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Abstract
For nonconvex set optimization problems based on the set less order relation, this
paper presents characterizations of optimal sets and gives necessary conditions for
set inequalities and non-optimal sets using directional derivatives. For specific order
cones, the directional derivatives of known functionals describing the negative cones
are also given.
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1 Introduction

Set optimization problems, i.e. optimization problems with set-valued objective map,
are difficult to treat because inequalities of nonconvex sets have a complex structure
and they are not simple to characterize. For convex sets, the characterization of set
inequalities is known (for basic results see [16]) and can be simply done using certain
linear functionals. But for nonconvex sets one needsmore elaborate approaches, which
are sometimes named scalarization (e.g. see [13] for early results and also [5,9,10,12,
21,22] together with [20] for related results). These scalarization approaches work
with appropriate sup inf problems.

The present paper startswith the known fact that a set inequality can be characterized
by an inequality inRwhere these sup inf problems play an important role. We restrict
ourselves to the well-known set less order relation (introduced by Young [27] and
named by Chiriaev/Walster [3]) so that the presented results also subsume the weaker
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l-type less and u-type less order relations (see Kuroiwa [23] for first results). The
so-called minmax less order relation (introduced in [19]) is only investigated for a
special result.

The results of this paper consist of conditions under which the inequalities inR are
well-defined, characterizations of nonoptimal sets, necessary optimality conditions
for the afore-mentioned sup inf problems, necessary conditions for a set inequality
and a necessary condition for the non-optimality of a set. The necessary conditions
of the main results work with the directional derivative of a functional being used
for the description of the negative order cone in the considered real linear space. For
different real linear spaces, the directional derivative is calculated for various standard
functionals of this type.

This paper is organized as follows: Background material and first results are sum-
marized in Sect. 2. Investigations of non-optimal sets and optimality conditions in
nonconvex set optimization are given in Sect. 3. The last section contains the main
results like necessary conditions for set inequalities.

2 Basic Results

Throughout this paper we use the following standard assumption.

Assumption 2.1 Let Y be a real linear space, let C ⊂ Y be a convex cone, and let a
functional ψ : Y → R be given with

ψ(y) ≤ 0 ⇐⇒ y ∈ −C . (1)

Such a functional ψ (compare [7, Remark 3.3]), which characterizes the cone −C ,
is not uniquely defined. With ψ the functional αψ also has the required properties for
every α > 0.

For convenience, known examples of these functionals are now recalled for different
spaces.

Example 2.1 ([7, Example 3.4] for (a)–(c))

(a) Let the real linear space Y := R
m (with m ∈ N) be given. For the polyhedral

cone

C := {
y ∈ R

m
∣∣ aT

i y ≤ 0 for all i ∈ {1, . . . , k}}

with k ∈ N and nonzero vectors a1, . . . , ak ∈ R
m the functional ψ : Rm → R

with

ψ(y) = max
i∈{1,...,k}{−aT

i y} for all y ∈ R
m

fulfills the equivalence (1). In the special case C := R
m+ we get the functional ψ

given by

ψ(y) = max{y1, . . . , ym} for all y = (y1, . . . , ym) ∈ R
m .
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The functional ψ : Rm → R with

ψ(y) = ‖(y1, . . . , ym−1)‖2 + ym for all y ∈ R
m

(where m ≥ 2 and ‖ · ‖2 denotes the Euclidean norm in R
m−1) is associated to

the Lorentz cone

C := {
y ∈ R

m
∣∣ ‖(y1, . . . , ym−1)‖2 ≤ ym

}
.

(b) We now consider the real linear space Y := Sn (with n ∈ N) of all real symmetric
(n, n) matrices. Then the functional ψ : Sn → R with

ψ(M) = max{λ1, . . . , λn} for all M ∈ Sn

(here λ1, . . . , λn denote the n eigenvalues of the matrix M) is associated to the
well-known Löwner cone

C := {
M ∈ Sn

∣∣ M positive semidefinite
} =: Sn+.

And the functional ψ : Sn → R with

ψ(M) = max
x∈Rn+‖x‖2=1

xT Mx for all M ∈ Sn

is associated to the copositive cone

C := {
M ∈ Sn

∣∣ xT Mx ≥ 0 for all x ∈ R
n+
}

(here ‖ · ‖2 denotes the Euclidean norm in Rn).
(c) In the infinite dimensional real linear space Y := C[a, b] of real-valued continu-

ous functionals on [a, b]with−∞ < a < b < ∞ the functionalψ : C[a, b] → R

given by

ψ(y) = max
t∈[a,b] y(t) for all y ∈ C[a, b]

is associated to the natural ordering cone

C := {
y ∈ C[a, b] ∣∣ y(t) ≥ 0 for all t ∈ [a, b]}.

(d) Let (Y , ‖ · ‖) be a real normed space and let some continuous linear functional
� ∈ Y ∗ be arbitrarily chosen. Then the functional ψ : Y → R with

ψ(y) = �(y) + ‖y‖ for all y ∈ Y
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is associated to the so-called Bishop-Phelps cone

C(�) := {y ∈ Y | �(y) ≥ ‖y‖}

(compare [11,15] for Bishop-Phelps cones).

There are various order relations, which can be used for the comparison of sets in
the real linear space Y (e.g. compare [19]). In this paper we restrict ourselves to the
well-known set less order relation introduced by Young [27] in 1931.

Definition 2.1 Let Assumption 2.1 be satisfied. For nonempty subsets A, B ⊂ Y the
set less order relation �s is defined by

A �s B :⇐⇒ B ⊂ A + C and A ⊂ B − C .

