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Abstract
This article deals with an economic production quantity (EPQ) model with deteriora-
tion under the effect of environmental pollution in fuzzy environment. First of all, we
develop a pollution generation (PG) model with the help of existing initial pollution
status of the environment, and then we use it as an essential constraint in the proposed
EPQ model. The model has also been studied in two different scenarios: (a) when
unit selling price is given and (b) when unit selling price is associated with marginal
profit respectively. However, in this article, the concept of manpower exploitation,
law of surplus value and their impacts on profit function has been discussed. In fact,
after the invention of Marxian production theory (1867), not a single article has been
developed for studying inventory management problems/operations research using
this theory. Thus, in this study, focussing Marxian principle we have developed a
new production inventory model named Marxian economic production quantity (M-
EPQ) model incorporating the extensions of the models developed by Harris (Mag
Manag 10(2):135–136, 1913) and Taft (Iron Age 101:1410–1412, 1918) exclusively.
Moreover, to deal with the non-random uncertainties of several cost components of
production process we have utilized fuzzy system explicitly. A case study has been
performed for numerical illustrations and we have developed a solution algorithm for
numerical computations. Finally, sensitivity analysis and graphical illustrations are
made to validate the new M-EPQ model followed by a conclusion.
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1 Introduction

Harris [24] developed first the classical economic order quantity (EOQ) inventory
model and the EPQmodel was established by Taft [35]. Since then, numerous research
articles have been developed by eminent researchers. The aim of those models was
to control the order quantity by means of controlling the cycle time to achieve the
maximum profit or to avail a minimum system cost. Moreover, the concept of cleaner
production in EPQ model has been introduced lately by eminent researchers. The
major part of pollution consists of CO2 and CO gases which have been studied in
the inventory management problems in the name of ‘Carbon foot print’, ‘Carbon cap
policy’ or ‘Carbon taxation policy’ explicitly. In its continuation, some recent articles
might keep significant contribution in the related domain. Chen et al. [9] and Battini
et al. [1] analysed EOQ problem for sustainability-related to environmental pollution.
Hovelaque and Bironneau [26] proposed an EOQ model of carbon-constrained with
carbon emission-dependent demand. Pollution in production process through carbon
trade and carbon tax regulation has been discussed by He et al. [25] and Xu et al.
[39] respectively. Li [30] developed various policies and strategies for solving lost
sale-based inventory model under stochastic environment. Wang et al. [38] invented
an optimal strategy to solve step-shaped demand-dependent inventory model.

Moreover, to undertake the problems of non-random uncertainty Zadeh [41]
invented fuzzy set theory. Since then, numerous research articles have been devel-
oped to solve real-world problems that include production manufacturing problems
also. Problems of pollution-based sponge iron industry have been analysed by Kar-
makar et al. [27, 28] in which they employed dense fuzzy and lock fuzzy system
explicitly. Indeed, the concept of dense fuzzy was coined by De and Beg [12] first and
then its extension was discussed by De and Mahata [13] in the name of cloudy fuzzy
set. De and Mahata [14] also solved an economic order quantity model using fuzzy
monsoon demand. Subsequently, the concept of dense fuzzy lock set was coined by
De [11]. Bhattacharya et al. [4, 5] developed a pollution-sensitive global crude steel
production transportation model under the effect of corruption perception index and
solved a fuzzy decision-making problem on global warming. Researchers like Garai
et al. [16–20], Garai andGarg [22] developed variousmodels onmulti-objectivemulti-
item inventory with different kinds of costs and demand via fuzzy possibility theory
and generalised non-linear intuitionistic fuzzy number extensively. Garai et al. [21]
studied multi-objective inventory model under the effect of probabilistic environment.
Giri et al. [23] also established a price and quality-dependent inventory model and
solved it via fuzzy possibility theory.

1.1 Specific Study

In last decades, researchers were basically getting themselves engaged through mod-
elling with CO2 emissions by means of carbon cap and trade policies. In fact, these
concepts do not carry the whole estimation of our environment’s pollution. Most of
the research papers were written by prescribing the use of preservation technology for
controlling pollution. But the source and sink relationship of pollution are still out of
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reach in the existing research.We knowmost of the production sectors are occupied by
special economic zone (SEZ) in different countries where the governmental rules and
regulations have been relaxed that ignoring the issues of human health environmental
pollution. A study reveals that about 85% of total pollution of a country comes from
all SEZ of that country. The soil, air and water are being polluted rapidly causing the
increase of non-fertile land, scarcity of fresh drinking water and shortages of oxygen
for breath. Long history of SEZ is available in the literature. But we may consider few
of them which might serve the purpose of this study. Wang [37] studied the economic
impact of special economic zones of Chinese municipalities. Parwez [33] discovered
the constraints of labour welfare in SEZs of India with special reference to Gujarat.
Policy analysis and reduction of regional disparities in China’s SEZ are analysed by
Crane et al. [10] extensively.

Indeed, Covid-19 pandemic outbreak lost the natural rhythm of human activities
but gave us knowledge about how to clean environment. In particular, during lock-
down period March–April 2020 on a global average, all industries were shut down
and transportation was minimized. As a result, for example in the highly polluted city
Kolkata, India having normal 175 pollution index before Covid-19, it was tremen-
dously down to index 30 and even some days, it was 9 only during the said lockdown
period [3]. But till date not a single research article has been studied yet expressing
the idea of environmental pollution. On the other hand, the purchasing capacities of
common people are becoming low due to job crisis of each individual throughout the
globe. The consequence is that most of the industrial products have no demand; even
if in some cases, there is demand but the profits are marginal. Getting motivation from
these facts we wish to study an EPQ model based on Marxian production theory.

