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Abstract
In this paper, we study the minimization of an indefinite quadratic function over the
intersection of balls and linear inequality constraints (QOBL). Using the hyperplanes
induced by the intersection of each pair of balls, we show that the optimal solution of
QOBL can be found by solving several extended trust-region subproblems (e-TRS).
To solve e-TRS, we use the alternating direction method of multipliers approach and
a branch and bound algorithm. Numerical experiments show the efficiency of the
proposed approach compared to the CVX and the extended adaptive ellipsoid-based
algorithm.

Keywords Quadratically constrained quadratic optimization problems · Extended
trust region subproblems · Nonconvex optimization

Mathematics Subject Classification 49J53 · 49K99

1 Introduction

Quadratically constrained quadratic optimization (QCQO) problems arise in various
applications and are among the well-studied optimization problems [5, 9, 11, 16, 24,
27, 33]. Special cases of QCQO include the well-known trust region subproblem
(TRS) and extended TRS (e-TRS). Though TRS is nonconvex, it has the necessary
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and sufficient optimality conditions and exact semidefinite relaxation (SDR) [15, 26].
However, for e-TRS, the necessary and sufficient optimality conditions and the SDR
hold under certain assumptions [12, 13, 22]. A variant of QCQO that is minimizing
a quadratic function subject to the intersection of the inside and outside of several
balls with extra linear constraints is studied in [7]. The authors proposed a Branch and
Bound (BB) algorithm to solve it and reported preliminary numerical results.

In this paper, we study a special case of the problem in [7] thatminimizes a quadratic
function subject to the intersection of several balls and linear inequality constraints
(QOBL). Variants of this problem appear for example in solving nonconvex source
localization problems and numerical solution of parameter identification [6, 8]. As
a special case of QCQO, one may apply algorithms such as the Extended Adaptive
Ellipsoid-based (EAE) algorithm to solve QOBL [16, 23]. We show that QOBL can
be reduced to m e-TRS using the hyperplanes induced by the intersection of each
pair of balls constraints. To solve e-TRS, we utilize alternating direction method of
multipliers (ADMM) and the BB algorithm of [7]. The rest of the paper is organized
as follows. In Sect. 2, we give our main results, namely reducing QOBL to m e-
TRS. In Sect. 3, we briefly discuss the ADMM [10] for solving e-TRS. Finally, in
Sect. 4, numerical results are given to show the efficiency of the proposed approach
in comparison with some existing algorithms.

2 Main Results

Consider the following quadratic optimization problem with ball and linear inequality
constraints:

min
1

2
xT Ax + aT x (QOBL)

||x − ci ||2 ≤ δ2i , i ∈ I := {1, . . . ,m},
bTk x ≤ βk, k = 1, . . . , p,

where A ∈ R
n×n is a symmetric matrix, a, ci , bk ∈ R

n , βk ∈ R and δi ∈ R+. When
m = 1 and p = 0, QOBL reduces to the well-known TRS [15] and when m = 1 and
p ≥ 1, it reduces to the following e-TRS:

min
1

2
xT Ax + aT x (p-eTRS)

||x − c||2 ≤ δ2,

bTk x ≤ βk, k = 1, . . . , p,

that has been widely studied in recent years [1, 2, 12, 13, 17, 21, 22, 25, 28–31].
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Fig. 1 Graphical representation
of notations. a The feasible
region of QOBL, where the blue
lines are linear constraints. b
Mi , i = 1, 2, 3. c Ri ,
i = 1, 2, 3

The following notations are used throughout this section:

Bi = {x | ||x − ci ||2 ≤ δ2i }, ∂Bi = {x | ||x − ci ||2 = δ2i },
P = {x | bTk x ≤ βk, k = 1, . . . , p},
M = m∩

i=1
Bi , R = M ∩ P,

Mi = {x | x ∈ Bi , 2(ci − ck)
T x ≤ αik, ∀k ∈ I \ {i}},

αik = cTi ci − cTk ck − δ2i + δ2k , αik = −αki ,

Ri = Mi ∩ P.

For clarity, we have also shown them in Fig. 1. In the following lemma, we discuss
a case where QOBL is infeasible.

Lemma 2.1 If there exist i, j ∈ I such that ||ci − c j || > δi + δ j , then QOBL is
infeasible (see Fig. 2a).

