ C̄ with ‖z(λ) − cλ‖ ≤ ε. If ‖p∗ − x‖ ≤ ε, then

∥∥p∗ − c∗∥∥ ≤ ∥∥p∗ − c0
∥∥ ≤ ∥∥p∗ − x

∥∥ + ‖x − c0‖ ≤ 2ε.

If ‖p∗ − x‖ > ε, set λ∗ = ε
‖p∗−x‖ . Similarly, we have

∥∥p∗ − c∗∥∥ ≤ ∥∥p∗ − cλ∗
∥∥ ≤ ∥∥p∗ − z(λ∗)

∥∥ + ∥∥z(λ∗) − cλ∗
∥∥ ≤ 2ε.

Now, assume p∗ /∈ V . Then there exists λ̄ ∈ (0, 1), such that z(λ̄) ∈ V and z(λ) /∈ V
for all λ ∈ (λ̄, 1]. For λ ∈ (λ̄, 1], z(λ) can be written as z(λ) = vλ + tλdλ with

vλ = argmin
{∥∥z(λ̄) − v

∥∥
∣∣∣ v ∈ ({z(λ)} − 0+P

) ∩ V
}
, tλ ≥ 0 and dλ ∈ 0+P ,

‖dλ‖ = 1. By the definition of (ε, δ)-approximation, there exist cλ ∈ C and d̄λ ∈ 0+C
such that ‖vλ − cλ‖ ≤ ε and

∥∥dλ − d̄λ

∥∥ ≤ δ. Now we have

∥∥z(λ) − (cλ + tλd̄λ)
∥∥ ≤ ‖vλ − cλ‖ + tλ

∥∥dλ − d̄λ

∥∥ ≤ ε + tλδ. (10)
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Furthermore, tλ = ‖z(λ) − vλ‖, because ‖dλ‖ = 1. Hence,

tλ ≤ ∥∥z(λ) − z(λ̄)
∥∥ + ∥∥z(λ̄) − vλ

∥∥ ≤ ∥∥z(λ) − z(λ̄)
∥∥ + ∥∥z(λ̄) − v1

∥∥

≤ ∥∥z(λ) − z(λ̄)
∥∥ + ∥∥z(λ̄) − x

∥∥ + ‖x − v1‖
= ‖z(λ) − x‖ + ‖x − v1‖
≤ r + ‖x − v1‖ .

(11)

If r−ε
r+‖x−v1‖ < δ ≤ 1, then

∥∥p∗ − c∗∥∥ ≤ ∥∥p∗ − c0
∥∥ ≤ ∥∥p∗ − x

∥∥ + ‖x − c0‖ ≤ r + ε ≤ 2(ε + δ(r + ‖x − v1‖)).

Otherwise, the last inequality is violated. In this case, let λ∗ = 1 − ε+δ(r‖x−v1‖)‖p∗−x‖ .

If λ∗ ≤ λ̄, then z(λ∗) ∈ V , and there exists cλ∗ ∈ C with ‖z(λ∗) − cλ∗‖ ≤ ε.
Therefore,

∥∥p∗ − c∗∥∥ ≤ ∥∥p∗ − z(λ∗)
∥∥ + ∥∥z(λ∗) − cλ∗

∥∥ ≤ 2ε + δ(r + ‖x − v1‖).

If λ∗ > λ̄ then, according to (10) and (11), there exists c ∈ C such that ‖z(λ∗) − c‖ ≤
ε + δ(r + ‖x − v1‖). Altogether this yields
∥∥p∗ − c∗∥∥ ≤ ∥∥p∗ − c

∥∥ ≤ ∥∥p∗ − z(λ∗)
∥∥ + ∥∥z(λ∗) − c

∥∥ ≤ 2 (ε + δ(r + ‖x − v1‖)) ,

which completes the proof. ��
We need two more results before we can prove Theorem 4.2.

Lemma 4.1 Let C ⊆ R
n be nonempty closed and convex and let there be

sequences vν , rν such that infc∈C ‖vν − c‖ → 0, infr∈0+C ‖rν − r‖ → 0, and
vν + rν ∈ BM (x) for some M ≥ 0 and x ∈ R

n. If C is line-free, then ‖vν‖ is
bounded.