We knew Karl Heinrich Marx (1818–1883) was a German social thinker, politi-
cal economist and philosopher from working-class intellectual and revolutionary. In
his time, he gave many economic theories which are basically designed for a mass
working-class people and they are put in several volumes of the book “Das Kapital”.
Marx’s method of production is based on historical materialism that conceives the
process of human socio-economics reproduction [32]. The source of surplus-value
of a commodity lies in the unpaid labour time performed by the workers during the
production time in the capitalist mode of production [31]. The value of labour is stud-
ied by Bellofiore [2]. The distribution of surplus-value and its growth was developed
by Carter [6, 8]. Also, pool of profits was analysed by Carter [7] and falling rate of
profit is discussed by Eltis [15]. The Concepts of absolute and relative wages towards
modern theory of distribution is given by Levrero [29].We know, modern global econ-
omy is nothing but the economy of political economy [36]. Thus, after meeting long
discussion on Marx’s theory it is seen that in today’s world no one can get more profit
[34]. Because of the volume/page limitation of this article we may consider those
parts of Marxian principle which are associated with capitalistic mode of production,
especially the ‘surplus value’ of a commodity. The basic notion of Marx’s theory is to
establish the theory of socialism and communism that focuses critiques of capitalism.
One of the essential key points of this theory is ‘value of labour power’. According to
Marx, the actual wages paid in labour-time or socially necessary human labour time
for the production of a commodity with the given highest level of technological set-up
available in society is called ‘value of labour power’. The ‘surplus value’ means the
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extra money earned (drawn) from a production system at its end after selling the whole
commodities explicitly. This includes the unpaid labour power to produce the com-
modities. However, the cost that went to produce the commodities may include the
cost of rawmaterials, its transportation and fixed charges of industrial set up known as
‘production cost’ which according to Marx; is constant for a particular time horizon.
Thus, if sp be the selling value of one unit of a commodity, cp be the production cost of
one unit, v be the value of labour-power to produce one unit and s be the surplus-value
of one unit of that commodity thenMarx’s theory says sp � cp +v+s. Here cp is called
cp-constant capital and v is called v-variable capital. Also, the rate of exploitation r is

given by r � sp−(cp+v)
cp+v

and is called the fundamental Marxian theorem.
From the above study, we came to know that, most of the researchers were involved

tomaximize the profit orminimize the system cost that excluded the notion of exploita-
tion. Thus, in this study, we develop a new EPQ model named M-EPQ model having
the exploitation rate as a decision variable that optimizes the average profit function
and average cost function simultaneously. Due to parametric flexibilities, the model
has also been studied into two different scenarios namely model for normal profit and
the model of marginal profit via fuzzy system.

The organization of this article is developed as follows: section one is introduction
followed by specific study. Section 2 includes preliminaries that focus definition of
fuzzy set, its defuzzification, arithmetic operations and partial orderings of fuzzy
sets. Section 3 discusses a mathematical formula of pollution measures and a case
study. Section 4 indicates Marxian production inventory model and its mathematical
foundation. Section 5 includes the fuzzymathematical model and a solution algorithm;
Sect. 6 indicates numerical illustration and sensitivity analysis. Sections 7 develops
graphical illustrations; Sect. 8 represents the research findings andmanagerial insights
and finally Sect. 9 keeps a conclusion.

2 Preliminaries

2.1 Definition of Fuzzy Set and Defuzzification [40, 41]

Let Ã be a triangular fuzzy number drawn from a universal set X of the form Ã �
〈a1, a2, a3〉. Then the membership function of the fuzzy set Ã is defined by

μ
(
Ã
)

�

⎧⎪⎨
⎪⎩

0, if a〈a1 and a〉a3
a−a1
a2−a1

, if a1 ≤ a ≤ a2
a3−a
a3−a2

, if a2 ≤ a ≤ a3

(1)

Now, for the left and right α-cuts of μ( Ã) namely L(α) � a1 + (a2 − a1)α and
R(α) � a3 − (a3 − a2)α respectively, we may utilize the index value of Ã defined as

I
(
Ã
)

� 1

2

1∫

0

[L(α) + R(α)]dα � (a1 + 2a2 + a3)

4
(2)
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2.2 Arithmetic Operations on Triangular Fuzzy Numbers

Let Ã � 〈a1, a2, a3〉 and B̃ � 〈b1, b2, b3〉 be two triangular fuzzy numbers, then the
usual arithmetic operations +,−,×,÷, namely addition, subtraction, multiplication
and division between Ã and B̃ can be stated as below:

(i) Ã + B̃ � 〈a1 + b1, a2 + b2, a3 + b3〉
(ii) Ã − B̃ � 〈a1 − b3, a2 − b2, a3 − b1〉
(iii) Ã × B̃ � Min

(
aib j

)
, Max

(
aib j

) ∀i, j � 1, 2, 3
(iv) Ã/B̃ � Min

(
ai/b j

)
, Max

(
ai/b j

)
for b j �� 0, i, j � 1, 2, 3

(v) μ Ã � μa1, μa2, μa3 if μ ≥ 0 and μ Ã � μa3, μa2, μa1 if μ < 0

2.3 Partial Order Relations

Let A j � 〈s j , l j , r j 〉 and Bi � 〈ti , ui , vi 〉 for i, j � 1, 2, 3, . . . n be two fuzzy
numbers, their summation and multiplication are the arithmetic operations on fuzzy
numbers, and the partial order≤ is defined by A ≤ B iff MAX(A, B) � B. Moreover,
in particular if A � 〈s1, l1, r1〉 and B � 〈s2, l2, r2〉 will satisfy A ≤ B then s1 ≤
s2, s1 − l1 ≤ s2 − l2 and s1 + r1 ≤ s2 + r2.

