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Abstract
In the previous paper Bello-Cruz et al. (J Optim Theory Appl 188:378–401, 2021), we
showed that the quadratic growth condition plays a key role in obtaining Q-linear con-
vergence of thewidely used forward–backward splittingmethodwithBeck–Teboulle’s
line search. In this paper, we analyze the property of quadratic growth condition via
second-order variational analysis for various structured optimization problems that
arise in machine learning and signal processing. This includes, for example, the Pois-
son linear inverse problem as well as the �1-regularized optimization problems. As
a by-product of this approach, we also obtain several full characterizations for the
uniqueness of optimal solution to Lasso problem, which complements and extends
recent important results in this direction.
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1 Introduction

This paper is a continuation of our previous work [8] at which we studied convergence
properties of the forward–backward splitting method (FBS in brief, also known as
the proximal gradient method). The FBS [5, 7, 12, 14, 15, 28, 37] is a simple and
efficient method for solving an optimization problem whose objective function is the
sum of two convex functions: one of which is differentiable in its domain, and the
other one is proximal-friendly (that is, its proximal mapping can be easily computed)
and can be non-differentiable. It is well known that FBS is globally convergent to
an optimal solution with the complexity o(k−1) [7, 9, 19, 40] in general settings.
Linear convergence for FBS has been studied in many papers via Kurdya–Łojasiewicz
inequality [10, 25, 26, 31, 49] or error bound conditions [21, 38, 41, 53] with the base
from [34]. Without assuming the usual condition that the gradient of the differentiable
function involved is globally Lipschitz continuous, our previous paper [8] studied
convergence properties and the complexity of FBS method with Beck–Teboulle’s line
search. In particular, under the so-called quadratic growth condition also known as
2-conditioned property, which is close to the idea in [21, 25, 26], we showed that
the sequence generated by the FBS with Beck–Teboulle’s line search is Q-linearly
convergent. Our derived linear rates complement and sometimes improve those in
[21, 25, 26].

One of the main aims of this paper is to analyze the quadratic growth condition
for several structured optimization problems. This allows us to understand the perfor-
mance of FBS methods for solving specific optimization problems by considering the
specific structure of the problems. In particular, we show that the quadratic growth
condition is automatically satisfied for the standard Poisson inverse regularized prob-
lems with Kullback–Leibler divergence [16, 47], which does not satisfy the usual
global Lipschitz continuous assumption mentioned above. Using FBS to solve Pois-
son inverse regularized problems was first proposed in [4] via the idea of Bregman
divergence. Recently, Salzo [40] proved that the FBS method with an appropriate
line search enjoys a complexity of o(k−1) when it is applied to solve Poisson inverse
regularized problems. In this paper, we advance this direction by showing that the
convergence rate of FBS method with Beck–Teboulle’s line search is indeed Q-linear
in solving Poisson inverse regularized problems.

It is worth noting that linear convergence of the sequence generated by the FBS in
solving some structured optimization problems was also studied in [12, 28, 32, 33, 41]
when the nonsmooth function is partly smooth relative to a manifold by using the idea
of finite support identification. The latter notion introducedbyLewis [29] allowsLiang,
Fadili, and Peyré [32, 33] to cover many important problems such as the total variation
semi-norm, the �1-norm, the �∞-norm, and the nuclear norm problems. In their paper,
a second-order condition was introduced to guarantee the Q-local linear convergence
of the FBS sequence under the non-degeneracy assumption [29]. When considering
the �1-regularized problem, we are able to avoid the non-degeneracy assumption.
Under the setting of [8], this allows us to improve the well-known work of Hale,
Yin, and Zhang [28] in two aspects: (a) We completely drop the aforementioned non-
degeneracy assumption. (b) Our second-order condition is strictly weaker than the one
in [28, Theorem4.10]. Thewider view is thatwhen considering particular optimization
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problems listed in the spirit of [32, 33], the assumption of non-degeneracy may not
be necessary. Furthermore, we revisit the iterative shrinkage thresholding algorithm
(ISTA) [7, 18], which is indeed FBS for solving Lasso problem [42]. It is well known
that the complexity of this algorithm isO(k−1); however, recentworks [32, 41] indicate
the local linear convergence of ISTA. The stronger conclusion in this direction is
obtained lately by Bolte, Nguyen, Peypouquet, and Suter [10, 25] that: the iterative
sequence of ISTA is R-linearly convergent, and its corresponding cost sequence is
globally Q-linearly convergent, but the rate may depend on the initial point. Inspired
by these achievements, we provide two new information under the setting of [8]: (c)
The iterative sequence of ISTA is indeed globally Q-linearly convergent. (d) The
iterative sequence of ISTA is eventually Q-linearly convergent to an optimal solution
with a uniform rate that does not depend on the initial point.

In order to obtain the linear convergence of ISTA, several papers make the assump-
tion that the optimal solution to Lasso is unique; see, e.g., [12, 24, 28, 41]. Although
solution uniqueness is not necessary, as discussed above, it is an important property
with immediate implications for recovering sparse signals in compressed sensing; see,
e.g., [13, 23, 24, 27, 36, 43, 44, 48, 50, 51] and the references therein. As a direct con-
sequence of our analysis on the �1-regularized problem, we fully characterize solution
uniqueness to Lasso. To the best of our knowledge, Fuchs [23] initialized this direc-
tion by introducing a simple sufficient condition for this property, which has been
extended in other cited papers. Then, in [43], Tibshirani showed that a sufficient con-
dition closely related to Fuchs’ condition is also necessary almost everywhere. The
full characterization for this property has been obtained recently in [50, 51] by using
results of strong duality in linear programming. This characterization, which is based
on an existence of a vector satisfying a system of linear equations and inequalities,
allows [50, 51] to recover the aforementioned sufficient conditions and provide some
situations in which these conditions turn necessary. Some related results have been
developed in [27, 36]. Our approach to solution uniqueness is new and different. We
also derive several new full characterizations in terms ofpositively linear independence
and Slater-type conditions, which can be easily verifiable.

The outline of our paper is as follows. Section 2 briefly presents some second-order
characterization for quadratic growth condition in terms of subgradient graphical
derivative [39] and recalls some convergence analysis from our part I [8]. Section 3
devotes to the study of the quadratic growth condition in some structured optimization
problems involving Poisson inverse regularized, �1-regularized, and �1-regularized
least square optimization problems. In Sect. 4, we obtain several new full characteri-
zations to the uniqueness of optimal solution to Lasso problem. Section 5 gives some
conclusions and potential future works in this direction.