Proof Assume that ‖vν‖ is unbounded. This implies that ‖rν‖ is also unbounded and
0+C �= {0}. Without loss of generality, let rν �= 0 for all ν. Then dν := rν/ ‖rν‖ is
bounded and has a convergent subsequence.Without loss of generality, we can assume
that dν → d ∈ 0+C . We will show that −d ∈ 0+C . Therefore let c ∈ C , t ≥ 0 and
define yν = argminy∈C ‖vν − y‖. By the triangle inequality, it holds true that

∥∥c − rν − yν
∥∥ ≤ M + ‖c − x‖ + ∥∥vν − yν

∥∥ =: Mν . (12)

Note that Mν is bounded from above by some M , because ‖vν − yν‖ → 0. For every
T ≥ 0, there exists some νT , such that ‖rνT ‖ ≥ T . Let T ≥ t and define

ȳ := t

‖rνT ‖ y
νT +

(
1 − t

‖rνT ‖
)
c ∈ C .
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Putting it all together, one gets

inf
y∈C

∥∥(c − tdνT ) − y
∥∥ ≤ ∥∥(c − tdνT ) − ȳ

∥∥

=
∥∥∥∥

t

‖rνT ‖c − tdνT − t

‖rνT ‖ y
νT

∥∥∥∥

= t

‖rνT ‖
∥∥c − rνT − yνT

∥∥

≤ t

T
M,

where the last inequality holds due to (12) and boundedness of Mν . Since C is closed
and dν → d ∈ 0+C , taking the limit T → +∞ yields that c − td ∈ C . This is a
contradiction to the pointedness of 0+C . ��

Every closed and line-free convex set C can be written as the convex hull of its
extreme points plus its recession cone [14,p. 35]. In particular, Lemma 4.1 states that
the set of convex combinations of extreme points for which a given point in C can
be decomposed in such a fashion is compact. The next result establishes a relation
between extreme points of C and the vertices of an (ε, δ)-approximation.

Proposition 4.2 Let C ⊆ R
n be nonempty closed convex and line-free. For ν ∈ N,

let Pν be an (εν, δν)-approximation of C. If (εν, δν) → (0, 0), then for every extreme
point c of C there exists a sequence xν → c such that xν ∈ conv vert Pν .

Proof Since C is line-free, it has at least one extreme point. Let c be one such extreme
point. Assume that for every sequence xν with xν ∈ conv vert Pν there exists a γ > 0,
such that ‖xν − c‖ > γ for infinitely many ν. Then, without loss of generality, there
exists one such sequence such that ‖xν − c‖ > γ for every ν and, since C ⊆ Pν ,
c = xν + rν for some rν ∈ 0+Pν . By Lemma 4.1, it holds that ‖xν‖ and ‖rν‖ are
bounded. Then there exist subsequences xνk , rνk such that

xνk → x ∈ C, rνk → r ∈ 0+C .

Note that r �= 0, because ‖rν‖ > γ for all ν. Finally,

c = x + r = 1

2
(x + 2r) + 1

2
x .

This is a contradiction to c being an extreme point of C . ��
We are now ready to prove the main result.

Theorem 4.2 Let C ⊆ R
n be nonempty closed convex and line-free. For ν ∈ N let Pν

be an (εν, δν)-approximation of C. If (εν, δν) → (0, 0), then Pν → C in the sense of
Painlevé–Kuratowski.
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Proof By Theorem 4.1, we must show that there exist c ∈ R
n and r0 ≥ 0 such that

dH (Pν ∩ Br (c),C ∩ Br (c)) → 0 for all r ≥ r0. Let r ≥ maxν∈N εν and let c be
an extreme point of C , which exists, because C contains no lines. By Proposition
4.2, there exists a sequence xν → c with xν ∈ conv vert Pν . Applying the triangle
inequality and Proposition 4.1 yields

dH
(
Pν ∩ Br (c),C ∩ Br (c)