3 A Pollution GenerationModel

Here we shall discuss the story behind environmental pollution and its assessment.
Traditionally, researchers are engaged in developing various models of producing
commodities at different industrial sectors; its transportation and supply chains. We
know, for any kind of industrial production there corresponds a considerable amount
of pollution which are adding to the environment day by day. Such kind of ‘pollution
production’ has no outlet to discharge/transfer or in other words, this produced item
has no demand. However, in practical situation, we found a little bit of its reduction by
means of absorption by nature (environment). For example, small particulate matters
of air are getting washed out during rainfall, the green vegetation absorbs CO2 during
photosynthesis, the harmful pollutants like SO2, CO, SO3 etc. are converted to some
other substanceswith the use of technological advancement associatedwith production
industries itself.

Therefore, we may design a pollution production model under some assumptions
and notations exclusively.

Assumptions

(i) The environment itself has a minimum level of pollution whether human inter-
vention upon environment takes place or not.

(ii) 100% pollution reduction is not possible; rather a little part of total pollution
can be reducible with the help of advanced technology and by the vegetation of
environment and hence large amount of pollution is getting piled up over time.

(iii) Amount of pollution adding to the environment follows geometric progression.
(iv) At the time of infinity, the pollution level reaches a maximum level, called life

limit.
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(v) All kinds of pollutions are harmful to animal and plant kingdom.
(vi) Amount of pollution means the average of n successive amount of pollution

coming from n production cycles of industry.
(vii) The term ‘life limit’ means a certain amount of environmental pollution for

which about 80% each of the animal and plant species might extinct.

Notations

Ji : Pollution level at any time t of the i-th production cycle.
p: Rate of pollution absorption by the nature.
pi−1
0 : The threshold amount of pollution at the i-th production cycle.

γ : Scale parameter of current pollution
γ ′: Scale parameter of initial pollution
ϕ: Pollution absorbance rate by the nature
wn : Total amount of pollution after n production cycle.
T : The industrial production cycle time (weeks).
λ′, λ: Scale parameters of pollution.
pi : Pollution rate at the i-th production cycle.

3.1 Formation of Pollution Generation (PG) Model

Let the pollution rateλpi is adding to the environment during the i-th industrial produc-
tion cycle of a single industrial setup. The pollution is reduced due to environmental
absorption only and the major parts are adding to the environment over time. Then
considering the above assumptions and for n cycles of production the governing dif-
ferential equation of the pollution production model (shown in Fig. 1) is given by

dJi (t)
dt + ϕ Ji (t) � γ pi , 0 ≤ t < ∞

Subject to Ji(0) � γ ′ pi−1
0 , i � 1, 2, 3, . . . n

(3)

Solving (3) we get

Ji (t) � γ ′ pi−1
0 e−ϕt + γ pi

(
1 − e−ϕt) (4)

Fig. 1 Pollution generating
model at ith production process

Pollution function 

Time 
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Now utilizing (4) the total amount of pollution after n cycles is given by

wn �
n∑

i�1

nT∫

0

Ji (t)dt �
nT∫

0

{
γ ′e−ϕt

n∑
i�1

pi−1
0 + γ

(
1 − e−ϕt) n∑

i�1

pi
}
dt

So average amount of cumulative pollution per cycle over n cycles is

w � wn

n
�
[{

T −
(
1 − e−ϕnT

)

nϕ

}
γ p(pn − 1)

p − 1
+

(
1 − e−ϕnT

)

nϕ

γ ′(pn0 − 1
)

p0 − 1

]
(5)

3.1.1 Special Cases

(i) When the natural absorption rate ϕ → 0 then w → T
γ /(pn0−1)

p0−1

[Since, lim
ϕ→0

w � lim
ϕ→0

1
n

[{
nT −

(
1−e−ϕnT

)
ϕ

}
γ p(pn−1)

p−1 +
(
1−e−ϕnT

)
ϕ

γ ′(pn0−1)
p0−1

]

� lim
ϕ→0

1

n

[{
nT − nT

(
e−ϕnT − 1

)

−nϕT

}
γ p(pn − 1)

p − 1
+

(
e−ϕnT − 1

)
nT

−nϕT

γ ′(pn0 − 1
)

p0 − 1

]

� T γ ′(pn0 − 1
)

p0 − 1

so,w → T
γ /(pn0−1)

p0−1 ] (Shown in Fig. 2a).

(ii) When the natural absorption rate ϕ → ∞ then w → T γ p(pn−1)
p−1

[Since, lim
ϕ→∞ w � lim

ϕ→∞
1
n

[{
nT −

(
1−e−ϕnT

)
ϕ

}
γ p(pn−1)

p−1 +
(
1−e−ϕnT

)
ϕ

γ ′(pn0−1)
p0−1

]
.

Now, lim
ϕ→∞

(
1−e−ϕnT

)
ϕ

� lim
ϕ→∞

(
eϕnT −1

)
ϕeϕnT � (∞

∞
)
form So, applying L’ Hospi-

tal’s rule we get lim
ϕ→∞

(
1−e−ϕnT

)
ϕ

� lim
ϕ→∞

[
nT eϕnT

eϕnT +ϕnT eϕnT

]
� lim

ϕ→∞
[

nT
1+ϕnT

]
� 0]

(Shown in Fig. 2b).
(iii) If we wish to study the pollution status for the limit at n → ∞ then we get

lim
n→∞ w � lim

n→∞
wn

n

� lim
n→∞

[{
T −

(
1 − e−ϕnT

)

nϕ

}
γ p(pn − 1)

p − 1
+

(
1 − e−ϕnT

)

nϕ

γ ′(pn0 − 1
)

p0 − 1

]