2 Preliminary Results onMetric Subregularity of the Subdifferential
and Quadratic Growth Condition

Throughout the paper, Rn is the usual Euclidean space with dimension n where ‖ · ‖
and 〈·, ·〉 denote the corresponding Euclidean norm and inner product in Rn . We use
�0(R

n) to denote the set of proper, lower semicontinuous, and convex functions on
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Rn . Let h ∈ �0(R
n), we write dom h := {x ∈ Rn | h(x) < +∞}. The subdifferential

of h at x̄ ∈ dom h is defined by

∂h(x̄) := {v ∈ Rn | 〈v, x − x̄〉 ≤ h(x) − h(x̄), for all x ∈ Rn}. (1)

We say h satisfies the quadratic growth condition at x̄ with modulus κ > 0 if there
exist ε > 0 such that

h(x) ≥ h(x̄) + κ

2
d2(x; (∂h)−1(0)) for all x ∈ Bε(x̄). (2)

Here, for a set S, d(x; S) denotes the distance from x to S, and Bε(x̄) denotes the ball
centered at x̄ with radius ε. Moreover, if (2) and (∂h)−1(0) = {x̄} are both satisfied,
then we say strong quadratic growth condition holds for h at x̄ with modulus κ .

Some relationship between the quadratic growth condition and the so-called metric
subregularity of the subdifferential could be found in [1–3, 10, 22] even for the case
of nonconvex functions. The quadratic growth condition (2) is also called quadratic
functional growth property in [38] when h is continuously differentiable over a closed
convex set. In [25, 26], h is said to be 2-conditioned onBε(x̄) if it satisfies the quadratic
growth condition (2).

The following proposition, a slight improvement in [2, Corollary 3.7], provides
a useful characterization for strong quadratic growth condition via the subgradient
graphical derivative [39, Chapter 13].

Proposition 2.1 (Characterization of strong quadratic growth condition) Let h ∈
�0(R

n) and x̄ be an optimal solution, i.e., 0 ∈ ∂h(x̄). The following are equiva-
lent:

(i) h satisfies the strong quadratic growth condition at x̄ .
(ii) D(∂h)(x̄ |0) is positive-definite in the sense that

〈v, u〉 > 0 for all v ∈ D(∂h)(x̄ |0)(u), u ∈ Rn, u 	= 0, (3)

where D(∂h)(x̄ |0) : Rn ⇒ Rn is the subgradient graphical derivative of ∂h at
x̄ for 0 defined by

D(∂h)(x̄ |0)(u) := {v ∈ Rn| ∃(un, vn) → (u, v), tn ↓ 0

such that tnvn ∈ ∂h(x̄ + tnun)} for any u ∈ Rn .

Moreover, if (ii) is satisfied then

� := inf

{ 〈v, u〉
‖u‖2 | v ∈ D(∂h)(x̄ |0)(u), u ∈ Rn

}
> 0 (4)

with convention
0

0
= ∞ and h satisfies the strong quadratic growth condition at x̄

with any modulus κ < �.
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Proof The implication [(i)⇒ (ii)] follows from [2, Theorem 3.6 and Corollary 3.7]. If
(ii) is satisfied, we obtain from (3) that ‖v‖ ≥ �‖u‖. Combining [20, Theorem 4C.1]
and [22, Corollary 3.3] tells us that h satisfies the strong quadratic growth condition
at x̄ with any modulus κ < �. The proof is complete. ��

Next, let us recall here some main results from our part I [8] regarding the con-
vergence of forward–backward splitting method (FBS) for solving the following
optimization problem:

min
x∈Rn

F(x) := f (x) + g(x), (5)

where f , g : Rn → R ∪ {∞} are proper, lower semi-continuous, and convex
functions.1 The standing assumptions on the initial data for (5) used throughout the
paper:

A1 f , g ∈ �0(R
n) and int(dom f ) ∩ dom g 	= ∅.

A2 f is continuously differentiable at any point in int(dom f ) ∩ dom g
A3 For any x ∈ int(dom f ) ∩ dom g, the sublevel set {F ≤ F(x)} is contained in

int(dom f ) ∩ dom g.

The forward–backward splitting methods for solving (5) is described by

xk+1 = proxαk g(x
k − αk∇ f (xk)) := (Id + αk∂g)

−1(xk − αk∇ f (xk)) (6)

with the proximal operator proxg : Rn → dom g given by

proxg(z) := (Id + ∂g)−1(z) for all z ∈ Rn, (7)

and the stepsize αk > 0 determined from the Beck–Teboulle’s line search as follows:

Linesearch BT (Beck–Teboulle’s line search)
Given σ > 0 and θ ∈ (0, 1). With α−1 := σ and x0 ∈ int (dom f ) ∩ dom g:
Input. Set αk = αk−1 and J (xk, αk) = proxαk g(x

k − αk∇ f (xk)).

While f (J (xk, αk))> f (xk)+〈∇ f (xk), J (xk, αk)− xk〉+ 1

2αk
‖xk− J (xk, αk)‖2,

do αk = θαk .
End While

Output. αk

In [8, Proposition 3.1 and Corollary 3.1], we show that the linesearch above ter-
minates after finite steps, the FBS sequence (xk)k∈N ⊂ int (dom f ) ∩ dom g is well
defined, and thus f is differentiable at xk by assumption A2. The global convergence
[8, Theorem 3.1] is recalled here.

1 In [8], we examined FBS in the more general (possibly infinite dimensional) Hilbert space setting. On the
other hand, for the purpose of discussing the structured optimization problems later on, we restrict ourselves
to the finite-dimensional setting here.
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Theorem 2.1 (Global convergence of FBS method) Let (xk)k∈N be the sequence
generated from FBS method. Suppose that the solution set is not empty. Then, (xk)k∈N
converges to an optimal solution point. Moreover, (F(xk))k∈N also converges to the
optimal value.

When the cost function F satisfies the quadratic growth condition and ∇ f is
locally Lipschitz continuous, our [8, Theorem 4.1] shows that both iterative and cost
sequences of FBS are Q-linearly convergent.

Theorem 2.2 (Q-linear convergence under quadratic growth condition) Let (xk)k∈N
be the sequence generated from FBS method. Suppose that the optimal solution set S∗
to problem (5) is nonempty, and let x∗ ∈ S∗ be the limit point of (xk)k∈N. Suppose
further that ∇ f is locally Lipschitz continuous around x∗ with constant L > 0. If F
satisfies the quadratic growth condition at x∗ with modulus κ > 0, there exists K ∈ N
such that

‖xk+1 − x∗‖ ≤ 1√
1 + ακ

4

‖xk − x∗‖ (8)

|F(xk+1) − F(x∗)| ≤
√
1 + ακ + 1

2
√
1 + ακ

|F(xk) − F(x∗)| (9)

for any k > K, where α := min
{
αK , θ

L

}
.

If, in addition, ∇ f is globally Lipschitz continuous on int(dom f ) ∩ dom g with
constant L > 0, α could be chosen as min

{
σ, θ

L

}
.

Under the strong quadratic growth condition, a sharper rate is obtained in
[8, Corollary 4.1].

Corollary 2.1 (Sharper Q-linear convergence rate under strong quadratic growth con-
dition) Let (xk)k∈N be the sequence generated from FBS method. Suppose that the
solution set S∗ is not empty, and let x∗ ∈ S∗ be the limit point of (xk)k∈N as in Theorem
2.1. Suppose further that ∇ f is locally Lipschitz continuous around x∗ with constant
L > 0. If F satisfies the strong quadratic growth condition at x∗ with modulus κ > 0,
then there exists some K ∈ N such that for any k > K we have

‖xk+1 − x∗‖ ≤ 1√
1 + ακ

‖xk − x∗‖ with α := min
{
αK ,

θ

L

}
.