)

≤ dH
(
Pν ∩ Br (c), P

ν ∩ Br (x
ν)

)

+ dH
(
Pν ∩ Br (x

ν),C ∩ Br (x
ν)

)

+ dH
(
C ∩ Br (x

ν),C ∩ Br (c)
)

≤ dH
(
Pν ∩ Br (c), P

ν ∩ Br (x
ν)

)

+ 2(εν + δν(r + ∥∥xν − vν
∥∥))

+ dH
(
C ∩ Br (x

ν),C ∩ Br (c)
)
,

for some vν ∈ conv vert Pν . The first and third term in this sum converge to zero
as xν → c. It remains to show that ‖xν − vν‖ is bounded. Since C ⊆ Pν , the dis-
tance dH (Pν ∩ Br (xν),C ∩ Br (xν)) is attained as e[Pν ∩ Br (xν),C ∩ Br (xν)]. Let
the supremum be attained by pν ∈ Pν . Then pν = vν + dν for some dν ∈ 0+Pν . It
holds

∥∥pν − c
∥∥ ≤ ∥∥pν − xν

∥∥ + ∥∥xν − c
∥∥ ≤ r + max

ν∈N
∥∥xν − c

∥∥ < +∞,

i.e., vν + dν ∈ BM (c) for some M ≥ 0. Therefore, the sequence ‖vν‖
is bounded according to Lemma 4.1. Hence, ‖xν − vν‖ is also bounded and
dH (Pν ∩ Br (c),C ∩ Br (c)) → 0, which was to be proved. ��

Theorem 4.2 justifies the definition of (ε, δ)-approximations, i.e., it states that they
define a meaningful notion of approximation. We close this section with the observa-
tion that (ε, δ)-approximations reduce to ε-approximations in the compact case.

Corollary 4.1 Let C ⊆ R
n be a convex body and P ⊆ R

n be a polyhedron. For ε ≥ 0
and δ ∈ [0, 1) the following are equivalent.

(i) P is an (ε, δ)-approximation of C.
(ii) P ⊇ C and dH (P,C) ≤ ε.

Proof Since C is compact, 0+C = {0}. Then d̄H(0+P, {0}) < 1 implies that 0+P =
{0}, i.e., P is compact as well, because otherwise one would have d̄H(0+P, {0}) = 1.
Therefore, P is the convex hull of its vertices. Because P ⊇ C , dH (P,C) is attained
as e[P,C]. But e[P,C] is attained in a vertex of P , i.e., e[P,C] = e[vert P,C].
Hence, dH (P,C) ≤ ε. On the other hand, if dH (P,C) ≤ ε, then P must be compact
by Proposition 3.2. Then 0+P = 0+C and P is an (ε, 0)-approximation of C and in
particular an (ε, δ)-approximation. ��
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5 An Algorithm for the Polyhedral Approximation of Unbounded
Spectrahedra

In this section, we present an algorithm for computing (ε, δ)-approximations of closed
convex and line-free setsC whose interior is nonempty.We also prove correctness and
finiteness of the algorithm. The algorithm employs a cutting scheme, a procedure for
approximating convex bodies by polyhedra that is introduced in [16]. A cutting scheme
is an iterative algorithm that computes a sequence of polyhedral outer approximations
by successively intersecting the approximation with new halfspaces. In doing so,
vertices of the current approximation are cut off, hence the name. The calculation of
these halfspaces is explained in Proposition 5.2.

Since we are dealing with unbounded sets, we pursue the idea to reduce computa-
tions to certain compact sets and then apply a cutting scheme. Furthermore, we have
to be able to assess the set 0+C . Since this is difficult in the general case, we only
consider sets C that are spectrahedra, because a representation of the recession cone
is readily available.

Throughout this section, we consider the following semidefinite programs related
to a closed spectrahedron C = {x ∈ R

n | A(x) � 0} with nonempty interior. For a
direction w ∈ R

n \ {0}, consider

max wTx s.t. A(x) � 0. (P1(w))

Solving (P1(w)) is equivalent to determining the maximal shifting of a hyperplane
with normal w within C . The following result is well known in the literature, see, e.g.,
[29,Corollary 14.2.1].

