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Abstract

In this paper, we introduce and investigate a new kind of coupled systems, called
coupled variational inequalities, which consist of two elliptic mixed variational
inequalities on Banach spaces. Under general assumptions, by employing Kakutani-
Ky Fan fixed point theorem combined with Minty technique, we prove that the set of
solutions for the coupled variational inequality (CVI, for short) under consideration is
nonempty and weak compact. Then, two uniqueness theorems are delivered via using
the monotonicity arguments, and a stability result for the solutions of CVIis proposed,
through the perturbations of duality mappings. Furthermore, an optimal control prob-
lem governed by CVI is introduced, and a solvability result for the optimal control
problem is established. Finally, to illustrate the applicability of the theoretical results,
we study a coupled elliptic mixed boundary value system with nonlocal effect and
multivalued boundary conditions, and a feedback control problem involving a least
energy condition with respect to the control variable, respectively.
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1 Introduction and Mathematical Prerequisites

In numerous complicated natural phenomenon, physical constitutive laws, chemi-
cal processes, and economic models are often leaded to inequalities rather than
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the more commonly seen equations. In this context, variational inequalities, as a
powerful mathematical tool, have been widely studied. Essentially speaking, varia-
tional inequalities emerge from applied models with an underlying convex structure
and have been studied extensively since 1960s. Some representative references
include on mathematical theories, numerical treatment and application analysis, see
e.g., Kinderlehrer-Stampacchia [ 18], Migorski-Sofonea-Zeng [34], Glowinski-Lions-
Trémoliéres [15], Facchinei-Pang [10], Liu-Motreanu-Zeng [26—28], Duvaut-Lions
[9], Hlavacek-Haslinger-Necas-LoviSek [17], Giannessi [14], Han-Sofonea [16],
Fukushima [11,12], Migérski-Khan-Zeng [35,36].

Recently, many scholars noticed that various comprehensive physical phenomenon
and engineering applications could be, eventually, modeled by the complicated sys-
tems governed by variational inequalities, for example, Nash equilibrium problems
of multiple players with shared constraints and dynamic decision processes, contact
mechanics problems with adhesion (or wear) effect, and convection diffusion models
in porous materials. Among the results we mention: Pang-Stewart [38] in 2008 sys-
tematically introduced and studied a class of dynamical systems on finite-dimensional
spaces, which is formulated as a combination of ordinary differential equations and
time-dependent variational inequalities. They represent powerful mathematical tools
with applications to various problems involving both dynamics and constraints arising
in mechanical impact processes, electrical circuits with ideal diodes, Coulomb friction
for contacting bodies, economical dynamics, dynamic traffic networks. Cojocaru-
Matei [6] introduced a Lagrange multiplier system which is composed of a variational
inequality of elliptic type and a linear equation, and applied this system to study
a boundary value problem involving p-Laplace operator and nonsmooth boundary
conditions. By using a surjectivity result for multivalued maps and a fixed point argu-
ment for a history-dependent operator, Migdrski [31] proved the unique solvability
of a system of coupled nonlinear first order history-dependent evolution inclusions
in the framework of evolution triples of spaces, and applied these abstract results to
a dynamic frictional contact problem in mechanics. For more details on this topic,
the reader is referred to Migérski-Zeng [32,33], Liu-Migoérski-Zeng [23], Liu-Xu-
Lin [22], Liou-Yang-Yao [21], Li-Yang [19], Chen-Wang [4,5], Zeng-Migorski-Liu
[44,45], Wang-Huang [42] and the cited references therein. However, it should be
pointed out that these results aforementioned cannot be used to study the coupled sys-
tems which are made up of two mixed variational inequalities of elliptic type, called
coupled variational inequalities. But, coupled variational inequalities could be a useful
mathematical tool for investigating numerous coupled mixed boundary value prob-
lems, feedback control problems and so forth. Therefore, to fill this gap, the main goal
of the present paper is to introduce a new kind of coupled variational inequalities and
to deliver the theoretical results concerning existence, uniqueness, stability, optimal
control and applications to coupled variational inequalities under consideration.

Before any advancement, let us first introduce the problem that will play the central
role in this paper. Let (X, || - || x) and (Y, || - ||y) be two reflexive Banach spaces with its
dual spaces (X*, || - || x+) and (Y™, || - ||y=), respectively. In what follows, we denote by
(-, -y x (resp., (-, -)y) the duality pairing between X* and X (resp., the duality pairing
between Y™ and Y). We formulate the following coupled system which consists of two
mixed variational inequalities on Banach spaces.
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Problem 1 Find (x, y) € K x L such that

(G(y,x),v—x)x + o) —px) > (f,v—x)x forall veK, (1.1)

and

(F,y),w—=y)y +¢w) —¢(y) = (g w—y)y forall we L. (12)

To highlight the general form of our problem, we list the following particular cases
of Problem 1

(i) if ¢ = 0 and L = Y, then Problem 1 becomes to the coupled system, which
consists of a mixed variational inequality and a nonlinear equation: find (x, y) €
K x Y such that

(G(y,x),v—x)x + o) —p(x) > (f,v—x)x forallv € K
F(x,y)=g.

(i) if ¢ = 0,9 =0, L =Y and K = X, then Problem 1 becomes to the coupled
nonlinear equations: find (x, y) € K x Y such that

Gy, x)=f
F(x,y)=g.

(iii) when ¢ = 0, L = Y and F is independent of x, then Problem 1 becomes to the
parameter control system: find x € K and y € U such that

(G, x),v—x)x + o) —p(x) > (f,v—x)x forall v e K,

where U :={y e Y | F(y) =g}

(iv) if G is independent of y, F = 0, ¢ = 0 and g = 0, then Problem 1 reduces the
elliptic variational inequality of the first kind studied in [20,40]: find x € K such
that

(Gx),v—x)x + o) —px) > (f,v—x)x forall veK.

(v) when G is independentof y, F =0,¢ =0, g =0, and K = X, then Problem 1
reduces the elliptic variational inequality of the second kind investigated in [3,
20,37]: find x € X such that

(Gx),v—x)x + o) —px) > (f,v—x)x forall v € X.

The main contribution of this paper is threefold. First, in Sect. 2, we apply Kakutani-
Ky Fan fixed point theorem and Minty approach to show the nonemptiness and
compactness of solution set to Problem 1, and then use the arguments of monotonicity
to establish two uniqueness results for Problem 1. Second, in Sect. 3, we propose a
stability result to Problem 1 and consider an optimal control driven by CVI. Finally,
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in Sect. 4, we provide novel applications of our abstract results to a coupled elliptic
mixed boundary value system with nonlocal effect and multivalued boundary condi-
tions, and a feedback control problem involving a least energy condition with respect
to the control variable, respectively.

We end the section by recalling a preliminary material to be used in the next sections.
More details can be found in [1,7,8,13,30,43].

Throughout the text, the symbols " > " and "—" stand for the weak and the
strong convergence, respectively. Let (X, || - ||x) be a Banach space with its dual X*
and denote by (-, -)x the duality pairing between X* and X. Recall that a function
f: X - R:=RU {400} is called proper, convex, and lower semicontinuous, if it
fulfills the conditions

D(f) ={ueX| f(u) <+oo} #,
fOQu+ A =2v) <Af(u)+ (1 —21)f(v) forallA €[0,1] andu,v € X,
fu) < linn;io%f f(u,) for all sequences {u,} C X withu, — u,

respectively.
We recall the following important result for the proper convex and l.s.c. functions,
see e.g., [2, Proposition 1.10].

Proposition 2 Let (X, || - |x) be a Banach space. Assume that ¢: X — R is convex,
Ls.c. and ¢ # +00. Then, ¢ is bounded below by an affine continuous function, i.e.,
there exist| € X* and cy, € R such that

e) = (I, v)x + ¢y forallv € X.