Next we characterize the set inclusions in Definition 2.1 by certain inequalities.

Proposition 2.1 Let Assumption 2.1 be satisfied, and let the nonempty sets A, B ⊂ Y
be arbitrarily given. Then we assert

B ⊂ A + C

{�⇒ supb∈B infa∈A ψ(a − b) ≤ 0
⇐� supb∈B mina∈A ψ(a − b) ≤ 0, if thismin term exists

and

A ⊂ B − C

{�⇒ supa∈A infb∈B ψ(a − b) ≤ 0
⇐� supa∈A minb∈B ψ(a − b) ≤ 0, if thismin term exists.

Proof For arbitrary nonempty sets A, B ⊂ Y we have

B ⊂ A + C ⇐⇒ ∀ b ∈ B ∃ a ∈ A : b ∈ {a} + C︸ ︷︷ ︸
⇔ a−b∈−C ⇔ψ(a−b)≤0

{�⇒
⇐�

supb∈B infa∈A ψ(a − b) ≤ 0
supb∈B mina∈A ψ(a − b) ≤ 0, if thismin term exists.

In analogy, one can prove the second part of the assertion. ��
The advantage of this simple result is that one can check the validity of the afore-

mentioned set inclusions using appropriate optimization problems. Such a rewriting
of these set inclusions as inequalities has been already given by Hernández and
Rodríguez-Marín [13, Thm. 3.10,(iii)] in 2007 using an extension of the Tammer
(formerly Gerstewitz) scalarization approach [8]. Later such a rewriting of set inclu-
sions as inequalitieswas also given in [22, Thm. 3.3 and 3.8] for scalarizing functionals
introduced by Tammer. Proposition 2.1 is parameter free and it subsumes these scalar-
ization approaches.

Next, we investigate under which conditions the supmin problems in Pro-
position 2.1 are solvable.
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Proposition 2.2 Let Assumption 2.1 be satisfied and, in addition, let (Y , ‖ · ‖) be a
real normed space. Let A ⊂ Y be a nonempty weakly compact set, let B ⊂ Y be a
nonempty set, let ψ be bounded on A − B, and let ψ(·− b) be weakly semicontinuous
for every b ∈ B. Then the problem supb∈B mina∈A ψ(a − b) is solvable.

Proof First, we show the solvability of the problem mina∈A ψ(a − b) for an arbitrary
b ∈ B. Sinceψ(·−b) isweakly semicontinuous for everyb ∈ B and the set A isweakly
compact, there is at least oneminimal solutionab ∈ Awithψ(ab−b) = mina∈A ψ(a−
b) (e.g., compare [18, Thm. 2.3]). Now we consider the problem supb∈B ψ(ab − b).
Because the functional ψ is assumed to be bounded on the set A − B, it is evident that
supb∈B ψ(ab − b) < ∞, which has to be shown. ��
Remark 2.1 In a reflexiveBanach space (Y , ‖·‖) themin subproblem inProposition 2.2
is also solvable, if the set A is nonempty convex closed and bounded and the functional
ψ(· − b) is continuous and quasiconvex for all b ∈ B (compare [18, Thm. 2.12]).

For specific scalarizing functionals such existence results are also remarked in [22,
Remark 1].

Example 2.2 Consider the function ψ : Rm → R (with m ∈ N) with

ψ(y) := max{y1, . . . , ym} for all y = (y1, . . . , ym) ∈ R
m

(compareExample 2.1,(a)). The functionψ is continuous and so, it is alsoweakly lower
semicontinuous because weak and strong convergence coincide in Rm . If A, B ⊂ R

m

are nonempty sets where A is weakly compact and B is norm bounded, then the set
difference A − B is norm bounded. This implies that the function ψ is bounded on
the set A − B. In this case the function ψ satisfies the assumptions of Proposition 2.2.

The following proposition is a direct consequence of the Propositions 2.1 and 2.2.

Proposition 2.3 Let Assumption 2.1 be satisfied and, in addition, let (Y , ‖·‖) be a real
normed space. Let A, B ⊂ Y be nonempty weakly compact sets, let ψ be bounded on
A − B, and let the functionals ψ(a −·) and ψ(·−b) be weakly lower semicontinuous
for every a ∈ A and b ∈ B, respectively. Then

max

{
sup
b∈B

min
a∈A

ψ(a − b), sup
a∈A

min
b∈B

ψ(a − b)

}
≤ 0 �⇒ A �s B.

This proposition gives a sufficient condition for the set less order relation, which
may be helpful in practice (see also [22, Corollary 3.11] for specific scalarizing func-
tionals).

3 Optimality

We now turn our attention to problems of set optimization. Based on the set less order
relation in a real linear space Y , we consider a family F of nonempty subsets of Y
and we investigate optimal sets of F .
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Definition 3.1 Let Assumption 2.1 be satisfied, and let F be a family of nonempty
subsets of Y . A set Ā ∈ F is called an optimal set of F , iff

A �s Ā, A ∈ F �⇒ Ā �s A.

Under Assumption 2.1 recall for any nonempty subset A of Y that the set

min A := {a ∈ A | ({a} − C) ∩ A ⊂ {a} + C}

denotes the set of all minimal elements of A, and the set

max A := {a ∈ A | ({a} + C) ∩ A ⊂ {a} − C}

is called the set of maximal elements of A. Of course, if the convex cone C is pointed
(i.e. C ∩ (−C) = {0Y }), then min A = {a ∈ A | ({a} − C) ∩ A = {a}} and max A =
{a ∈ A | ({a} + C) ∩ A = {a}}.