Proposition 5.1 For every w ∈ int (0+C)
◦, an optimal solution to (P1(w)) exists.

The second problem we consider is

min t s.t. A(x) � 0

x − v − td = 0,
(P2(v, d))

where v ∈ R
n and d ∈ R

n \ {0}. Solving (P2(v, d)) can be described as the task of
determining the maximum distance on can move in direction d starting at point v until
the set C is reached. If this distance is finite and v /∈ C , then a solution to (P2(v, d))
yields a point on the boundary of C , namely one of the points that are obtained by
intersecting the boundary of C with the affine set {v + td | t ∈ R}. The Lagrangian
dual problem of (P2(v, d)) is

max −A(v) ·U s.t. Ai ·U = wi , ∀i ∈ {1, . . . , n}
dTw = 1

U � 0.

(D2(v, d))
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Solutions to (P2(v, d)) and (D2(v, d)) give rise to a supporting hyperplane of C as
described in the next proposition.

Proposition 5.2 Let v /∈ C and set d = c − v for some c ∈ intC. Then solutions
(x∗, t∗) to (P2(v, d)) and (U∗, w∗) to (D2(v, d)) exist. Moreover, w∗Tx ≥ w∗Tv + t∗
for all x ∈ C and equality holds for x = x∗.

Proof Without loss of generality, we can assume that intC = {x ∈ R
n | A(x) � 0},

see [12,Corollary 5]. Then (c, 1) is strictly feasible for (P2(v, d)), which is the well-
known Slater’s constraint qualification in convex optimization. Since, v /∈ C and by
convexity the first constraint is violated whenever t ≤ 0. Since C is closed, an optimal
solution (x∗, t∗) to (P2(v, d)) with t∗ ∈ [0, 1] exists. Slater’s constraint qualification
now implies strong duality, i.e., an optimal solution (U∗, w∗) to (D2(v, d)) exists and
the optimal values conincide. Next, let x ∈ C and observe that

w∗Tx − w∗Tv − t∗ =
n∑

i=1

xi (Ai ·U∗) − w∗Tv − t∗

= Ā(x) ·U∗ −
n∑

i=1

vi (Ai ·U∗) − t∗

= Ā(x) ·U∗ − Ā(v) ·U∗ + A(v) ·U∗

= Ā(x) ·U∗ + A0 ·U∗

= A(x) ·U∗ ≥ 0.

The third equality holds due to strong duality. Lastly, for x = x∗ we have equality,
because x∗ = v + t∗d and w∗Td = 1. ��

We want to describe the functioning of the algorithm geometrically before we
present the details in pseudo code. The method consists of two phases. In the first
phase, an initial polyhedron P0, such that P0 ⊇ C and d̄H(0+P0, 0+C) ≤ δ, is
constructed as follows: For w ∈ int (0+C)

◦, the set

M := {x ∈ R
n | wTx = −(1 + δ)} (13)

is a compact basis of 0+C , i.e., 0+C = coneM . We use a cutting scheme to compute
a polyhedral δ-approximation M of M with M ⊆ int M . If in (13) we set ‖w‖ = 1,
then

K := coneM (14)

is a polyhedral cone with d̄H(K , 0+C) ≤ δ. Next, we need to construct a polyhedron
P0 with recession cone K that containsC . To this end, we compute a H -representation
(R, 0) of K and solve (P1(r )) for every row r of R that is for every normal of supporting
hyperplanes that define K . Note that a solution always exists, because r ∈ int (0+C)

◦
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by construction. For a solution x∗
r to (P1(r )), the set

{x ∈ R
n | rTx = rTx∗

r } (15)

is a hyperplane that supports C in x∗
r . For the initial approximation, we then set

P0 =
⋂

r

{x ∈ R
n | rTx ≤ rTx∗

r }. (16)

Clearly, it holds that 0+P0 = K and that P0 has at least one vertex, because K is
pointed.