�
{
T − lim

n→∞

(
1 − e−ϕnT

)

nϕ

}
γ lim

n→∞
p(pn − 1)

p − 1

+ lim
n→∞

(
1 − e−ϕnT

)

nϕ
lim
n→∞

γ ′(pn0 − 1
)

p0 − 1
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(a) View of globe under complete pollution (b)  View of globe under no pollution 

Fig. 2 a View of globe under complete pollution. b View of globe under no pollution. Source: Figure a,
b copyright: www.twrecruitment.com

� {T − 0}γ lim
n→∞

p(pn − 1)

p − 1
+ 0 × lim

n→∞
γ ′(pn0 − 1

)

p0 − 1

� T γ lim
n→∞

p(pn − 1)

p − 1
⇒ T γ p

1 − p
for 0 < p < 1

and lim
n→∞ w � T γ lim

n→∞
p(pn − 1)

p − 1
→ ∞ for p ≥ 1.

3.2 Case Study

We visited a special economic zone (SEZ) situated at the bank of Sabarmati River,
Gandhinagar (Lat. 23° 14′ 15.22′′ N, Long. 72° 38′ 52.01′′ E), Gujarat, India (The
Google map shown in Fig. 3) on January 2020. It manufactures electronics goods
in particular DVD player, home theatre, Memory card and Pen drive player etc. The
industry pollutes to highest extent upon surrounding environments including Sabar-
mati River by the piles of garbage during production run time. The workers are forced
to do over-duty (without wages) to secure more profit from the production manage-
ment. During production, some items deteriorate and the production efficiency never
attains 100%. All expenditures are mourned weekly basis. The demands are exhausted
throughout the whole cycle time and the cost related to pollutions is estimated over
the average pollution gathered for the duration of at least 10 successive production
cycles of the industry. The data available for this study is set in Table 1 given below.

The research problems are developed as follows:

(i) What will be the optimum cycle time and optimum production run time so as to
minimize the average pollution?

(ii) What will be the profit enhancement if industrial pollution is ignored?
(iii) What will happen when the marginal profit (no profit) is considered?
(iv) What will be the rate of exploitation (due to Marxian fundamental principle) of

manpower with respect to profit maximization?
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Fig. 3 Location of Gandhinagar Electronic SEZ. Source: Copyright of Figure: https://maps.google.com

Table 1 Data available for the proposed study

Labour cost v � $0.5
to produce one unit of
item

Demand rate
d � 1500 units

Production rate
K � 2000 units

Rate of current pollution
generation p � 2.5

Set up cost cs � $2000 Production recovery
rate δ � 0.9

Threshold amount of
pollution rate
p0 � 1.5

Purchasing cost of one
unit of raw material
pc � $15

Scale parameter of
current pollution
γ � 10

Scale parameter of
initial pollution

γ ′ � 5

Holding cost ch � $5 Deterioration cost per
one unit of item
cθ � $2.5

Deterioration rate of
produced items
θ � 0.005

Pollution absorbance
rate by the nature
ϕ � 0.001

Pollution cost per unit
pollution cpol � $5

Unit selling price
sp � $50

4 Formulation of Marxian EPQModel

In this section, we are going to formulate the Marxian EPQ model according to the
above case study. For themodel formulation,we need some assumptions and notations.
Therefore, the assumptions, notations and decision variables used throughout the paper
are listed below.

Assumptions

(i) The production is pollution sensitive.
(ii) Replenishments are instantaneous.
(iii) 100% production capacity is not possible.
(iv) Lead time is zero.
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(v) Shortages are not allowed.
(vi) Pollution cost incurs on the total estimated pollution observed in n successive

production cycle.
(vii) The production system follows Marxian fundamental principle.
(viii) The produced items deteriorate with on-hand inventory during production

period.
(ix) To establish profit function, the ‘surplus value’ and ‘value of labour power’ is

considered.

Notations

K : Production rate (units per week)
δ: Rate of actual production per week
d: Demand rate (units per week).
θ : Deterioration rate per unit production per week.
Q: Maximum order quantity per week.
Y : Total selling price per cycle ($)
cθ : Unit deterioration cost ($)
v : Value of labour cost to produce one unit of item ($)
QT: Total production per cycle (units)
cp : Unit cost price to produce one unit of item ($)
cpol : Unit pollution cost ($)
pc : Unit purchasing cost of raw material ($)
ch : Holding cost per unit item ($)

Decision Variables

T : Production cycle time (weeks)
T1: Production run time (weeks)
Z : Total inventory cost per cycle ($)
Y1: Total inventory profit per cycle ($)
sp : Unit selling price ($)
r : Rate of exploitation (%)
n: Number of inventory cycles.
w : Average total pollution for n cycles

Using these assumptions, notations and decision variables, we shall formulate the
Marxian EPQ model in the next subsection.