With the following proposition we investigate the question: What does it mean, if
for some set A ∈ F the two inequalities A �s Ā and Ā �s A given in Definition 3.1
hold?

Proposition 3.1 Let Assumption 2.1 be satisfied and, in addition, let the convex cone
C be pointed. Let F be a family of nonempty subsets of Y , for which the set of minimal
elements and the set of maximal elements are nonempty. For every A ∈ F let the set
equalities

A + C = (min A) + C and A − C = (max A) − C (2)

be satisfied. For some Ā ∈ F , we then have

Ā optimal ⇐⇒ for every A ∈ F with A �s Ā :
min A = min Ā and max A = max Ā.

Proof For some Ā ∈ F and an arbitrary A ∈ F it holds by definition

A �s Ā and Ā �s A ⇐⇒ Ā ⊂ A + C, A ⊂ Ā − C, A ⊂ Ā + C, Ā ⊂ A − C .

By [17, Lemma 2.4] this is equivalent to the inclusions

Ā + C ⊂ A + C, A − C ⊂ Ā − C, A + C ⊂ Ā + C, Ā − C ⊂ A − C

again being equivalent to

Ā + C = A + C, Ā − C = A − C .

By the equalities (2) this can be written as

(min Ā) + C = (min A) + C, (max Ā) − C = (max A) − C . (3)
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y1

y2

−C

A

maxA

minA (minA) + C

(maxA)− C

0

0

Fig. 1 Illustration of the set equalities (2)

The first equality implies min Ā ⊂ (min A) + C , which means

∀ ā ∈ min Ā ∃ a ∈ min A, c ∈ C : ā = a + c.

Since the first equality in (3) also implies min A ⊂ (min Ā) + C , there are â ∈ min Ā
and ĉ ∈ C with a = â + ĉ. Hence, we get ā = a + c = â + ĉ + c. Because of
ā, â ∈ min Ā we obtain ĉ + c = 0Y , i.e. c = −ĉ. Since C is pointed, we conclude
c ∈ C ∩ (−C) = {0Y }. Consequently, we have ā = a and thereby min Ā ⊂ min A.
By renaming we also get min A ⊂ min Ā, an so we have min A = min Ā. The
equality max A = max Ā can be proven in analogy. The assertion then follows with
the definition of optimality. ��

Figure 1 illustrates that the set equalities (2) may also be satisfied for nonconvex
sets. For Y := R

2, C := R
2+ and A given in Fig. 1 we have A + C = (min A) + C

and A − C = (max A) − C .
But the set inequalities (2) donot hold in general; for instance, ifwe chooseY := R

2,
C := R

2+ and A := {(y1, y2) ∈ R
2 | y21 + y22 < 1} ∪ {(−1, 0)} we have min A =

{(−1, 0)} and we get (min A) + C = {(y1, y2) ∈ R
2 | y1 ≥ −1, y2 ≥ 0} �= A + C ,

i.e. the first set inequality in (2) is not satisfied.

Remark 3.1 Under the assumptions of Proposition 3.1 we have

Ā not optimal ⇐⇒ ∃ A ∈ F with A �s Ā :
min A �= min Ā or max A �= max Ā.

For instance, if one works with a descent method for the calculation of an optimal set,
one can use this result in order to decide whether a set Ā is not optimal. Let Ā ∈ F
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be given and let some set A ∈ F with A �s Ā be calculated. If one can check that
min A �= min Ā or max A �= max Ā, one knows that the set Ā cannot be optimal.

The assumption in Proposition 3.1 that the set equalities (2) are fulfilled for all
A ∈ F can be avoided, if one works with a more strict order relation introduced in
[19, Def. 3.5].

Definition 3.2 Let Assumption 2.1 be satisfied.

(a) For subsets A, B ⊂ Y , for which the set of minimal elements min(·) and the set
of maximal elements max(·) are nonempty, the minmax less order relation �m is
defined by

A �m B :⇐⇒ min A �s min B and max A �s max B.

(b) Let F be a family of subsets of Y , for which the set of minimal elements and the
set of maximal elements are nonempty. A set Ā ∈ F is called a minmax optimal
set of F , iff

A �m Ā, A ∈ F �⇒ Ā �m A.

Proposition 3.2 Let Assumption 2.1 be satisfied and, in addition, let the convex cone
C be pointed. Let F be a family of nonempty subsets of Y , for which the set of minimal
elements and the set of maximal elements are nonempty. For some Ā ∈ F , we then
have

Ā minmax optimal ⇐⇒ for every A ∈ F with A �m Ā :
min A = min Ā and max A = max Ā.

Proof In analogy to the proof of Proposition 3.1 we obtain for some Ā ∈ F and an
arbitrary A ∈ F

A �m Ā and Ā �m A

⇐⇒ min A �s min Ā, max A �s max Ā, min Ā �s min A, max Ā �s max A

⇐⇒ (min Ā) + C ⊂ (min A) + C, (min A) − C ⊂ (min Ā) − C,

(max Ā) + C ⊂ (max A) + C, (max A) − C ⊂ (max Ā) − C,

(min A) + C ⊂ (min Ā) + C, (min Ā) − C ⊂ (min A) − C,

(max A) + C ⊂ (max Ā) + C, (max Ā) − C ⊂ (max A) − C

⇐⇒ (min A) + C = (min Ā) + C, (min A) − C = (min Ā) − C,

(max A) + C = (max Ā) + C, (max A) − C = (max Ā) − C

⇐⇒ min A = min Ā, max A = max Ā.