Proof Let ||ci − c j || > δi + δ j and x ∈ Bi , then

||x − c j || =||x − c j + ci − ci || ≥ ||c j − ci || − ||x − ci || > δ j + δi − ||x − ci || ≥ δ j

�⇒ ||x − c j || > δ j �⇒ Bi ∩ B j = ∅.


�
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Fig. 2 Infeasible QOBL
examples

(a) (b)

Fig. 3 Red ball is redundant

We will discuss other cases where QOBL becomes infeasible in the rest of the paper
(see Fig. 2b). The following lemma discusses the redundancy of ball constraints.

Lemma 2.2 Let δi ≤ δ j . If ||ci − c j || ≤ δ j − δi , then constraint ||x − c j ||2 ≤ δ2j is
redundant (see Fig. 3).

Proof Let x ∈ Bi , then

||x − c j || =||x − c j + ci − ci || ≤ ||c j − ci || + ||x − ci || ≤ δ j − δi + ||x − ci || ≤ δ j

�⇒ Bi ⊂ B j .

Therefore, constraint ||x − c j ||2 ≤ δ2j is redundant. 
�
Following Lemma 2.2, we make the following assumption for the rest of the paper.

Assumption 1 For all i ∈ I, there is no j ∈ I \ {i} such that Bi ⊆ B j and the Slater
condition holds for QOBL. Also, we assume m ≥ 3.

As noted earlier, the case withm = 1 corresponds to the well-studied p-eTRS, see for
example [2, 7, 12, 22, 30] and the case withm = 2 is handled by a similar approach as
in [4]. In the following results, our goal is to characterize the feasible region of QOBL
as the union of the feasible region of m, (m + p − 1)−eTRS. The first result shows
that ifM j is nonempty, then it has a point on the boundary of B j .

Lemma 2.3 Suppose QOBL satisfies Assumption 1. If M j �= ∅, then there exists
y ∈ M j such that ||y − c j ||2 = δ2j .
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Proof Let x ∈ M j , then ||x − c j ||2 ≤ δ2j and 2(c j − ci )T x ≤ α j i ∀i ∈ I \ { j}. If
||x − c j ||2 < δ2j , since 2(c j − ci )T x ≤ α j i ∀i ∈ I \ { j}, we have ||x − ci ||2 − δ2i ≤
||x − c j ||2 − δ2j < 0. Then, there exist d ∈ R

n and ε > 0, such that for y = x + εd
we have

||y − ci ||2 − δ2i ≤ ||y − c j ||2 − δ2j = 0, ∀i ∈ I \ { j}.

Therefore, ||y − c j ||2 = δ2j and 2(c j − ci )T y ≤ α j i ∀i ∈ I \ { j}, which completes
the proof. 
�
In the previous lemma, we showed that when M j is nonempty, it intersects the
boundary of a ball. In the following lemma, we will show that when p = 0 the
intersection ofM j with the boundary of a ball is a part of the boundary of the feasible
region of QOBL.

Lemma 2.4 Suppose QOBL satisfies Assumption 1 and p = 0. Then, we have
M j

⋂
∂B j = ∂

(⋂m
i=1 Bi

)⋂
∂B j .

Proof (�⇒) Note that

∂

(
m⋂

i=1

Bi

)

=
m⋃

t=1

{x | ||x − ct ||2 = δ2t , ||x − ci ||2 ≤ δ2i , ∀i ∈ I \ {t}}. (1)

Let x ∈ M j
⋂

∂B j , then ||x − c j ||2 = δ2j , 2(c j − ci )T x ≤ α j i , ∀i ∈ I \ { j}.
Further,

2(c j − ci )
T x ≤ α j i �⇒ 2cTj x − 2cTi x ≤ cTj c j − cTi ci + δ2i − δ2j

�⇒ xT x + cTi ci − 2cTi x − δ2i ≤ xT x + cTj c j − 2cTj x − δ2j

�⇒ ||x − ci ||2 − δ2i ≤ ||x − c j ||2 − δ2j .

Now, from ||x − c j ||2 = δ2j , we have ||x − ci ||2 ≤ δ2i for all i ∈ I \ { j}, and from (1),

we have x ∈ ∂
(⋂m

i=1 Bi
)
. Thus, M j

⋂
∂B j ⊆ ∂

(⋂m
i=1 Bi

) ⋂
∂B j .