4.1 Formulation of M-EPQModel

Let the production start with zero inventory with an imperfect production rateδK , δ

being the imperfect fraction of actual production rate K . Also, the inventory depletes
with deterioration rate θ of on-hand inventory level at any time t and the demand
departure rate is d. The production stops at time T1 keeping the stock Q (shown in
Fig. 4) and the inventory runs up to cycle time (> T1). Thus, the governing differential
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d 

Time

Q 

Produc�on 

0 

Fig. 4 Pollution sensitive EPQ model

equation of the industrial production model is given by

dI1(t)
dt + θ I1(t) � δk − d, for 0 ≤ t < T1

dI2(t)
dt � −d, for T1 ≤ t < T

Subject to I1(0) � 0, I1(T1) � I2(T1), and I2(T ) � 0

(6)

Solving (6) we get

I1(t) � δk−d
θ

[
1 − e−θ t

]
I2(t) � d(T − t)

(7)

Q � d(T − T1) � δk − d

θ

[
1 − e−θT1

]
(8)

Utilizing (7), the inventory holding cost is given by

HC � ch

⎧⎪⎨
⎪⎩

T1∫

0

I1(t)dt +

T∫

T1

I2(t)dt

⎫⎪⎬
⎪⎭

� ch

⎡
⎢⎣δk − d

θ

T1∫

0

(
1 − e−θ t)dt +

T∫

T1

d(T − t)dt

⎤
⎥⎦

� ch

[
δk − d

θ

{
T1 −

(
1 − e−θT1

)

θ

}
+
1

2
d(T − T1)

2

]
(9)

Deterioration cost is given by

DC � cθ

⎡
⎣ δk − d

θ

T1∫

0

(
1 − e−θ t )dt − dT1

⎤
⎦ � cθ

[
δk − d

θ

{
T1 −

(
1 − e−θT1

)

θ

}
− dT1

]
(10)
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Using (5), Pollution cost per cycle is given by PC � cpolw

� cpol

[{
T −

(
1 − e−ϕnT

)

nϕ

}
γ p(pn − 1)

p − 1
+

(
1 − e−ϕnT

)

nϕ

γ ′(pn0 − 1
)

p0 − 1

]
(11)

Since the amount of raw materials � KT1,

the purchasing cost of raw materials (PRC) � pcKT1 (12)

Set up cost (SC) � A (13)

Total quantity produced is QT � Q + dT1 �
(

δk − d

θ

)[
1 − e−θT1

]
+ dT1 � dT

(14)

Cost of labour power (LC) � vQT (15)

Total cost including cost of labour-power to produce QT amount per cycle is given
by

Z � (PRC + HC + DC + LC + SC + PC)

�

⎡
⎢⎢⎣
pcKT1 + ch

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
+ 1

2d(T − T1)2
]
+ vQT + A

+cθ

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
− dT1

]
+ cpolw

⎤
⎥⎥⎦ (16)

Thus, the unit production cost price uc
(� cp + v

)
to produce QT quantity is given

by

uc � Z

QT
� 1

dT

⎡
⎢⎢⎣

pcKT1 + ch

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
+ 1

2d(T − T1)2
]
+ vQT + A

+cθ

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
− dT1

]
+ cpolw

⎤
⎥⎥⎦ (17)

Now, the total selling price after the sale of QT quantity is given by

Y � spQT � spdT (18)

and utilizing (18), the rate of exploitation is given by

r � s

cp + v
� sp − (

cp + v
)

uc
� spdT − Z

Z
(19)
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4.2 Scenario 1:When the Unit Selling Price of the Commodities are Given

Here, we consider the extended models of Harris [24] (the case of cost minimization)
and Taft [35] (the case of profit maximization) to develop the new model. Initially,
we may view the problem as a multi-objective constrained optimization problem (20)
then rearranging these problems into a single problem we can get (21) which is called
EPQ problem under Marxian principle.

Cost function : Minimize Z ,

Profit function : Maximize Y � spdT − Z

Exploitation : Minimize r � spdT−Z
Z

Subject to QT � dT , T � T1 +
(

δk−d
dθ

)[
1 − e−θT1

]
(20)

where the value of Z can be found from (16).
The above problem (20) is a multi-objective EPQ problem. The equivalent single

objective problem of (20) may be written as

Maximize X � Y−Z
r � spdT−Z

r

Subject to QT � dT , r � spdT−Z
Z

T � T1 +
(

δk−d
dθ

)[
1 − e−θT1

]
and Eq. (16)

(21)

The problem (21) is called the problem of fundamental pollution sensitive Marxian
EPQ (M-EPQ) model with deterioration.

Particular Cases:

(i) If we ignore the effect of environmental pollution then we put cpol � 0 in (16)
then the revised problem (22) is considered as the problem ofM-EPQmodel with
deterioration.

Maximize X � Y−Z
r � spdT−Z

r

Subject to QT � dT , r � spdT−Z
Z

T � T1 +
(

δk−d
dθ

)[
1 − e−θT1

] (22)

Were,

Z �

⎡
⎢⎢⎣
pcKT1 + ch

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
+ 1

2d(T − T1)2
]
+ vQT + A

+cθ

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
− dT1

]

⎤
⎥⎥⎦

(ii) If we ignore the deterioration (θ → 0, cθ � 0) and pollution
(
cpol � 0

)
both and

assume full production (δ � 1) then the problem (21) reduces to (23) and it is
called the classical M-EPQ model.
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Maximize X � Y−Z
r � spdT−Z

r

Subject to QT � dT � KT1, r � spdT−Z
Z

Z � [
pcKT1 + 1

2chd(T − T1)2 + vQT + A
] (23)

4.3 When Unit Selling Price is Associated to Marginal Profit

Here we assume the unit selling price sp � Z
QT

+ ∂
∂T

(
Z
QT

)
� Z

dT + ∂
∂T

( Z
dT

)
, where Z

is the total cost incurred to produce QT items during the cycle time T .
Therefore, the pollution sensitive deteriorated M-EPQ problem under marginal

profit is given by

Maximize X � spdT−Z
r

Subject to r � spdT−Z
Z , QT � dT

T � T1 + δk−d
dθ

[
1 − e−θT1

]

sp � pcK+cθ d(T−T1−1)
δKT−dθT (T−T1)

+ ch
(
T 2−T 2

1

)
2T 2 − pcKT1+(cs+v)

dT 2 − cpol
ndT 2

{
nT γ p(pn−1)

p−1 +
γ ′(pn0−1)
ϕ(p0−1)

}

+
{(
1 − e−nϕT

) γ p(pn−1)
p−1 + e−nϕT γ ′(pn0−1)

p0−1

}( cpol+nϕT

ϕndT 2

)

+ 1
dT 2 (ch + cθ )

δk−d
θ

(
T1 − 1−e−θT1

θ

)
+ cθ T1

T 2

(24)

[For details calculation of sp, see “Appendix” section].