Remark 3 1t is not difficult to see that if ¢: X — R is convex, l.s.c. and ¢ # 400,
then we are able to find constants «,, 8, > 0 such that

p() = —ayllvllx — By forallv € X.

Let K be anonempty subset of X, ¢: K — R be a proper convex and L.s.c. function,
and A: K — X*. We say that A is

(i) monotone, if it holds (Au — Av,u —v)x > Oforallu,v € K;
(i1) strictly monotone, if it holds (Au — Av,u —v)xy > Oforallu, v € K and u # v;
(iii) strongly monotone with constant m4 > 0, if it holds (Au — Av,u — v)x >
mallu — v||§( forallu,v € K;
(iv) pseudomonotone, if for any u, v € K we have (Au, v — u)x > 0, then it entails
that{(Av,v —u)x > 0;
(v) stable pseudomonotone with respect to the set W C X*,if A and u — Au — w
are pseudomonotone for all w € W;
(vi) @-pseudomonotone, ifforanyu, v € K wehave (Au, v—u)x+¢(v)—¢u) > 0,
then it entails that (Av, v —u)x + ¢(v) — p(u) > 0;
(vii) stable ¢-pseudomonotone with respecttotheset W C X*,if Aandu — Au—w
are g-pseudomonotone for each w € W.
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Remark 4 The following diagram reveals the essential implications of these mono-
tonicity and generalized monotonicity.

@p-pseudomonotonicity < stable g-pseudomonotonicity

i)

strong monotonicity =  strict monotonicity =>  monotonicity

U

pseudomonotonicity <  stable pseudomonotonicity

However, it should be mentioned that the inverse direction of each implication rela-
tionship in the diagram above does not hold in general (for more details, the reader
is welcome to consult the examples, [24, Examples 1 and 2], [25, Example 1], [41,
Example 3.1], and [29, Examples 3.4 and 3.5]).

Let Z and Y be topological spaces and V C Z be a nonempty set. In what follows,
we denote by 2" the collection of its subsets. Given a set-valued mapping F: Z — 2V,
we use the symbol Gr F to stand for the graph of F,i.e.,

GrF :={(x,y)eZxY |ye Fx)})CZxY.

We say that the graph of F is sequentially closed (or F is sequentially closed)in Z x Y,
if for any sequence {(x;, y,)} C GrF is such that

(Xn, yn) = (x,y)asn — o0

for some (x, y) € Z x Y, then we have (x, y) € GrF (i.e.,y € F(x)).
Finally, we recall the Kakutani-Ky Fan theorem for a reflexive Banach space, see
e.g., [39, Theorem 2.6.7].

Theorem 5 Let Y be a reflexive Banach space and D C Y be a nonempty, bounded,
closed and convex set. Let A: D — 2P be a set-valued map with nonempty, closed
and convex values such that its graph is sequentially closed in Yy, x Yy, topology.
Then, A has a fixed point.

2 Existence and Uniqueness

In the section, we are devoted to the study of existence and uniqueness of solution to
the abstract coupled variational inequalities, Problem 1. More precisely, under mild
assumptions, an existence theorem for the solutions of CVIis established by employing
Kakutani-Ky Fan fixed point theorem, Theorem 5, and Minty method. Moreover, we
apply the monotonicity arguments to deliver two uniqueness results to Problem 1.
Let us introduce the set-valued mappings S: L — 2K and T': K — 2L defined by

S(y):={x € K | x is a solution of problem (1.1) corresponding to y} forall yeL,
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and
T(x):={y € L | yis asolution of problem (1.2) corresponding to x} forall x e K,

respectively.

In order to examine the existence of solutions to Problem 1, we now impose the
following assumptions.
H(0): K C X and L C Y are both nonempty, closed and convex.
@:feX*andgeY*.
H(p): ¢: K — Ris a proper, convex and lower semicontinuous function.
FG): G:Y x X — X*is such that

(i) foreachy € Y, x — G(y, x) is stable gp-pseudomonotone with respect to { f}
and satisfies

lim sup(G(y, A2v + (I —A)x),v —x)x < (G(y,x),v —Xx)x
r—0

forally e Yand x,v € X;
(ii) it holds

lim sup(G (yn, v), v — xp)x < (G(y,v),v — X)x,

n—00
whenever v € X, (x,y) € X x Y, {y,} C Y and {x,} C X are such that
Vn LN yin Yandx, -5 xinXas n — oo;
(iii) there exists a function r: Ry x Ry — R such that
(G(y,x), x)x = rdlxlx, Iylly)llxllx forallx € X and y € Y,

and

e for each nonempty and bounded set D C Ry, we have r(t,s) — +o0o as
t > +ooforalls € D,
e for any constants ¢y, ¢ > 0, it holds r (¢, c1t + ¢2) — 400 ast — +o00.

(iv) there exists a constant cg > 0 such that

Gy, ) lx+ = cc(l+ llxllx +[Iylly)

forall (x,y) e X x Y.

H(¢): ¢: L — R is a proper, convex and lower semicontinuous function.
H(F): F: X x Y — Y*is such that
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(1) foreach x € X, y — F(x, y) is stable ¢-pseudomonotone with respect to {g}
and satisfies

lim sup(F(x, Aw 4+ (1 —A)y),w — y)y < (F(x,y),w —y)y
r—0

forallw,y € Y and x € X;
(ii) it holds

lim sup(F (x,, w), w — yp)y < (F(x, w), w — y)y,
n—oo

whenever w € ¥, (x,y) € X x Y, {y,} C Y and {x,,} C X are such that
w . w .
Vo —> yinYandx, — xin X asn — 00;
(iii) there exists a function /: Ry x Ry — R such that
(FCe, ), )y 2 LIylly, x|l ylly forallx € X and y € Y,

and

e for each nonempty and bounded set D C R, we have I(¢,s) — 400 as
t - +ooforalls € D,
e for any constants c1, ¢ > 0, it holds [(¢, c1t 4+ ¢2) — +o0 ast — +o0.

(iv) there exists a constant ¢y > 0 such that
IFCe, Wiy <cr(X+ lixlix + l1ylly)

forall (x,y) e X x Y.
Remark 6 Particularly, if function r given in H (G)(iii) (resp. [ given in H (F)(iii)) is

independent of its second variable, then condition H (G)(iii) (resp. H (F)(iii)) reduces
to the following uniformly coercive condtion

H (G)(iii)’: there exists a function 7: Ry — R with r(s) - 400 as s — 400
such that

(G(y,x), x)x = r(lxllx)lx|lx forallx € X and y € ¥

(resp. H(F)(iii)’: there exists a function /: Ry — R with I(s) — 400 ass — 400
such that

(F(x,y), vy = LAylInlylly
forallx e Xandy € V).
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The first main result of this paper concerning the existence of solutions to Problem 1
is provided as follows.

Theorem 7 Assume that H(G), H(F), H(0), H(1), H(¢) and H(¢p) are satisfied.
Then, the solution set of Problem 1 corresponding to (f, g) € X* x Y*, denoted by
I'(f, g), is nonempty and weakly compact in X x Y.

To prove this theorem, we need the following lemmas.

Lemma 8 Suppose that H(0), H(1), H(G) and H(p) are fulfilled. Then, the state-
ments hold

(1) foreachy €Y fixed, x € K is a solution of problem (1.1), if and only if, x solves
the following Minty inequality: find x € K such that

(G, v),v—x)x +9@) —px) = (f,v—x)x forall ve K; (2.1)

(i) for each y € Y fixed, the solution set of problem (1.1), denoted by S(y), is
nonempty, bounded, closed and convex;

(ili) the graph of the set-valued mapping S: L — 2K is sequentially closed in Y,, x
X, e, S is sequentially closed from Y endowed with the weak topology into
the subsets of X with the weak topology;

(iv) foreach y €Y fixed, if the mapping x +— G(y, x) is strictly monotone, then S
is a single-valued mapping and weakly continuous.