(⇐�) Now, suppose that x ∈ ∂
(⋂m

i=1 Bi
) ⋂

∂B j . Then, from (1), there exists
j ∈ I such that ||x − c j ||2 = δ2j and ||x − ci ||2 ≤ δ2i for all i ∈ I \ { j} or

||x − c j ||2 = δ2j , 2(c j − ci )
T x ≤ α j i , ∀i ∈ I \ { j}.

This implies x ∈ M j
⋂

∂B j . Thus ∂
(⋂m

i=1 Bi
) ⋂

∂B j ⊆ M j
⋂

∂B j . 
�
The following theorem enables us to find redundant ball constraints containing the

feasible region, but does not completely contain any of the other ball constraints (see
Fig. 4). We should note that these types of redundant ball constraints are not of the
type discussed in Lemma 2.2.
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Fig. 4 Red ball is called B1 and
M1 is empty

Theorem 2.1 Suppose QOBL satisfies Assumption 1 and p = 0. Then, M j = ∅ if

and only if
⋂m

i=1,i �= j Bi ⊆ B j and ∂
(⋂m

i=1,i �= j Bi

)⋂
∂B j = ∅.

Proof (⇐�) Let
⋂m

i=1,i �= j Bi ⊆ B j and ∂
(⋂m

i=1,i �= j Bi

)⋂
∂B j = ∅. By contradic-

tion, suppose M j �= ∅, then from Lemma 2.3, M j
⋂

∂Bj �= ∅. Further by Lemma
2.4 and

⋂m
i=1 Bi = ⋂m

i=1,i �= j Bi , we have

M j

⋂
∂B j = ∂

⎛

⎝
m⋂

i=1,i �= j

Bi

⎞

⎠
⋂

∂B j . (2)

Now, since ∂
(⋂m

i=1,i �= j Bi

) ⋂
∂B j = ∅, from (2) M j

⋂
∂B j = ∅ which is a con-

tradiction. Thus, M j = ∅.
(�⇒) Let M j = ∅. Suppose by contradiction, there exists x ∈ ⋂m

i=1,i �= jBi \ B j

such that ||x − c j ||2 ≥ δ2j . Since
⋂m

i=1Bi �= ∅, by Assumption 1 there exists y ∈
⋂m

i=1Bi such that ||y − c j ||2 ≤ δ2j . Now, let zλ = λy + (1 − λ)x , then there exist

λ∗ such that ||zλ∗ − c j ||2 = δ2j . Since zλ∗ ∈ ⋂m
i=1,i �= jBi , we have ||zλ∗ − ci ||2 ≤ δ2i ,∀i ∈ I \ { j}. Then

||zλ∗ − ci ||2 − δ2i ≤ 0 = ||zλ∗ − c j ||2 − δ2j �⇒ 2(c j − ci )
T zλ∗ ≤ α j i , ∀i ∈ I \ { j}.

This means zλ∗ ∈ M j , which is a contradiction with M j = ∅. Therefore,

⋂m

i=1,i �= j
Bi ⊆ B j .

Also, since M j = ∅, we have M j
⋂

∂B j = ∅. Then from Lemma 2.4, ∂
(⋂m

i=1 Bi
)

⋂
∂B j = ∅. 
�
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The following theorem, which is the main result of this paper, shows that the feasible
region of QOBL is the union of the feasible region of m, (m + p − 1)−eTRS (see
Fig. 5).

Theorem 2.2 Suppose QOBL satisfies Assumption 1. Then, R = ⋃m
i=1Ri .

Proof (�⇒) Suppose x ∈ R, then x ∈ ⋂m
i=1 Bi and x ∈ P . Without loss of generality,

we assume that

||x − c1||2 − δ21 ≤ ||x − c2||2 − δ22 ≤ · · · ≤ ||x − cm ||2 − δ2m .

Thus,

2(cm − ci )
T x ≤ αmi , for all i ∈ I \ {m} �⇒ x ∈ Mm �⇒ x ∈

m⋃

i=1

Mi .

Since x ∈ P ,

x ∈
(

m⋃

i=1

Mi

)
⋂

P �⇒ x ∈
m⋃

i=1

(
Mi

⋂
P

)

�⇒ x ∈
m⋃

i=1

Ri �⇒ R ⊆
m⋃

i=1

Ri . (3)

(⇐�) Let x ∈ ⋃m
i=1Ri , then there exists k ∈ I such that x ∈ Rk = Mk ∩ P . Also

x ∈ Mk �⇒ 2(ck − ci )
T x ≤ αki , ∀i ∈ I \ {k},

or

||x − ci ||2 − δ2i ≤ ||x − ck ||2 − δ2k , ∀i ∈ I \ {k}.