5 Formulation of FuzzyMathematical Model

In crisp problemwe see that all the cost components and unit selling prices are assumed
to be deterministic; but in this changing real world, we are seeking such amodel where
all the cost andprice components assumeasflexible in nature.At this point of departure,
we may express the proposed fuzzy model in the following:

˜Maximize X �̃ s̃pdT−z̃
r̃

where z̃ � p̃cKT1 + c̃h

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
+ 1

2d(T − T1)2
]
+ ṽQT + Ã

+c̃θ

[
δk−d

θ

{
T1 −

(
1−e−θT1

)
θ

}
− dT1

]
+ c̃polw

and r̃ � s̃pdT−z̃
z̃

(25)

where the fuzzy parameters are obtained from (26) in the form of (1).

X̃ � 〈X1, X2, X3〉, r̃ � 〈r1, r2, r3〉
Z̃ � 〈Z1, Z2, Z3〉, where Z1 � Z |ci1, Z2 � Z |ci2 , Z3 � Z |ci3
S̃p � 〈s1, s2, s3〉, c̃i � ci1, ci2, ci3
where c̃i �

(
p̃c, c̃h, c̃θ , Ã, c̃pol, ṽ

)
, i � 1, 2, . . . , 6

(26)
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And the components of X̃andr̃ are defined as

X1 � s1dT−Z3
r3

, X2 � s2dT−Z2
r2

, X3 � s3dT−Z1
r1

r1 � s1dT−Z3
Z3

, r2 � s2dT−Z2
Z2

, r3 � s3dT−Z1
Z1

(27)

Now, to get the equivalent crisp problem of the fuzzy problem (25) we may utilize
the defuzzification method studied at (2) and get the new problem developed in (28).

Maximize I
(
X̃
) � X1+2X2+X3

4 ,

Subject to I (̃r) � r1+2r2+r3
4 , and Eqs.(16), (26), (27)

(28)

5.1 Solution Algorithm

Here we shall discuss a solution algorithm where the emphasis is given to maximize
the total profit.

Step 0: Start
Step 1: Solve single objective M-EPQ model developed in (21) and get the optimal

decision variables as
{
Y ∗
1 , Z∗

0 : r∗
0 , w∗

0, T
∗
10, T

∗
0 , S∗

p0

}
.

Step 2: Construct appropriate fuzzy membership functions of the fuzzy parameters
using the optimal values obtained at Step 1 as the initial approximations in (1).
Step 3: Fuzzify the problem (21), get its defuzzification using (2) and reset an equiv-
alent crisp problem (28).
Step 4: Solve (28) by setting the production frequency n � 1 and store these optimal

results asXopt
n �

{
Y ∗
1n, Z

∗
0n : r∗

0n, w
∗
0n, T

∗
1n, T

∗
n , S∗

pn

}
.

Step 5: Set n � n + 1 and go to Step 4.
Step 6: Check whether Z∗

0n+1 − Z∗
0n > ∈1, r∗

0n+1 − r∗
0n > ∈2 and w∗

0n+1 − w∗
0n > ∈3

hold where ∈1, ∈2 and ∈3 are the user defined positive number.
Step 7: Get optimal solution for n � m as Xopt

m �{
Y ∗
1m, Z∗

0m : r∗
0m, w∗

0m, T ∗
1m, T ∗

m, S∗
pm

}
.

Step 8: Go to Step 5.
Step 9: End.

6 Numerical Illustrations

To perform the numerical study, we use the data set from case study given in Table 1.
Then using (21), (24) and (28) and utilizing the proposed solution algorithm developed
at subsection 5.1 we compute numerical result and they are put in Tables 2, 3, and 4
respectively.

Table 2 shows the optimal total profit for the Marxian pollution model for 10
successive production cycles. It is seen that the maximum profit is $ 750,114 with
respect to the inventory expenditure $ 20, 79,536 for the first production cycle getting
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Table 2 Optimal solutions for pollution sensitive Marxian problem

n T1
∗

Weeks
T ∗
Weeks

w∗ r∗
(%)

Y ∗ � spdT ∗
($)

Z∗
($)

Y1
∗ � Y ∗ − Z∗

($)

1 31.84 37.73 202.70 36.1 2,829,650 2,079,536 750,114

2 31.80 37.68 574.86 36.0 2,825,993 2,077,197 748,796

3 31.71 37.57 1341.19 36.0 2,817,938 2,071,789 746,149

4 31.49 37.31 3089.68 36.0 2,798,357 2,058,148 740,209

5 30.91 36.64 7299.75 35.9 2,748,254 2,022,417 725,837

6 29.46 34.94 17,133.47 35.8 2,620,667 1,930,202 690,465

7 26.07 30.95 36,203.74 35.6 2,321,595 1,712,331 609,264

8 19.66 23.41 57,642.94 35.3 1,755,655 1,297,600 458,055

9 11.54 13.78 56,971.63 34.9 1,033,337 765,732 267,605

10 5.27 6.31 34,432.04 34.3 473,121 352,194 120,927

Table 3 Optimal solution for Marxian problem with marginal profit

n T1
∗

Weeks
T ∗
Weeks

s∗p ($) w∗ r∗(%) Y ∗ �
s∗p dT ∗($)