Additionally, if ∇ f is globally Lipschitz continuous on int(dom f ) ∩ dom g with
constant L > 0, α above could be chosen as min

{
σ, θ

L

}
.

3 Quadratic Growth Conditions and Linear Convergence of Forward–
Backward SplittingMethod in Some Structured Optimization
Problems

In this section, we mainly show that quadratic growth condition is automatic or can be
fulfilled under mild assumptions in several important classes of convex optimization.
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3.1 Poisson Linear Inverse Problem

This subsection devotes to the study of the eventually linear convergence of FBSwhen
solving the following standard Poisson regularized problem [16, 47]

min
x∈Rn+

m∑
i=1

{bi log bi
(Ax)i

+ (Ax)i − bi }, (10)

where A ∈ Rm×n+ is an m × n matrix with nonnegative entries and nontrivial rows,
and b ∈ Rm++ is a positive vector. This problem is usually used to recover a signal
x ∈ Rn+ from the measurement b corrupted by Poisson noise satisfying Ax � b. The
problem (10) could be written in terms of (5) in which

f (x) := h(Ax), g(x) = δRn+(x), and F1(x) := h(Ax) + g(x), (11)

where h is the Kullback–Leibler divergence defined by

h(y) =

⎧⎪⎨
⎪⎩

m∑
i=1

{bi log bi
yi

+ yi − bi } if y ∈ Rm++,

+∞ if y ∈ Rm+ \ Rm++.

(12)

Note from (11) and (12) that dom f = A−1(Rm++), which is an open set. Moreover,
since A ∈ Rm×n+ , we have dom f ∩ dom g = A−1(Rm++) ∩ Rn+ 	= ∅ and f is
continuously differentiable at any point on dom f ∩dom g. The standing assumptions
A1 and A2 are satisfied for Problem (10). Moreover, since the function F1 is bounded
below and coercive, the optimal solution set of problem (10) is always nonempty.

It is worth noting further that ∇ f is locally Lipschitz continuous at any point
int(dom f ) ∩ dom g but not globally Lipschitz continuous on int(dom f ) ∩ dom g.
[40, Section 4] and our [8, Theorem 3.2] show that FBS is applicable to solving (10)
with global convergence rate o( 1k ). In the recent work [4], a new algorithm on a
variant of FBS was designed with applications to solving (10). However, the theory
developed in [4] could not guarantee the global convergence of the sequence (xk)k∈N
generated by the algorithm in solving (10). This is because their assumptions on the
closedness of the domain of their auxiliary Legendre function in [4, Theorem 2] are
not satisfied for (10). Our intent here is to reveal the Q-linear convergence of our
method when solving (10) in the sense of Theorem 2.2. In order to do so, we need
to verify the quadratic growth condition for F1 at any optimal minimizer for 0. Note
further that the Kullback–Leibler divergence h is not strongly convex and ∇ f is not
globally Lipschitz continuous; hence, standing assumptions in [21] are not satisfied.
Proving the quadratic growth condition for F1 at an optimal solution via the approach
of [21] needs to be proceeded with caution.
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Lemma 3.1 Let x̄ be an optimal solution to problem (10). Then, for any R > 0, we
have

F1(x) − F1(x̄) ≥ ν

2
d2(x; S∗) for all x ∈ BR(x̄) (13)

with some constant ν > 0.

Proof Pick any R > 0 and x ∈ BR(x̄). We only need to prove (13) for the case that
x ∈ dom F1 ∩ BR(x̄), i.e., x ∈ A−1(Rn++) ∩ Rn+ ∩ BR(x̄). Note that

∇ f (x)=
m∑
i=1

[
1 − bi

〈ai , x〉
]
ai and 〈∇2 f (x)d, d〉 =

m∑
i=1

bi
〈ai , d〉2
〈ai , x〉2 for all d ∈ Rn,

where ai is the ith row of A. Define ȳ := Ax̄ , for any x, u ∈ BR(x̄)∩ dom f we have
[x, u] ⊂ BR(x̄) ∩ dom f and obtain from the mean-value theorem that

f (x) − f (u) − 〈∇ f (u), x − u〉 = 1

2

∫ 1

0
〈∇2 f (u + t(x − u))x − u, x − u〉dt

= 1

2

∫ 1

0

m∑
i=1

bi
〈ai , x − u〉2

〈ai , u + t(x − u)〉2 dt

≥ 1

2

∫ 1

0

m∑
i=1

bi
〈ai , x − u〉2

[|〈ai , x̄〉| + ‖ai‖(‖u − x̄‖ + t‖x − u‖)]2 dt

≥ 1

2

m∑
i=1

bi
[|〈ai , x̄〉| + 3‖ai‖R]2 〈ai , x − u〉2.

Similarly, we have

f (u) − f (x) − 〈∇ f (x), u − x〉 ≥ 1

2

m∑
i=1

bi
[|〈ai , x̄〉| + 3‖ai‖R]2 〈ai , u − x〉2

for x, u ∈ BR(x̄) ∩ dom f . (14)

Adding the above two inequalities gives us that

〈∇ f (x) − ∇ f (u), x − u〉 ≥
m∑
i=1

bi
[|〈ai , x̄〉| + 3‖ai‖R]2 〈ai , x − u〉2

for all x, u ∈ BR(x̄) ∩ dom f . (15)

We claim that the optimal solution set S∗ to problem (10) satisfies that

S∗ = A−1(ȳ) ∩ (∂g)−1(−∇ f (x̄)) with ȳ = Ax̄ . (16)

Pick another optimal solution ū ∈ S∗, we have ūt := x̄ + t(x̄ − ū) ∈ S∗ ⊂ dom f for
any t ∈ [0, 1] due to the convexity of S∗. By choosing t sufficiently small, we have
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ūt ∈ BR(x̄) ∩ dom f . Note further that −∇ f (ūt ) ∈ ∂g(ūt ) and −∇ f (x̄) ∈ ∂g(x̄).
Since ∂g is a monotone operator, we obtain that

0 ≥ 〈∇ f (x̄) − ∇ f (ūt ), x̄ − ūt 〉.

This together with (15) tells us that 〈ai , x̄ − ūt 〉 = 0 for all i = 1, . . . ,m. Hence,
Ax̄ = Aū = ȳ for any ū ∈ S∗, which also implies that

∇ f (ū) = AT∇h(Aū) = AT∇h(Ax̄) = ∇ f (x̄). (17)

This verifies the inclusion “⊂” in (16). The opposite inclusion is trivial. Indeed, take
any u satisfying that Au = ȳ and −∇ f (x̄) ∈ ∂g(u), similarly to (17) we have
−∇ f (u) = −∇ f (x̄) ∈ ∂g(u). This shows that 0 ∈ ∇ f (u)+ ∂g(u), i.e., u ∈ S∗. The
proof for equality (16) is completed.