In the second phase of the algorithm, P0 is refined by successively cutting of vertices
until all vertices are within distance of at most ε fromC . This is achieved by iteratively
intersecting P0 with halfspaces that support C in some point of its boundary. To
guarantee finiteness of the algorithm, we retreat with the computations to compact
subsets P0 of P0 and C of C , namely

P0 = P0 ∩ {x ∈ R
n | wTx ≥ min

r
wTx∗

r − ε} (17)

and

C = C ∩ {x ∈ R
n | wTx ≥ min

r
wTx∗

r − ε}, (18)

where w is the same as in (13) and the x∗
r are the optimal solutions from (15). A

cutting scheme is then applied to compute an outer ε-approximation P of C . Finally,
an (ε, δ)-approximation of C is obtained as

P + K . (19)

We describe the aforementioned cutting scheme due to [16] that is used in the compu-
tation of an (ε, δ)-approximation for the special case of spectrahedral sets inAlgorithm
1.

The vectors e and ei , i = 1, . . . , n, in line 1 denote the vector inR
n with components

all equal to one and the i th unit vector, respectively. Since C is compact, it holds
that int (0+C)

◦ = R
n . Therefore, Proposition 5.1 implies that optimal solutions x∗

w

in line 1 always exist. Note that κ in line 12 is an upper bound on the Hausdorff
distance between P and C due to the following observation. The Hausdorff distance
between P and C is attained in a vertex of P , because C ⊆ P . Since the part x∗

v of
an optimal solution of (P2(v, d)) is an element of the boundary of C , we conclude
infx∈C ‖x − v‖ ≤ ∥∥x∗

v − v
∥∥ = t∗v ‖c − v‖ for every v ∈ vert P . Hence, the algorithm

terminates with dH (P,C) ≤ t ∗̄v ‖c − v̄‖ ≤ ε. For the special class of spectrahedral
sets, the cutting scheme algorithm terminates after finitely many steps. This is proved
in [5,Theorem 4.38].

Remark 5.1 As mentioned at the beginning of this section, Algorithm 1 falls into
the class of cutting scheme algorithms. In [16], convergence properties for a similar
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Algorithm 1: A cutting scheme algorithm for spectrahedra
Data: MatrixA(x) representing a compact spectrahedron C with nonempty interior, error tolerance ε

Result: V -representation of a polyhedral ε-approximation P of C
1 Compute solutions x∗

w of P1(w) for w ∈ {−e, e1, . . . , en}
2 P ←

{
x ∈ R

n | ∀w ∈ {−e, e1, . . . , en} : wTx ≤ wTx∗
w

}

3 c ← 1
n+1

∑
w x∗

w // interior point of C

4 κ ← +∞
5 while κ > ε do
6 Compute the set vert P
7 for every v ∈ vert P do
8 d ← c − v

9 Compute solutions (x∗
v , t∗v ) and (U∗

v , w∗
v ) to P2(v, d) and D2(v, d)

10 v̄ ← argmax
{
t∗v ‖c − v‖ | v ∈ vert P

}

11 P ← P ∩
{
x ∈ R

n | w∗T
v̄
x ≥ w∗T

v̄
v̄ + t ∗̄

v

}

12 κ ← t ∗̄
v

‖c − v̄‖
13 Compute vert P and return

class of algorithms, called Hausdorff schemes, are established. The authors define a
Hausdorff scheme as a polyhedral approximation algorithm fulfilling the condition

dH
(
Pk, Pk+1

)
≥ γ dH

(
Pk,C

)

for a positive constant γ in every iteration. Here, Pk denotes the polyhedral approx-
imation obtained in iteration k. They show that for every ε > 0 there exists an index
k0, such that for all k ≥ k0

dH
(
Pk,C

)
≤ (1 + ε)Γ (C, n)

1

k1/(n−1)

holds for a positive constant Γ (C, n). Note that if in step 8 of Algorithm 1 we were
able to choose d such that κ in line 12 was equal to dH (P,C), then our algorithm
would be a Hausdorff scheme with constant γ = 1 and the bound would hold.

