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Abstract
In this paper, we consider nonlinear optimization problems with nonlinear equality
constraints and bound constraints on the variables. For the solution of such problems,
many augmented Lagrangian methods have been defined in the literature. Here, we
propose to modify one of these algorithms, namely ALGENCAN by Andreani et al.,
in such a way to incorporate second-order information into the augmented Lagrangian
framework, using an active-set strategy. We show that the overall algorithm has the
same convergence properties as ALGENCAN and an asymptotic quadratic conver-
gence rate under suitable assumptions. The numerical results confirm that the proposed
algorithm is a viable alternative to ALGENCAN with greater robustness.
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1 Introduction

In this paper, we are interested in the solution of smooth constrained optimization
problems of the type:

min f (x)
h(x) = 0
� ≤ x ≤ u,

(1)

where x, �, u ∈ �n, �i < ui , for all i = 1, . . . , n, f : �n → �, h : �n → �p are
twice continuously differentiable functions. Note that the structure of Problem (1) is
sufficiently general to capture, through reformulation, also problems with nonlinear
inequality constraints. Problem (1) has been studied for decades, and many optimiza-
tion methods have been proposed for its solution. Solution algorithms for (1) belong
to different classes like, e.g., sequential penalty [18], augmented Lagrangian [4] and
sequential quadratic programming [21].

Among the algorithms based on augmented Lagrangian functions, the one imple-
mented in the ALGENCAN [2,3] software package is one of the latest and more
efficient. The computational heavy part of ALGENCAN consists in the solution (at
every outer iteration) of the subproblem, i.e., the minimization of the augmented
Lagrangian merit function for given values of the penalty parameter and of the esti-
mated Lagrange multipliers. Such minimization is carried out by the inner solver
GENCAN [5].

It is worth noticing that besides the above methods, efficient local algorithms have
been proposed in the literature that exploit second-order information to define superlin-
early convergent Newton-like methods [4,13,16]. The so-called acceleration strategy
of ALGENCAN is an attempt to exploit second-order information by means of such
locally convergent methods to improve the convergence rate of the overall algorithm.

The idea that we develop in this paper is twofold. On the one side, we propose an
alternative and possiblymore extensiveway to use second-order informationwithin the
framework of an augmented Lagrangian algorithm. Basically, we propose a Newton-
type direction to use even when potentially far away from solution points. The use
of such a Newton direction is combined with an appropriate active-set strategy. In
particular, after estimating active and non-active variables with respect to the bound
constraints, we compute the Newton direction with respect to only the variables esti-
mated as non-active, while the ones estimated as active are set to the bounds.

On the other hand, when the Newton-type direction cannot be computed or does not
satisfy a proper condition, we propose to resort to the minimization of the augmented
Lagrangian function, but using an efficient active-set method for bound-constrained
problems [11].

The paper is organized as follows. In Sect. 2, we report some preliminary results that
will be useful in the paper. InSect. 3,wedescribe the procedure to compute theNewton-
type direction and we study its theoretical properties. Section 4 is devoted to the
description of the proposed augmented Lagrangian algorithm and to its convergence
analysis. In Sect. 5, we are concerned with the analysis of the converge rate for the
proposed method. In Sect. 6, we report some numerical experiments and comparison
with existing software. Finally, in Sect. 7 we draw some conclusions.
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2 Notation and Preliminary Results

Given a vector x ∈ R
n , we denote by xi its i th entry and, given an index set

T ⊆ {1, . . . , n}, we denote by xT the subvector obtained from x by discarding the
components not belonging to T . The gradient of a function f (x) is denoted by∇ f (x),
while the Hessian matrix is denoted by ∇2 f (x). We indicate by ∇xi f (x) the i th entry
of ∇ f (x). The Euclidean norm of a vector x is indicated by ‖x‖, while ‖x‖∞ denotes
the sup-norm of x . Given a matrix M , we indicate by ‖M‖ the matrix norm induced
by the Euclidean vector norm. The projection of a vector x onto a box [a, b] is denoted
by P [a,b](x). The i th column of the identity matrix is indicated by ei .

With reference to Problem (1), we define the Lagrangian function L(x, μ) with
respect to the equality constraints as follows:

L(x, μ) := f (x) + μT h(x),

where μ ∈ �p is the Lagrange multiplier.
Denoting the gradient of L(x, μ) with respect to x as ∇x L(x, μ) = ∇ f (x) +

∇h(x)μ, we say that (x, μ, σ, ρ) ∈ �3n+p is a KKT tuple for Problem (1) if

∇x L(x, μ) = σ − ρ, (2a)

h(x) = 0, (2b)

σ T (� − x) = 0, (2c)

ρT (x − u) = 0, (2d)

� − x ≤ 0, σ ≥ 0, (2e)

x − u ≤ 0, ρ ≥ 0. (2f)

If x∗ is local minimum of Problem (1) that satisfies some constraint qualification,
then there exist KKTmultipliersμ∗, σ ∗, ρ∗ such that (x∗, μ∗, σ ∗, ρ∗) is a KKT tuple.
Note that the KKT conditions 2 can be rewritten as follows:

∇xi L(x, μ)

⎧
⎪⎨

⎪⎩

= 0, if �i < xi < ui ,

≥ 0, if xi = �i ,

≤ 0, if xi = ui ,

(3a)

h(x) = 0. (3b)

For a KKT tuple (x∗, μ∗, σ ∗, ρ∗), we say that the strict complementarity holds if
x∗
i = �i ⇒ σ ∗

i > 0 and x∗
i = ui ⇒ ρ∗

i > 0, that is, x∗
i = �i ⇒ ∇i L(x∗, μ∗) > 0

and x∗
i = ui ⇒ ∇i L(x∗, μ∗) < 0.

Now, let us define the multiplier functions σ(x, μ) and ρ(x, μ), which give us
some estimates of the KKT multipliers σ and ρ, respectively, associated with the box
constraints of Problem (1). Following the same approach used in [11,12] for bound-
constrained problems, we can first express σ(x, μ) = ∇x L(x, μ)+ρ(x, μ) from (2a),
and then, we can compute ρ(x, μ) by minimizing the error over (2c)–(2d) (see [12]
for more details), obtaining
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σi (x, μ) := (ui − xi )2

(�i − xi )2 + (ui − xi )2
∇xi L(x, μ), i = 1, . . . , n, (4)

ρi (x, μ) := − (�i − xi )2

(�i − xi )2 + (ui − xi )2
∇xi L(x, μ), i = 1, . . . , n. (5)

These multiplier functions will be employed later for defining an active-set strategy
to be used in the proposed algorithm.