This leads to the assertion. ��
The proof of this proposition follows the lines in [17, Lemma 2.8,(a)].
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Remark 3.2 Notice that Proposition 3.2 does not require the assumption (2) because
(min A) + C = (

min(min A)
) + C and the other set equalities follow similarly.

4 Necessary Conditions for Set Inequalities

The set less order relation is defined by certain set inclusions; by Proposition 2.1 these
set inclusions are characterized by appropriate inequalities. And now we investigate
necessary conditions for these inequalities.

Under Assumption 2.1 we consider two arbitrary nonempty subsets A, B ⊂ Y . For
an arbitrarily chosen b̄ ∈ B we use the abbreviation

Âb̄ :=
{

â ∈ A
∣∣∣ ψ(â − b̄) = min

a∈A
ψ(a − b̄)

}
.

Âb̄ denotes the set of all minimal solutions of the optimization problem mina∈A

ψ(a − b̄).
For the first result we need a technical lemma.

Lemma 4.1 Let Assumption 2.1 be satisfied, and let h ∈ Y be arbitrarily chosen. For
nonempty subsets A, B ⊂ Y let b̄ ∈ B and â ∈ Âb̄ be arbitrarily given. Let Âb̄ �= A.
Suppose that

∃ λ̄ > 0, α ∈ R : ψ(a − b̄ + λh) > α > ψ(â − b̄) for all λ ∈ [0, λ̄], a ∈ A\ Âb̄

and

ψ(â − b̄ + ·h) : [0, λ̄] → R is continuous at λ = 0. (4)

Then there exists some λ̃ > 0 so that

min
a∈A

ψ(a − b̄ + λh) = min
a∈ Âb̄

ψ(a − b̄ + λh) for all λ ∈ [0, λ̃]

provided that these min terms exist.

Proof Let h ∈ Y , b̄ ∈ B and â ∈ Âb̄ be arbitrarily chosen. By the definition of the set
Âb̄ we obtainψ(â − b̄) = mina∈A ψ(a − b̄). By the assumptions there is a sufficiently
small ε > 0 and some λ̃ ∈ [0, λ̄] with

ψ(a − b̄ + λh) > α > α − ε ≥ ψ(â − b̄ + λh) for all λ ∈ [0, λ̃] and all a ∈ A\ Âb̄.

Consequently, we obtain

inf
a∈A\ Âb̄

ψ(a − b̄ + λh) ≥ α > ψ(â − b̄ + λh) ≥ min
a∈ Âb̄

ψ(a − b̄ + λh) for all λ ∈ [0, λ̃].
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These inequalities imply

min
a∈A

ψ(a − b̄ + λh) = min
a∈ Âb̄

ψ(a − b̄ + λh) for all λ ∈ [0, λ̃],

which has to be shown. ��
Under the condition (4) Lemma 4.1 states that the minimal value mina∈ Âb̄

[0]ψ(a −
b̄+λh) remains unchanged for sufficiently small λ ≥ 0, if the set Âb̄ is replaced by its
superset A. The continuity requirement in the secondpart of the condition (4) is fulfilled
for many functionals ψ used in practice (compare Example 2.1). The inequalities in
the first part of the condition (4) are decisive for Lemma 4.1. By the definition of the
set Âb̄ it obviously holds

ψ(a − b̄) > ψ(â − b̄) for all a ∈ A\ Âb̄.

But in (4) we replace the argument a − b̄ by a − b̄ + λh, i.e. we consider elements
with respect to the direction of h, and we require a stronger inequality. Besides the
functional ψ the special choice of the set A plays a central role for this condition.

For simplicity we use the following notation for the next result. Under Assump-
tion 2.1 we consider nonempty subsets A, B ∈ Y and define the functional ϕ : B → R

with

ϕ(b) = min
a∈A

ψ(a − b) for all b ∈ B

provided that the min term exists. Next, we investigate the question under which
conditions the functional ϕ has a directional derivative.

Theorem 4.1 Let Assumption 2.1 be satisfied, and let A, B ⊂ Y be arbitrarily
chosen. Let b̄ ∈ B be a solution of the optimization problem maxb∈B mina∈A

ψ(a − b), and let Âb̄ �= A. Let ϕ be directionally differentiable at b̄ in every direction
b̄ − b with arbitrary b ∈ B. For an arbitrary b ∈ B and an arbitrary â ∈ Âb̄ suppose
that

∃ λ̄ > 0, α ∈ R : ψ(a − b̄ + λ(b̄ − b))>α>ψ(â − b̄) for all λ ∈ [0, λ̄], a ∈ A\ Âb̄

and

ψ(â − b̄ + ·(b̄ − b)) : [0, λ̄] → R is continuous at λ = 0.

In addition, suppose that for all b ∈ B

lim
λ→0+

min
a∈ Âb̄

1
λ

(
ψ
(

a−b̄+λ(b̄−b)
)
−ψ

(
a−b̄

))

= min
a∈ Âb̄

lim
λ→0+

1

λ

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))
.
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Then it follows

min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b) ≤ 0 for all b ∈ B

provided that the arising min terms exist (ψ ′(a − b̄)(b̄ − b) denotes the directional
derivative of ψ at a − b̄ in the direction b̄ − b).