Proof The assertions (i) and (ii) are the direct consequences of [24, Theorem 3.3] and
[25, Lemma 3.3 and Theorem 3.4].
Next, we show the conclusion (iii). Let {(y,, x,)} C GrS be such that

Vn i)yinYandxn 2 xinXasn — 0o 2.2)
for some (x, y) € X x Y. Then, for each n € N, we have x,, € S(y,), i.e.,
(G(ynsxn), v —Xp)x + @) — @(xp) = (f, v —xn)x
for all v € K. Assertion (i) indicates
(G(n, 0), v —xp)x + @) —@(xp) = (f, v —xn)x (2.3)
forallv € K.Passingtothe upperlimitasn — ooto (2.3), we use hypothesis H (G)(ii)

and weak lower semicontinuity of ¢ (due to the convexity and lower semicontinuity
of ¢) to find

(G, v),v—x)x + ) —@x)
> lim sup(G (yu, v), v — xu) x + @(v) — hrgio%fﬁo(xn)

n—o00

> lim sup [(G (yn, v), v = Xn)x + @ (V) — @(x4)]

n—o00
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> limsup(f, v — x,)x
n—0o0o

={(f.v—x)x

for all v € K. Applying assertion (i) again, we conclude that x € S(y). Therefore,
(y, x) € GrS,namely, the graph of the set-valued mapping S : L — 2X is sequentially
closed in Y, x X,,.

Moreover, assume that x — G(y, x) is strictly monotone. Let x1, x> € K be two
solutions to problem (1.1). Then, it has

(G(y,xi),v—xi)x + o) —ox;) > (f,v—1xi)x

forallv € K and i = 1, 2. Inserting v = xp and v = x) into the inequalities above
fori = 1 and i = 2, respectively, we sum up the resulting inequalities to get

<G(yv .Xl) - G(y1 X2),)C] - XQ)X =< 0.

Hence, the strict monotonicity of x — G(y, x) guarantees that x; = x». So, S is a
single-valued mapping. But, by virtue of assertion (iii), we can see that S is weakly
continuous. O

Likewise, for problem (1.2), we have the following lemma.

Lemma 9 Suppose that H(0), H(1), H(F) and H(¢) are fulfilled. Then, the state-
ments hold

(i) foreach x € X fixed, y € L is a solution of problem (1.2), if and only if, y solves
the following Minty inequality: find y € L such that

(F(x,w),w—=yly +¢w) —¢(y) = (g, w — y)y forall w e L; (2.4)

(i) for each x € X fixed, the solution set of problem (1.2), denoted by T (x), is
nonempty, bounded, closed and convex;

(iii) the graph of the set-valued mapping T: K — 2L is sequentially closed in
X X Yy,

(iv) for each x € X fixed, if the mapping y — F(x,y) is strictly monotone, then T
is a single-valued mapping and weakly continuous.

Furthermore, we provide a priori estimates for the solutions of Problem 1.

Lemma 10 Assume that H(0), H(1), H(G), H(F), H(¢) and H(¢) are fulfilled. If
the solution set of Problem 1 is nonempty, thus, I'(f, g) # ¥, then there exists a
constant M > 0 such that

xllx <M and|lyly =M (2.5)

forall (x,y) € T(f,g).
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Proof Assume that I'(f, g) # @. Let (x,y) € I'(f, g) be arbitrary and (xg, yp) €
(D(p) N K) x (D(¢p) N L). Inserting v = xp9 and w = yp into (1.1) and (1.2),
respectively, we have

(G(y,x), x)x = (G(y,x), x0)x +@(x0) — @(x) + (f, x0 — x)x (2.6)

and

(F(x, ), y)y = (F(x, ¥), yo)y +¢(yo) — () + (8, Y0 — y)y- 2.7)

Recall that ¢ and ¢ are both proper, convex and 1.s.c., it follows from Proposition 2
that there are constants a, g, By, By > 0 satisfying

) = —apllvlix — By and ¢(w) = —agllwlly — By (2.8)

forall (v, w) € X x Y (see Remark 3). Taking account of (2.6)—(2.8), we use hypothe-
ses H(G)(iii)—(iv) and H (F)(iii)—(iv) to obtain

r(llxllx Iylinixlix < (G(y, x), x)x
< (G(y,x), x0)x + @(x0) — @(x) + (f,x0 — x)x
< 1G(y, O llxlxollx + @(x0) + aplixlix + By + II.f lx+lxollx + llxllx)
< cg(L+ lIxllx+lyliv)lIxollx +@xo) +apllxllx +Bp+I1f Il x(xollx + lxllx),

and

LAyl s IxlOly lly
< cr(I+lxlix+1yInIyolly +¢ (o) +agllylly +Bs + llglly=Uyolly + Iylly).

Hence,

rdlxlx, ylly)
2 @A llxllx +lylivlixollx | ¢Go) + I fllx=lxollx + By
- llxllx llxllx

+ap + 1 fllx*s
2.9)

and
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LAlyllys Ixlix)
~er A lIxlix + Iyl liyolly | ¢Go) + llglly=liyolly + By

B ylly Iyl

+ogp £ llgllys.
(2.10)
Arguing by contradiction, suppose that I'(f, g) is unbounded. Then, taking a sub-

sequence if necessary, we are able to find a sequence {(x,, y,)} C K x L such that it
holds

lxnllx t +o0asn — oo, (2.11)
or
lynlly T +00asn — oo. (2.12)

Let us distinguish the following cases:

@ (2.11) holds and {y,} is bounded in Y
@ (2.12) holds and {x,} is bounded in X;
® (2.11) and (2.12) hold.

Assume that @ is valid, then we take x = x,, and y = y, to (2.9) for getting

r(llxnllx, lyally)
_ ca A llxnllx + [lynllv)llxollx — ¢(xo) + Il f 1l x+llxollx + By

B llxn Il x Il 11 x

+ay + [ flix-

Letting n — oo for the inequality above and using (2.11) as well as H(G)(iii) turn
out

+oo = lim r(lxallx, lyally)
n—00

[Cc(l + 1% llx + lyally)llxollx
[l Il x

lim
n—oo
@(x0) + I fllx+llxollx + By

+ +05(/)+||f||X*i|
llxn 1 x

= cgllxollx + oy + I fllx-

This generates a contradiction. Similarly, for the case @, we could use (2.10) to get a
contradiction as well. However, suppose @ occurs, we, further, consider the following
two situations:
[ynlly .
(a) Tl — +ooasn — oo;

(b) there exist ng € N and ¢y > 0 such that % < ¢ for all n > ny.
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If item (a) is true, then we put x = x,, and y = y, into (2.10) to yield

Llynlly s xallx)
_ e A [lxallx 4+ yal)llyolly | #Go) + ligliy+llyolly + By
B lynlly lynlly

+ap +lglys.

Passing to the limit as n — oo for the inequality above, it gives

+oo = lim [([[yally, llxnllx)
n—00

- i [CF(1+ lxn lx + Ny lly) lyolly
< lim
n—00 lynlly
@ (o) + liglly=llyolly + B
+ ? +ag + gl
lynlly

=crllyolly +og + lIglly+.