Note from (16) that the optimal solution set S∗ is a polyhedral with the following
format

S∗ = {u ∈ Rn | Au = ȳ = Ax̄, 〈∇ f (x̄), u〉 = 0, u ∈ Rn+}

due to the fact that (∂g)−1(−∇ f (x̄)) = {u ∈ Rn+ | 〈∇ f (x̄), u〉 = 0 = 〈∇ f (x̄), x̄〉}.
Thanks to Hoffman’s lemma, there exists a constant γ > 0 such that

d(x; S∗) ≤ γ (‖Ax − Ax̄‖ + |〈∇ f (x̄), x − x̄〉|) for all x ∈ Rn+. (18)

Fix any x ∈ BR(x̄) ∩ Rn+, (14) tells us that

f (x) − f (x̄) − 〈∇ f (x̄), x − x̄〉 ≥ 1

2
α‖Ax − Ax̄‖2, (19)

Where α = min
1≤i≤m

[
bi

[|〈ai ,x̄〉|+3‖ai‖R]2
]
. Since −∇ f (x̄) ∈ ∂g(x̄), we have 〈∇ f (x̄), x −

x̄〉 ≥ 0. This together with (19) implies that

F1(x) − F1(x̄) ≥ 1

2
α‖Ax − Ax̄‖2 + 〈∇ f (x̄), x − x̄〉

≥ 1

2
α‖Ax − Ax̄‖2

+ 1

(‖∇ f (x̄)‖ + 1)‖x − x̄‖〈∇ f (x̄), x − x̄〉2

≥ min
{1
2
α

1

(‖∇ f (x̄)‖ + 1)R

}

[‖Ax − Ax̄‖2 + 〈∇ f (x̄), x − x̄〉2]
≥ 1

2
min

{1
2
α,

1

(‖∇ f (x̄)‖ + 1)R

}
[‖Ax − Ax̄‖ + |〈∇ f (x̄), x − x̄〉|]2
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≥ 1

2γ 2 α,
1

(‖∇ f (x̄)‖ + 1)R

}
d2(x; S∗),

where the fourth inequality follows from the elementary inequality that (a+b)2

2 ≤
a2 + b2 with a, b ≥ 0, and the last inequality is from (18). This clearly ensures (13).

��

When applying FBS to solving problem (10), we have

xk+1 = PRn+

(
xk − αk

m∑
i=1

[
1 − bi

〈ai , xk〉
]
ai

)
with x0 ∈ A−1(Rn++) ∩ Rn+, (20)

where PRn+(·) is the projection mapping toRn+.

Corollary 3.1 (Q-linear convergence of method (20)) Let (xk)k∈N be the sequence
generated from (20) with x0 ∈ A−1(Rn+) ∩ Rn+ for solving the Poisson regularized
problem (10). Then, the sequences (xk)k∈N and (F1(xk))k∈N are Q-linearly conver-
gent to an optimal solution and the optimal value to (10), respectively.

Proof Since both functions f and g in problem (10) satisfy our standing assumptions
A1 and A2, and problem (10) always has optimal solutions, the sequence (xk)k∈N
converges to an optimal solution x̄ to problem (10) byTheorem2.1. Since∇ f is locally
Lipschitz continuous around x̄ , the combination of Theorem 2.2 and Lemma 3.1 tells
us that (xk)k∈N is Q-linearly convergent to x̄ . ��

Using a similar line of argument as above, one can show that quadratic growth
condition in Lemma 3.1 is also valid for the following Poisson inverse problem with
sparse regularization [4]:

min
x∈Rn+

m∑
i=1

{bi log bi
(Ax)i

+ (Ax)i − bi } + μ ‖x‖1, (21)

where μ > 0 is the penalty parameter. Indeed, noting that ‖x‖1 = 〈e, x〉 for x ∈
Rn+, with e = (1, 1, . . . , 1) ∈ Rn . The objective function of (21) can be written as
p(x) + g(x) where p(x) := f (x) + μ〈e, x〉, and f , g are given as in (11). Then, the
FBS method for solving (21) can proceed by replacing the function f (x) in (11) by
p(x). Let x̂ ∈ dom p = dom f be a minimizer to (21). Observe that the function p
also satisfies the similar inequality as in (14)
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p(u) − p(x) − 〈∇ p(x), u − x〉 = f (u) − f (x) − 〈∇ f (x), u − x〉
≥ 1

2

m∑
i=1

bi
[|〈ai , x̄〉| + 3‖ai‖R]2 〈ai , u − x〉2

for x, u ∈ BR(x̂) ∩ dom p.

As (14) plays the central role in the proof of Lemma 3.1, we can repeat all the steps
in this proof by replacing the function f there by p and x̄ by x̂ to prove the quadratic
growth condition of problem (21). This together with Corollary 3.1 shows that FBS
(10) solves (21) linearly.

3.2 �1-Regularized Optimization Problems

In this section, we consider the �1-regularized optimization problems

min
x∈Rn

F2(x) := f (x) + μ‖x‖1, (22)

where ‖x‖1 denotes the �1 -norm of x .
In order to use Proposition 2.1 for characterizing the strong quadratic growth con-

dition for F2, we need the following calculation of subgradient graphical derivative of
∂(μ‖ · ‖1).
Proposition 3.1 (Subgradient graphical derivative ∂(μ‖ ·‖1)) Suppose that s̄ ∈ ∂(μ‖ ·
‖1)(x∗). Define I := { j ∈ {1, . . . , n} | |s̄ j | = μ}, J := { j ∈ I | x∗

j 	= 0}, K := { j ∈
I | x∗

j = 0}, and H(x∗) := {u ∈ Rn | u j = 0, j /∈ I and u j s̄ j ≥ 0, j ∈ K }. Then,
D∂μ‖ · ‖1(x∗|s̄)(u) is nonempty if and only if u ∈ H(x∗). Furthermore, we have

D∂(μ‖ · ‖1)(x∗|s̄)(u)

=
{
v ∈ Rn

∣∣∣∣ v j = 0, j ∈ J
u jv j = 0, s̄ jv j ≤ 0, j ∈ K

}
for all u ∈ H(x∗). (23)

Proof For any x ∈ Rn , note that

∂μ‖x‖1 =
{
s ∈ Rn

∣∣∣∣ s j = μ sgn (x j ) if x j 	= 0
s j ∈ [−μ,μ] if x j = 0

}
, (24)

where sgn : R → {−1, 1} is the sign function. Take any v ∈ D∂‖ · ‖1(x∗|s̄)(u),
there exists sequence tk ↓ 0 and (uk, vk) → (u, v) such that (x∗, s̄) + tk(uk, vk) ∈
gph ∂μ‖ · ‖1. Let us consider three partitions of j described below:

Partition 1.1 j /∈ I , i.e., |s̄ j | < μ. It follows from (24) that x∗
j = 0. For sufficiently

large k, we have |(s̄ + tkvk) j | < μ and thus |(x∗ + tkuk) j | = 0 by (24) again. Hence,
ukj = 0, which implies that u j = 0 for all j /∈ I .
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Partition 1.2 j ∈ J , i.e., |s̄ j | = μ and x∗
j 	= 0. When k is sufficiently large, we have

(x∗ + tkuk) j 	= 0 and derive from (24) that

(s̄ + tkvk) j = μ sgn (x∗ + tkuk) j = μ sgn x∗
j = s̄ j ,

which implies that v j = 0 for all j ∈ J .