Remark 5.2 Algorithm 1 uses similar techniques as the supporting hyperplane method
introduced in [37] for the maximization of a linear function subject to quasiconvex
constraints. The supporting hyperplane method also constructs a sequence of polyhe-
dral outer approximations of a convex body by successively introducing supporting
hyperplanes. In order to find the corresponding boundary points, the same geometric
idea is employed, i.e., moving from vertices of the current approximation towards an
interior point until the boundary is met. However, the algorithms differ in multiple
aspects. Firstly, in each iteration we choose the vertex with the largest distance to the
set C with respect to the direction d, while in [37] the vertex that realizes the smallest
objective function value is chosen. Secondly, we do not assume C to have a contin-
uously differentiable boundary. In particular, if A(x) is a diagonal matrix, then C is
a polyhedron. Therefore, our algorithm can handle a larger class of sets. Finally, the
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supporting hyperplane method approximates the set only in a neighbourhood of the
optimal solution to the underlying optimization problem, while we are interested in
an approximation of the whole set C .

We are now prepared to present Algorithm 2, an algorithm for the computation of
(ε, δ)-approximations of closed and line-free spectrahedra with nonempty interior.

Algorithm 2: An algorithm for (ε, δ)-approximations of spectrahedra
Data: Matrix A(x) representing an unbounded closed and line-free spectrahedron C with nonempty

interior, error tolerances ε and δ

Result: V -representation of an (ε, δ)-approximation P of C

1 w ← (−A1 · I , . . . , −An · I )T /

∥∥∥(−A1 · I , . . . , −An · I )T
∥∥∥ // interior point of

(0+C)
◦

2 M ← 0+C ∩
{
x ∈ R

n | wTx = −(1 + δ)
}

3 Compute a δ/2-approximation M of M according to Algorithm 1

4 M ← M +
{
x ∈ R

n | ‖x‖1 ≤ δ
2

}

5 K ← cone vert M
6 Compute a H -representation (R, 0) of K
7 Compute solutions x∗

r of (P1(r )) for every row r of R

8 C ← C ∩ {x ∈ R
n | wTx ≥ minr wTx∗

r − ε}
9 Compute an ε-approximation P of C according to Algorithm 1

10 P ← P + K
11 return a V -representation of P

Steps 6 and 13 inAlgorithm1 and5, 6 and 11 inAlgorithm2 require the computation
of a V -representation from an H -representation or vice versa. These problems are
known as vertex enumeration and facet enumeration, respectively, and are difficult
problems on their own. It is beyond the scope of this paper to discuss these problems
in more detail. Therefore, we only point out that there exist toolboxes that are able
to perform these tasks numerically, such as bensolve tools [6, 24]. In practice,
however, the computations often become infeasible in dimensions three and higher
when the number of halfspaces defining the polyhedron is large. It is also known
that vertex enumeration for unbounded polyhedra is NP-hard, see [20]. Thus, since
vertex enumeration has to be performed in every iteration of Algorithm 1 and for the
unbounded polyhedron P in step 11 of Algorithm 2, one cannot expect the algorithms
to be computationally efficient.

Theorem 5.1 As inputs for Algorithm 2 let ε, δ > 0 and the spectrahedron defined by
thematrixA(x) be closed convex line-free andwith nonempty interior. Then Algorithm
2works correctly, i.e., if it terminates it returns an (ε, δ)-approximation of C according
to Definition 4.2.

Proof SinceC is closed and does not contain any lines, its recession cone is also closed
and pointed. This implies that (0+C)

◦ has nonempty interior, see, e.g., [1,p. 53]. The
direction w defined in line 1 is an element of (0+C)

◦ according to 4. Note that w �= 0,
because 0+C �= {0} and the pointedness of 0+C implies that the matrices A1, . . . , An
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are linearly independent [27,Lemma 3.2.9]. To see that w is indeed from the interior
of (0+C)

◦ observe that for every x ∈ 0+C \ {0} it holds that

wTx = −
n∑

i=1

xi (Ai · I ) = −
(

n∑

i=1

xi Ai

)
· I = −Ā(x) · I < 0.