Obviously, it is impossible, whereas in terms of the situation (b), it follows from (2.9)
that

+00 < r(laullx. llyully)  (asn — 00)
_ e+ Iallx + Iyalnlxollx | ¢Go) + 1/ llx1ollx + By

- llxn Il x llxn Il x
< cG2+7co)llxollx +@(x0) + Il fllx=lIxollx + By + et + Il fll x+

+ay + |1 fllx

forn > ny, where ny > ng is such that ||x,, || x > 1. This also triggers a contradiction.
To summary, we conclude that I'(f, g) is bounded in X x Y. Consequently, we are
able to find a constant M > 0 such that (2.5) is valid. O

Consider the set-valued mapping A: K x L — 2K*L given by
A(x,y) :=(S(y), T(x)) forall (x,y) e K x L. (2.13)

Invoking Lemmas 8 and 9, we can see that A is well-defined. The following lemma
points out that there exists a bounded, closed and convex set D in K x L such that A
maps D into itself.

Lemma 11 Assume that H(0), H(1), H(G), H(F), H(¢) and H(¢) are fulfilled.
Then, there exists a constant M >0 satisfying A(B(0, 1\//7)) C B(0, 1\7), where
B(0, M) C X x Y is defined by

BO, M) :={(x.y) e K x L | lxlx < M and llylly < M}.

Proof We use the proof by contradiction. Suppose that for each n € N, it holds
I'(B(0,n)) ¢ B(0, n). Then, for every n € N, we are able to find (x,, y,) € B(0, n)
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and (z,, wy) € T'(xy, yn) (€., 2, € S(yp) and wy, € T (x,)) such that
lznllx > nor|lw,|y > n. (2.14)

Therefore, passing to a relabeled subsequence if necessary, we may assume that
lznllx > n for each n € N (since the proof for the case that |w,|y > n for each
n € Nis similar). Using (2.9), it finds

r(lznllxs 1yally)
e+ llznllx + lynlly)lixollx | ¢Cxo) + L flx=lxollx + By

+ap + I fllx+
lznllx liznllx

Note that ||y, |ly <n < ||zxllx, so, letting n — oo to the inequality above, we have

oo = Lim r(llznllx. ynlly)
n—oo

[CG(1+|Iznllx+||yn I lxollx | e&o)+ILfllx=llxollx + By
llznllx lznllx
< 2cgllxollx + o + 1/ 1 x+-

< lim

n—oo

+Ol<p+||fllx*]

This results in a contradiction. Consequently, there exists a constant M=>0 satisfying
A(B(0, M)) C B(0, M). o

Proof of Theorem 7. Observe that if (x*, y*) is a fixed point of A (that is, (x*, y*) €
A(x*, y*)), then we have x* € S(y*) and y* € T (x*). By the definitions of S and T,
it gives

(G(Y*, x™), v —x")x + o) — ™) > (f,v—x*)x forall v e K,
and
(F(x*, y5),w =y )y +¢(w) —p(y*) = (g, w — y*)y forall w e L.

Then, itis obvious that (x*, y*) is also a solution to Problem 1. Based on this important
fact, we are going to apply Kakutani-Ky Fan fixed point theorem, Theorem 5, for
examining the existence of a fixed point of A.

Indeed, it follows from Lemmas 8, 9 and 11 that A: B(O, M ) —> 2B0.M) pyg
nonempty, closed and convex values and the graph of A is sequentially closed in
(X XY)y X (X xY)y.So, all conditions of Theorem 5 are verified. Using this theorem,
we conclude that there exists (x*, y*) € K x L such that (x*, y*) € A(x™, y*).
Therefore, (x*, y*) is a solution to Problem 1, that is, T'(f, g) # @.

From Lemma 10, we can see that I'(f, g) is bounded in X x Y. Next, we shall
show that I"'(f, g) is weakly closed. Let {(x;, y,)} C I'(f, g) be such that

(tns Yn) — (x,y)in X x Y asn — 00 (2.15)
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for some (x,y) € K x L. It is not difficult to see that for each n € N, it holds
(X1, Yn) € A(xp, yn). Keeping in mind that A is sequentially closed from (X x Y),,
to (X x Y),, (see Lemmas 8 and 9), we, therefore, imply that (x, y) € A(x, y). This
means that (x,y) € I'(f, g). Consequently, from the boundedness of I'(f, g), we
conclude that I'(f, g) is weakly compact. O

Theorem 7 has revealed the nonemptiness and weak compactness of the solution
set of Problem 1. Naturally, a problem arises: whether can we prove the uniqueness
to Problem 1 under necessary assumptions? The following theorems give a positive
answer for the issue.

Theorem 12 Assume that H(G), H(F), H(0), H(1), H(p) and H(¢) are satisfied.
1If, in addition, the following inequality holds,

(GO, x1) — G(y2, x2), x1 — x2)x + (F(x1,y1) — F(x2,y2), y1 —y2)y >0
(2.16)

for all (x1,y1), (x2, y2) € X x Y with (x1,y1) # (x2,y2), then Problem 1 has a
unique solution.

Proof Theorem 7 ensures that I'(f, g) # ¥). We now show the uniqueness of Prob-
lem 1. Let (x1, y1), (x2, y2) € I'(f, g). Then, we have

(Gi,xi),v—x;)x + o) —o(x;) > (f,v—x;)x forall v e K,
and

(F(xi, yi),w—yi)y +o(w) —d(yi) > (g, w—y;)y forall w e L.

A simple calculation gives

(G(y1, x1) — G(y2, x2), x1 — x2)x + (F(x1, y1) — F(x2, ¥2), y1 — y2)y < 0.

This combined with the condition (2.16) implies that x; = xp and y; = y;. Therefore,
Problem 1 has a unique solution. O

The following theorem also provides a uniqueness result for Problem 1 by using
an alternative condition to (2.16).

Theorem 13 Assume that H(G), H(F), H(0), H(1), H(¢) and H(¢) are satisfied.
If, in addition, the following conditions hold

e for each 'y € Y, the function x — G(y, x) is strongly monotone with constant
mg > 0, and for each x € X the function y — G(y, x) is Lipschitz continuous
with constant Lg > 0,

e for each x € X, the function y — F(x,y) is strongly monotone with constant
mp > 0, and for each y € Y the function x — F(x,y) is Lipschitz continuous
with constant Lp > 0,
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LgLF
e —
mggmp

< 1,
then Problem I has a unique solution.

Proof Let (x1, y1) and (x2, y2) be two solutions to Problem 1. Then, it has
(GO, x1) — G(y2,x2), x1 —x2)x < 0.
Hence, we have

mgllx; —leli <{G(y1,x1) — G(y1, x2), X1 — X2)x
<{G(2,x2) — Gy, x2), x1 —x2)x < Lglly1 — »2llyllx1 — x2llx.

Analogously, it gets

mrllyr — y2lly < (F(x1, y1) — F(x1, y2), y1 — )y
< (F(x2,y2) — F(x1,y2), y1 = y2)y < LFrlly1 = »2llyllx1 — x2|lx.

The last two inequalities imply

Lr
X1 —x2llx < X1 —x2llx.
But, the inequality nﬁg’f’: - < 1 derives that x; = x; and y; = y;. Consequently,
Problem 1 has a unique solution. O

3 Stability and Optimal Control for Coupled Variational Inequalities

In the present section, we move our attention to explore the stability and optimal
control for coupled variational inequalities. More precisely, we, first, introduce a family
regularized problems corresponding to Problem 1 which are perturbated by duality
mappings. Then, a stability result, which shows that any sequence of solutions to
regularized problems has at least a subsequence to converge to some solution of the
original problem, Problem 1, is obtained. Furthermore, we consider an optimal control
problem driven by CVI, and prove the solvability of the optimal control problem.