Moreover, now we can say that (x∗, μ∗) ∈ �n+p is a KKT pair for Problem (1)
when (x∗, μ∗, σ (x∗, μ∗), ρ(x∗, μ∗)) is a KKT tuple.

2.1 The Augmented LagrangianMethod

The algorithm we propose here builds upon the augmented Lagrangian method
described in [3], where an augmented Lagrangian function is defined with respect
to a subset of constraints and iteratively minimized over x subject to the remaining
constraints. In our case, we define the augmented Lagrangian function for Problem (1)
with respect to the equality constraints as

La(x, μ; ε) := L(x, μ) + 1

ε
‖h(x)‖2,

where ε > 0 is a parameter that penalizes violation of the equality constraints. Given
an estimate (xk, μ̄k) of a KKT pair and a value εk for the penalty parameter, the new
iterate xk+1 can thus be computed by approximately solving the following bound-
constrained subproblem:

min La(x, μ̄k; εk)

� ≤ x ≤ u.
(6)

Then, according to [3], we can set

μk+1 = μ̄k + 2

εk
h(xk+1) (7)

and update the Lagrange multiplier μ̄k+1 by projecting (μk+1)i in a suitable interval
[μ̄min, μ̄max], i = 1, . . . , p, that is,

(μ̄k+1)i = max{μ̄min,min{(μk+1)i , μ̄max}}, i = 1, . . . , p. (8)

Finally, we decrease the penalty parameter εk+1 if the constraint violation is not
sufficiently reduced and start a new iteration. We can summarize the method proposed
in [3] as in the following scheme.

In the next section, we will describe how to incorporate the use of a proper second-
order direction into this augmented Lagrangian framework.
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Algorithm 1 *
Augmented Lagrangian Method
Given finite scalars μ̄min < μ̄max, β ∈ (0, 1), η ∈ (0, 1), θ ∈ (0, 1), ε0 > 0, a sequence {τk } ↘ 0, a
starting point x0 ∈ [�, u] and estimates of multipliers (μ̄0)i = (μ0)i ∈ [μ̄min, μ̄max], i = 1, . . . , p
For k = 0, 1, . . .

Compute xk+1 as an approximate solution of (6) with tolerance τk
Set μk+1 by (7) and μ̄k+1 by (8)
If ‖h(xk+1)‖∞ ≤ η‖h(xk )‖∞, then set εk+1 = εk , else set εk+1 = θεk

End for

3 Direction Computation

In this section, we introduce and analyze the procedure for computing a second-order
direction, employing a proper active-set estimate.

3.1 Active-Set Estimate

Taking inspiration from the strategy proposed in [16], for any x ∈ [�, u] and any
μ ∈ R

p, we can estimate the active constraints in a KKT point by the following sets:

L(x, μ) := {i : ∇xi L(x, μ) > 0, �i ≤ xi ≤ �i + νσi (x, μ)}, (9)

U(x, μ) := {i : ∇xi L(x, μ) < 0, ui − νρi (x, μ) ≤ xi ≤ ui }, (10)

where ν > 0 is a given parameter and the multiplier functions σ(x, μ), ρ(x, μ) are
defined in (4) and (5), respectively.

In particular, in a given pair (x, μ), the setsL(x, μ) andU(x, μ) contain the indices
of the variables that are estimated to be active at the lower bound �i and at the upper
bound ui , respectively, in a KKT point. As to be shown later, at each iteration of the
proposed algorithm, these sets are used to compute a Newton direction with respect
to only the variables that are estimated as non-active, while the variables estimated as
active are set to bound.

Using results from [16], the following identification property of the active-set esti-
mate (9)–(10) holds.

Proposition 3.1 If (x∗, μ∗, σ ∗, ρ∗) satisfies the KKT conditions 2, then there exists a
neighborhood of (x∗, μ∗) such that, for each (x, μ) in this neighborhood, we have

{i : x∗
i = �i , σ ∗

i > 0} ⊆ L(x, μ) ⊆ {i : x∗
i = li },

{i : x∗
i = ui , ρ∗

i > 0} ⊆ U(x, μ) ⊆ {i : x∗
i = ui }.

In particular, if the strict complementarity holds at (x∗, μ∗, σ ∗, ρ∗), for each (x, μ)

in this neighborhood we have

L(x, μ) = {i : x∗
i = li } and U(x, μ) = {i : x∗

i = ui }.
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The result stated in the above proposition holds for an unknown neighborhood of the
optimal solution. It would be of great interest and importance to give a characterization
of that neighborhood, in order to bound the maximum number of iterations required
by the algorithm to identify the active set. Currently, this is an open problem and
we think it may represent a possible line of future research, for example by adapting
the complexity results given for ALGENCAN in [7], or extending some results on
finite active-set identification given in the literature for specific classes of algorithms
[8,10,22].

3.2 Step Computation

In the proposed algorithm, at the beginning of every iteration k, we have a point
xk ∈ [�, u] and Lagrange multiplier estimates (μ̄k)i ∈ [μ̄min, μ̄max], i = 1, . . . , p.

Using (9)–(10), we estimate the active and non-active set in (xk, μ̄k). Denoting

Lk := L(xk, μ̄k), Uk := U(xk, μ̄k), Bk := Lk ∪ Uk, Nk := {1, . . . , n} \ Bk,

(11)
we can thus partition the vector xk as xk = (xBk , xNk ), reordering its entries if neces-
sary. Let us also denote

Lk := L(xk, μ̄k), ∇Nk Lk := [∇x Lk]Nk , hk := h(xk), ∇Nk hk := [∇hk]Nk ,

while∇2
xx Lk denotes theHessianmatrix of Lk derivingwith respect to x two times and

∇2
Nk

Lk denotes the submatrix obtained from ∇2
xx Lk by discarding rows and columns

not belonging to Nk .
Now, consider the following system of equation with unknowns xNk and μ:

∇Nk L(xNk , xBk , μ) = 0, (12a)

h(xNk , xBk ) = 0. (12b)

The nonlinear system (12a)–(12b) can be solved iteratively by the Newton method,
where the Newton direction is computed by solving the following linear system:

(∇2
Nk

Lk ∇Nk hk
∇Nk h

T
k 0

)(
dxNk

dμ

)

= −
(∇Nk Lk

hk

)

. (13)

Hence, if a solution (dxNk
, dμ) of (13) exists, we can set

dk = (dxNk
, dμ)

and move from ((xk)Nk , μ̄k) along dk , then projecting (xk)Nk + dxNk
onto the box

[�Nk , uNk ]. In particular, we define

(x̃k)Nk = P[�Nk ,uNk ]((xk)Nk + dxNk
). (14)
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and

μk+1 = μ̄k + dμ.