Proof First, we determine the directional derivative of ϕ at b̄ in every direction b − b̄
with arbitrary b ∈ B. With Lemma 4.1 and the assumptions of this theorem, we then
get for all b ∈ B

ϕ′(b̄)(b − b̄) = lim
λ→0+

1

λ

(
ϕ
(
b̄ + λ(b − b̄)

) − ϕ
(
b̄
))

= lim
λ→0+

1

λ

(
min
a∈A

ψ
(
a − b̄ + λ(b̄ − b)

) − min
a∈A

ψ
(
a − b̄

)

︸ ︷︷ ︸
=mina∈ Âb̄

ψ(a−b̄)

)

= lim
λ→0+

1

λ

(
min
a∈ Âb̄

ψ
(
a − b̄ + λ(b̄ − b)

) − min
a∈ Âb̄

ψ
(
a − b̄

)

︸ ︷︷ ︸
=const.∀a∈ Âb̄

)

= lim
λ→0+

1

λ
min
a∈ Âb̄

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))

= lim
λ→0+

min
a∈ Âb̄

1

λ

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))

= min
a∈ Âb̄

lim
λ→0+

1

λ

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))

= min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b).

Since b̄ ∈ B is a maximal solution of the problem maxb∈B ϕ(b) = −minb∈B

−ϕ(b) and ϕ has a directional derivative at b̄ in every direction b − b̄ with arbitrary
b ∈ B, by [18, Thm. 3.8,(a)] we obtain

0 ≤ −ϕ′(b̄)(b − b̄) = − min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b) for all b ∈ B,

which leads to the assertion. ��
Early investigations on directional derivatives of sup inf functions can be found in

[4] (compare also [2]).
With this necessary condition for certain minmax problems, we then obtain nec-

essary conditions for set inequalities as well.
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Corollary 4.1 Let Assumption 2.1 be satisfied, and let A, B ⊂ Y be arbitrarily
chosen. Let ā ∈ A be a solution of the optimization problem maxa∈A minb∈B

ψ(a − b) and let b̄ ∈ B be a solution of the optimization problem maxb∈B mina∈A

ψ(a − b). Let Âb̄ �= A and B̂ā �= B. Let minb∈B ψ(· − b) be directionally differen-
tiable at ā in every direction a − ā with arbitrary a ∈ A, and let mina∈A ψ(a − ·) be
directionally differentiable at b̄ in every direction b̄ − b with arbitrary b ∈ B. For an
arbitrary a ∈ A and an arbitrary b̂ ∈ B̂ā suppose that

∃ λ̄1 > 0, α1 ∈ R : ψ(ā − b + λ(a − ā)) > α1 > ψ(ā − b̂)

for all λ ∈ [0, λ̄1], b ∈ B\B̂ā

and

ψ(ā − b̂ + ·(a − ā)) : [0, λ̄1] → R is continuous at λ = 0.

Moreover, for an arbitrary b ∈ B and an arbitrary â ∈ Âb̄ suppose that

∃ λ̄2 > 0, α2 ∈ R : ψ(a − b̄ + λ(b̄ − b)) > α2 > ψ(â − b̄)

for all λ ∈ [0, λ̄2], a ∈ A\ Âb̄

and

ψ(â − b̄ + ·(b̄ − b)) : [0, λ̄2] → R is continuous at λ = 0.

In addition, suppose that for all a ∈ A

lim
λ→0+

min
b∈B̂ā

1

λ

(
ψ

(
ā − b + λ(a − ā)

) − ψ
(
ā − b

))

= min
b∈B̂ā

lim
λ→0+

1

λ

(
ψ

(
ā − b + λ(a − ā)

) − ψ
(
ā − b

))

and for all b ∈ B

lim
λ→0+

min
a∈ Âb̄

1

λ

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))

= min
a∈ Âb̄

lim
λ→0+

1

λ

(
ψ

(
a − b̄ + λ(b̄ − b)

) − ψ
(
a − b̄

))
.

If the inequality A �s B is satisfied, then we have

min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b) ≤ 0 for all b ∈ B (5)

min
b∈B̂ā

ψ ′(ā − b)(a − ā) ≤ 0 for all a ∈ A (6)

provided that the arising min terms exist.

123



Journal of Optimization Theory and Applications (2022) 193:523–544 535

Proof Let the set inequality A �s B hold for arbitrary ∅ �= A, B ⊂ Y . By Proposi-
tion 2.1 and the assumptions, we then have

0 ≥ sup
b∈B

inf
a∈A

ψ(a − b) = max
b∈B

min
a∈A

ψ(a − b) = min
a∈A

ψ(a − b̄)

and

0 ≥ sup
a∈A

inf
b∈B

ψ(a − b) = max
a∈A

min
b∈B

ψ(a − b) = min
b∈B

ψ(ā − b).

Hence, the inequalities (5) and (6) follow from Theorem 4.1. ��

Remark 4.1 The inequalities (5) and (6) are necessary conditions for the set inequal-
ity A �s B but in general, they are not sufficient. Even if these inequalities imply
maxb∈B mina∈A ψ(a − b) = mina∈A ψ(a − b̄) and maxa∈A minb∈B ψ(a − b) =
minb∈B ψ(ā − b), one has to assume that ψ(ā − b̄) ≤ 0 because in this case we have

max
b∈B

min
a∈A

ψ(a − b) = min
a∈A

ψ(a − b̄) ≤ ψ(ā − b̄) ≤ 0

and

max
a∈A

min
b∈B

ψ(a − b) = min
b∈B

ψ(ā − b) ≤ ψ(ā − b̄) ≤ 0.

An application of Proposition 2.1 then gives A �s B.