Recall that X and Y are two reflexive Banach spaces, so, they can be renormed such
that X and Y become strictly convex. So, without loss of generality, we may assume
that X and Y are strictly convex. Let Jx: X — X*and Jy: Y — Y™ be the duality
mappings of the spaces X and Y, respectively, namely:

Jx(x) == {x* e X* | (x*, x)x = |xI% = Ix* 1%},

Jr() = er* | 5 vy = I3 = Iy*13:).
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Let real sequences {¢,} and {3,} be such that
e, >0,6,>0, & — 0and§, — 0. 3.1

For each n € N, consider the following perturbated problem corresponding to Prob-
lem 1.

Problem 14 Find (x,, y,) € K x L such that

(G(yn»xn) +endx(xn), v —xp)x + @) —@(xy) > (f,v—xu)x forall veKk,
(3.2)

and

(F(xn, yn) + 8,y (Vn), w — yu)y + @ (W) — d(yn) = (g, w — yu)y forall w e L.
(3.3)

We make the following assumptions.
HQ®2): x — G(y,x)and y — F(x, y) are monotone, and satisfy

lim sup(G(y, A2v + (I —A)x),v —x)x < (G(y,x), v — X)X,
r—0

lim sup(F(x,Aw + (1 = X)y), w —y)y < (F(x,y),w —y)y
A—0

forallw,y € Y and v, x € X.
H@3):x — G(y,x)and y — F(x, y) are strongly monotone with constants mg > 0
and mr > 0, respectively, and satisfy

lim sup(G (y, Av + (1 —AM)x), v —x)x < (G(y,x),v—X)x,
r—0

lim sup(F (x, 2w + (1 = D)y), w — y)y < (F(x,y), w —y)y
r—0

forallw,y € Yand v, x € X.
The following theorem delivers the existence and convergence of solutions to Prob-
lem 14.

Theorem 15 Assume that H (G)(ii)—(iv), H (F)(ii)—(iv), H(0), H(1), H (@) and H (¢)
hold. Then, we have

() if, in addition, H(2) holds, then for each n € N, Problem 14 has at least a
solution (x,, yp) € K X L;

(i) if;, in addition, H(2) holds, then for any sequence of solutions {(x,, yn)} of Prob-
lem 14, there exists a subsequence of {(x,, yn)}, still denoted by the same way,
such that

(Xns Yn) N (x,y)inX xY asn — o0, (3.4)
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where (x,y) € K X L is a solution of Problem I;

(iil) if, in addition, H (3) holds, then for any sequence of solutions {(xy, y,)} of Prob-
lem 14, there exists a subsequence of {(x,, yn)}, still denoted by the same way,
such that

(Xn, yn) = (x,y)in X X Y asn — oo, 3.5)

where (x,y) € K x L is a solution of Problem 1.

Proof (i) Set G, (y,x) = G(y,x) + e, Jx(x) and F,,(x, y) = F(x,y) + 8, Jy (y) for
all (x,y) € X x Y. We shall verify that G, and F,, satisfy hypotheses H(G) and
H (F), respectively. Note that Jy is demicontinuous and

0 < (Ixllx — llvllx)* < (Jx(x) — Jx(v), x — v)x forall x, v € X,

we use hypotheses H (2) to find that foreach y € Y, x = G, (y, x) satisfies H(G)(1).
By using the facts, ||Jx(x)||lx = llx]lx and (Jx(x), x)x = ||x||§( for all x € X, itis
not difficult to prove that G, enjoys the conditions H (G)(ii)—(iv). Analogously, F;,
satisfies hypotheses H (F'). Therefore, we use Theorem 7 to conclude that Problem 14
admits a solution.

(i1) Let {(x;, y,)} be an arbitrary sequence of solutions of Problem 14. Then, a
careful computation gives

en{JIx (Xn), Xn) x
llxn 1l x
_ e A [lxnllx + [lynlly)llxollx
- llxn Il x
+(8n||JX(xn)||X* + 1L flIx)lxollx + ¢(xo0) + By
llxn 1l x

rdlxalix, 1yally) < rdixallx, lyally) +

oy + | flx
_ e+ lxnllx 4 yally)lixollx

[l Il x
Jr(<’3nllxnllx + I/ lx)llxollx + ¢(x0) + By
llxn [l x

oy + I fllx+

and

Llynlly s xallx)

_ cr A xallx + llynlly)lyolly n Gnllyally + liglly)llyolly + & (o) + By

lynlly lynlly
+oag + llglly-

It could be carried out by using the same arguments as in the proof of Lemma 10 that
{(xn, yn)} is bounded in X x Y.
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Taking to a relabeled subsequence if necessary, we may assume that

(Xn.yn) —> (x,y)in X x Y asn — 00 (3.6)

for some (x,y) € K x L. Applying the monotonicity of x — G(y,x) and y +—>
F(x,y), we have

(G(yn> v) + endx (xn), v — xp)x + @) —@(xn) = (f, v —xp)x forall veKk,

and

(F(xp, w) + 8, Jy(Yn), w — yu)y + @ (W) — @ (yn) = (g, w — yu)y forall w € L.

Passing to the upper limit as n — oo and using hypotheses H(G)(ii) and H (F)(ii)
imply

(G(y,v),v—x)x +9() —p(x) > (f,v—x)x forall ve K,
and

(F(x,w),w —y)y +d(w) —¢(y) = (g, w —y)y forall we L,

where we have used the boundedness of {(x,, y,)} in X x Y. Employing Minty
technique, we conclude that (x,y) € K x L is a solution of Problem 1, i.e.,
(x,y) € L' (f, 9.

(iii) It follows from assertion (ii) that for any sequence of solutions {(x;, y,)} of
Problem 14, there exists a subsequence of {(x,, y,)}, still denoted by the same way,
such that (3.4) is valid. We assert that {(x,, y,)} converges strongly to (x, y). It is not
difficult to obtain that

mG |1 xn—x 1% < (Gn» ¥n) = Gy X), Xp—x)x <(G (¥, x) — G (Y, X), X — X)x
+8n(JX(xn)7 X — xn)X'

Passing to the upper limit as n — oo to the inequality above and using hypothesis
H(G)(i), we get

0 < liminf mg|lx, — x||% < limsupmgllx, — x[|%
n—00 n—00

< limsup(G(y, x) — G(yn, X), Xp — X)x + limsup &, || x, [ x | X — xn [l x
n—00 n—00

<0.

This means that x, — x in X asn — oo. Analogically,ithasy, — yinY asn — oo.
O
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Let Z, Z, be two Banach spaces such that the embeddings from X into Z; and
from Y in Z; are both continuous. Given two target profiles xo € Z; and yg € Z», let
U and V be subspaces of X™* and Y*, respectively, such that the embeddings from U
to X* and V to Y* are compact. Next, we focus our attention on the investigation of
the following optimal control problem:

Problem 16 Find (f*, g*) € U x V such that

I(f". 8" = (f,giféngl(f’g)’ (3.7

where the cost function I : U x V. — R is defined by

. P 2 0 2
I(f,2) = f —lx — —|ly — h(f,g). 3.8
(f. 2 (x’y)lenr(f’g) <2I|x xollz, + 2Ily y0||zz> +h(f,8) (3.8)

Here, T'(f, g) is the solution set of Problem 1 associated with (f, g) € X* x Y*, and
p > 0,0 > 0 are two regularized parameters.

For the function &, we assume that it reads the following conditions.
H(h): h: U x V — Ris such that

(i) h is bounded from below;
(ii) A is coercive on U x V, namely it holds

lim h(f,g) — +oo;
(f,8)eUxV, | fllutlglly—o0

(iii) & is weakly lower semicontinuous on U x V, ie., liminf,_ o h(fy, 1) >
h(f,g), whenever {(f,,g,)} C U x V and (f,g) € U x V are such that
(fur8n) — (f.g)inU x Vasn — oc.