For what concerns the variables (xk)Bk , since they are estimated as active, we set
them to the bounds. Namely, we define (x̃k)Bk as follows:

(x̃k)i =
{

�i , if i ∈ Lk,

ui , if i ∈ Uk .
(15)

The following results holds.

Proposition 3.2 If the solution dk of system (13) exists, then (xk, μ̄k, σk, ρk) is a KKT
tuple with σk = σ(xk, μ̄k) and ρk = ρ(xk, μ̄k) if and only if dk = 0 and (x̃k)Bk =
(xk)Bk .

Proof First, assume that dk = 0 and (x̃k)Bk = (xk)Bk . From (13), we have

∇xNk
L(xk, μ̄k) = 0 and h(xk) = 0.

Using the expression of L(xk, μ̄k) and U(xk, μ̄k) given in (9)–(10), and recalling
the definition of ρ(x, μ) and σ(x, μ) given in (4)–(5), we also have

(σk)i = (ρk)i = ∇xi L(xk, μ̄k) = 0, ∀i ∈ Nk,

(xk)i = (x̃k)i = �i , (σk)i = ∇xi L(xk, μ̄k) > 0, (ρk)i = 0, ∀i ∈ Lk,

(xk)i = (x̃k)i = ui , (σk)i = 0, (ρk)i = −∇xi L(xk, μ̄k) > 0, ∀i ∈ Uk .

It follows that KKT conditions 2 are satisfied.
Now, assume that (xk, μ̄k, σk, ρk) is a KKT tuple. Since ∇xNk

L(xk, μ̄k) = 0 and
h(xk) = 0, from (13) we have dk = 0. Finally, using the KKT conditions written as
in 3, and recalling the definition of ρ(x, μ) and σ(x, μ) given in (4)–(5), we also have
(xk)i = �i = (x̃k)i for all i ∈ Lk and (xk)i = ui = (x̃k)i for all i ∈ Uk . ��

4 The Algorithm

In this section, we use the above described active-set estimate and Newton strategy to
design a primal-dual augmented Lagrangian method.

At the beginning of each iteration k, we have a pair (xk, μ̄k). We first estimate the
active set Lk ∪ Uk and the non-active set Nk as in (11). If possible, we calculate a
direction dk = (dxN , dμ) by solving the Newton system (13) and we compute (x̃k) as
in (14)–(15). This point is accepted and set as xk+1 only if ‖(dk, (x̃k − xk)Bk )‖ ≤ �k ,
where �k is iteratively decreased trough the iterations by a factor β ∈ (0, 1).

If this is not the case, we compute xk+1 as an approximate minimizer of the bound-
constrained subproblem (6), such that

‖xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk))‖∞ ≤ τk, (16)
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with {τk} → 0. Then, we update the multiplier estimate μk+1 by (7) and decrease the
penalty parameter εk+1 if the constraint violation is not sufficiently reduced.

We finally terminate the iteration by setting μ̄k+1 as the projection of μk+1 on a
prefixed box, according to (8).

The proposed method, named Primal-Dual Augmented Lagrangian Method
(P-D ALM), is reported in the following algorithmic scheme. As specified later (see
Sect. 6), in practical implementation of the algorithm we use a stricter test to accept
the point x̃k , also requiring a decrease of the feasibility violation in the new point x̃k .
For the sake of generality, the theoretical analysis is carried out by considering only
the condition ‖(dk, (x̃k − xk)Bk )‖ ≤ �k .

Algorithm 2 *
Primal-Dual Augmented Lagrangian Method (P-D ALM)
Given finite scalars μ̄min < μ̄max, β ∈ (0, 1), η ∈ (0, 1), θ ∈ (0, 1), �0 > 0, ε0 > 0, a sequence
{τk } ↘ 0, a starting point x0 ∈ [�, u] and estimates of multipliers (μ̄0)i = (μ0)i ∈ [μ̄min, μ̄max],
i = 1, . . . , p
For k = 0, 1, . . .

Compute the active and non-active set estimates Lk ,Uk ,Nk as in (11)
Compute dk = (dxN , dμ) by solving (13), if possible, and set (x̃k ) as in (14)–(15)
If dk has been computed and ‖(dk , (x̃k − xk )Bk

)‖ ≤ �k , then set xk+1 = x̃k ,
μk+1 = μ̄k + dμ, �k+1 = β�k and εk+1 = εk

Else, compute xk+1 satisfying (16) and set μk+1 by (7).
If ‖h(xk+1)‖∞ ≤ η‖h(xk )‖∞, then set εk+1 = εk , else set εk+1 = θεk

Set μ̄k+1 by (8).
End for

The next results shows that a KKT point is obtained, as a limit point, whenever we
accept the Newton direction for an infinite number of iterations.

Proposition 4.1 Let {xk} be a sequence generated by the Primal-Dual Augmented
Lagrangian Method and let {xk}K be a subsequence such that x̃k is accepted (i.e., dk
is computed and ‖(dk, (x̃k − xk)Bk )‖ ≤ �k) for infinitely many iterations k ∈ K and

lim
k→∞, k∈K xk+1 = x∗.

Then, x∗ is a KKT point.

Proof Since {μ̄k} is a bounded sequence and Lk , Uk , Nk are subsets of a finite set
of indices, without loss of generality we can assume that limk→∞, k∈K μ̄k+1 = μ∗,
Lk = L, Uk = U and Nk = N (passing into a further subsequence if necessary).
Moreover, since dk is accepted for infinitely many iterations k ∈ K , without loss of
generality we can also assume that dk is accepted for all k ∈ K (passing again into a
further subsequence if necessary).

Since the projection is non-expansive, for all k ∈ K we have

‖(xk+1, μ̄k+1) − (xk, μ̄k)‖ ≤ �k .
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Moreover, since �k+1 = β�k , with β ∈ (0, 1), for all k ∈ K ,

lim
k→∞ �k = 0. (17)

and

lim
k→∞
k∈K

‖xk+1 − xk‖ = 0.