Partition 1.3 j ∈ K , i.e., |s̄ j | = μ and x∗
j = 0. If there is a subsequence of (x∗, s̄) j +

tk(uk, vk) j (without relabeling) such that |(s̄+ tkvk) j | < μ = |s̄ j |, we have s̄ jvkj < 0

and (x∗ + tkuk) j = 0 by (24). It follows that ukj = 0. Letting k → ∞, we have u j = 0

and s̄ jv j ≤ 0. Otherwise, we find some L > 0 such that |(s̄ + tkvk) j | = μ = |s̄ j | for
all k > L , which yields vkj = 0. Taking k → ∞ gives us that v j = 0. Furthermore,
by (24) again, we have

s̄ j = (s̄ + tkvk) j = μsgn (x∗ + tkuk) j = μsgn(ukj ) or

0 = (x∗ + tkuk) j = tkukj , i.e., ukj = 0,

which imply that s̄ j u j ≥ 0 after passing the limit k → ∞.
Combining the conclusions in three cases above gives us that u ∈ H(x∗) and

also verifies the inclusion “⊂” in (23). To justify the converse inclusion “⊃”, take
u ∈ H(x∗) and any v ∈ Rn with v j = 0 for j ∈ J and u jv j = 0, s̄ jv j ≤ 0 for
j ∈ K . For any tk ↓ 0, we prove that (x∗, s̄)+ tk(u, v) ∈ gph ∂μ‖ · ‖1 and thus verify
that v ∈ D∂μ‖ · ‖1(x∗|s̄)(u). For any t ∈ R, define the set-valued mapping:

SGN(t) := ∂|t | =
{
sgn (t) if t 	= 0
[−1, 1] if t = 0.

Similarly to the proof of “⊂” inclusion, we consider three partitions of j as follows:

Partition 2.1 j /∈ I , i.e., |s̄ j | < μ. Since u ∈ H(x∗), we have u j = 0. Note also
that x∗

j = 0. Hence, we get (x∗ + tku) j = 0 and (s̄ + tkv) j ∈ [−μ,μ] when k is

sufficiently large, which means (s̄ + tkv) j ∈ μSGN(x∗ + tku) j .

Partition 2.2 j ∈ J , i.e., |s̄ j | = μ and x∗
j 	= 0. Since v j = 0, we have

sgn (s̄ + tkv) j = sgn s̄ j = sgn (x∗
j ) = sgn (x∗ + tku) j

and (x∗ + tku) j 	= 0 when k is large. It follows that (s̄ + tkv) j ∈ μSGN(x∗ + tku) j .

Partition 2.3 j ∈ K , i.e., |s̄ j | = μ and x∗
j = 0. If u j = 0, we have (x∗ + tku) j = 0

and |(s̄ + tkv) j | ≤ |s̄ j | ≤ μ for sufficiently large k, since s̄ jv j ≤ 0. If u j 	= 0, we
have v j = 0 and

(s̄ + tkv) j = s̄ j = sgn (u j ) = sgn (x∗ + tku) j

when k is large, since u j s̄ j ≥ 0. In both cases, we have (s̄+tkv) j ∈ μSGN(x∗+tku) j .
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From those cases, we always have (x∗, s̄) + tk(u, v) ∈ gph ∂μ‖ · ‖1 and thus
v ∈ D∂μ‖ · ‖1(x∗|s̄)(u). ��

As a consequence, we establish a characterization of strong quadratic growth con-
dition for F2.

Theorem 3.1 (Characterization of strong quadratic growth condition for F2) Let x∗
be an optimal solution to problem (22). Suppose that ∇ f is differentiable at x∗.
Define E := {

j ∈ {1, . . . , n} | |(∇ f (x∗)) j | = μ
}
, K := { j ∈ E | x∗

j = 0}, U :=
{u ∈ RE | u j (∇ f (x∗)) j ≤ 0, j ∈ K } with R

E = {u = (u j ) j∈E ∈ R
|E |}, and

HE (x∗) := [∇2 f (x∗)i, j ]i, j∈E . Then, the following statements are equivalent:

(i) F2 satisfies the strong quadratic growth condition at x∗.
(ii) HE (x∗) is positive definite over U in the sense that

〈HE (x∗)u, u〉 > 0 for all u ∈ U \ {0}. (25)

(iii) HE (x∗) is nonsingular over U in the sense that

kerHE (x∗) ∩ U = {0}. (26)

Moreover, if (25) is satisfied, then F2 satisfies the strong quadratic growth condition
with any positive modulus κ < � with

� := min

{ 〈HE (x∗)u, u〉
‖u‖2

∣∣∣ u ∈ U
}

> 0 (27)

with the convention 0
0 = ∞.

Proof First let us verify the equivalence between (i) and (ii) by using Proposi-
tion 2.1. Indeed, for any v ∈ D(∂F2)(x∗|0)(u) we have get from the sum rule
[20, Proposition 4A.2] that

v − ∇2 f (x∗)u ∈ D∂μ‖ · ‖1(x∗| − ∇ f (x∗))(u).

Define V := {u ∈ Rn| u j = 0, j /∈ E, u j (∇ f (x∗)) j ≤ 0, j ∈ K }. Thanks to
Proposition 3.1, we have

〈v − ∇2 f (x∗)u, u〉 = 0 for all u ∈ V. (28)

This tells us that (25) is the same with (3) when h = F2. By Proposition 2.1, (i) and
(ii) are equivalent. Moreover, F2 satisfies the strong quadratic growth condition with
any positive modulus κ < �.

Finally, the equivalence between (ii) and (iii) is trivial due to the fact that f is
convex and thus HE (x∗) is positive semi-definite. ��
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Corollary 3.2 (Linear convergence of FBS method for �1-regularized problems) Let
(xk)k∈N be the sequences generated from FBS method for problem (22). Suppose that
the solution set S∗ is not empty, (xk)k∈N is converging to some x∗ ∈ S∗, and that f is
C2 around x∗. If condition (25) holds, then (xk)k∈N and (F2(xk))k∈N are Q-linearly
convergent to x∗ and F2(x∗), respectively, with rates determined in Corollary 2.1,
where κ is any positive number smaller than � in (27).