Furthermore, x ∈ Rk implies that ||x − ck ||2 ≤ δ2k . Thus

||x − ci ||2 ≤ δ2i , ∀i ∈ I �⇒ x ∈ M �⇒ x ∈ M ∩ P �⇒ x ∈ R.

This implies
⋃m

i=1Ri ⊆ R. 
�
Therefore, fromTheorem2.2, solvingQOBL reduces to solvem, (m+p−1)−eTRS

as follows for all i ∈ I (see Fig. 5):

min xT Ax + aT x (PRi )

s.t . x ∈ Ri .

Using Theorem 2.1, in the following lemma, we show that infeasible (PRi ) means
a redundant ball constraint (see Fig. 6).
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Fig. 5 Feasible region of QOBL
when m = 3 and p = 4. The
blue lines are the linear
constraints of QOBL

Fig. 6 Red ball is redundant and
Ri related to it is empty

Lemma 2.5 The (PRi ) is feasible if and only if ||x∗
ci − ci ||2 ≤ δ2i , where x∗

ci is the
optimal solution of the following convex quadratic problem:

min ||x − ci ||2 (CRi )

s.t . 2(ci − c j )
T x ≤ αi j , j ∈ I \ {i},

x ∈ P.

Moreover, If ||x∗
ci − ci ||2 > δ2i or (CRi ) is infeasible, then the i th ball constraint is

redundant (see Fig. 6).

Proof The feasibility of (PRi ) is straightforward. If ||x∗
ci − ci ||2 > δ2i or (CRi ) is

infeasible, thenRi is empty, and fromTheorem2.1, the i th ball constraint is redundant.

�

Corollary 2.1 If ||x∗
ci − ci ||2 > δ2i or (CRi ) is infeasible for all i ∈ I, then QOBL is

infeasible.

Based on the previous results, the algorithm for solving QOBL can be outlined as
follows.
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QOBL algorithm

Step 1: If there exist i, j ∈ I such that ||ci − c j || > δi + δ j , then QOBL is infeasible,
stop; else go to Step 2.
Step 2: For all i, j ∈ I for which ||ci − c j || ≤ δ j − δi and δ j ≥ δi remove i from I.
Step 3: Solve (CRi ) for all i ∈ I. For all i ∈ I for which ||x∗

ci − ci ||2 > δ2i or feasible
region of (CRi ) is infeasible remove i from I. If I = ∅, then QOBL is infeasible,
stop; else go to Step 4.
Step 4: Solve (PRi ) for all i ∈ I, and save x∗

i , f
∗
i , its optimal solution and optimal

objective value.
Step 5: f ∗

k = mini∈I f ∗
i and x∗

k are the optimal objective value and global optimal
solution of QOBL, respectively.

Aswe see, themain computational costs of algorithm is solvingm, (m+ p−1)−eTRS.
In the next section, we discuss the solution approach for p-eTRS.

3 Solving p-eTRS

As mentioned in the introduction, p-eTRS has been widely studied in recent years.
The BB algorithm of [7] is a recent efficient algorithm to solve p-eTRS that we use in
our numerical experiments. Also, we utilize theADMMapproach that has beenwidely
used to solve various classes of optimization problems [3, 10, 19, 20, 30, 32]. Consider
the following i th (m + p − 1)−eTRS (i ∈ I) that arises in the QOBL algorithm:

min
1

2
xT Ax + aT x ((m + p − 1)−eTRS)

||x − ci ||2 ≤ δ2i ,

2(ci − c j )
T x ≤ αi j , j ∈ I \ {i},

bTk x ≤ βk, k = 1, . . . , p.

One can write it in the following equivalent form:

min
1

2
xT Ax + aT x

||x − ci ||2 ≤ δ2i , (4)

2(ci − c j )
T z ≤ αi j , j ∈ I \ {i},

bTk z ≤ βk, k = 1, . . . , p

x = z.
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Now to define the ADMMsteps, consider the augmented Lagrangian of (4) as follows:

L (x, z, λ) = 1

2
xT Ax + aT x + λT (x − z) + ρ

2
||x − z||2,

where λi ’s are Lagrange multipliers and ρ ∈ R+ is the appropriate penalty parameter.
Let zk be a feasible point for (m + p−1)−eTRS that is obtained by solvingm (CRi ).
The ADMM iterations are as follows:

– Step 1: xk+1 = argmin
||x−ci ||2≤δ2i

L
(
x, zk, λk

)
.