Then,
lim
k→∞
k∈K

xk = lim
k→∞
k∈K

xk+1 = x∗. (18)

Since ‖dk‖ ≤ �k for all k ∈ K , from (17) we also have that

lim
k→∞
k∈K

‖dk‖ = 0. (19)

Using again the fact that the Newton direction is accepted at every iteration k ∈ K ,
we can write

∥
∥
∥
∥

(∇N Lk

hk

)∥
∥
∥
∥ =

∥
∥
∥
∥

(∇2
N Lk ∇N hk

∇N hTk 0

) (
dN
dμ

)∥
∥
∥
∥ ≤

∥
∥
∥
∥

(∇2
N Lk ∇N hk

∇N hTk 0

)∥
∥
∥
∥

∥
∥
∥
∥

(
dN
dμ

)∥
∥
∥
∥ . (20)

Taking the limits for k → ∞, k ∈ K , and using (18), we have

lim
k→∞,
k∈K

∇N Lk = lim
k→∞,
k∈K

∇N Lk+1 = ∇N L(x
∗, μ∗) and

lim
k→∞,
k∈K

hk = lim
k→∞,
k∈K

hk+1 = h(x∗).

Taking into account (19) and (20), we can write

∇N L(x∗, μ∗) = 0 and h(x∗) = 0.

To conclude the proof, we have to show that the KKT conditions are satisfied
with respect to ∇xLL(x∗, μ∗) and ∇xU L(x∗, μ∗) as well. From the instructions of
the algorithm, (xk+1)L = (x̃k)L = �L and (xk+1)U = (x̃k)U = uU for all k ∈ K .
Consequently,

x∗
i =

{
�i , if i ∈ L,

ui , if i ∈ U .

So, using 3, KKT conditions with respect to∇xLL(x∗, μ∗) and∇xU L(x∗, μ∗) hold
if and only if

∇xi L(x∗, μ∗)
{

≥ 0, if i ∈ L,

≤ 0, if i ∈ U .
(21)
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For any index i ∈ L, from the active-set estimate (9) we have 0 ≥ (dk)i =
�i − (xk)i ≥ −νσi (xk, μ̄k) and, using the definition of σi (x, μ) given in (4), we get

∇xi Lk ≥ − (�i − (xk)i )2 + (ui − (xk)i )2

ν(ui − (xk)i )2
(dk)i .

Similarly, for any index i ∈ U we have 0 ≤ (dk)i = ui − (xk)i ≤ νρi (xk, μ̄k) and
then

∇xi Lk ≤ − (�i − (xk)i )2 + (ui − (xk)i )2

ν(li − (xk)i )2
(dk)i .

Taking the limits for k → ∞, k ∈ K , and using (18)–(19), we obtain (21). ��
In the following result, we show that any limit point of the sequence {xk} is either

feasible for Problem (1) or stationary for the penalty term ‖h(x)‖2 of the augmented
Lagrangian function, measuring the violation with respect to the equality constraints.

Proposition 4.2 Let {xk} be a sequence generated by the Primal-Dual Augmented
Lagrangian Method and let {xk}K be a subsequence such that

lim
k→∞, k∈K xk+1 = x∗.

The following holds:

– if limk→∞ εk > 0, then x∗ is feasible;
– if x̃k is accepted (i.e., dk is computed and ‖(dk, (x̃k − xk)Bk )‖ ≤ �k) for infinitely
many iterations k ∈ K, then x∗ is feasible (indeed, it is a KKT point);

– in all other cases, x∗ is a KKT point of the problem min�≤x≤u ‖h(x)‖2.
Proof Let us analyze the three cases separately.

– If limk→∞ εk > 0, from the instructions of the algorithm there exists an iteration
k̂ such that εk+1 = εk for all k ≥ k̂. Therefore, ‖h(xk+1)‖∞ ≤ η‖h(xk)‖∞, with
η ∈ (0, 1), for all k ≥ k̂, and then {h(xk)} → 0, implying that x∗ is feasible.

– If x̃k is accepted for infinitely many iterations k ∈ K , from Proposition 4.1 we
have that x∗ is a KKT point, and thus, it is feasible.

– In all the other cases, we want to show that

[∇h(x∗)h(x∗)]i

⎧
⎪⎨

⎪⎩

≥ 0, if x∗
i = �i ,

= 0, if x∗
i ∈ (�i , ui ),

≤ 0, if x∗
i = ui .

(22)

Since {μ̄k} is a bounded sequence, without loss of generality we can assume
that limk→∞, k∈K μ̄k+1 = μ∗, (passing into a further subsequence if necessary).
Moreover, note that there exists an iteration k̂ ∈ K such that, for all k ≥ k̂, k ∈ K ,
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the Newton direction dk is not accepted, that is, we compute xk+1 such that (16)
holds. Since {τk} → 0, it follows that

lim
k→∞ ‖xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk))‖∞ = 0. (23)

Now, we distinguish three subcases.

(i) x∗
i ∈ (�i , ui ). Since {xk+1}K → x∗, there exists an iteration k̂ ∈ K such that

(xk+1)i ∈ (�i , ui ) for all k ≥ k̂, k ∈ K . In view of (23), it follows that

lim
k→∞, k∈K(∇x La(xk+1, μ̄k; εk))i = 0

(otherwise, if it was not true, then lim supk→∞, k∈K |(xk+1 − P[�,u](xk+1 −
∇x La(xk+1, μ̄k; εk)))i | > 0, leading to a contradiction with (23)). So, there
exists an iteration, that we still denote by k̂ ∈ K without loss of generality,
such that (xk+1 − ∇x La(xk+1, μ̄k; εk))i ∈ [�i , ui ] for all k ≥ k̂, k ∈ K .
Hence, for all k ≥ k̂, k ∈ K , we can write

τk ≥ ‖xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk))‖∞
≥ ∣

∣(xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk)))i
∣
∣

= ∣
∣(∇x La(xk+1, μ̄k; εk))i

∣
∣

=
∣
∣
∣
∣

(

∇ f (xk+1) + ∇h(xk+1)μ̄k + 2

εk
∇h(xk+1)h(xk+1)

)

i

∣
∣
∣
∣.

Multiplying the first and the last term in the above chain of inequality by εk ,
we get

εkτk ≥ |(εk∇ f (xk+1) + εk∇h(xk+1)μ̄k + 2∇h(xk+1)h(xk+1))i |,

for all k ≥ k̂, k ∈ K . Taking the limits in the above inequality for k → ∞, k ∈
K , the left-hand side converges to zero, since both {εk} and {τk} converge to
zero, while the right-hand side converges to |(2∇h(x∗)h(x∗))i |, since {εk} →
0, {∇ f (xk+1)}K → ∇ f (x∗), {∇h(xk+1)}K → ∇h(x∗), {h(xk+1)}K →
h(x∗) and {μ̄k}K → μ∗. We thus conclude that (∇h(x∗)h(x∗))i = 0.