Proof Since f is C2 around x∗, ∇ f is locally Lipschitz continuous around x∗. The
result follows from Corollary 2.1 and Theorem 3.1. ��
Remark 3.1 It is worth noting that condition (26) is strictly weaker than the assumption
used in [28] that HE (x∗) has full rank to obtain the linear convergence of FBS for
(22). Indeed, let us take into account the case n = 2, μ = 1, and f (x1, x2) =
1
2 (x1 + x2)2 + x1 + x2. Note that x∗ = (0, 0) is an optimal solution to problem
(22). Moreover, direct computation gives us that ∇ f (x∗) = (1, 1), E = {1, 2}, and
HE (x∗) =

(
1 1
1 1

)
. It is clear that HE (x∗) does not have full rank, but condition (25)

and its equivalence (26) hold.

3.3 Global Q-linear Convergence of ISTA on Lasso Problem

In this section, we study the linear convergence of ISTA for Lasso problem

min
x∈Rn

F3(x) := 1

2
‖Ax − b‖2 + μ‖x‖1, (29)

where A is an m × n real matrix and b is a vector inRm .
The following lemma taken from [10, Lemma 10] plays an important role in our

proof.

Lemma 3.2 (Global error bound) Fix any R >
‖b‖2
2μ . Suppose that x∗ is an optimal

solution to problem (29). Then, we have

F3(x) − F3(x
∗) ≥ γR

2
d2(x; S∗) for all ‖x‖1 ≤ R,

where

γ −1
R := ν2

(
1 +

√
5

2
μR + (R‖A‖ + ‖b‖)(4R‖A‖ + ‖b‖

)
(30)

while ν is the Hoffman constant defined in [10, Definition 1] and only depends on the
initial data A, b, μ.

Global R-linear convergence of (xk)k∈N from ISTA and Q-linear convergence
of (F3(xk))k∈N for solving Lasso problem were obtained in [25, Theorem 4.2 and
Remark 4.3] and also [26, Theorem 4.8]. Here, we add another feature: The iterative
sequence (xk)k∈N is also globally Q-linearly convergent.
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Theorem 3.2 (Global Q-linear convergence of ISTA) Let (xk)k∈N be the sequence
generated by ISTA for problem (29) that converges to an optimal solution x∗ ∈ S∗.
Then, (xk)k∈N and (F3(xk))k∈N are globally Q-linearly convergent to x∗ and F3(x∗),
respectively:

‖xk+1 − x∗‖ ≤ 1√
1 + αγR

4

‖xk − x∗‖ (31)

|F3(xk+1) − F3(x
∗)| ≤ 2

√
1 + αγR√

1 + αγR + 1
|F3(xk) − F3(x

∗)| (32)

for all k ∈ N, where R is any number bigger than ‖x0‖ + ‖b‖2
μ

and γR is given as in

(30) while α := min
{
σ, θ

λmax(AT A)

}
.

Proof Note that Lasso always has optimal solutions. With x∗ ∈ S∗, we have

F3(0) = 1

2
‖b‖2 ≥ F3(x

∗) ≥ μ‖x∗‖1,

which implies that ‖x∗‖ ≤ ‖x∗‖1 ≤ 1
2μ‖b‖2. It follows from [8, Corollary 3.1] that

‖xk‖ ≤ ‖xk − x∗‖ + ‖x∗‖ ≤ ‖x0 − x∗‖ + ‖x∗‖ ≤ ‖x0‖ + 2‖x∗‖
≤ ‖x0‖ + ‖b‖2

μ
< R

for all k ∈ N. Thanks to Lemma 3.2, [8, Corollary 3.1], and [8, Proposition 3.2], we
have

‖xk − x∗‖2 − ‖xk+1 − x∗‖2 ≥ αγRd
2(xk+1; S∗) (33)

with α = min
{
σ, θ

λmax(AT A)

}
and the note that λmax(AT A) is the global Lipschitz

constant of the gradient of 1
2‖Ax − b‖2. The proof of (31) and (32) is quite similar to

the one of (8) and (9) in Theorem 2.2; see [8, Theorem 4.1] for further details. ��
Remark 3.2 (Linear convergence rate comparisons for ISTA) In this remark, we pro-
vide some comparisons for the derived linear convergence rate for ISTA with the
existing results in the literature.

– For the sequence (xk)k∈N generated by ISTA,wefirst note that our derivedQ-linear

convergence in Theorem 3.2 is
1√

1 + γR
4λmax(AT A)

according to (31). This result is

new to the literature. In [10, Theorem 25 and Remark 26], R-linear convergence
for this sequence via γR was obtained. In the case of constant step size, by setting

σ = 1

λmax(AT A)
and θ = 1, we have αk = α = σ ; see [8, Remark 4.1].
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In this case, the corresponding R-linear convergence rate given in [10] reads as
1√

1 + γR
3λmax(AT A)

. On the other hand, using [8, Proposition 4.1(i)] and Lemma 3.2,

one can deduce that the R-linear rate for (xk)k∈N is
1√

1 + γR
λmax(AT A)

, which is

sharper than the rate
1√

1 + γR
3λmax(AT A)

given in [10].

– For the R-linear convergence rate for (F3(xk))k∈N, from [8, Proposition 4.1(ii)]

and Lemma 3.2, one can deduce that the rate is
1

1 + γR
λmax(AT A)

. This rate

is sharper than the one
1

1 + γR
3λmax(AT A)

derived in [10, Remark 26]. How-

ever, the Q-linear rate
1

1 + γR
4λmax(AT A)

for (F3(xk))k∈N obtained by combining

[25, Theorem 4.2(iii)] and Lemma 3.2 is better than our rate given in (32); see also
[8, Remark 4.1] for related comparisons.How to improve theQ-linear convergence
rate for (F3(xk))k∈N is an interesting future direction of research.

Observe further that the linear rates in Theorem 3.2 depend on the initial point x0;
see also [26, Theorem 4.8]. Next, we show that the local linear rates around optimal
solutions are uniform and independent of the choice of x0.

Corollary 3.3 (Local Q-linear convergence of ISTA with uniform rate) Let (xk)k∈N
be the sequence generated by ISTA for problem (29) that converges to an optimal
solution x∗ ∈ S∗. Then, (31) and (32) are satisfied when k is sufficiently large, where
α = min

{
σ, θ

λmax(AT A)

}
and R is any number bigger than ‖b‖2

2μ .

Proof Note from the proof of Theorem 3.2 that ‖x∗‖ ≤ ‖b‖2
2μ < R. By Lemma 3.2,

there exists some ε ∈ (0, R − ‖x∗‖) such that the quadratic growth condition holds at
x∗:

F3(x) − F3(x
∗) ≥ γR

2
d2(x; S∗) for all x ∈ Bε(x

∗).

The corollary follows directly from the second part of Theorem 2.2. ��

3.4 Discussions on Nuclear Norm Regularized Least Square Optimization
Problems

Another important optimization problem, which has received a lot of attention, is that
so-called nuclear norm regularized least square optimization problem

min
X∈Rp×q

h(X) := 1

2
‖AX − B‖2 + μ‖X‖∗. (34)
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Here, A : Rp×q → Rm×n is a linear operator, B ∈ Rm×n , and ‖X‖∗ is the nuclear
norm of X which is defined as the sum of its singular values.