We examine the following existence result for Problem 16.
Theorem 17 Assume that H (G)(@ii)—(iv), H (F)(@i)—(iv), H(0), H(1), H(¢) and H (¢)

hold. If; in addition, H (h) and H (2) are fulfilled, then Problem 16 admits an optimal
control pair.

Proof For every (f,g) € U x V fixed, the closedness of I'(f, g) (see Theorem 7)
guarantees that there exists (X, y) € I'(f, g) such that

p 2 6 2
nf <§||x_x0||zl+§||y_)’0||zz>»

0. . 2 0. 2 i
Pis —x - _ = 1
5 I ollz, + > 13 = yollz, (. 0)EL(f,8)
(3.9)

ie., inf( yyer(r.o) (%Hx - )co||2Zl + %Ily - yo||222> is attainable.
It follows from the definition of / and hypothesis H (h)(i) that there exists a mini-
mizing sequence {(f,, g,)} C U x V such that

lim [ = inf [ . 3.10
Jim 1(fgn) = inf1(] ) (3.10)
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We assert that the sequence {( f;,, g,)} is bounded in U x V. Arguing by contradiction,
we suppose that

I fallu + llgnlly — +o0 as n — oo.

The latter together with hypothesis H (h)(ii) deduces

inf  I(f,g) = lim I(f,, g > lim h(f,, gn) = +00.
(f,g)eUxV n—00 n—oo
This leads to a contradiction, so, {( f;;, g»)} is bounded in U x V. Passing to arelabeled
subsequence if necessary, we may assume that

(s gn) —> (f*, g5 inU x Vas n — o0 (.11)

for some (f*, g*) e U x V.

Let sequence {(x,, y»)} € K x L be such that (3.9) holds by taking X = x,,
Y = vy, and (f, g) = (fn, &n). Next, we are going to show that {(x,, y,)} C K x L
is uniformly bounded in X x Y. A direct computation finds

r(lxnllx, Iynlly)
<CG(1+||Xn||X+||yn||Y)||X0||X @ (x0) + Il full x*1x0ll x + By

< + oy + [l fullx=,
[l 1l x [l 1l x v
(3.12)
and
L(lyally s 1%l x)
cr(1+ |lxnllx + + * +
_ er(Ut allxHlynlnyolly | $Go) + lenllv-lyolly ﬁ¢+%+”gn”w
llynlly llynlly
(3.13)

Since the embeddings from U to X* and from V to Y* are both continuous, so, we can
apply the same arguments as in the proof of Lemma 10 to obtain that {(x,,, y,)} C K xL
is uniformly bounded in X x Y. Without loss of generality, we may suppose that
(Xn, yn) —> (x*,y*)in X x Y and Z; x Zp asn — 00 (3.14)
for some (x*, y*) € K x L. Employing Minty approach derives
(G(Yn, ), v = xp)x + (V) — @(xy) > (fn, v — xp)x forall v e K, (3.15)
and

(F(Qen, w), w = yu)y + ¢(w) — @ (yn) = (gn, w — yp)y forall w e L. (3.16)
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The compactness of the embedding from (U, V) into (X*, Y*) and (3.11) indicate
that (f,,, gn) — (f*, g*)in X* x Y* asn — oo. Passing to the upper limit as n — oo
for inequalities (3.15)—(3.16), we have
(GO*, v),v—xMx + o) — &™) > (f*,v—x")x forall veK,
and
(F(x*, w), w—y )y +¢(w) — ¢(y*) > (g%, w — y*)y forall w e L,
where we have applied the conditions H (F)(ii) and H (G)(ii). Using Minty trick again,

it leads to (x*, y*) € T'(f™, g%).
But, the weak lower semicontinuity of || - ||z, and | - ||z, implies

P, 4 2 0 % 2 .. 4 2 0 2
5 %7 = xoliz, + F1y™ = yollz, = lim inf |:§||Xn = Xollz, + Zllyw = yoliz, | -

(3.17)
Recall that £ is weakly lower semicontinuous on U x V, it yields
h(f*.¢") = liminf h(fu, gn)- (3.18)
n— 00

Taking account of (3.17) and (3.18), we have
lim inf 7(f,, g1)
n—od

.. . 14 2 0 2 ..
> — — — —
= lim inf (x,y)elpff},,gn) <2 lx = xollz, + 51y yo||22> + liminf 7 (fu, gn)

e 0 .
= lim inf [Enxn = xoll% + 5 yn = yo||2y] +liminf i(fy, gn)

P %
= I = xollZ, + 515" = yollz, +h(f7, 87

(dueto (x*, y*) e O(f*, g")

. 1Y 2 0 2 * ok

> f - - - - h ’
> (x,y)elrl‘l(f*,g*) (2 lx —xollz, + > ly onIZZ> +h(f".8%)
= I(f*. g".

This combined with (3.10) concludes that

I *9 * =< i f I ’ k]
(f*. g )_(fygggUXv (f. 8

namely (f*, g*) is an optimal control of Problem 16. O
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4 Applications

The goal of the section is to illustrate the applicability of the theoretical results estab-
lished in Sections 3 and 4 to the study of two elliptic partial differential systems. The
first application is a coupled elliptic mixed boundary value system with nonlocal effect
and a multivalued boundary condition which is described by subgradient for a convex
superpotential. But, the second application is a feedback control problem involving a
least energy condition with respect to the control variable.

4.1 A Coupled Mixed Boundary Value System

Given a bounded domain € in RV (N > 2) such that its boundary I' = 9<2 is locally
Lipschitz and

r=rulrul;=r,uUr,ur,

with[;NI'; =@ fori, j =1,2,3,i # j,and',NI'y =@forp,g =a,b,c,p #q,
and meas(I'1) > 0 and meas(I";) > 0. In what follows, we denote by v the outward
unit normal to the boundary I'. The classical form of the coupled mixed boundary
value system is given as follows.

Problem 18 Find functions x: Q@ — R and y: Q — R such that

—mi(lyll2@)Ax(2) + 5(z, x(2)) = fo(z) in Q. @
Y@ =0 on I'y, “4.2)
d
;flflz) = mi(Iyll20) (VX(@), v)py = f1(2) on Ty,  (43)
agle) < ki(z)
1 on I, (4.4)
_x@) _ ki (2) x(2) iFx() %0
31)1 | |
and
—ma(llxll 20D Ay(2) +1(z, y(2)) = g0(2) in Q. @5
(Z) N 0 on Fm (4.6)
d
y(z) = ma(Ixll12¢0) (Vy(2), ”)RN =21(2) on Ty, 4.7)
‘ay(Z) < k2(z)
on Te.  (48)
DG 02 iy # 0
31)2 )l
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Next, let us introduce two subspaces X and Y of H 1 (£2), which are defined by

X:={xeH'(Q) | x()=0on }and Y :={y € H'(Q) | y(z) =0on I',}.
4.9)

Itis not difficult to prove that X endowed with the inner product and the corresponding
norm

(x, v)x = f (Vx(2), Vo(e))aw dz and x|y = ( f |Vx(z)|2dz)2
Q Q

forall x, v € X, is a separable Hilbert space. Also, Y is a separable Hilbert space with
the norm and inner product by

2
Iylly = (/Q IVy(Z)IZdZ> and (y, w)y :/Q(VY(Z)vvw(Z))RN dz

for all y, w € Y, respectively. Denote by y;: X — L2(Q) (resp., y»: ¥ — L*(Q))
the embedding operator from X to L?(2) (resp., the embedding operator from Y to
L*(Q)).

We make the following assumptions.
H(s):s: Q x R — Ris a Carathéodory function such that 6 + s(z, €) is monotone

for a.e. z € Q and there exist ¢; € L?(R)4 and d; > 0 satisfying

Is(z,0)| < cs(z) +ds|0] forall & € Rand ae.z € Q.