(ii) x∗
i = �i . Since {xk+1}K → x∗, there exists an iteration k̂ ∈ K such that

(xk+1)i ∈ [�i , ui ) for all k ≥ k̂, k ∈ K . In view of (23), it follows that

lim inf
k→∞, k∈K(∇x La(xk+1, μ̄k; εk))i ≥ 0

(otherwise, if it was not true, then lim supk→∞, k∈K |(xk+1 − P[�,u](xk+1 −
∇x La(xk+1, μ̄k; εk)))i | > 0, leading to a contradiction with (23)). So, we can
write

lim inf
k→∞, k∈K

(

∇ f (xk+1) + ∇h(xk+1)μ̄k + 2

εk
∇h(xk+1)h(xk+1)

)

i
≥ 0.
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Multiplying the terms of the above inequality by εk , and taking into account
that {εk} → 0, {∇ f (xk+1)}K → ∇ f (x∗), {∇h(xk+1)}K → ∇h(x∗),
{h(xk+1)}K → h(x∗) and {μk}K → μ∗ is bounded, we get

lim inf
k→∞, k∈K(εk∇ f (xk+1) + εk∇h(xk+1)μ̄k + 2∇h(xk+1)h(xk+1))i =

= 2(∇h(x∗)h(x∗))i ≥ 0.

(iii) x∗
i = ui . We obtain (∇h(x∗)h(x∗))i ≤ 0 using the same arguments as in the
previous case. ��

In order to show convergence of the algorithm to KKT points, we need to point
out some properties of the approximate minimizers of the augmented Lagrangian
function. In particular, in the next lemma we show that, when we cannot use the
Newton direction, the approximate minimizers of the augmented Lagrangian function
computed as in (16), with {τk} → 0, satisfy the conditions stated in [3] for the solutions
of the subproblems (see Step 2 of Algorithm 3.1 in [3]).

Lemma 4.1 Let {xk} be a sequence generated by the Primal-Dual Augmented
Lagrangian Method, and let {xk}K be a subsequence such that

lim
k→∞, k∈K xk+1 = x∗,

with x∗ feasible and, for all k ∈ K, either the Newton direction dk cannot be computed
(i.e., system (13) does not have solutions) or x̃k is not accepted (i.e., ‖(dk, (x̃k −
xk)Bk )‖ > �k). Then, for all k ∈ K there exist τk,1 ≥ 0, τk,2 ≥ 0, (vk)i ,(wk)i ,i =
1, . . . , n, such that

∥
∥
∥
∥∇La(xk+1, μ̄k; εk) + ∑n

i=1((vk)i − (wk)i )

∥
∥
∥
∥∞

≤ τk,1, (24)

(vk)i ≥ 0, (wk)i ≥ 0 and �i − τk,2 ≤ (xk+1)i ≤ ui + τk,2, i = 1, . . . , n,

(25)

(xk+1)i > �i + τk,2 ⇒ (wk)i = 0, i = 1, . . . , n, (26)

(xk+1)i < ui − τk,2 ⇒ (vk)i = 0, i = 1, . . . , n, (27)

limk→∞, k∈K τk,1 = limk→∞, k∈K τk,2 = 0. (28)

Proof First, note that the conditions on xk in (25) are satisfied for any τk,2 ≥ 0, since
we maintain feasibility with respect to the constraints � ≤ x ≤ u. Without loss of
generality, we can limit to prove that an iteration k̂ ∈ K exists such that (24)–(27)
hold for all k ≥ k̂, k ∈ K , and (28) is satisfied (for the iterations k < k̂, k ∈ K , we can
choose arbitrary τk,1 ≥ 0, τk,2 ≥ 0, (vk)i ,(wk)i ,i = 1, . . . , n, with τk,1 sufficiently
large, satisfying (24)–(27)).

From the instructions of the algorithm, at every iteration k ∈ K we compute xk+1
such that (16) holds, with {τk} → 0. So, we can choose k̂ as the first iteration such
that

τk < min
i=1,...,n

{ui − �i }, ∀k ≥ k̂. (29)

123



312 Journal of Optimization Theory and Applications (2022) 193:300–323

Since the index set {1, . . . , n} is finite, without loss of generality we can define the
subsets I1, I2, I3 and I4 (passing into a further subsequence if necessary) such that:

I1 = {i : (xk+1)i ∈ (�i , ui )∀k ∈ K and x∗
i ∈ (�i , ui )},

I2 = {i : (xk+1)i ∈ (�i , ui )∀k ∈ K and x∗
i ∈ {�i , ui }},

I3 = {i : (xk+1)i = �i ∀k ∈ K },
I4 = {i : (xk+1)i = ui ∀k ∈ K }.

From (16) and (29), for all k ≥ k̂, k ∈ K , we can write

|(xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk)))i | ≤ τk, i ∈ I1 ∪ I2,

∇xi La(xk+1, μ̄k; εk) ≥ −τk, i ∈ I3,

∇xi La(xk+1, μ̄k; εk) ≤ τk, i ∈ I4.

For every variable (xk)i with i ∈ I1, we also have that

P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk)))i = xk+1 − ∇x La(xk+1, μ̄k; εk)

for all sufficiently large k ∈ K (this follows from the fact that {(xk)i }K → x∗
i ∈ (�i , ui )

and τk → 0) . So, without loss of generality we can also assume that k̂ is large enough
to satisfy

|∇x La(xk+1, μ̄k; εk)i | ≤ τk, i ∈ I1,

|(xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk)))i | ≤ τk, i ∈ I2,

∇xi La(xk+1, μ̄k; εk) ≥ −τk, i ∈ I3,

∇xi La(xk+1, μ̄k; εk) ≤ τk, i ∈ I4.

Let us rewrite the quantities within the absolute value in the second inequality as
follows:

(xk+1 − P[�,u](xk+1 − ∇x La(xk+1, μ̄k; εk)))i

= ∇xi La(xk+1, μ̄k; εk) − (y′
k)i + (y′′

k )i ,

where (y′
k)i , (y

′′
k )i ≥ 0 are proper scalars. In more detail, if p := (xk+1 −

∇x La(xk+1, μ̄k; εk))i is in [�i , ui ], then (y′
k)i , (y

′′
k )i = 0. On the other hand, if

p−P[�i ,ui ](p) < 0, then (y′
k)i > 0 and (y′′

k )i = 0; otherwise, i.e., if p−P[�i ,ui ](p) >

0, then (y′
k)i = 0 and (y′′

k )i > 0. Therefore, we obtain

|∇xi La(xk+1, μ̄k; εk)| ≤ τk, i ∈ I1,

|∇xi La(xk+1, μ̄k; εk) − (y1k )i + (y2k )i | ≤ τk, i ∈ I2,

∇xi La(xk+1, μ̄k; εk) ≥ −τk, i ∈ I3,

∇xi La(xk+1, μ̄k; εk) ≤ τk, i ∈ I4.
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We conclude that (24)–(27) hold for all k ≥ k̂, k ∈ K , with