Similar to the development in [8], Q-linear convergence can be derived by assuming
(strong) quadratic growth conditions. On the other hand, the following example shows
that, different from Lasso problem (29) studied in Sect. 3.3, the (strong) quadratic
growth condition is no longer automatically true for the nuclear norm regularized
least square optimization problem (34), even when the underlying problem admits a
unique solution.

Example 3.1 (Failure of quadratic growth condition for nuclear norm regularized opti-
mization problems) Consider the following optimization problem:

min
X∈R2×2

h(X) := 1

2

[
(X11 + X22 − 2)2 + (X12 − X21 + X22)

2
]

+ ‖X‖∗, (35)

which is a particular case of (34) with A(X) =
[

X11 + X22
X12 − X21 + X22

]
for any X =[

X11 X12
X21 X22

]
∈ R2×2, B =

[
2
0

]
, and μ = 1. For X :=

[
a b
c d

]
, let σ1 and σ2 be the

singular value of X , we have

‖X‖∗ = σ1 + σ2 =
√

σ 2
1 + σ 2

2 + 2σ1σ2 =
√

‖X‖2F + 2|det (X)|. (36)

Given X =
[
a b
c d

]
, it follows that

h(X) = 1

2

[
(a + d − 2)2 + (b − c + d)2

]
+

√
a2 + b2 + c2 + d2 + 2|ad − bc|

≥ 1

2

[
(a + d − 2)2 + (b − c + d)2

]
+

√
a2 + b2 + c2 + d2 + 2(ad − bc)

≥ 1

2
(a + d − 2)2 +

√
(a + d)2 + (b − c)2

≥ 1

2
(a + d − 2)2 + (a + d)

= 1

2
(a + d − 1)2 + 3

2
.

Moreover, h(X) = 3
2 if a + d = 1, ad − bc ≥ 0, b − c = 0, b − c + d = 0, which

means b = c = d = 0 and a = 1. Thus, X =
[
1 0
0 0

]
is the unique optimal solution
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to problem (35). Choose Xε =
[
1 − ε1.5 ε − ε1.5

ε ε1.5

]
with ε > 0 sufficiently small and

note that

h(Xε) = 1

2
+

√
(1 − ε1.5)2 + (ε − ε1.5)2 + ε2 + ε3 + 2|(1 − ε1.5)ε1.5 − (ε − ε1.5)ε|

= 1

2
+

√
(1 − ε1.5)2 + (ε − ε1.5)2 + ε2 + ε3 + 2(1 − ε1.5)ε1.5 − 2(ε − ε1.5)ε

= 1

2
+

√
1 + ε3

= h(X) + √
1 + ε3 − 1 = h(X) + O(ε3).

Observer further that ‖Xε − X̄‖2F = ε3 + (ε − ε1.5)2 + ε2 + ε3 = O(ε2). This tells
us that X does not satisfied the strong quadratic growth condition for (35). Note that
X is the unique solution, we also see that the quadratic growth condition (2) fails at
X .

Remark 3.3 Moreover, by setting X0 as the identity matrix, σ = 1, and θ = 1
2 , we

solve problem (35) numerically by FBS (6) with the Beck–Teboulle’s line search and

store the quotients δk := h(Xk+1)−h(X)

h(Xk+1)−h(X)
and ηk := ‖Xk+1−X‖F

‖Xk−X‖F . After 276 iterations,

both δk and ηk are close to 1 with error 10−14. This suggests that Q-linear convergence
unlikely occurs for both sequences {h(Xk+1) − h(X)} and {‖Xk − X‖F }.

The quadratic growth condition of nuclear norm regularized problem was studied
in [53] under the nondegeneracy condition [53]2: 0 ∈ ri ∂h(X), where ri ∂h(X) is
the relative interior of ∂h(X). In general, although the nondegeneracy condition is
an important property in matrix optimization, it can be restrictive for some applica-
tions. Without assuming the nondegeneracy condition for (34), the strong quadratic
growth condition can be used to guarantee the linear convergence of FBS as in Corol-
lary 2.1 and Sect. 3.2. The strong quadratic growth condition for problem (34) can be
characterized via second-order analysis on nuclear norm [17, 52]. On the other hand,
the corresponding characterizations are highly non-trivial and are presented in a rather
complicated formwhichmay not be able to be easily verified in general. How to obtain
easily verifiable and computationally tractable condition ensuring (strong) quadratic
growth condition for nuclear norm regularized optimization problem or more gener-
ally for matrix optimization problem deserves a separate study and is out of scope of
this current paper.

4 Uniqueness of Optimal Solution to �1-Regularized Least Square
Optimization Problems

As discussed in Sect. 1, the linear convergence of ISTA for Lasso was sometimes
obtained by imposing an additional assumption that Lasso has a unique optimal solu-
tion x∗; see, e.g., [41]. Since F3 satisfies the quadratic growth condition at x∗ (3.2),

2 Another explanations for the failure of quadratic growth condition (2) in problem (35) of Example 3.1 is
that the nondegeneracy condition does not satisfy here
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the uniqueness of x∗ is equivalent to the strong quadratic growth condition of F3 at x∗.
This observation together with Theorem 3.1 allows us to characterize the uniqueness
of optimal solution to Lasso in the next result. A different characterization for this
property could be found in [51, Theorem 2.1]. Suppose that x∗ is an optimal solution,
which means −AT (Ax∗ − b) ∈ ∂(μ‖ · ‖1)(x∗). In the spirit of Proposition 3.1 with
f (x) = 1

2‖Ax − b‖2, define

E := {
j ∈ {1, . . . , n} ∣∣ |(AT (Ax∗ − b)) j | = μ

}
,

K := { j ∈ E | x∗
j = 0}, J := E \ K . (37)

Since −AT (Ax∗ − b) ∈ ∂(μ‖ · ‖1)(x∗), if x∗
j 	= 0, then (AT (Ax∗ − b)) j =

−μ sign(x∗
j ). This tells us that J = { j ∈ {1, . . . , n}| x∗

j 	= 0} := supp (x∗). Fur-
thermore, given an index set I ⊂ {1, . . . , n}, we denote AI by the submatrix of A
formed by its columns Ai , i ∈ I and xI by the subvector of x ∈ Rn formed by xi ,
i ∈ I . For any x ∈ Rn , we also define sign (x) := (sign (x1), . . . , sign (xn))T and
Diag (x) by the square diagonal matrix with the main entries x1, x2, . . . , xn .

Theorem 4.1 (Uniqueness of optimal solution to Lasso problem) Let x∗ be an optimal
solution to problem (29). The following statements are equivalent:

(i) x∗ is the unique optimal solution to Lasso (29).
(ii) The system AJ xJ − AK QK xK = 0 and xK ∈ RK+ has a unique solution

(xJ , xK ) = (0J , 0K ) ∈ RJ × RK , where QK := Diag
[
sign (AT

K (AJ x∗
J − b))

]
.