– Step 2: zk+1 = argmin
bTk z≤βk , k=1,...,p

2(ci−c j )T z≤αi j , j∈I\{i}

L
(
xk+1, z, λk

)
.

– Step 3: λk+1 = λk + γρ
(
xk+1 − zk+1

)
, where γ ∈ (0, 1) is a constant.

In Step 1, we solve the following TRS:

min
1

2
xT (A + ρ In) x +

(
a + λ − ρzk

)T
x

||x − ci ||2 ≤ δ2i . (5)

Let xk+1 be the optimal solution of (5). In Step 2, we solve the following problem:

min
ρ

2
zT z − (λ + ρxk+1)T z

2(ci − c j )
T z ≤ αi j , j ∈ I \ {i} (6)

bTk z ≤ βk, k = 1, . . . , p.

As we see, if ρ ≥ −λmin(A), then in Step 1 and Step 2, we have convex optimization
problems, where λmin(A) is the smallest eigenvalue of A.

It should also be noted that the convergence results for the ADMM algorithms
under some mild assumptions are established in [10, 20, 30, 32] for different classes
of optimization problems. The convergence of ADMM to the first-order stationary
point is given in the following theorem.

Theorem 3.1 ([30]). Let (x∗, z∗, λ∗) be any accumulation point of {(xk, zk, λk)} gen-
erated by the ADMM. Then by boundedness assumptions of {λk} and ∑∞

k=0 ||λk+1 −
λk ||2 < ∞, x∗ satisfies the first-order stationary conditions.

4 Numerical Results

In this section, we compare the QOBL algorithm with CVX [18] (solves the semidef-
inite programming (SDP) relaxation of QOBL) and the EAE algorithm [16, 23]. The
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Table 1 Notations in the tables

Notation Description

n Dimension of problem

m Number of ball constraints

Den Density of A

CPU(ADMM) Run time of the QOBL algorithm with ADMM

CPU(BB) Run time of the QOBL algorithm with the BB algorithm of [7]

CPU(CVX) Run time of CVX

CPU(EAE) Run time of the EAE algorithm of [16]

FADMM Objective value of the QOBL algorithm with ADMM

FBB Objective value of the QOBL algorithm with the BB algorithm [7]

FCVX Objective value of CVX

FEAE Objective value of EAE algorithm of [16]

SDP relaxation of QOBL is as follows:

min Trace(AX) + aT x (SDP)

s.t . Trace(X) − 2cTi x + ||ci ||2 − δ2i ≤ 0, i ∈ I,

bTk x ≤ βk, k = 1, . . . , p,

X � xxT ,

which is exact when

dim
(
Ker (A − λmin(A)In)

)
≥ m + p + 1, (7)

where In is the identity matrix and Ker(A) := {d ∈ R
n|Ad = 0} [14]. To solve

p-eTRS within the QOBL algorithm, we use the BB algorithm of [7] and ADMM.
Implementation is done in MATLAB R2017a on a 2.50 GHz laptop with 8 GB of
RAM, and the results in tables are the average of 10 runs for each dimension. It
is worth noting that p-eTRSs inside the QOBL algorithm can be solved in parallel.
We report the results for both parallel and non-parallel implementations. (CPU time
in parentheses are for the parallel version.) The used machine allows solving two
p-eTRSs in parallel.

We generate instances of QOBL such that the Slater condition holds. To this end,
first we generate a random matrix C ∈ R

n×m . Let ci , i ∈ I be the columns of the
matrix C . Then, we set y ∈ R

n as the convex combination of the columns of C , i.e.,

y =
m∑

i=1

λi ci , such that
m∑

i=1

λi = 1, λi ≥ 0. (8)