By Corollary 4.2 we now present a necessary condition for sets to be non-optimal.

Corollary 4.2 Let Assumption 2.1 be satisfied, and let the convex cone C be pointed.
Let F be a family of nonempty subsets of the real linear space Y , for which the
set of minimal elements and the set of maximal elements are nonempty and the set
equalities (2) are satisfied (for every A ∈ F). In addition, let some set B ∈ F and
every set A′ ∈ F with min A′ �= min B or max A′ �= max B satisfy the assumptions of
Corollary 4.1. If the set B is not an optimal set of F , then there exists some set A ∈ F
so that the inequalities (5) and (6) hold and min A �= min B or max A �= max B.

Proof The assertion is a simple consequence of Remark 3.1 and Corollary 4.1. ��

The assumptions of Corollaries 4.1 and 4.2 concerning the considered sets and the
functional ψ are very strong. For the two sets it seems to be helpful, if they consist
of finitely many elements. But for the functional ψ we need the directional deriva-
tive, which depends on the order cone C . In the following proposition the directional
derivative of ψ is investigated for various special real linear spaces and order cones.
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Proposition 4.1 Let Assumption 2.1 be satisfied.

(a) [18, Exercise 8.3]
Let Y := R

m and C := R
m+ be chosen. Then the functional ψ : Rm → R with

ψ(y) = max{y1, . . . , ym} for all y = (y1, . . . , ym) ∈ R
m

has the directional derivative at an arbitrary ȳ ∈ R
m given by

ψ ′(ȳ)(h) = max
i∈I (ȳ)

{hi } for all h ∈ R
m

with

I (ȳ) := {i ∈ {1, . . . , m} | ȳi = ψ(ȳ)}.

(b) Let the real linear space Y := C[0, 1] of continuous real-valued functionals on
[0, 1] and the natural order cone C := {y ∈ C[0, 1] | y(t) ≥ 0 for all t ∈ [0, 1]}
be chosen. Then the functional ψ : C[0, 1] → R with

ψ(y) = max
t∈[0,1] y(t) for all y ∈ C[0, 1]

has the directional derivative at an arbitrary ȳ ∈ C[0, 1] given by

ψ ′(ȳ)(h) = max
t∈M(ȳ)

h(t) for all h ∈ C[0, 1]

with

M(ȳ) := {t ∈ [0, 1] | ȳ(t) = ψ(ȳ)}.

(c) [14, page275]Let the real Hilbert space Y := Sn of real symmetric (n, n)matrices
(with n ∈N) and the Löwner cone C := Sn+ := {A ∈ Sn | A positive semidefinite}
be chosen. Then the functional ψ : Sn → R with

ψ(A) = max‖x‖2=1
xT Ax

(
= maximal eigenvalue of A

)
for all A ∈ Sn

( ‖ · ‖2 denotes the Euclidean norm in R
n) has the directional derivative at an

arbitrary Ā ∈ Sn given by

ψ ′( Ā)(H) = max
x∈X( Ā)

xT H x for all H ∈ Sn

with

X( Ā) := {x ∈ R
n | ‖x‖2 = 1 and Āx = ψ( Ā)x}

(X( Ā) denotes the set of all normed eigenvalues associated to the maximal eigen-
value of Ā).
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(d) Let the real Hilbert space Y := Sn of real symmetric (n, n) matrices (with n ∈N)
and the copositive cone

C := {
M ∈ Sn

∣∣ xT Mx ≥ 0 for all x ∈ R
n+
}

be chosen. Then the functional ψ : Sn → R with

ψ(M) = max
x∈Rn+‖x‖2=1

xT Mx for all M ∈ Sn

( ‖ · ‖2 denotes the Euclidean norm in R
n) has the directional derivative at an

arbitrary Ā ∈ Sn given by

ψ ′( Ā)(H) = max
x∈X( Ā)

xT H x for all H ∈ Sn

with

X( Ā) := {x ∈ R
n+ | ‖x‖2 = 1 and ψ( Ā) = xT Āx}.

(e) Let a real normed space (Y , ‖ · ‖) and the Bishop-Phelps cone

C(�) := {y ∈ Y | �(y) ≥ ‖y‖}}

for an arbitrary continuous linear functional � ∈ Y ∗ be chosen. Then the func-
tional ψ : Y → R with

ψ(y) = �(y) + ‖y‖ for all y ∈ Y

has the directional derivative at an arbitrary ȳ ∈ Y given by

ψ ′(ȳ)(h) = �(h) + max
�̃∈∂‖ȳ‖

�̃(h) for all h ∈ Y

with the subdifferential

∂‖ȳ‖ =
{ {�̃ ∈ Y ∗ | �̃(ȳ) = ‖ȳ‖ and ‖�̃‖Y ∗ = 1} if ȳ �= 0Y

{�̃ ∈ Y ∗ | ‖�̃‖Y ∗ ≤ 1} if ȳ = 0Y

}

of the norm ‖ · ‖ at ȳ.

Proof (b) For arbitrarily chosen ȳ, h ∈ C[0, 1] we obtain

ψ ′(ȳ)(h) = lim
λ→0+

1

λ

(
ψ(ȳ + λh) − ψ(ȳ)

)
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= lim
λ→0+

1

λ

(
max

t∈[0,1] ȳ(t) + λh(t)
︸ ︷︷ ︸

≥ max
t∈M(ȳ)

ȳ(t)+λh(t)

− max
t∈[0,1] ȳ(t)
︸ ︷︷ ︸
= max

t∈M(ȳ)
ȳ(t)

)

≥ lim
λ→0+

1

λ

(
max

t∈M(ȳ)

(
ȳ(t) + λh(t)

) − max
t∈M(ȳ)

ȳ(t)
︸︷︷︸

=const.