(iii) The submatrix AJ has full column rank and the columns of AJ A
†
J AK QK −AK QK

are positively linearly independent in the sense that

Ker (AJ A
†
J AK QK − AK QK ) ∩ RK+ = {0K }, (38)

where A†
J := (AT

J AJ )
−1AT

J is the Moore–Penrose pseudoinverse of AJ .
(iv) The submatrix AJ has full column rank and there exists a Slater point y ∈ Rm

such that

(QK AT
K AJ A

†
J − QK AT

K )y < 0. (39)

Proof Since F3 satisfies the quadratic growth condition at x∗ as in Lemma 3.2, (i)
means that F3 satisfies the strong quadratic growth condition at x∗. Thus, by Theo-
rem 3.1, (i) is equivalent to

〈HE (x∗)u, u〉 > 0 for all u ∈ U \ {0} (40)

with f (x) = 1
2‖Ax − b‖2 and U = {u ∈ RE | u j (∇ f (x∗)) j ≤ 0, j ∈ K }. Note

that HE = [∇2 f (x∗)i, j ]i, j∈E = [(AT A)i, j ]i, j∈E = AT
E AE . Hence, (40) means the

system

0 = AEu = AJu J + AKuK and uK ∈ UK (41)
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has a unique solution u = (uJ , uK ) = (0J , 0K ) ∈ RJ × RK , where UK is defined
by

UK := {u ∈ RK | uk(AT (Ax∗ − b))k ≤ 0, k ∈ K }.

As observed after (37), J = supp (x∗), for each k ∈ K we have

(AT (Ax∗ − b))k = (AT (AJ x
∗
J − b))k = (AT

K (AJ x
∗
J − b))k .

It follows that UK = −QK (RK+ ) and QK is a nonsingular diagonal square matrix
(each diagonal entry is either 1 or−1). Uniqueness of system (41) is equivalent to (ii).
This verifies the equivalence between (i) and (ii).

Let us justify the equivalence between (ii) and (iii). To proceed, suppose that (ii) is
valid, i.e., the system

AJ xJ − AK QK xK = 0 with (xJ , xK ) ∈ RJ × RK+ . (42)

has a unique solution (0J , 0K ) ∈ RJ × RK . Choose xK = 0K , the latter tells us
that equation AJ xJ = 0 has a unique solution xJ = 0, i.e., AJ has full column
rank. Thus, AT

J AJ is nonsingular. Furthermore, it follows from (42) that AT
J AJ xJ =

AT
J AK QK xK , which means

xJ = (AT
J AJ )

−1AT
J AK QK xK = A†

J AK QK xK . (43)

This together with (42) tells us that the system

AJ A
†
J AK QK xK − AK QK xK = (AJ A

†
J AK QK − AK QK )xK = 0, xK ∈ RK+(44)

has a unique solution xK = 0K ∈ RK , which clearly verifies (38) and thus (iii).
To justify the converse implication, suppose that (iii) is valid. Consider equation

(42) in (ii), since AJ has the full rank column, we also have (43). Similar to the above
justification, one sees that xK satisfies equation (44). Thanks to (38) in (iii), we get
from (44) that xK = 0K and thus xJ = 0J by (43). This verifies that equation (42) in
(ii) has a unique solution (xJ , xK ) = (0J , 0K ).

Finally, the equivalence between (iii) and (iv) follows from the well-known Gor-
dan’s lemma [11, Theorem 2.2.1] and the fact that the matrix AJ A

†
J is symmetric.

��
Next, let us discuss some known conditions relating the uniqueness of optimal solu-

tion to Lasso. In [23], Fuchs introduced a sufficient condition for the above property:

AT
J (AJ x

∗
J − b) = −μ sign (x∗

J ), (45)

‖AT
Jc(AJ x

∗
J − b)‖∞ < μ, (46)

AJhas full column rank. (47)
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The first equality (45) indeed tells us that x∗ is an optimal solution to Lasso problem.
Inequality (46) means that E = J , i.e., K = ∅ in Theorem 4.1. (47), is also present
in our characterizations. Hence, Fuchs’ condition implies (iii) in Theorem 4.1 and
is clearly not a necessary condition for the uniqueness of optimal solution to Lasso
problem, since in many situations the set K is not empty.

Furthermore, in the recent work [43] Tibshirani shows that the optimal solution x∗
to problem (29) is unique when the matrix AE has full column rank. This condition
is sufficient for our (ii) in Theorem 4.1. Indeed, if (xJ , xK ) satisfies system (42) in

(ii), we have AE
(

xJ
−QK xK

)
= 0, which implies that xJ = 0 and QK xK = 0 when

ker AE = 0. Since QK is invertible, the latter tells us that xJ = 0 and xK = 0,
which clearly verifies (ii). Tibshirani’s condition is also necessary for the uniqueness
of optimal solution to Lasso problem for almost all b in (29), but it is not for all b; a
concrete example could be found in [51].

In the recentworks [50, 51], the following useful characterization of unique solution
to Lasso has been established under mild assumptions:

There exists y ∈ Rm satisfying AT
J y = sign (x∗

J ) and ‖AT
K y‖∞ < 1,

AJ has full column rank. (48)

It is still open to us to connect this condition directly to those ones in Theorem 4.1,
although they must be logically equivalent under the assumptions required in [50, 51].
However, our approach via second-order variational analysis is completely different
and also provides several new characterizations for the uniqueness of optimal solution
to Lasso. It is also worth mentioning here that the standing assumption in [51] that A
has full row rank is relaxed in our study.

5 Conclusion

In this paper, we analyze quadratic growth conditions for some structured optimization
problems using second-order variational analysis. This allows us to establish the Q-
linear convergence of FBS for

– Poisson regularized optimization problems and Lasso problems with no assump-
tion on the initial data;

– �1-regularized optimization problems with mild assumptions via second-order
conditions.

As a by-product, we also obtain full characterizations for the uniqueness of optimal
solution to Lasso problem, which complements and extends recent important results
in the literature.

Our results in this paper point out several interesting research questions, particularly
for extending the approach in this paper for matrix optimization problems such as
nuclear norm regularized optimization problems.

– Firstly, as we have seen in Example 3.1, for nuclear norm regularized optimization
problem (34), (strong) quadratic growth condition can fail even for problems with
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unique solutions. Thus, there is a gap between the uniqueness of the solution
and strong quadratic growth condition for (34). How to characterize this gap for
the nuclear norm regularized optimization problem or, more generally, for matrix
optimization problems would be an important research topic to investigate.
In particular, solution uniqueness for problem (34) has been characterized by the
so-called descent cone [13]. Evaluating the descent cone for nuclear norm will
help us understand more about solution uniqueness to (34) and understand the gap
between the uniqueness of solution with the strong quadratic growth condition for
(34).

– Secondly, what is the tightest possible complexity of FBS in solving the nuclear
norm minimization problem? Certainly, the complexity is at least o( 1k ) as studied
in [7–9, 40]. But FBS may fail to exhibit linear convergence when the quadratic
growth condition fails, as discussed in Remark 3.3. Due to algebraic structure in
nuclear norm, it is natural to conjecture that the complexity is O( 1

kβ ) with some
β > 1. Finding the optimal β is another research direction which deserves further
study.
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