The last inequality holds, because at least one eigenvalue of Ā(x) is positive. The
set M defined in line 2 is compact, because w ∈ int (0+C)

◦. Note that M is not
full-dimensional, however, treating its affine hull as the ambient space, M is a valid
input for Algorithm 1 in line 3. By enlarging M in line 4, it remains polyhedral
as the Minkowski sum of polyhedra. The cone K is then polyhedral and it satisfies
0+C \ {0} ⊆ int K and d̄H(K , 0+C) ≤ δ. The first assertion is immediate from the
observation that 0+C = coneM and M ⊆ int M . Secondly, it is true that ‖x‖ ≥ 1+ δ

for every x satisfying wTx = −(1 + δ). Therefore, ‖x‖ ≥ 1 for every x ∈ M due to
the construction of the set. Assume d̄H(K , 0+C) is attained as ‖k − c‖ and let α be
chosen such that αk ∈ M , in particular α ≥ 1. Then we obtain the second claim by
the following observation:

d̄H(K , 0+C) = ‖k − c‖ ≤ α ‖k − c‖
≤ inf

c∈0+C,

wTc=−(1+δ)

‖αk − c‖

≤ dH
(
M, M

)

≤ δ.

Due to polarity for convex cones and the properties of K , the relation K ◦ ⊆ int (0+C)
◦

holds. Also, K is pointed, because 0 /∈ M . By Proposition 5.1, optimal solutions x∗
r

in line 7 exist for every r . The set C in line 8 is compact by the same argument as for
M . Moreover, it has nonemtpy interior, because C itself has nonempty interior and it
contains the convex hull of the points x∗

r , of which every relative interior point is an
interior point of C . Therefore, a polyhedral ε-approximation P is computed correctly.
It remains to show that P = P + K is indeed an (ε, δ)-approximation of C . The
recession cone of P is K since P is compact. Thus, we have d̄H(0+P, 0+C) ≤ δ

and P is line-free. As vert P ⊆ vert P and P is an ε-approximation of C it holds
e[vert P,C] ≤ ε. In order to complete the proof, we must show that C ⊆ P . To this
end, denote byC+ the setC∩{

x ∈ R
n | wTx ≤ minr wTx∗

r − ε
}
, i.e.,C+ = cl(C\C).

Then for every row r of R in the H -representation of K , sup
{
rTx | x ∈ C+}

is attained
by some x̄r with

wT x̄r = min
r

wTx∗
r − ε

and it holds that

C+ ⊆
(

⋂

r

{
x ∈ R

n | rTx ≤ rT x̄r
})

∩
{
x ∈ R

n | wTx ≤ min
r

wTx∗
r − ε

}
.
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But since the recession cone of
⋂

r

{
x ∈ R

n | rTx ≤ rT x̄r
}
is K and all x̄r lie in the

same hyperplane, it is also true that

C+ ⊆
{
x ∈ C | wTx = min

r
wTx∗

r − ε
}

+ K ⊆ C + K .

Altogether, we conclude C ⊆ C + K ⊆ P + K = P . ��
Corollary 5.1 Algorithm 2 terminates after finitely many steps.

Proof This is a consequence of the finiteness of Algorithm 1, see [5,Theorem 4.38].
Therefore, the executions of Algorithm 1 in lines 3 and 8 of Algorithm 2 terminate
after finitely many steps, which implies that Algorithm 2 itself is finite. ��

We close this section by illustrating Algorithm 2 with the following two examples.

Example 5.1 Consider the spectrahedron C ⊆ R
2 defined by the matrix inequality

⎛

⎜⎜⎝

x1 1 0 0
1 x2 0 0
0 0 1 x1
0 0 x1 x2

⎞

⎟⎟⎠ � 0.

It is the intersection of the epigraphs of the functions x �→ 1/x , restricted to the
positive real line, and x �→ x2. We use the solver SDPT3 [33, 34] and the software
bensolve tools [6, 24] to solve the semidefinite subproblems and perform vertex
and facet enumeration, respectively. The algorithm is implemented in GNU Octave
[9]. Figure 3 shows the polyhedral approximations ofC at different stages ofAlgorithm
2 for the tolerances (ε, δ) = (0.1, 0.1).