)

= lim
λ→0+

1

λ
max

t∈M(ȳ)
ȳ(t) + λh(t) − ȳ(t)

= max
t∈M(ȳ)

h(t). (7)

Next, we prove the converse inequality. For every λ > 0 there is some tλ ∈ [0, 1]
with

ȳ(tλ) + λh(tλ) = max
t∈[0,1] ȳ(t) + λh(t). (8)

For some t̃ ∈ M(ȳ) we obtain for all λ > 0

max
t∈[0,1]

(
ȳ(t) + λh(t)

) − max
t∈[0,1] ȳ(t) ≥ ȳ(t̃) + λh(t̃) − ȳ(t̃) = λh(t̃)

and

max
t∈[0,1]

(
ȳ(t) + λh(t)

) − max
t∈[0,1] ȳ(t) ≤ max

t∈[0,1] ȳ(t) + λ max
t∈[0,1] h(t) − max

t∈[0,1] ȳ(t)

= λ max
t∈[0,1] h(t).

So, we conclude for some α > 0

∣∣∣ max
t∈[0,1]

(
ȳ(t) + λh(t)

) − max
t∈[0,1] ȳ(t)

∣∣∣ ≤ λα for all λ > 0,

and with the equality (8) we get

lim
λ→0+

ȳ(tλ) + λh(tλ) = lim
λ→0+

max
t∈[0,1] ȳ(t) + λh(t) = max

t∈[0,1] ȳ(t).

Then there is a sequence (λk)k∈N of positive real numbers converging to 0 with
limk→∞ tλk =: t̂ ∈ [0, 1], and it is evident that t̂ ∈ M(ȳ). Hence, we conclude

ψ ′(ȳ)(h) = lim
k→∞

1

λk

(
max

t∈[0,1]
(
ȳ(t) + λkh(t)

)

︸ ︷︷ ︸
=ȳ(tλk )+λk h(tλk )

− max
t∈[0,1] ȳ(t)
︸ ︷︷ ︸

≥ȳ(tλk )

)

≤ lim
k→∞

1

λk

(
ȳ(tλk ) + λkh(tλk ) − ȳ(tλk )

)

= lim
k→∞ h(tλk )
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= h(t̂)

≤ max
t∈M(ȳ)

h(t). (9)

The inequalities (7) and (9) lead to the assertion.
(d) For arbitrarily chosen Ā, H ∈ Sn we have

ψ ′( Ā)(H) = lim
λ→0+

1

λ

(
ψ( Ā + λH) − ψ( Ā)

)

= lim
λ→0+

1

λ

(
max
x∈Rn+‖x‖2=1

xT ( Ā + λH)x

︸ ︷︷ ︸
≥ max

x∈X( Ā)
xT ( Ā+λH)x

− max
x∈Rn+‖x‖2=1

xT Āx

︸ ︷︷ ︸
= max

x∈X( Ā)
xT Āx︸︷︷︸
=const.
on X( Ā)

)

≥ lim
λ→0+

1

λ
max

x∈X( Ā)
xT Āx + λxT H x − xT Āx

= max
x∈X( Ā)

xT H x . (10)

For the proof of the converse inequality choose an arbitrary λ > 0. Then there
exists some xλ ∈ R

n+ with ‖xλ‖2 = 1 so that

xT
λ ( Ā + λH)xλ = max

x∈Rn+‖x‖2=1

xT ( Ā + λH)x .

For an arbitrary x̃ ∈ X( Ā) we obtain

max
x∈Rn+‖x‖2=1

xT ( Ā + λH)x − max
x∈Rn+‖x‖2=1

xT Āx ≥ x̃ T ( Ā + λH)x̃ − x̃ T Āx̃

= λx̃ T H x̃ for all λ > 0

and with

max
x∈Rn+‖x‖2=1

xT ( Ā + λH)x − max
x∈Rn+‖x‖2=1

xT Āx

≤ max
x∈Rn+‖x‖2=1

xT Āx + λ max
x∈Rn+‖x‖2=1

xT H x − max
x∈Rn+‖x‖2=1

xT Āx

= λ max
x∈Rn+‖x‖2=1

xT H x for all λ > 0
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we conclude for some α ≥ 0

∣∣∣∣ max
x∈Rn+‖x‖2=1

xT ( Ā + λH)x − max
x∈Rn+‖x‖2=1

xT Āx

∣∣∣∣ ≤ λα for all λ > 0.

Hence, we have

lim
λ→0+

xT
λ ( Ā + λH)xλ = max

x∈Rn+‖x‖2=1

xT Āx .