Z∗($) Y1
∗ �

Y ∗ − Z∗
($)

1 0.834 1.00 16.29 5.01 0.0065 24,435.00 24,433.40 1.60

2 0.834 1.00 16.32 13.52 0.015 24,480.00 24,476.33 3.67

3 0.834 1.00 16.35 24.08 0.00 24,530.34 24,530.34 0.00

4 0.834 1.00 16.42 41.81 0.0273 24,630.00 24,623.27 6.73

5 0.834 1.00 16.52 69.79 0.0141 24,780.00 24,776.51 3.49

6 0.834 1.00 16.70 115.73 0.0163 25,050.00 25,045.93 4.07

7 0.834 1.00 16.89 162.23 0.00 25,339.06 25,339.06 0.00

8 0.834 1.00 17.00 346.69 0.00 25,500.00 25,500.00 0.00

9 0.129 0.16 17.00 64.88 0.00 3953.22 3953.22 0.00

10 0.05 0.09 17.20 57.24 0.0466 2316.84 2315.76 1.08

36.1% exploitation, 31.84 weeks of production run time and 37.73 weeks inventory
cycle time that contribute pollution index 202.70. The other cases are of decreasing
rate of profits with varying optimal variables.

Table 3 shows the optimal marginal profit of the Marxian model for 10 successive
production cycles. As per principle, the model has negligible profit or no profit no
exploitation. In the whole table, we found the profit range is $ (0–6.73) with equal
production run time 0.834 week andmost of the cases production cycle time is 1 week.
The unit selling price range is $ (16.29–17.20), the pollution range is 5.01–346.69with
% of exploitation range 0–0.05%. However, we compute the optimal solutions that
include original andmarginal profit forwithout pollution of themodel and the solutions
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Table 4 Optimal solutions for crisp with no pollution and fuzzy with pollution models

Problems T1
∗

Weeks
T ∗
Weeks

s∗p ($) w∗ r∗
(%)

Y ∗ �
s∗p dT ∗($)

Z∗
($)

Y1
∗ �

Y ∗ − Z∗
($)

Crisp
normal
Profit

31.86 37.75 50 – 36.10 2,831,528 2,080,681 750,847

Crisp
marginal
Profit

0.834 1.00 16.27 – 0.00 24,408.30 24,408.3 0.0

Fuzzy
system
normal
profit

31.59 37.43 50 200.99 35.30 2,737,168 2,023,163 714,005

Initial fuzzy system parameters (ρc, σc, ρs, σs) � (0.15, 0.09, 0.2, 0.1); n∗ � 1 in every case

of fuzzy mathematical model with pollution respectively for 10 successive years each
and they are put in Table 4.

Table 4 shows that optimal results are same for 10 successive years of studywith the
normal, marginal profit and fuzzy normal profit maximization problems. It is seen that
no profit no exploitation is viewed for the marginal profit-seeking model. But fuzzy
system is giving considerable amount of profit with minimum exploitation 35.30%
than normal profit-seeking crisp model having the average pollution index 200.99.

6.1 Sensitivity Analysis

Here we perform the sensitivity analysis by changing the fuzzy deviation parameters
on and from − 50%, − 25%, + 25% and + 50% for all unit cost components and the
unit selling price of the fuzzy mathematical model and the results are put in Table 5.

Here we see that the rate of exploitation has the range (33.9, 50.2) % with pollution
impact range 155.36–205.82 for the average production run time is about 31 weeks,
production cycle time is about 37 weeks respectively. Moreover, the total profit varies
on and from − 4.65% + 8.64% throughout for the changes of all fuzzy deviation
parameters.

7 Graphical Illustrations

Here we shall draw several graphs for justification of the model. Figure 5 shows that,
for normal profit-seeking Marxian EPQ model, the amount of average cumulative
pollution is increasing up to 8 production cycles keeping value near 57,100 and after
that, it began to fall down. Also, Fig. 6 indicates the total average cumulative pollution
measures of the marginal profit-seeking production model, increases slowly up to 7th
turnover and at 8th turn over it gets a peak near value 340. But at 9th production cycle
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Fig. 5 Variation over pollution
measures in original scenario
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Fig. 6 Variation over pollution
measures in marginal profit
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that level has a sudden jump to value near 70 and after that, it began to decrease. We
further observe that the pollution data obtained from themarginal profit model is about
100 times less than that of the data available from the normal profit-seeking model.

Figure 7 expresses the distribution ofmarginal cost andmarginal profit in percentage
for 10 successive years of study. The % of total profit assumes high at 4th production
cycle by reaching nearly 37% by covering a zigzag path within 10 production cycle.

Fig. 7 Marginal cost and profit
distribution in percentage
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However, the % cost curve gets a horizontal line up to 8th cycle assuming value nearly
13% and no profit has been found for 7–9th cycle after that the cost curve began to
decrease but profit curve began to increase.

Figure 8 reveals that for normal Marxian pollution model a large gap ($ 14 lakh)
has been found between total cost and total profit up to 7th production cycle, after that
these curves are getting much closure to 10th production cycle or more.

Figure 9 discusses the profit distribution forwith andwithout pollution impacts over
10 successive years of studies inMarxian normal profit-seeking model. The maximum
profit is nearly $ 75,000 for at least first 3 consecutive production cycles of both the
models but after that, the amount of profit began to decrease rapidly for the pollution
model but for without pollution model the total profit remains same.

Figure 10 gives a comparative study over the cumulative rate of exploitation (%)
of normal and marginal pollution-sensitive profit-seeking model over 10 successive
production cycles. The normal Marxian model always gives almost constant (near
10%) average exploitation but that formarginal model; it follows a zigzag path ranging

Fig. 8 Cost and profit curve of
original scenario
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Fig. 9 Variation of profit due to
pollution and no pollution in
original scenario
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Fig. 10 Exploitation variation in
original and marginal scenario
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the values 0% to 24% on average up to 10th production cycle. At production cycles
3,7, 8 and 9th, no exploitation is found.