τk,1 = τk,

τk,2 =
{
mini∈I2{min{(xk)i − �i , ui − (xk)i }}, if I2 �= ∅,

0, if I2 = ∅,

(vk)i =

⎧
⎪⎨

⎪⎩

0, i ∈ I1 ∪ I3,

(y′′
k )i , i ∈ I2,

max{0,−∇xi La(xk+1, μ̄k; εk)}, i ∈ I4,

(wk)i =

⎧
⎪⎨

⎪⎩

0, i ∈ I1 ∪ I4,

(y′
k)i , i ∈ I2,

max{0,∇xi La(xk+1, μ̄k; εk)}, i ∈ I3,

and, from the above definitions, also (28) is satisfied. ��
Combining the above results with those stated in [3], we can finally show the

convergence of the proposed algorithm to stationary points. In particular, as in [3],
we use the constant positive linear dependence (CPLD) as constraint qualification
condition.

Definition 4.1 A point x is said to satisfy CPLD for Problem (1) if the existence of
scalars λ1, . . . , λp, πi ≥ 0, i ∈ L(x), ϕ j ≥ 0, j ∈ U(x), such that

∑p
t=1 λt∇ht (z) −∑

i∈L(x) πi ei + ∑
j∈U(x) ϕ j e j = 0 implies that, for all z in a neighborhood of x ,

the vectors ∇h1(z), . . . ,∇h p(z),−ei , i ∈ L(x), e j , j ∈ U(x) are linearly dependent,
where L(x) := {i : xi = �i }, U(x) := {i : xi = ui } andN (x) := {1, . . . , n} \ (L(x)∪
U(x)).

For more details on CPLD and the relations with other constraint qualification
conditions, see also [1,23].

Theorem 4.1 Let {xk} be a sequence generated by the Primal-Dual Augmented
Lagrangian Method and let {xk}K be a subsequence such that

lim
k→∞, k∈K xk+1 = x∗.

The following holds:

– if x̃k is accepted (i.e., dk is computed and ‖(dk, (x̃k − xk)Bk )‖ ≤ �k) for infinitely
many iterations k ∈ K, then x∗ is a KKT point;

– else, if x∗ satisfies the CPLD constraint qualification, then x∗ is a KKT point.

Proof If x̃k is accepted for infinitely many iterations k ∈ K , then x∗ is a KKT point
from Proposition 4.1. Else, there exists an iteration k̂ ∈ K such that dk is not accepted
for any k ≥ k̂, k ∈ K , and the algorithm reduces to a classical Augmented Lagrangian
method. Then, using Lemma 4.1, the conditions stated in [3] for the solutions of the
subproblems are satisfied and the result is obtained by the same arguments given in
the proof of Theorem 4.2 in [3]. ��
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5 Convergence Rate Analysis

In this section, we analyze the convergence rate of the proposed algorithm. We will
show that, for sufficiently large iterations, the primal-dual sequence (xk , μ̄k) converges
to an optimal solution (x∗, μ∗) at a quadratic rate.

In the literature, standard assumptions to prove the convergence rate of an aug-
mented Lagrangian scheme are the linear independence constraints qualification
(LICQ), the strict complementarity and the second-order sufficient condition (SOSC).
For Problem (1), let us denote by σ ∗ and ρ∗ the KKTmultipliers at x∗ associated with
the bound constraints x ≥ � and x ≤ u, respectively, and

L∗ := {i : x∗
i = �i }, U∗ := {i : x∗

i = ui }, N ∗ := {1, . . . , n} \ (L∗ ∪ U∗).

Then,

– LICQ means that the vectors ∇h1(x∗), . . . ,∇h p(x∗), −ei , i ∈ L∗, e j , j ∈ U∗,
are linearly independent;

– SOSC means that yT∇2
xx L(x∗, μ∗)y > 0 for all y ∈ T (x∗) \ {0}, where

T (x∗) := {y ∈ R
n : ∇h(x∗)T y = 0,

eTi y = 0, i ∈ I0(x
∗),

eTi y ≤ 0, i ∈ I1(x
∗)},

with I0(x∗) := (L∗ ∩ {i : σ ∗
i > 0}) ∪ (U∗ ∩ {i : ρ∗

i > 0}) and I1(x∗) := (L∗ ∪
U∗) \ I0(x∗).

Under LICQ, strict complementarity and SOSC, if the penalty parameter εk → 0,
usually it is possible to show superlinear convergence rate for augmented Lagrangian
methods (see, e.g., [4,17] and the references therein). Moreover, superlinear conver-
gence rate is proved in [17], when εk → 0, even without any constraint qualification,
but requiring the starting multiplier to be in a neighborhood of a KKT multiplier
satisfying SOSC.

Here, quadratic convergence rate is obtained by assuming that μ∗
i ∈ [μ̄min, μ̄max]

for all i = 1, . . . , p, under LICQ and the strong second-order sufficient condition
(SSOSC), where the latter means that

yT∇2
xx L(x∗, μ∗)y > 0, ∀y ∈ T ′(x∗) \ {0},

with

T ′(x∗) := {y ∈ R
n : ∇h(x∗)T y = 0, eTi y = 0, i ∈ I0(x

∗)}.

Interestingly, our results do not need the convergence of {εk} to 0.
First, we state an intermediate result ensuring that, if a sequence converges to a

point where the conditions for superlinear convergence rate of the Newton direction
are satisfied, then the direction is eventually accepted by the algorithm.
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Proposition 5.1 Let {(zk, d̄k)} be a sequence of vectors such that

lim
k→∞ zk = z∗ and ‖zk + d̄k − z∗‖ ≤ αk‖zk − z∗‖,

with {αk} → 0. Then, for k sufficiently large,

‖d̄k‖ ≤ βk�0,

for given β ∈ (0, 1) and �0 > 0.

Proof Let k̄ and ᾱ be such that, for all k ≥ k̄,

αk < ᾱ < β < 1. (30)

Therefore, we can write

‖zk − z∗‖ ≤ ᾱk−k̄‖zk̄ − z∗‖,
‖zk + dk − z∗‖ ≤ ᾱk+1−k̄‖zk̄ − z∗‖,

from which we obtain:

‖d̄k‖ ≤ ‖zk + dk − z∗‖ + ‖zk − z∗‖ ≤ ᾱk (ᾱ + 1)

ᾱk̄
‖zk̄ − z∗‖.