Next, we set δi = ||ci − y|| + εi ∀i ∈ I, where εi ∈ (0, 1).
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Table 2 Comparison of the QOBL algorithm with CVX when SDP relaxation of QOBL is exact

n m CPU(ADMM) CPU(CVX) FADMM − FCVX

5 3 2.06 (0.38) 2.91 −5.86 × 10−8

10 7 1.88 (1.11) 2.22 −4.03 × 10−8

20 12 2.04 (1.95) 2.28 −7.17 × 10−8

50 20 7.19 (5.12) 2.53 −3.21 × 10−8

70 30 10.15 (8.31) 3.25 −4.17 × 10−8

100 10 9.86 (4.06) 3.04 −7.25 × 10−7

200 10 15.43 (10.56) 5.61 −5.49 × 10−8

300 10 21.36 (16.57) 12.53 −7.62 × 10−8

500 10 155.13 (32.55) – –

1000 5 85.27 (36.89) – –

“–” in all tables means the algorithm cannot solve the problem

– Test class 1: In this class, we compare the QOBL algorithm when using ADMM
with CVX (that solves the SDP relaxation). To do so, we consider m < n and
generate A ∈ R

n×n randomly such that multiplicity of its smallest eigenvalue
is greater than m and p = 0. Therefore, the SDP relaxation is exact. The results
are reported in Table 2. As we see, for dimensions 50 ≤ n ≤ 300, CVX is better
in terms of CPU time, while for the rest of the problems, the QOBL algorithm is
faster and CVX cannot solve larger problems. The parallel version of the QOBL
algorithm also shows significant CPU time reduction for larger problems.

– Test class 2: In this class, we compare the QOBL algorithm and EAE algorithm of
[16]. To solve p-eTRS inside the QOBL algorithm, we use the BB algorithm of [7]
and ADMM. We generate A ∈ R

n×n randomly and we set p = 0. The results are
summarized in Table 3. As we see, the EAE algorithm is able to solve problems
for n ≤ 100 and except for one instance, the non-parallel QOBL algorithm with
ADMM is always faster than it, while they have almost equal objective values.
Also, when m ≤ 20, the non-parallel QOBL algorithm with the BB algorithm
is faster than the EAE algorithm in terms of CPU time. When the number of
ball constraints is increasing, the QOBL algorithm with ADMM is better than
the QOBL algorithm with the BB algorithm in terms of CPU time, while having
almost equal objective values. Here, also we see significant time reduction of the
parallel QOBL algorithm. Also, in both parallel and non-parallel versions, the
QOBL algorithm with ADMM is faster than the QOBL algorithm with the BB
algorithm for m > 10.

– Test class 3: In this class, we compare the QOBL algorithm and EAE algorithm,
when p �= 0. By considering y as in (8), we add linear inequality constraints as
follows:

1- Generate bk ∈ R
n for k = 1, . . . , p randomly,

2- Let βk = bTk y + ε where ε ∈ (0, 1).
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Table 5 Results of parallel
QOBL algorithm when m ≥ n
and p = 0

n m CPU(ADMM)

50 200 417.1

300 1016.7

500 2074.5

100 200 1641.3

300 4872.2

500 7351.8

200 200 4904.9

300 9366.4

500 15452.3

300 300 18404.3

400 24544.6

500 43344.2

500 500 52724.3

600 112726.1

1000 225741.6

Therefore, y as given in (8) is an interior point of QOBL. The corresponding
results are summarized in Table 4. A similar observation as in the previous tables
also hold here and the QOBL algorithm in overall, performs better than the EAE
algorithm. Also, when the number of ball and linear constraints, and dimensions
are increasing, the QOBL algorithm with ADMM is the best among all.

– Test class 4: In this class, we apply the parallel QOBL algorithm to instances
when m ≥ n. We generate A ∈ R

n×n randomly, and we set p = 0. To solve
(m + p − 1)−eTRS inside the QOBL algorithm, we use ADMM. The results
are summarized in Table 5 that can be further enhanced by running on cluster
machines.

5 Conclusions

In this paper, we studied an indefinite quadratic minimization problem with balls and
linear inequality constraints (QOBL). We showed that by solving several extended
trust-region subproblems (e-TRS), the optimal solution of QOBL can be found. Our
experiments showed that when SDP relaxation is exact, the new approach is better
than CVX for larger dimensions. For general instances, our comparison with the
EAE algorithm of [7] showed that the new approach is significantly faster. Also using
ADMM for solving e-TRS, inside the QOBL algorithm, for majority of problems is
faster than the BB algorithm of [7]. Parallelization also is another important feature
of the QOBL algorithm.
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