H(t):t: 2 x R — Ris a Carathéodory function such that 6 — ¢(z, 8) is monotone
for a.e. z € Q and there exist ¢; € L?(), and d; > 0 satisfying

[t(z,0)| <c/(z2) +di|0]| forall & € Rand a.e.z € Q2.

H#): fo. g0 € LX(Q), f1 € L*(T2), g1 € L*(Tp), ki € L*(T'3)1 and ky € L*(T'¢) .
H(@my): m;: Ry — R, is a continuous function such that there exist constants
0 < ¢y < dpyy < +o00 satisfying

Cmy = mi1(0) < dml forall 6 > 0.

H(@my): mr: Ry — R, is a continuous function such that there exist constants
0 < cmy < dp, < 400 satisfying

Cmy < m2(0) < dy, forall 6 > 0.
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Let (x, y) € X x Y be such that (4.1)—(4.4) hold. For any v € X fixed, we multiply
(4.1) by v — x and use Green’s formula to find

mi([lyllz2(q)) /Q (Vx(z), Vu(z) — Vx(2)gy dz + /QS(z,x(z))(v(z) —x(z))dz

0x(z)
=/ fo(z)(v(z)—x(z))dz+/ 3
Q r

(v(z) —x(2))drT.

Vi

Note that

/ aX(Z)(v(z)—x(z))dr 2/ a;C(Z)(U(z) —x(z))dr
r

31)1 I V1

+/ 8x(Z) (U(Z) _ _x(Z)) dT +/ 8x(Z) (U(Z) _ )C(Z)) dF,
I

avg r; 0V

it follows from the boundary conditions (4.2) and (4.3) that

a
(2 0) /Q (Vx(2), Vo(z) — Vx(2)a dz — / @) ((2) - x(z))dr

r; v
+fQS(z,JC(Z))(v(z)—X(z))dz=/Qfo(z)(v(z)—X(z))dz

+ g J1(@)(v(z) —x(2))dT. (4.10)
2

By virtue of the definition of convex subgradient, boundary condition (4.4) can be
rewritten to the following inclusion form

3
_ g(Z) € k1 (2)0.|x(2)| forae. x € T3,

where the term 9.|0| is the convex subdifferential operator of the modulus function
R 5 0 — |0 € R... Therefore, it has

—/ @) 2y - x(@)dr 5/
I3

kl(Z)Iv(Z)IdF—f k1(2)|x(z)|dr.

avy I3 I3
@.11)
Combining (4.10)—(4.11), we have
(15l 2a) fQ (Vx(2), Vo(@) — Va(@)gy de + /F @I
—/m ki1(2)|x(z)|dl’ +/QS(Z,X(Z))(U(Z) —x(z))dz
> [ h@we - s+ | AOOE - x@)dr “.12)
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for all v € X. Similarly, it also gets

mz(lle|L2(9>)/Q(Vy(Z), Vw(z) = Vy(2)gwy dz +/ ka(2)|w(z)| dT"

I

—/r k2<z>|y<z>|dr+fgr(z,y(z>><w(z>—y(z))dz
> /Q 0 ()W) — y(2) dz + /F 1)) — y(2)) dT @.13)
b

forallw € Y.
Let us consider the functions G: ¥ x X — X*and F: X x Y — Y* defined by

(G(y,x),v)x = ml(llylle(Q))/Q(Vx(Z), Vu(2)rw dz+/9s(z,x(z))v(z) dz

— | fi@v(z)dl (4.14)
I
and
(F(x,y), w)y = mz(llxllem))/Q(Vy(z),Vw(z))RN dz+f9t(z,y(z))w(z)dz

—/ g1(x)w(z)dl, (4.15)
I

forallx,ve Xandy,w €Y.
Taking account of (4.12) and (4.13), we get the variational formulation of Prob-
lem 18 as follows.

Problem 19 Find functions x € X and y € Y such that

(GO, x),v=x)x + @) — @) = (fo,v —x)x (4.16)
forallv € X, and

(F(x, ), w—=y)y +ow) —¢(y) = (g0, w — y)y (4.17)

forall w € Y, where the functions ¢: X — Rand ¢: Y — R are defined by

¢(v) :=/r k1(2)|v(2)| dT and ¢ (w) ::/ ky(2)|w(z)|dT (4.18)
5 .

Le
forallv € X and w €Y, respectively.

We are now in a position to give the existence theorem for Problem 19.
Theorem 20 Assume that H(s), H(t), H(4), H(m) and H(m») hold. Then, Prob-

lem 19 admits a solution.
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Proof We apply Theorem 7 to prove the desired conclusion. For any y € Y fixed, let
X1, X2 € X be arbitrary. Note that

(G, x1) = G(y, x2), x1 —x2)x
=mi(lyll2q) /Q (V(x1(2) = x2(2)), V(x1(2) — x2(2)))pn dz

+ /Q(s(z, x1(2)) — (2, x2(2)) (x1(2) — x2(2)) dz,

it follows from hypotheses H (s) and H (m) that x — G(y, x) is monotone. Besides,
the continuity of s implies that for each y € Y the function x — G(y, x) is continuous
too. So, condition H(G)(i) is valid. Let sequences {x,} C X and {y,} C Y be such
that

w . w .
X, — xin Xandy, — yinYasn — oo

for some (x, y) € X x Y. Recall that the embedding from Y into L2(Q) is compact,
we have y, — y and x, — x in L2(Q) as n — oo. Then, we have

lim sup m (|| ynllz2(e)) /Q(VU(Z), Vu(2) = Vxn(2)py dz

n— oo

< lim sup[m([lynll2()) —m1(lIyllz2@)] /Q(Vv(z), Vu(z) — VX, (2)gw dz

n—o00

+lim supml(llylle(Q))/Q(Vv(z), Vu(z) — VX, (2))gw dz

n— o0

< limsup [m1(lIyall22@)) —mi(Iyll2@)l '/Q(VU(Z), Vu(z) = Vxu(2))ry dz

n— 00

+lim sup 1 (Il 2(g) / (V0(2). Vo(z) — V() an da
n—oo Q

=mi(lyll2@) /Q(VU(Z), Vu(z) = Vx(2))pn dz.

This combined with the continuity of s, the convergence x, — x in L%(Q) and
Lebesgue dominated convergence theorem implies

lim Sup(G(ynv U)v v— xn)X = (G(yv U)v v — X>X,

n—o0

namely H (G)(ii) is available.
For any x € X, using H(s) and H (m1) deduces

(G(y,x), x)x = m1(||y||L2(g>)/Q(Vx(z), Vx(2))ry dz+/QS(z,0)x(z) dz

+f[s(z,x(z))—s(z,O)]x(z)dz—/ fi(@)x(2)dT
Q I
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2
> ey llxllx = IIsC Ol 21X 22y — 11l L2y 1x L2y
> (emy Ixllx = llesll 2@ llvill = Ll 2D 1xllx

where we have used Holder inequality and ¢} > 0 is such that
lxll2ry < €illxllx forall x € X.
Let us consider the function r: Ry — R defined by
r(0) = cm 0 — llcs ||L2(Q)||)/1 I — ||f1||L2(Q)El forall & > 0.
It is obvious that r fulfills the conditions of H (G)(iii). This means that G satisfies

hypothesis H (G)(iii).
For any x € X and y € Y fixed, we apply hypotheses H (m) and H (s) to find

IG(y, Ollx- = sup  (G(y,x),v)x

veX, flvllx=1

= sup ml(”y”LZ(Q))/S;(VX(Z)s Vu(2))gy dz

veX, flvllx=1

+ swp /le(z,x(z))llv(Z)le

veX, flvllx=I

+  sup | f1@v(z)]dT

veX, |vlx=1JTI2

< dmlxlx +  sup /Q(Cs(z)+dSIX(Z)|)|v(Z)|dZ

veX,|lvllx=1

+ sup [ f1@Iv(z)]dT.
veX,|vllx=1JT2

Employing Holder inequality finds
IG(, ©)lx+ < dm lIxllx + sl 2y + dslylliix BTyl + 1Al L2y

It is not difficult to see that condition H (G)(iv) is valid with the constant cg > 0
defined by

¢ = dm; + (sl + dslviDlIvill + 1 fill 2y

Additionally, we can verify that F fulfills hypotheses H(F) with the function
l: R+ —- R

1) = cm,t — ||Ct||L2(Q)||V2|| —lig1 “LZ(F;,)EZ foralld > 0,

and constant cg > 0
cr = dm, + (el 2) + dellv2IDIlv2ll + g1l 2, €2,

@ Springer



904 Journal of Optimization Theory and Applications (2022) 193:877-909

where ¢ > 0 is such that
Iyll2ry < C2llylly forally € Y.