By using (30), we can set

ᾱ = ρβ, ρ ∈ (0, 1).

Then, we have

‖d̄k‖ ≤ βkρk (ᾱ + 1)

ᾱk̄
‖zk̄ − z∗‖. (31)

Since ρ ∈ (0, 1), we can conclude that, for k sufficiently large, it results that

ρk (ᾱ + 1)

ᾱk̄
‖zk̄ − z∗‖ ≤ �0. (32)

Now, (31) and (32) conclude the proof. ��
Finally, we are ready to show the asymptotic quadratic rate of the primal-dual

sequence {(xk, μ̄k)}, under LICQ and SSOSC, if μ∗
i ∈ [μ̄min, μ̄max] for all i =

1, . . . , p.

Theorem 5.1 Let {xk} and {μ̄k} be the sequences generated by the Primal-Dual Aug-
mented Lagrangian Method and assume that

lim
k→∞ xk = x∗, lim

k→∞ μ̄k = μ∗,
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with μ∗
i ∈ [μ̄min, μ̄max] for all i = 1, . . . , p. Also assume that the LICQ and SSOSC

hold at (x∗, μ∗). Then, {(xk, μ̄k)} converges to (x∗, μ∗) with a quadratic rate asymp-
totically, i.e.,

∥
∥
∥
∥
xk+1 − x∗
μ̄k+1 − μ∗

∥
∥
∥
∥ ≤ K

∥
∥
∥
∥
xk − x∗
μ̄k − μ∗

∥
∥
∥
∥

2

for all sufficiently large k and some constant K .

Proof Since LICQ and SSOSC hold at (x∗, μ∗), using [16, Proposition 3.1] it follows
that the following matrix is invertible for k sufficiently large:

⎛

⎜
⎜
⎝

∇2Lk ∇hk −ILk IUk

∇hTk 0 0 0
−I TLk

0 0 0
I TUk

0 0 0

⎞

⎟
⎟
⎠ ,

where ILk and IUk denote the submatrices obtained from the identitymatrix by discard-
ing the columnswhose indices do not belong toLk andUk , respectively. Consequently,
for all sufficiently large k, the Newton direction can be computed.

Let us define d̄k as the Newton direction dk = ((dx )k, (dμ)k) augmented with the
components in Bk . Namely, d̄k := ((d̄x )k, (d̄μ)k), where

(d̄x )k := ((dx )k, (x̃k − xk)Bk ) and (d̄μ)k = (dμ)k

(by properly reordering the entries of xk). We note that

∥
∥
∥
∥
xk + (d̄x )k − x∗
μ̄k + (d̄μ)k − μ∗

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
∥
∥
∥

(xk + (d̄x )k − x∗)Lk

(xk + (d̄x )k − x∗)Uk

(xk + (d̄x )k − x∗)Nk

μ̄k + (d̄μ)k − μ∗

∥
∥
∥
∥
∥
∥
∥
∥

.

By the instructions of the algorithm, when a Newton direction is used, we have

(xk+1)Lk = (x̃k)Lk = (xk + (d̄x )k)Lk = �Lk

and

(xk+1)Uk = (x̃k)Uk = (xk + (d̄x )k)Uk = uUk .

So, using Proposition 3.1, for all sufficiently large k we have that

(xk+1 − x∗)Lk = (� − x∗)Lk = 0, (33a)

(xk+1 − x∗)Uk = (u − x∗)Uk = 0, (33b)

123



Journal of Optimization Theory and Applications (2022) 193:300–323 317

and then,

∥
∥
∥
∥
xk + (d̄x )k − x∗
μ̄k + (d̄μ)k − μ∗

∥
∥
∥
∥ =

∥
∥
∥
∥
(xk + (d̄x )k − x∗)Nk

μ̄k + (d̄μ)k − μ∗
∥
∥
∥
∥ .

For all sufficiently large k, by the same arguments given in the proof of [13, Propo-
sition 4], there exists a constant K such that

∥
∥
∥
∥
xk + (d̄x )k − x∗
μ̄k + (d̄μ)k − μ∗

∥
∥
∥
∥ =

∥
∥
∥
∥
(xk + (d̄x )k − x∗)Nk

μ̄k + (d̄μ)k − μ∗
∥
∥
∥
∥ ≤ K

∥
∥
∥
∥
(xk − x∗)Nk

μ̄k − μ∗
∥
∥
∥
∥

2

≤ K

∥
∥
∥
∥
xk − x∗
μ̄k − μ∗

∥
∥
∥
∥

2

.

(34)

The above relation implies that d̄k satisfies the assumptions of Proposition 5.1
(with zk = (xk, μ̄k) and αk = K‖(xk, μ̄k) − (x∗, μ∗)‖). Since ‖dk‖ ≤ ‖d̄k‖, by the
instructions of the algorithm, the Newton direction dk is accepted for all sufficiently
large k, so that

(xk+1)Nk = (x̃k)Nk = P[�Nk ,uNk ]((xk)Nk + d̄xNk
)

and

(μ̄k+1)i = max{μ̄min,min{μ̄max, (μ̄k + (d̄μ)k)i }}, i = 1, . . . , p.

Using 33, we get

‖xk+1 − x∗‖ = ‖(xk+1 − x∗)Nk‖ = ‖P[�Nk ,uNk ]((xk)Nk + d̄xNk
) − (x∗)Nk‖

≤ ‖(xk + (d̄x )k − x∗)Nk‖ ≤ ‖xk + (d̄x )k − x∗‖,
where the first inequality follows from the fact that the projection operator is non-
expansive and that, for all sufficiently large k, from Proposition 3.1 we haveN ∗ ⊆ Nk ,
implying that (x∗)Nk ∈ (�Nk , uNk ). Similarly, using again the non-expansivity of the
projection operator and the assumption that μ∗

i ∈ [μ̄min, μ̄max] for all i = 1, . . . , p,
we have

‖μ̄k+1 − μ∗‖ = ‖P[μ̄min1,μ̄max1](μ̄k + (d̄μ)k) − μ∗‖
≤ ‖μ̄k + (d̄μ)k − μ∗‖,

where 1 denotes the vector of all ones (of appropriate dimensions). Combining these
relations with (34), for all sufficiently large k we obtain

∥
∥
∥
∥
xk+1 − x∗
μ̄k+1 − μ∗

∥
∥
∥
∥ ≤

∥
∥
∥
∥
xk + (dx )k − x∗
μ̄k + (dμ)k − μ∗

∥
∥
∥
∥ ≤ K

∥
∥
∥
∥
xk − x∗
μ̄k − μ∗

∥
∥
∥
∥

2

,

concluding the proof. ��
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6 Numerical Experiments

This section is devoted to the description of the numerical experiencewith the proposed
algorithm and to its comparison with other algorithms publicly available. All the
numerical experiments have been carried out on an Intel Xeon CPU E5-1650 v2 @
3.50GHz with 12 cores and 64 Gb RAM.