Computational results for different values of ε and δ are presented in Table 1. It
can be seen that the number of subproblems that have to be solved is larger than the
number of vertices the polyhedral approximation has. The reason is that one instance of
(P2(v, d)) is solved for every vertex of the current approximation in every iteration of
Algorithm 1, but only one of these vertices is cut off. Moreover, the number of solved
subproblems grows quickly as ε decreases, because more iterations of Algorithm 1
are needed to reach the desired accuracy and the number of solved subproblems grows
with every iteration. Since the recession cone ofC is just a ray and easy to approximate,
most of the computational effort is put into approximating C in line 9. However, for
fixed ε and decreasing δ the number of solved subproblems grows. This is due to the
fact that C depends on the approximate recession cone K . As δ decreases the rays
generating K will be closer to each other with respect to the truncated Hausdorff
distance. Therefore, the set C will have a larger area and it takes more iterations to
compute an ε-approximation of it. Note that for (ε, δ) equal to (0.3, 0.2), (0.5, 0.15)
or (0.5, 0.2) the same number of subproblems are solved and the approximations have
the same number of vertices. For the tolerances (0.3, 0.2) and (0.5, 0.2), the values are
identical, because during the approximation ofC the approximation error inAlgorithm
1 changes from a value larger than 0.5 to a value smaller than 0.3 in one iteration.
Therefore, the resulting (ε, δ)-approximations are identical. For (ε, δ) = (0.5, 0.15),
the approximation is different and it is a coincidence that the values coincide.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Computed polyhedra at different steps of Algorithm 2 for the error tolerances (ε, δ) = (0.1, 0.1).
Figures 3a and 3c-3f are scaled vertically by a factor of 0.077, Figure 3b by a factor of 0.054 for visibility
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Table 1 Computational results
for Example 5.1 and different
values of ε and δ. Every cell
shows the number of solved
semidefinite subproblems, the
number of vertices of the
polyhedral approximation, as
well as the elapsed CPU time

ε

δ 0.1 0.15 0.2

0.1 603 359 261

26 20 16

230.98 139.92 100.22

0.3 239 161 99

15 12 9

93.57 62.79 39.15

0.5 198 99 99

14 9 9

76.38 38.76 39.85

Fig. 4 A polyhedral
approximation of the cone of
2 × 2 positive semidefinite
matrices obtained by Algorithm
2 for δ = 0.1, see Example 5.2

Example 5.2 Algorithm 2 can also be used to compute polyhedral approximations of
closed and pointed convex cones. Consider for example the positive semidefinite cone
of 2 × 2 matrices

S =
{
x ∈ R

3
∣∣∣
(
x1 x3
x3 x2

)
� 0

}
.

It is a closed and pointed convex cone with nonempty interior. Thus, we can apply
Algorithm 2 to it. Since S is a cone, its only vertex is the origin and we can terminate
the algorithm after K has been computed in line 5. Then K is a polyhedral cone and it
holds d̄H(K , S) ≤ δ. Figure 4 shows a polyhedral approximation of S with 20 extreme
rays and d̄H(K , S) ≤ 0.1.

6 Conclusion

We have introduced the notion of (ε, δ)-approximations for the polyhedral approxi-
mation of unbounded convex sets. Since polyhedral approximation in the Hausdorff
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distance can only be achieved for unbounded sets under restrictive assumptions, (ε, δ)-
approximations are of particular interest, because they allow treatment of a larger class
of sets. An important observation is that the recession cones of the involved sets must
play a crucial role in a meaningful concept of approximation for unbounded sets.
We have shown that (ε, δ)-approximations define a suitable notion of approximation
in the sense that a sequence of such approximations convergences and that (ε, δ)-
approximations generalize the polyhedral approximation of compact sets with respect
to the Hausdorff distance. Finally, we have presented an algorithm that allows for
the computation of (ε, δ)-approximations of spectrahedra and have shown that the
algorithm is finite.
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