Foreachv € X and w € Y, we utilize Holder inequality, hypotheses H (4), and the
continuity of the embeddings of X to L?(I'3) and Y to L>(I',) for getting

o) = /r K@IV@I AT < [kl 2 1020y < +00,
3
¢ (w) = /F k@Iw@dT < [kl 2 0l 2 < +00.

But, from the definitions of ¢ and ¢, we can see that ¢ and ¢ are both continuous and
convex.

Set K = X and L = Y. Therefore, all conditions of Theorem 7 are verified.
Employing this theorem, we conclude that the solution set of Problem 19 is nonempty
and weakly compactin X x Y. O

Since X and Y are Hilbert spaces, so, the duality mappings of X and Y are the identity
operators Iy in X and Iy in Y, respectively. Let sequences {¢,} and {5, } satisfy (3.1).
We, next, consider the following regularized problem corresponding to Problem 19.

Problem 21 Find (x,, y,) € X x Y such that

(G Xn) + enlx(xn), v = Xn)x + @) —@(xn) = (fo.v —xn)x  (4.19)

forallv € X, and

(F(Xn, yn) + 0pdy (Yn), w — yn)y + @ (W) — d(yn) > (g0, w — yn)y (4.20)

forallveY.

We invoke Theorem 15 directly to obtain the following existence and convergence
results.

Theorem 22 Suppose that H(s), H(t), H(4), H(m), H(m3) and (3.1) are fulfilled.
Then, we have

(i) for each n € N, Problem 21 has at least a solution (x,,, y,) € X X Y;
(ii) for any sequence of solutions {(xy, y»)} of Problem 21, there exists a subsequence
of {(xn, yn)}, still denoted by the same way, such that

(X, yp) = (x,y)in X x Y asn — oo,

where (x,y) € X x Y is a solution of Problem 19.

Let xo, yo € L2($2). We end the subsection to consider the following optimal
control problem.
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Problem 23 Find (f*, g*) € L*(Q) x L*(R2) such that

I(f*.8") = inf 1(f. 8,
(f.9)EL? (VX LA(R)

where the cost function I : U x V. — R is defined by

0
I(f,g) = inf <§/ IX(Z)—XO(Z)|2dZ+§[ |y(z>—yo(z)|2dz)
Q Q

(x,y)el(f,g)
HIf 2@ + 1812 (@) 4.21)

Here, T'(f, g) is the solution set of Problem 19 associated with (f, g) € X* x Y*,
p > 0,0 > 0 are two regularized parameters, and xq, yo € L*(2) are two given
target profiles.

Theorem 24 Suppose that H(s), H(t), H(4), H(m) and H (my) are fulfilled. Then
Problem 23 admits an optimal control pair.

Proof LetU =V = Z; = Z, = L3(). It is obvious that the embeddings of U to
X* and V to Y™ are both continuous and compact. Set h: U x V — R, h(f, g) =
Ifl2@) + IgllL2(q)- It is obvious that A(f, g) > O forall (f,g) € U x V, his
coercive on U x V, and h is weakly lower semicontinuous on U x V. We are now in a
position to utilize Theorem 17 to conclude that Problem 23 admits an optimal control
pair. O

4.2 An Elliptic Feedback Control System

This subsection is devoted to the investigation of an elliptic mixed boundary value
system with distributed control in which the distributed control is described by a least
energy equation which explicitly relies on the status variable.

Let © in RY (N > 2) be a bounded domain such that its boundary I' = 9Q is
locally Lipschitz and is divided into three measurable and disjoint parts I'1, ">, and I'3
with meas(I'1) > 0. Let X be the Hilbert space defined in (4.9). The elliptic feedback
control system is formulated as follows.

Problem 25 Find functions x: Q — Rand y: Q — R such that

—mAx(z) +5(z, x(2)) = y(2) in Q, (4.22)
x(z)=0 on I'y, (4.23)
d
glfj) :=m1(VX(z), ”)RN = f1(z) on Ty, (4.24)
0x(2) 5
~ 3y € Y (x(2)) on Iz, (4.25)
3

where the control variable y € H(; (R2) satisfies the following least energy condition

P(x,y)= inf P(x,w)forallx € X, (4.26)

weH! (Q)
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and P(x, y) is defined by

1
Px,y)i=———— | |Vy()|*d /h dz. 427
(x,y) 5 1+”x”L2(Q)/QI y(@)|"dz + . 0(2)y(2)dz 4.27)

H(y): ¥ : R — Risaconvex and lower semicontinuous function.

Using a standard procedure, we obtain the variational formulation of Problem 25
as follows:

Problem 26 Find functions x € X andy € Y := H(} (R2) such that

- /Q (Vx(2), V(@) — x () dz + /F Y () dr — /F ¥ (x(2)) dT
3 3
+/ s(z,x(2))(v(z) — x(2))dz Z/ y(@)(v(z) —x(2))dz
Q Q

+ - f1@ () —x(z))dT
2

forallv € X, and
P(x,y) < P(x,w) forall w e Hol(Q).

However, it is not difficult to show that Problem 26 is equivalent to the following
one.

Problem 27 Find functions x € X and y € Y such that

I’l’l]/Q(VX(Z),V(U(Z)—X(Z)))RN dz + g Y (v(z))dl — : Y (x(z))dl
3 3

+/ s(z, x(2)((z) — x(z))dz > / y(2)(v(z) — x(2))dz
Q Q

+ - f1(2)(v(z) — x(2))dl
2

forallv € X, and

1

forallw € Hj ().

Arguing as in the proof of Theorem 20, we have the following existence result for
Problem 27.

Theorem 28 Assume that H(s), H(y), fi € L*(I'2), and ho € L*(Q2) hold. Then,
Problem 27 admits a solution.

@ Springer



Journal of Optimization Theory and Applications (2022) 193:877-909 907

5 Conclusion

In this paper, we have introduced and studied a new kind of coupled variational inequal-
ities on Banach spaces. Using Kakutani-Ky Fan fixed point theorem combined with
Minty method and the arguments of monotonicity, we delivered the results concerning
existence and uniqueness of solution to CVI. Then, we established a stability result
for CVI and considered an optimal control problem driven by CVI. Moreover, these
theoretical results were applied to explore two complicated elliptic partial differential
systems: a coupled elliptic mixed boundary value system with nonlocal effect and
a multivalued boundary condition, and a feedback control problem involving a least
energy condition with respect to the control variable.

In fact, problems of this type are encountered in transport optimization, Nash equi-
librium problem of multiple players, contact mechanics problems, and related fields.
In the future, we plan to apply the theoretical results established in the current paper
to an Nash equilibrium problem of multiple players, and investigate coupled quasi-
variational inequalities.
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