So, there is a sequence (λk)k∈N of positive real numbers converging to 0 with
limk→∞ xλk =: x̂ ∈ X( Ā). And we conclude

ψ ′( Ā)(H) = lim
k→∞

1

λk

(
max
x∈Rn+‖x‖2=1

xT ( Ā + λH)x

︸ ︷︷ ︸
=xT

λk
( Ā+λk H)xλk

− max
x∈Rn+‖x‖2=1

xT Āx

︸ ︷︷ ︸
≥xT

λk
Āxλk

)

≤ lim
k→∞

1

λk

(
xT
λk

Āxλk + λk xT
λk

H xλk − xT
λk

Āxλk

)

= lim
k→∞ xT

λk
H xλk

= x̂ T H x̂

≤ max
x∈X( Ā)

xT H x . (11)

The inequalities (10) and (11) imply the assertion.
(e) Since the norm ‖ · ‖ is continuous and convex, its directional derivative is given

by [18, Theorem 3.28]. Then for arbitrarily chosen ȳ, h ∈ Y we obtain

ψ ′(ȳ)(h) = �(h) + max
�̃∈∂‖ȳ‖

�̃(h)

where the subdifferential ∂‖ȳ‖ is calculated in [18, Example 3.24,(b)].
��

The proof of part (b) follows the lines of the proof of the directional derivative
of the maximum norm (compare [18, Exercise 3.2]). Investigations of the directional
derivative of the maximal eigenvalue of a symmetric matrix have been already given
in [25] (compare also [1,6,24,26,28]).

Remark 4.2 If in Proposition 4.1,(c) the maximal eigenvalue of a matrix Ā ∈ Sn is
simple, then the associated normed eigenvector x̄ is unique and the set X( Ā) consists
only of this vector. In this special case the directional derivative is simply given as

ψ ′( Ā)(H) = x̄ T H x̄ for all H ∈ Sn .
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Fig. 2 Illustration of the closed balls A, B and D defined in Example 4.1

If the maximal eigenvalue of Ā is a double eigenvalue, then the set X( Ā) is a circle
in a two dimensional subspace of Rn spanned by the associated eigenvectors. Let x̄1

and x̄2 be orthogonal normed eigenvectors associated to the maximal eigenvalue of
Ā. Then this subspace is spanned by x̄1 and x̄2, and we have

X( Ā) = {α x̄1 + β x̄2 | α, β ∈ R and ‖α x̄1 + β x̄2‖2 = 1}.

In this special case we obtain the directional derivative

ψ ′( Ā)(H) = max
α,β∈R

‖α x̄1+β x̄2‖2=1

(
α x̄1 + β x̄2

)T
H

(
α x̄1 + β x̄2

)
for all H ∈ Sn .

This maximization problem with only two real variables is very simple to solve.

Example 4.1 We now apply the necessary conditions of Corollary 4.1 and Proposi-
tion 2.1 to the very simple case Y := R

2 and C := R
2+, and we choose the functional

ψ : R2 → R with

ψ(y) = max{y1, y2} for all y = (y1, y2) ∈ R
2

(compare Example 2.1,(a)). For convenience only we consider the closed balls A :=
B(

(2, 2), 2
)
, B := B(

(5.5, 3.5), 1
)
and D := B(

(3, 5), 0.5
)
illustrated in Fig. 2. Then

we investigate two cases.

(a) It is geometrically obvious from the definition of the set less order rela-
tion that A �s B. We investigate the necessary conditions (5) and (6) for
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this order relation. The optimization problem maxa∈A minb∈B ψ(a − b) equals
maxa∈A minb∈B max{a1−b1, a2−b2}, and ā := (2, 4) ∈ A is amaximal solution
of this problem. Moreover, we obtain b̄ := (5.5, 2.5) ∈ B as maximal solution of
the problem maxb∈B mina∈A max{a1 − b1, a2 − b2}. By Proposition 4.1,(a) we
can write for all b ∈ B

min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b) = min
a∈ Âb̄

max
i∈I (a−b̄)

{b̄i − bi } (12)

with

Âb̄ =
{

â ∈ A
∣∣∣ ψ(â − b̄) = min

a∈A
ψ(a − b̄)

}

=
{

â ∈ A
∣∣∣ max{â1 − 5.5, â2 − 2.5} = min

a∈A
max{a1 − 5.5, a2 − 2.5}

}

= {(2, 0)}

and

I (a − b̄) = {i ∈ {1, 2} | ai − b̄i = ψ(a − b̄)}
= {i ∈ {1, 2} | ai − b̄i = max{a1 − 5.5, a2 − 2.5}}.

For a := (2, 0) it follows

I (a − b̄) = I ((−3.5,−2.5)) = {2},

and then we get with (12)

min
a∈ Âb̄

ψ ′(a − b̄)(b̄ − b) = 2.5 − b2 ≤ 0 for all b ∈ B.

So, the necessary condition (5) is shown. With B̂ā = {(5.5, 4.5)} and I (ā − b) =
{2} for b := (5.5, 4.5) we get

min
b∈B̂ā

ψ ′(ā−b)(a−ā)= min
b∈B̂ā

max
i∈I (ā−b)

{a1−2, a2−4}=a2 − 4 ≤ 0 ∀ a ∈ A,

and the necessary condition (6) is satisfied as well.
(b) It is evident from Fig. 2 that A ��s D. For these two sets we obtain ā := (4, 2) as

maximal solution of the problem

max
a∈A

min
d∈D

max{a1 − d1, a2 − d2} = min
d∈D

max{4 − d1, 2 − d2} = 0.5 > 0.

By Proposition 2.1, we then conclude A �⊂ D − C .
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5 Conclusions

The investigation of set inequalities generally leads to nontrivial necessary or sufficient
conditions. Starting from known sup inf problems characterizations are given for set
inequalities and optimal and non-optimal sets. The decisive key for the main results is
the use of directional derivatives. For various standard cones the directional derivative
of the functionals describing the negative cone is recalled or calculated. It seems to
be that the presented technique of proof can also be applied to additional functionals
used in practice. A simple example shows the usefulness of this theory but it also
demonstrates that the decision, whether a set inequality holds or not, is a difficult task.
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