Figure 11 discusses the profit variation of normal profit-seeking exploitation-based
Marxian production inventorymodel showing up to 35.9% exploitation the profit value
is increasing but it becomes stable for more exploitation keeping the profit value near
$75,000. Figure 12 indicates the variation of marginal profit curve of the total %

Fig. 11 Profit variation under
normal exploitation
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Fig. 12 Profit variation under
marginal exploitation
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Fig. 13 Variation of profits in
original and marginal scenario

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10
A

m
ou

nt
 o

f 
pr

of
it 

(%
)

Number of production turnover

Original profit (%) Marginal profit (%)

variations over 10 successive cycles of exploitation. The exploitations are negligible
and hence the profits are negligible followed by a zigzag path.

From Fig. 13 it is seen that, though the marginal profit (no profit) always gets
minimum, on the basis of% gain over several successive production cycles, it becomes
high (up to 32%) within the cycles 4th to 7th and beyond that, the normal Marxian
model gives the higher % of profit not exceeding 13% always. Figure 14 discusses the
comparison on % of exploitations made at subproblems by considering pollution and
no pollution measures in the normal Marxian production inventory model exclusively.
It is observed that up to 7th production cycles the % rates of exploitations are more
than 10% and for more production cycles of pollution model, the exploitation began
to decrease by reaching at 9.6% on sharp. However, without pollution model gives
almost same amount of exploitation for all production cycles with 10% impact of
exploitation.

Figure 15 studied comparison of profit variation (range $6,80,000–$ 7,75,000) on
Marxian normal pollution model with the fuzzy parametric changes on and from −
50%, − 25%, + 25%and + 50% respectively of several unit cost parameters and the

Fig. 14 Exploitation (%) due to
pollution and no pollution in
original scenario
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Fig. 15 Profit variation under fuzzy parametric changes (%)

parameter of unit selling price also. For unit selling price, the right fuzzy deviation
parameter is increasing and that for left fuzzy it is decreasing and they meet around
10% change. Moreover, the reverse conditions are found for the fuzzy deviations of
unit cost parameters also.

Figure 16 gives the total profit variation whenever unit cost prices increase slowly
the unit selling price curve decreases with a Shaw’s tooth-like path under 8 observa-
tions. Figure 17 discusses the % change of exploitation over the variation of unit cost
price and unit selling price parameter over 8 observations. For the variation of unit
selling price, the rate of exploitation gets a range within 34% to 50%, whereas, for the
unit cost price it was only 35.5–39% around.

Figure 18 reveals the joint effect of exploitation hike (%) made by the variations
of production run time and production cycle time in weeks. We see within produc-
tion runtime 26 weeks and cycle time 32 weeks the % rate of exploitation reaches
48% but beyond that the curve assumes downstairs like structures. Moreover, within
30–32 weeks of production run time and more than 38 weeks of cycle time, the
exploitation increases up to 35% approximately.

Fig. 16 Profit variation under
unit cost and unit selling price
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Fig. 17 Exploitation variation
over unit cost price and unit
selling price
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Fig. 18 Variation of exploitation (%) due to cycle time and production run time

8 Research Findings andManagerial Insights

In this section we shall discuss our research findings over the case study and the
managerial insights as follows:

8.1 Research Findings

(i) Optimum total cost and total profit of the model are $2,079,536.00 and
$750,114.00 with respect to the production run time 31.84 weeks, the cycle
time 37.73 weeks and pollution index 202.70 for basic M-EPQ model.
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(ii) If the effect of pollution is ignored then the expected profit goes to 0.135%more
with respect to that of the pollution model.

(iii) In case of marginal profit and no exploitation, the pollution index will come
down to 5.01 only for production run time 0.834 week where the inventory cost
and profits become $ 24,433.40 and $ 1.60 respectively.

(iv) The maximum exploitation gets 36.1% corresponding to the maximum profit $
750,114.

8.2 Managerial Insights

(a) The normal pollution model gives maximum exploitation.
(b) The marginal (no) profit model gives less (no) exploitation.
(c) Percentage of profits and costs vary with the number of production turnovers.
(d) For marginal M-EPQ model, the total cost and profit functions follow saw teeth

curve.
(e) Profits and cost curves are getting closure with more production turnovers.

9 Conclusions

In this article, we have developed Marxian EPQ model incorporating industrial pollu-
tion, deterioration, partial production capacity, manpower exploitation with the help
of a profit maximization single objective function under fuzzy environment. The tra-
ditional concept of considering pollution parameter is replaced by a new pollution
function via the modelling of a separate pollution generation function.

However, two different scenarios under Marxian fundamental principles of pro-
duction having normal profit and marginal profit are considered and then we split
them into with and without effect of pollutions. In each stage, we have calculated the
total profit earned, total cost incurred, and the amount of exploitation generated in the
whole entire production process exclusively. Fuzzy system is utilised because of the
flexibilities of the different cost components involved in the production process and
variation of selling prices of the commodities explicitly. Though the present produc-
tion system (on SEZ and others) is solely depending upon automation and technology
where the role of labour is quite passive but still the working-class people are exploited
differently in this production manufacturing world. The great novelties of this study
are:

(i) Marxian production inventory (M-EPQ) model has been developed first time
after the invention of Taft’s EPQ model studied in 1918.

(ii) Discovery of pollution generation model is another pioneering work.
(iii) Manpower exploitation in production farm is analysed first time.
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