Problem set description. We considered a set of 362 general constrained problems
from the CUTEst collection [20], with number of variables n ∈ [90, 906] and number
of general constraints (equalities and inequalities)m ∈ [1, 8958]. In particular, among
thewholeCUTEst problems collection,we selected all constrained problems (i.e., with
at least one constraint besides bound constraints on the variables) having:

(i) number of variables and constraints “user modifiable”, or
(ii) number of variables “user modifiable” and a fixed number of constraints, or
(iii) at least 100 variables.

Figure 1 describes the distribution of the number of variables and number of general
constraints of the considered problems.

Algorithms used in the comparison. We used the following algorithms:

– the augmented Lagrangian method implemented in the ALGENCAN (v.3.1.1)
software package [2,3];

– the augmented Lagrangian method implemented in LANCELOT (rev.B) [9,19];
– our proposed primal-dual augmented Lagrangian method P-D ALM (as described
in Sect. 4).
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Fig. 1 Problem set composition. The two curves represent the number of problems that have at most a given
number of variables or general constraints, respectively
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Both ALGENCAN and LANCELOT have been run using their default parameters.
Note that, in its default setting,ALGENCANuses second-order information exploiting
a so-called acceleration strategy, which is activated when the current primal-dual pair
is sufficiently close to a KKT pair of the problem.

Our method has been implemented by modifying the code of ALGENCAN in two
points:

– at the beginning of each iteration k, we inserted the computation of the active-
set estimate and the Newton direction dk , according to the algorithmic scheme
reported in Sect. 4;

– the approximate minimization of the augmented Lagrangian function is carried
out by means of the ASA-BCP method proposed in [11], in place of GENCAN
[5].

In more detail, for every iteration k, in (15) we set ν = min{10−6, ‖xk −P[�,u](xk −
∇x L(xk, μ̄k))‖−3} and the linear system (13)was solved bymeans of theMA57 library
[15]. Note that we used the same library also in ALGENCAN. For what concerns the
inner solver ASA-BCP, it is an active-set method where, at each iteration, the variables
estimated as active are set to the bounds, while those estimated as non-active aremoved
along a truncated-Newton direction. In ASA-BCP, here we employed a monotone line
search and, to compute the truncated-Newton direction by conjugate gradient, we used
the preconditioning technique described in [6], based on quasi-Newton formulas.

It is worth noticing that, in our implementation of P-D ALM, the test for accepting
the point x̃k is made of two conditions, which must be both satisfied for acceptance.
The first condition is that reported in Sect. 4, i.e., ‖(dk, (x̃k − xk)Bk )‖ ≤ �k , while the
second condition is that ‖h(x̃k)‖∞ ≤ η‖h(xk)‖∞, i.e., the feasibility violation in x̃k
must be sufficiently smaller than in xk . In our experience, adding this new condition
leads to better results in practice.

In our experiments, for all the considered methods we used the same stopping
conditions. Namely, the algorithms were stopped when the following two conditions
were both satisfied:

‖xk − P[u,�](xk − ∇L(xk, μ̄k))‖∞ ≤ εopt max{1, ‖∇ f (xk)‖∞},
‖h(xk)‖∞ ≤ εfeas‖h(x0)‖∞,

where x0 is the initial point and (xk, μ̄k) is the primal-dual pair at iteration k, with
εopt = εfeas = 10−6. Moreover, we inserted a maximum number of (outer) iterations
equal to 400 and a time limit of 3600 s.

In Fig. 2, we start by comparing P-D ALM against ALGENCAN with and without
acceleration phase (note that the acceleration phase in ALGENCAN is where second-
order information come into play) using the performance profiles [14] with respect to
CPU time. Note that the performance profiles are obtained on the subset of problems
where at least one solver requires more than 10 s of CPU time. As it can be seen,
ALGENCAN (using second-order information) is the most efficient solver but the
least robust one. On the other hand, P-D ALM is considerably more robust than both
the versions of ALGENCAN. One possible reason for P-D ALM being less efficient
than ALGENCAN can be the following: in P-D ALM we try to use the second-order
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Fig. 2 Comparison between P-D ALM and ALGENCAN with and without acceleration step, using perfor-
mance profiles with respect to CPU time. Note that “ALGENCAN 3.1.1 no acc.” refers to the version of
ALGENCAN not using second-order information, i.e., skipping the so-called acceleration phase

direction as much as possible, whereas second-order information is used in ALGEN-
CAN only when the current primal-dual point is sufficiently close to a KKT pair.
This could explain our larger computational times and the behavior of the reported
performance profiles.

In Fig. 3a, we report the comparison betweenALGENCANand P-D ALM.We note
that, even though ALGENCAN is slightly better than P-D ALM in terms of efficiency,
it is outperformed by our proposed method in terms of robustness. Furthermore, we
note that the two performance profiles intersect at, approximately, α � 5, i.e., both
algorithms solve the same percentage of problems in at most 5 times the CPU time of
the best performing solver.

In Fig. 3b, we report the comparison between P-D ALM and LANCELOT (rev. B).
In this case, P-D ALM is clearly the best performing solver both in terms of efficiency
and robustness.

Finally, we notice that ALGENCAN, LANCELOT and P-D ALM solve, respec-
tively, 272, 232 and 290 problems out of 362. The comparison among the three solvers
is reported in Fig. 4.
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Fig. 3 a Comparison between P-D ALM and ALGENCAN, using performance profiles with respect to
CPU time. b Comparison between P-D ALM and LANCELOT, using performance profiles with respect to
CPU time
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Fig. 4 Comparison between P-D ALM, ALGENCAN and LANCELOT

7 Conclusions

In this paper, we presented a new method for nonlinear optimization problems with
equality constraints and bound constraints. Starting from the augmented Lagrangian
scheme implemented in ALGENCAN, we used a tailored active-set strategy to com-
pute a Newton-type direction with respect to the variables estimated as non-active,
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while the variables estimated as active are set to the bounds. If this direction satisfies
a proper test, an augmented Lagrangian function is minimized by means of an effi-
cient solver recently proposed in the literature. We proved convergence to stationary
points and, under standard assumptions, an asymptotic quadratic convergence rate.
The numerical results show the effectiveness of the proposed method.
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